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Abstract. We find all triples of Fibonacci numbers (x, y, z) = (Fi, Fj , Fn) satisfying the
Markov equation x2 + y2 + z2 = 3xyz.

1. Introduction

The Markov equation is

x2 + y2 + z2 = 3xyz (1.1)

in positive integers x ≤ y ≤ z. A Markov number is any positive integer which is a component
of some solution to the Markov equation. Here is the sequence of Markov numbers

1,2,5,13, 29,34,89, 169, 194,233,610, 985, 1325, . . .

(sequence A002559 in [2]) appearing as coordinates of the Markov triples

(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169),

(5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), . . .

The Fibonacci sequence {Fm}m≥0 starts as F0 = 0, F1 = 1 and satisfies the recurrence
Fm+2 = Fm+1 + Fm for all m ≥ 0. Its first few terms are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

(sequence A000045 in [2]). One notices that the Markov numbers seem to contain the odd
indexed Fibonacci numbers. The fact that this is so is a consequence of the formula

1 + F 2
2k−1 + F 2

2k+1 = 3F2k−1F2k+1 (1.2)

valid for all positive integers k. We ask whether there are other solutions (x, y, z) = (Fi, Fj , Fn)
to the Markov equation other than the ones arising from (1.2). Here is our main result.

Theorem 1.1. If (x, y, z) = (Fi, Fj , Fn) is a solution in positive integers to the Markov equa-
tion, then it is of the form shown in (1.2).

Similar problems have been investigated before. For example, it is known that the set of
three integers {F2n, F2n+2, F2n+4} has the property that the product of any two of them plus
one is square since

F2nF2n+2 + 1 = F 2
2n+1, F2n+2F2n+4 + 1 = F 2

2n+3, F2nF2n+4 + 1 = F 2
2n+2.

In [1], it is shown that if {F2n, F2n+2, Fk} has the property that the product of any two plus
one is a square, then k ∈ {2n− 2, 2n+ 4} except for n = 2 when also k = 1 is possible.
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2. Preliminary results

Lemma 2.1. If (a, b, c) 6= (1, 1, 1) satisfies the Markov equation and a ≤ b ≤ c, then 3ab <
b+ c.

Proof. If b = c, then

a2 = 3ab2 − 2b2 = b2(3a− 2)

and the right–hand side is > b2 ≥ a2 if a > 1, which is a contradiction. Thus, a = 1
leading to a = b, showing that a = b = c = 1, which is excluded. Thus, c > b, therefore
3abc = a2 + b2 + c2 < 3c2, which gives ab < c and hence a2 < c (as a ≤ b). Next, from
c(b − 1) ≥ (b + 1)(b − 1) = b2 − 1, we have bc − c ≥ b2. Therefore a2 + b2 < c + b2 ≤ bc. It

follows that a2+b2

c < b, so that 3ab = a2+b2

c + c < b+ c. �

Recall that

Fk =
αk − βk

α− β
where (α, β) =

(
1 +
√

5

2
,
1−
√

5

2

)
(2.1)

for all k ≥ 0. In particular,

αk−2 ≤ Fk ≤ αk−1 holds for all k ≥ 1. (2.2)

3. The proof of Theorem 1.1

Assume x = Fi, y = Fj , z = Fn with x ≤ y ≤ z. Since F1 = F2 = 1, we assume that
2 ≤ i ≤ j ≤ n. Then

z − 3xy = −x
2 + y2

z
. (3.1)

Inserting the values of x, y, z in the left hand side of (3.1), we get

αn

√
5
− 3

5
αi+j = −

F 2
i + F 2

j

Fn
+
βn√

5
− 3

5

(
αiβj + αjβi − βi+j

)
.

Taking absolute values and using

F 2
i + F 2

j

Fn
≤

2F 2
j

Fn
≤ 2α2j−n ≤ 2αj ,∣∣∣∣ βn√5

∣∣∣∣ ≤ α−j√
5
<
αj

5
,∣∣∣∣35 (αiβj + αjβi − βi+j

)∣∣∣∣ ≤ 3

5

(
2αj + 1

)
≤ 9αj

5
,

we get that ∣∣∣∣ αn

√
5
− 3

5
αi+j

∣∣∣∣ ≤ αj

(
2 +

1

5
+

9

5

)
= 4αj .

Dividing across by αi+j/
√

5 we get∣∣∣∣αn−i−j − 3√
5

∣∣∣∣ < 4
√

5

αi
. (3.2)

Certainly,

1 <
3√
5
< α
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and

min
k∈Z

∣∣∣∣αk − 3√
5

∣∣∣∣ =

∣∣∣∣α− 3√
5

∣∣∣∣ > 0.2763,

so (3.2) shows that

0.2763 <
4
√

5

αi
,

which gives αi < 4
√

5/0.2763, or i ≤ 7. We record what we have proved.

Lemma 3.1. If (x, y, z) = (Fi, Fj , Fn) satisfies (1.1) with i ≤ j ≤ n, then i ∈ {2, 3, 4, 5, 6, 7}.
Of these, only i = 2, 3, 5, 7 lead to Fi = 1, 2, 5, 13 which are Markov numbers.

Lemma 3.2. If (x, y, z) = (Fi, Fj , Fn) satisfies (1.1) with i ≤ j ≤ n, then n is odd, j = n− 2
and Fi = 1.

Proof. We shall treat the case Fi = 1 at the end.
Assume that Fi = 2. Then we have

4 + F 2
j + F 2

n = 6FjFn

or

4 + F 2
j = Fn(6Fj − Fn),

which gives Fn < 6Fj . From Lemma 2.1, we have 6Fj < Fj +Fn which gives 5Fj < Fn. Hence,
we have

5Fj < Fn < 6Fj .

This is false because

Fj+3 = Fj+2 + Fj+1 = 2Fj+1 + Fj = 3Fj + 2Fj−1 < 5Fj

(since j ≥ i ≥ 3), while

Fj+4 = Fj+3 + Fj+2 = 2Fj+2 + Fj+1 = 3Fj+1 + 2Fj = 5Fj + 3Fj−1 > 6Fj ,

since the last inequality is equivalent to 3Fj−1 > Fj , which holds because Fj = Fj−1 + Fj−2
and 2Fj−1 > Fj−2. Thus, for j ≥ 3, the interval (5Fj , 6Fj) does not contain any Fibonacci
number. Similarly in the cases Fi = 5 and Fi = 13 we get

14Fj < Fn < 15Fj ,

and

38Fj < Fn < 39Fj ,

respectively, which are false as

Fj+5 = 8Fj + 5Fj−1 < 14Fj and Fj+6 = 13Fj + 8Fj−1 > 15Fj (j ≥ 5)

and

Fj+8 = 21Fj + 13Fj−1 < 38Fj and Fj+9 = 34Fj + 21Fj−1 > 39Fj (j ≥ 7),

so that the intervals (14Fj , 15Fj) and (38Fj , 39Fj) do not contain a Fibonacci number for
j ≥ 5 and j ≥ 7, respectively.

So we have Fi = 1. In this case, we get

Fj < Fn < 3Fj

which gives n = j + 1 or n = j + 2. In the first case, n ≥ 3 and we have

1 + F 2
n−1 + F 2

n = 3Fn−1Fn
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or
1 + (Fn − Fn−1)

2 = Fn−1Fn,

or
1 + F 2

n−2 = Fn−1Fn

which is possible only in the case n = 3. But this gives the solution (1, 1, 2) = (F1, F1, F3), so
it satisfies the conclusion of the theorem. Finally, when j = n− 2, we get

1 + F 2
n−2 + F 2

n = 3Fn−2Fn

which implies that n is odd (otherwise one of n− 2 or n is a multiple of 4, so one of Fn−2 or
Fn is divisible by 3, in which case the above relation is impossible modulo 3). �
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