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Abstract:  
Introduction: Exploration of space and gathering data on its atmospheric conditions could 
drive the development of advanced space technologies, such as atmospheric sensors and 
remote monitoring systems. Then, scientific research in seemingly distant areas, such as 
astrophysics and space exploration, can contribute to the achievement of the SDGs by 
promoting innovation and sustainable technological development. Methodology: We present 
an automated four-step detection algorithm for identification of photoelectron peaks based on 
a short-term-average/long-term-average phase picker taken along a characteristic function. 
Additional analysis is applied to the longer signal window after the declared detection to 
characterize photoelectron peaks and discard noise disturbances. Results: The modular design 
of the algorithm enables the substitution of alternative strategies in any of the four steps and 
the rapid implementation on new datasets. Discussion: The utility of the algorithm is 
illustrated through an overview example based on data from all available Titan flybys. The 
knowledge about photoelectron peaks in Titan's atmosphere could offer insights that could be 
valuable for addressing climate change on Earth. Conclusions: Understanding planetary 
plasma environments, including their interaction with the solar wind and other space weather 
phenomena, can indirectly contribute to our understanding of Earth's climate system.  
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peaks; Titan's atmosphere; innovation; sustainable technological development; automated 
four-step detection algorithm; Earth's climate system. 

 
Resumen: 
Introducción: La exploración del espacio y la recopilación de datos sobre sus condiciones 
atmosféricas pueden impulsar el desarrollo de tecnologías espaciales avanzadas, como 
sensores atmosféricos y sistemas de monitoreo remoto. La investigación científica en áreas 
aparentemente distantes, como la astrofísica y la exploración espacial, puede contribuir al 
logro de los ODS al promover la innovación y el desarrollo tecnológico sostenible. 
Metodología: Presentamos un algoritmo automatizado de detección en cuatro pasos para la 
identificación de picos de fotoelectrones utilizando una técnica utilizada en sismología que se 
basa en la relación entre dos promedios móviles de la señal. Para caracterizar los picos y 
descartar perturbaciones de ruido se aplica un análisis adicional después de la detección 
declarada. Resultados: El diseño modular del algoritmo permite la sustitución de estrategias 
alternativas en cualquiera de los cuatro pasos y la implementación rápida en nuevos conjuntos 
de datos. Discusiones: La utilidad del algoritmo se ilustra a través de un ejemplo general 
basado en datos de todos los sobrevuelos disponibles de Titán. Conclusiones: Comprender 
los entornos de plasma planetario, incluida su interacción con el viento solar y otros 
fenómenos meteorológicos espaciales, puede contribuir indirectamente a nuestra comprensión 
del sistema climático de la Tierra. 
 
Palabras clave: ODS 9; Espectrómetro de Electrones (CAPS-ELS) de la misión Cassini; 
fotoelectrones; atmósfera de Titán; innovación; desarrollo tecnológico sostenible; algoritmo 
automatizado de detección en cuatro pasos; sistema climático de la Tierra. 
 

1. Introduction 
 
Progress in physics, as in the other sciences, arises from a close interplay of experiment and 
theory. In fact, in the history of the physical sciences, the development of theory and 
application of good principles of measurement have gone hand in hand: each has informed 
the other. What is more, in many ways, the physical sciences are at the forefront of using digital 
tools and statistical methods for data analysis. The fields and disciplines that make up the 
physical sciences are by no means uniform, and scientists find, work and share information 
and data in richly varied ways, though. In this regard, studies emphasize the value of 
examining Titan's atmospheric and environmental processes to draw parallels with Earth’s 
own climate system, potentially offering new methods and models to address climate change 
challenges. Cloud formation and precipitation of methane can inform us about non-water-
based climatic cycles on Earth and potential climate mitigation strategies (Mitchell & Lora, 
2016). These interactions could shed light on the prebiotic chemistry relevant to early Earth 
conditions (Hörst, 2017). Gu et al. (2019) have highlighted the dynamics of chemical species 
like nitrogen and carbon in Titan's atmosphere, which can shed light on atmospheric escape 
mechanisms. These studies are crucial for understanding the long-term climate evolution on 
terrestrial planets. Observations from Cassini have revealed how temperatures in Titan's lower 
stratosphere evolve with the seasons, showing significant seasonal changes, particularly at the 
poles. Understanding these thermal responses to seasonal and meridional insolation 
variations can enhance our knowledge of similar atmospheric behaviors on Earth (Sylvestre et 
al., 2020). Crósta et al. (2021) explores how the formation of impact craters on Titan, such as 
the Menrva crater, could influence the habitability of planetary bodies by enabling the 
exchange of materials between the surface and subsurface. This has implications for 
understanding the conditions favorable for life and prebiotic chemistry on other celestial 
bodies. Furthermore, the global climate models of Titan can help us understand the 
atmospheric circulation and seasonal effects, which are applicable to studying Earth’s past and 
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future climate scenarios. These models are crucial in understanding how atmospheric 
processes can be influenced by various planetary characteristics [Friedson et al., 2009]. A 
mathematical climate model of Titan's atmosphere, which considers the atmospheric mass 
motion and energy circulation processes, provides insights that can be analogous to studying 
similar processes on Earth (Mulholland & Wilde, 2020). This model explores how solar energy 
is retained in the atmosphere, helping to understand fundamental meteorological processes 
like the Hadley cell on terrestrial planets. 
 
Ultimately, research on Titan's atmosphere and its implications for understanding climate 
phenomena can offer valuable insights into Earth's own climate systems. Understanding 
planetary plasma environments, including their interaction with the solar wind and other 
space weather phenomena, can indirectly contribute to our understanding of Earth's climate 
system. In particular, the knowledge about photoelectron peaks in Titan's atmosphere could 
offer insights that could be valuable for addressing climate change on Earth. Discrete peaks 
near 24,1 eV are observed in Titan's ionosphere, generated by ionization of N2 due to solar 
radiation. These photoelectrons are predominantly found in the dayside ionosphere and can 
be used as tracers of magnetic field lines, which might help in understanding the plasma 
environments of other planetary bodies (Wellbrock et al., 2012). Studying the ionization 
processes and resultant photoelectron emissions in Titan's atmosphere might help in modeling 
complex atmospheric chemistry and interactions in Earth's upper atmosphere, especially those 
involving nitrogen compounds. Such studies could potentially offer new perspectives in 
managing solar radiation or developing strategies related to atmospheric chemistry 
management for climate mitigation. The methodologies used in detecting and analyzing these 
photoelectron peaks on Titan could enhance techniques for studying similar phenomena in 
Earth's atmosphere. This could be crucial for better understanding the dynamics of Earth's 
ionosphere and its implications on climate and environmental science. Broadly, studies of 
Titan's atmosphere can enrich our general understanding of atmospheric processes, 
potentially offering analogs or contrasts to Earth's climatic and atmospheric systems which 
could inform climate change mitigation strategies. The exploration of Titan's photoelectron 
peaks thus not only could enrich planetary science but also holds a mirror up to Earth's own 
atmospheric studies, offering tools and insights that could be beneficial in our quest to assist 
in predicting extreme weather events and assessing adaptation strategies. Space weather 
events, driven by variations in the solar wind and magnetic activity, can have indirect effects 
on Earth's climate. For example, geomagnetic storms can induce changes in atmospheric 
circulation and temperature, affecting weather patterns and climate variability. Photoelectron 
measurements provide insights into the dynamics of the upper atmosphere, including 
ionization processes and the formation of plasma layers. Changes in the upper atmosphere 
can influence climate by altering the balance of greenhouse gases, ozone distribution, and 
atmospheric chemistry. 
 
Here we introduce an algorithm that automatically detects peaks in electron data measured 
by the Cassini-Huygens mission in order to improve our understanding of the plasma 
environments around the moons and planets in the solar system. The Cassini-Huygens 
missions is a joint NASA (2023), ESA (European Space Agency) and ASI (Italian Space Agency) 
mission and was in orbit around the planet Saturn from 2004 to 2017. It studied the planet and 
its rings, moons, and neutral and plasma environment. In this study we focus on applying our 
algorithm to study the plasma environment of Saturn’s largest moon, Titan; however, the 
algorithm can be applied to a variety of datasets. Titan is unique in the solar system because it 
is the only moon which has an extended atmosphere, denser than even most known planets 
(Brown et al., 2010; Hörst, 2017). This atmosphere is nitrogen based with large concentrations 
of organic molecules, resulting in highly complex organic chemistry taking place at a large 
range of altitudes, including the topside ionosphere which is >1.000km from the surface. The 
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Cassini orbiter regularly passed through this region and took measurements using its suite of 
in-situ instruments. Titan’s orbit is located at 20 Saturn radii (1 RS = 60.268 km), placing it 
(under standard solar wind dynamic pressure) in the outer part of a region called Saturn’s 
magnetosphere. This region and its dynamics are dominated by Saturn’s rotation and 
planetary magnetic field (Neubauer et al., 1984); it shields the planet and its moons and rings 
from the solar wind. Titan itself does not have an intrinsic magnetic field, however Titan’s 
atmosphere interacts with the plasma in Saturn’s outer magnetosphere and forms an induced 
magnetosphere (Cravens et al., 2009; Wellbrock et al., 2012). This interaction is similar to the 
solar wind interaction with globally unmagnetised objects such as Venus, Mars and comets. 
One way to improve our understanding of this type of interaction is to try to find particles that 
can trace magnetic field lines from the low upstream ionosphere to the distant tail. 
Photoelectrons are mobile along magnetic field lines and so when they are observed distant 
from their source, they can be used to constrain the field line morphology (Wellbrock et al., 
2012). However, electrons can be produced from a variety of different reactions and it is 
therefore not possible to determine where particular electrons may have come from, unless the 
distinct energy signature of photoelectrons produced by the ionization of N2 by the solar He-
II line identifies when a field line sampled at the spacecraft location intersects Titan's day-side 
ionosphere. Such a specific characteristic is present in some photoelectrons and it is these 
characteristic photoelectrons that our algorithm aims to find in the spacecraft data. 
 
The energy of the photoelectron depends on the energy difference between the incoming 
photon and the ionization potential and the initial and final excitation states of target species. 
Therefore, a range of photoelectron energies can generally be observed. However, there is a 
larger number of photoelectrons with a specific energy due to the ionization of neutrals by the 
particularly strong He-II 30.4nm (40,79 eV) solar emission line. As a result, photoelectron 
peaks can be observed in planetary atmospheres’ electron energy spectra, and it is the 
characteristic energy of this peak that makes these photoelectrons particular useful. At Titan, 
this characteristic energy is 24,1 eV due to the ionization of nitrogen molecules by the He-II 
30.4nm line. 
 
Photoelectrons are found on the dayside of Titan’s upper neutral atmosphere/ionosphere and 
can be observed in electron energy spectra from the Electron Spectrometer (ELS) part of the 
Cassini Plasma Spectrometer (CAPS) because this is where neutral nitrogen molecules are 
present, and solar radiation can reach these and ionize them (Young et al., 2004). We therefore 
expect the production sites of the 24,1 eV electrons to be in this environment (Haider, 1986; 
Gan et al., 1992). However, some photoelectrons are also observed at other locations where 
local production is unlikely (e.g. Wellbrock et al., 2012); at higher altitudes, due to lack of 
sufficient neutral molecules, and on the nightside, due to lack of solar radiation. They can 
travel to these observation sites via magnetic field lines. When we detect such photoelectron 
peaks at high altitudes and on the nightside, we know due to their characteristic peak energy 
that they were produced remotely and traveled to the observation site via magnetic field lines. 
This is what makes these photoelectron peak observations particularly useful for tracing 
magnetic field lines and hence improving our understanding of the plasma environment. 
However, the photoelectron exobase of Titan, above which the photoelectron collisions with 
ambient neutral particles become negligible, locates at the altitude of ∼1.505 km (Cao et al., 
2020). 
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In addition, a steep decrease in the intensity of the solar spectrum for wavelengths ~20 nm and 
below results in a reduction of the photoelectrons observed at and above ~60 eV (e.g. Nagy et 
al., 1977; Fox and Dalgarno, 1979). These signatures are present in the electron spectra 
previously predicted for Titan (Gan et al., 1992; Cravens et al., 2009) and described by Galand 
et al. (2010) using Cassini data. Observing this decrease in the data indicates an additional 
characteristic of primary photoelectron production.  
 
Photoelectron peaks due to the He(II) emission lines can also be observed in many other places 
in the Solar System. The peak energy varies slightly because the neutral species are different, 
and therefore the ionization potentials are, too. At Earth, photoelectrons have been studied in 
some detail e.g. by Coates et al. (1985). Photoelectrons have also been observed by Cassini in 
the Saturn system in the ring exosphere (Coates et al., 2005), throughout the neutral-rich inner 
magnetosphere (Schippers et al., 2008, 2009) and at Enceladus (Coates et al., 2007, 2010, 2013; 
Ozak et al., 2012, Taylor et al., 2018). Several spacecraft have made in-situ measurements of 
photoelectron peaks in the induced magnetospheres of Venus (e.g. Tsang et al., 2015 and 
references therein) and Mars (e.g. Frahm et al., 2006, Coates et al., 2011 and references therein). 
Studying these has helped improve our understanding of the interaction between the solar 
wind and these planetary atmospheres, and the resulting magnetic topology. 
 
Locating photoelectron peaks reliably depends strongly upon the precision of peak 
determination, which can be performed from both observational and theoretical points of 
views. Nevertheless, with large data sets, manual inspection becomes time consuming. Here 
we present such a methodology for characterizing photoelectron peaks which can significantly 
improve finding them in planetary environments accurately and consistently. 
 
1.1. Instrumentation  
 
The CAPS-ELS is a hemispherical top-hat electrostatic analyzer that measures the flux of 
electrons as a function of energy per charge and direction of arrival (a full description is given 
by Young et al., 2004, and Linder et al., 1998). The data consists of 63-level energy spectra 
obtained every 2s with an energy range of 0.6–28.000 eV/q and an energy resolution of 16,7% 
(dE/E). 
 
CAPS was operational from the beginning of the mission to June 2011 and then from March to 
June 2012. There are 62 Titan flybys for which CAPS data are available (28 flybys at high 
altitude (>1.000Km) and 34 flybys at low altitude (<1.000Km). The trajectories of these flybys 
vary which allows us to investigate different aspects of Titan's local environment. 

 

2. Material and methods 
 
Automatic picking procedures (APP) are needed to handle the bigger datasets and they must 
be precise, reliable and capable of adapting to different site and/or instrument characteristics. 
Unlike manual picking, APP save time and should be more consistent since manual peaks can 
differ between experts. Reliable photoelectron location is limited by the extent to which 
reliable information can be recovered from these records. Here we introduce an algorithm that 
automatically detects peaks in electron data. 

 
2.1. Automatic pickers  
 
One of the most commonly used event detection algorithms is the STA/LTA detector (the 
short term-average/long term average phase picker) based on lower order statistics and 
proposed by Allen (1982), introducing the concept of the characteristic function (CF, hereafter), 
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resulting from a nonlinear transformation by which the ‘character’ of the seismic trace is 
specified. This algorithm is rapid, simple, robust and easily adaptable and remains useful for 
identifying events in continuous databases (Baillard et al., 2014) and designed to enhance 
changes in both amplitude and frequency. Allen’s CF is based on the ratio of the two averages 
calculated on sliding windows over the trace. This STA/LTA approach (termed in seismology 
literature as a “phase picker detection technique”) has been used in Martian studies (Murphy 
et al., 2002; Ringrose et al., 2007; Aguirre et al., 2017; Xiong et al., 2018). The phase picker 
detection technique has been demonstrated to give results at terrestrial locations comparable 
with (much more laborious) manual searches (Jackson & Lorenz, 2015; Lorenz & Lanagan, 
2014). The STA/LTA algorithm has also been used to identify and characterize Jupiter’s 
Northern and Southern auroral lightcurves for 24 May (Chandra and XMM-Newton) and 1 
June (Chandra) 2016 (Dunn et al., 2017). 
 
2.2. Application of statistical functions for determination of the CF 
 
The event detection algorithm used in this work transforms raw data (x(j) as differential energy 
flux-DEF-value at a given time and at a specific j-level energy spectrum every 2s) with a CF 
which could be defined as an ‘envelope’ of the signal. The signal is characterized by a specific 
CF, which is used as input information for proposed picker. Such extent that the performance 
of the picker depends on CF strongly. By and large, the peak detection can be indicated by a 
change in the frequency, or amplitude, (or both in the time series). CF should enhance the 
change. Naturally, the CFs based on amplitude of signal (in our case) are not sensitive to 
periodic changes of signal, and are only sensitive to changes in amplitude. 
 
There are relations between the behavior of the CF of a distribution and properties of the 
distribution, such as the existence of central statistic moments (lower and higher order 
statistics). First, in the picking algorithm we introduce here, a CF of a local event is determined 
as the ratio STA/LTA. The STA measures the instant amplitude of the signal and the LTA 
contains information about the current average noise amplitude. The peak detection is defined 
in an energy channel in which the STA/LTA function reaches a user predefined threshold 
level (STA/ LTA trigger threshold level). The STA/LTA algorithm processes the filtered signal 
in two moving energy channel windows. Then the CF of a local event is calculated from higher 
order statistics.  
 
A change in amplitude is recognized by all CFs. However, the CF based on higher order 
statistics show the most distint pick onset and a simple shape, making it best suitable for 
picking algorithms. In this way, the photoelectron peak is recognized by each CF, but the CFs 
calculated from higher order statistics exhibit steeper gradients, which make these CFs very 
useful for picking techniques. 
 
A fundamental task in many statistical analyses is to characterize the location and variability 
of a data set (lower order statistics). A further characterization of the data includes higher 
order statistics such as skewness and kurtosis. Skewness (S, hereafter) is defined in terms of 
the third central moment. It is a statistical value characterizing the shape of a given 
distribution. It becomes zero if the distribution is symmetrical. It becomes positive (or 
negative) if the distribution contains outliers to the right (or left). Kurtosis (K, hereafter) is 
defined using the fourth central moment. It is a measure of whether the data are heavy-tailed 
or light-tailed. That is, datasets with high kurtosis tend to have infrequent extreme deviations 
(or outliers). Data sets with low kurtosis tend to have frequent modestly sized deviations or 
lack of outliers. The kurtosis becomes 3 for normally distributed random variables. Negative 
(or positive) deviations of K from 3 indicate narrowing (or widening) of the distribution (e.g. 
Baillard et al., 2014). 
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To set up the STA/LTA trigger algorithm, parameters like STA and LTA window durations 
(in energy channels) and trigger threshold level are crucial. There's no universal rule; settings 
depend on the application's goal and noise conditions. Practical experience guides optimal 
trigger settings, typically determined through trial and error. For best results, adjusting 
parameters gradually is necessary. STA duration should exceed typical peak periods, making 
triggering sensitive to short events. Longer LTA duration filters out irregular noise 
fluctuations. Akram and Eaton (2016) offer guidance on parameter selection. Using a larger 
window approximates the event zone, followed by a smaller window for accurate picking. The 
trigger threshold level largely determines recorded events, with higher thresholds reducing 
false triggers. Window length must suit sampling frequency and filtering to avoid biased 
estimates and ensure accurate peak detection. 
 
2.3. Automatic picking procedure  
 
To identify and characterize spectra which exhibit photoelectron signatures, we have designed 
and developed an automated method that follows four major steps explained in detail below. 
We present an automatic picking algorithm for photoelectron detection and characterization 
and apply it to CAPS-ELS using signal analysis by short term average/long-term average 
(STA/LTA)- and CF -based detectors. We improve pick precision by computing the CF with 
higher order statistics. Skewness and kurtosis-derived methods in the datasets are 
implemented to allow more accurate picking. Once detections are picked, our procedure 
establishes the pick type using five statistical parameters (a “quintuple”) and sets a pick 
quality index (hearafter QI) based on these and also SNR. These parameters help shape the 
quality of the photoelectron peak detection. If more parameters are compared simultaneously 
the detection becomes more reliable. 
 
In this paper, quality is defined as the extent to which a photoelectron peak complies with its 
signature’s standards which are based on the peaks near 24 eV and a decrease in electron 
intensity above 60 eV due to the drop in the solar spectrum near 20 nm (e.g. Nagy et al., 1977; 
Gan et al., 1992; Cravens et al., 2009; Galand et al., 2010).  
 
The algorithm classifies detected photoelectrons into one of three quality categories. The QI is 
a scale designed to help characterize photoelectrons in the spacecraft data. The QI was 
developed with several goals: 1) to provide a standardized measure of photoelectron peak 
quality; 2) to discriminate between “the best” and “the least best” ones; 3) to provide an index 
that is easy for researchers to interpret and 4) to provide a brief, useful assessment of a variety 
of photoelectron peaks. 
 
The robustness and reliability of the suggested algorithm is tested by comparing manually 
derived detections, serving as reference picks, with the corresponding automatically estimated 
detections. Acceptable measures of internal homogeneity, consistency (test-retest reliability) 
and validity were obtained using statistical hypothesis tests. The utility of the algorithm is 
illustrated through several examples based on data from all available Titan flybys and also a 
more detailed look at one specific flyby, the Titan 40 (“T40”) flyby. The most important benefits 
of automated techniques are their consistency and their capability of processing large data 
sets. The modular design of the algorithm enables the substitution of alternative strategies in 
any of the four process steps. 
 
To simplify the algorithm’s usage, each step has only a few variable parameters. Therefore, in 
order to optimize the efficiency of the search, the programme is provided with full detection 
capability and makes use of a high degree of automation, aimed at minimizing the expert’s 
workload. In fact, the modular structure of the program will allow us to develop it with new 
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and improved capabilities. Future developments in APP will concern the application of other 
detection algorithms or/and routines to recognize secondary peaks. All photoelectron 
identification results can be accessed via Caro-Carretero, & García- Jiménez (2023). For more 
details, see Caro-Carretero et al. (2019) and Cao et al. (2020).  
 
The traditional approach to automatic phase detection has been to apply a series of narrow 
bandpass frequency filters (that passes frequencies within a certain range -the single count 
level of ELS- and rejects (attenuates) frequencies outside that range. According to Figure 1 the 
suggested iterative algorithm can be described as a four-stage process consisting of: 
 
Figure 1.  
 
Flowchart for the four-step algorithm 

 
Note: DROP (decrease in electron intensity); RCH (Relative Change of DEF); S (Skewness); K (Kurtosis), P (Prominence)  

Source: Own elaboration (2024) 
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Stage 1 
Computation of the CF of a local event using (STA/LTA)-based ratio to individuate the fast 
variation in the signal by taking the averages over the samples in a time interval of 3 individual 
2s raw spectra from start time behaving like a filter.  
 
Stage 2 
Calculation of the CF using higher order statistics with a 7-energy channel length long-term 
window to increase the reliability of photoelectron energy peak detection and time estimation.  
Considering data was processed using MSSL’s Cassini data analysis system. Assuming the 
data has a Poisson distribution, it can be well approximated by a Gaussian and hence the errors 
on the spectra are one standard deviation (for details, see Figures 2-4 in T40 flyby). The error 
bars should cover ±1 standard deviation (68% probability for values of the distribution).  
 
Stage 3  
Computation of a quintuple using statistical criteria in order to determine the pick type and 
estimation of the quality factor using SNR ratio and the quintuple in attempting to differentiate 
photoelectron peaks and how statistically significant the 24 eV peak is. After the automatic 
picking algorithm is applied, a complete set of different output parameters is available. The 
quintuple is composed of 1) the energy where we see the drop in the observed spectrum; 2) 
relative change (RCH) used as a quantitative indicator of quality assurance between two DEF 
values, which are the value identified as peak and the value before; relative change is 
expressed by a ratio as the number of times the DEF value at 24,1 eV is compared with the DEF 
at the previous energy channel (the more RCH the steeper the slope since the width of the 
frequency distribution increases with decreasing slope); 3) Skewness as a measure of 
symmetry; 4) Kurtosis (or excess kurtosis if we consider K minus 3) as a descriptor of the shape 
of a probability distribution which quantifies the degree of its peakedness; 5) The prominence 
(P) of the peak to measure how much the peak stands out due to its intrinsic height and its 
location relative to other peaks. A low isolated peak can be more prominent than one that is 
higher but is an otherwise unremarkable member of a wide range. Prominence characterizes 
the height of a peak by the vertical distance between it and the lowest contour line encircling 
it but containing no higher peak within it. To measure the prominence of a peak we reach the 
left or right end of the signal on the peak this point being either a valley or one of the signal 
endpoints. The higher of the two specifies the reference level. The height of the peak above 
this level is its prominence. We define a ratio between it and its reference level. While the 
quintuple serves as a local quality estimate, the SNR gives a more global quality estimate of 
the photoelectron energy peak. We observe the change in the STA/LTA value is not as steep 
for SNR<2,6 suggesting that it is more challenging to select an optimal detection threshold for 
relatively lower SNR. As a result, we identified categories 1 and 2 as SNR2,6 (Baillard, 2014). 
 
Stage 4 
Comparison of manually derived detections. The robustness and reliability of the suggested 
algorithm is tested by comparing manually derived detections, serving as reference picks, with 
the corresponding automatically estimated detections from 24 Titan flybys. The thresholds for 
the quintuple and SNR assigned to the weighting classes 1-3 are summarized in Table 1, where 
quality factor-1 peaks denote “a clear drop” between 45-70 eV, quality factor-2 peaks are 
identified by a drop below 45 eV or above 70 eV, and quality factor-3 peaks correspond to all 
other cases. Scientifically, the presence of this drop in intensity is an additional clear 
characteristic of primary photoelectron production (Galand et al., 2010). Cases where it is not 
clearly present can be linked to counting statistics being close to the noise level. Therefore, the 
QI gives an indication of how clearly the scientific characteristics can be observed in the 
spectra. 
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Table 1.  
 
Quality factor scheme for automatic picking  

Quality 
Index 

Drop energy RCH P SNR 

1 
Clear drop present between 45-

70 eV (e.g see Figure 2) 
1,4≤ RCH ≤2 2≤P≤3 1,6≤SNR ≤2,6 

 

2 
Drop present at 30-45 eV or at 

70-120eV (e.g. see Figure 3) 
 

1,4≤ RCH ≤2 
 

2≤P≤3 
 

1,8≤SNR≤2,6  

3 
All other cases, i.e. no clear 

drop detected (e.g. see Figure 4) 

 
 

RCH≤1,4 

 
 

P≤2 

 
 

SNR≥2,6 
Note: Quality index as well as all the parameters are automatically derived by the proposal algorithm (data has been recorded as 
a comma-delimited ASCII text file, with individual files typically spanning 24 h); RCH (Relative Change); P (Prominence); SNR 
(Signal-to-Noise Ratio) 

Source: Own elaboration  
 
Descriptive statistics and one-way analysis of variance (ANOVA) were used to contrast 
photoelectron peak features of QI categories. The six parameter scores of the QI had an overall 
reliability coefficient (Cronbach’s α) of 0,92, indicating a high degree of internal consistency. 
In other words, each of the six parameters appears to measure a particular aspect of the same 
overall quality constructor. Multiple paired t-hypothesis tests (ANOVA) for the six individual 
parameter scores showed statistical significant differences between QI categories (p-
value<0,1). 

 

The APP then assigns a quality index to photoelectron energy peak obtaining a catalog of 
picked photoelectron energy times and its features. For each flyby, the APP designed and 
developed for this algorithm saves all information in a file (Caro-Carretero, & García- Jiménez, 
2023). 

 

The picker has a small number of relatively simple user-defined parameters and should be 
easily adaptable to any dataset. However, we could observe that some limitations of the 
algorithm performance and picking occur for the case of weak peaks where the pick could be 
missed entirely since the threshold is generally set too high, and the trigger is made on the 
following stronger peak.  

3. Results 
 
We tested our algorithm on the Cassini data and confirmed the efficiency of the algorithm by 
comparing the results with manually inspected results from 24 Titan flybys. In order to 
provide an example of the data set and results that the algorithm can produce, we show data 
from the Cassini T40 flyby (see Figures 2-4) which was investigated as a photoelectron case 
study by Wellbrock et al. (2012). The T40 flyby took place on 5 January, 2008 with closest 
approach at an altitude of 1014 km at 21:30 UT.  
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Figure 2.  
 
Example of photoelectron quality index 1 (clear drop present between 45-70 eV) 

 
Note: ELS data from the T40 Titan flyby. Six-second averaged (three spectra) differential energy flux (DEF) spectrum starting 
21:25:50: UT. The dashed line indicates the single count level of ELS. The arrow in each spectrum points at the 24,1eV photoelectron peak. 
Error bars assume Poissonian statistics on counts/acc data.  

Source: Own elaboration 

Figure 3.  
 
Example of photoelectron quality index 2 (drop present at 30-45 eV or at 70-120eV) 

 

 
Note: ELS data from the T40 Titan flyby. Six-second averaged (three spectra) differential energy flux (DEF) spectrum starting at 
21:32:36: UT. The dashed line indicates the single count level of ELS. The arrow in each spectrum points at the 24,1eV photoelectron peak. 
Error bars assume Poissonian statistics on counts/acc data.  

Source: Own elaboration  
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Figure 4. 7 
 
Example of photoelectron quality index 3 (no clear drop detected).  

 
Note: Cassini CAPS-ELS data from the T40 Titan flyby. Six-second averaged (three spectra) differential energy flux (DEF) spectrum 
starting at 21:31:20: UT. The dashed line indicates the single count level of ELS. The arrow in each spectrum points at the 24,1eV 
photoelectron peak. Error bars assume Poissonian statistics on counts/acc data.  

Source: Own elaboration  
 

There is evidence for magnetic connections to local production sites far from Titan during this 
flyby. During this flyby 206 peaks were detected and classified according to the quality index 
as presented in Table 2.  
 
Table 2.  
 
The assigned pick quality index for T40 Flyby  

Quality Index Number of peaks 

1  11 

2  18 

3 177 

Total 206 

  
Source: Own elaboration  
 
Our automatic picking algorithm can also be applied to larger data sets such as the complete 
set of electron data from all Titan 62 flybys where CAPS was operating. This will allow 
studying the spatial distribution of photoelectron peaks near Titan. We provide here a general 
example of the data set provided by the algorithm. A more detailed scientific analysis using 
the algorithm to study Titan’s magnetic environment has been the focus of recent studies, e.g. 
Cao et al. (2020).  
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4. Discussion 
 
Figure 5 shows an overview of all photoelectron peaks detected as a result of applying the 
algorithm to CAPS-ELS data from the 62 Cassini Titan flybys. In 56 of them the 24,1 eV 
photoelectrons were detected. Every black dot indicates an observation of a photoelectron 
peak. The distance is measured from Titan's surface in Titan radii (one Titan radius, RT, is 
about .2574 km). Solar zenith angle (SZA) is measured from the subsolar point; a SZA beyond 
the terminator (90o) is considered to be the nightside, even though we should note that at these 
high altitudes solar radiation can still reach parts of the atmosphere beyond the terminator.  

 
Figure 5.  
 
Spatial distribution of photoelectron peak observations near Titan found by the algorithm when applied 
to CAPS-ELS data from 62 Cassini Titan encounters.  

 

 
Note: The radial distance from the center shows the distance from Titan in Titan radii (RT = 2.574 km). The angles shown are SZA (Solar 
Zenith Angle). The photoelectron peak altitude (~1.200 km) and the photoelectron exobase altitude (~1.500 km) are shown as red and green 
lines, respectively. 

Source: Own elaboration  
 
The results demonstrate that 35% of the photoelectron peak observations are found outside 
the dayside ionosphere, indicating that there are magnetic field lines connecting the day and 
night side and allowing photoelectrons to travel along these to the observation sites on the 
nightside. As the SZA increases from 90o to 180o, the number of photoelectron peak 
observations decreases, demonstrating that the deep night side is less well connected to the 
lower dayside ionosphere, where solar fluxes generate most of photoelectrons. These aspects 
have been explored further in recent studies such as Cao et al. (2020). 
 
In Figure 6 we show what the plot shown in Figure 5 looks like for one specific Titan flyby and 
again use T40 as an example. The colours specify which instrument anode was used; the 
anodes point in different directions and can therefore provide information about the electron 
distributions. The position of anode N has been shifted sideways by (N-2)*0,1 RT to distinguish 
it clearly from the neighbouring anodes. Figure 6 reveals that in the dayside ionosphere, at an 
altitude near 0,5 RT and SZA less than 90 o, all anodes observed continuous photoelectron 
peaks. This is a strong indication for a locally produced photoelectron population because the 
distribution appears to be more isotropic (i.e. observed in any direction). The observations at 
higher altitudes on the other hand are seen in specific anodes only; their distributions are 
therefore less isotropic, indicating that they are likely to have travelled to the observation sites 
via magnetic field lines (i.e. very directional motion). This agrees with the theory that 
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photoelectrons are produced in the lower dayside ionosphere where neutral particles can be 
ionized by solar radiation, and then travelled from there to higher altitudes and/or the 
nightside, as shown by Wellbrock et al. (2012) in this T40 case. Local production at higher 
altitudes is less likely due to lower neutral densities. Investigating the distributions of 
photoelectrons can be enhanced by studying their pitch angle distributions (i.e. how close the 
direction of motion is compared to the magnetic field direction), which will also be a focus of 
future studies such as Cao et al. (2020) to study Titan’s plasma environment in more detail 
using the algorithm described in this study. The example results presented in Figure 6 also 
agree well with the photoelectron peaks found by Wellbrock et al. (2012), who manually 
inspected the T40 electron spectra to locate the peaks. 
 
Figure 6.  
 
Spatial distribution of photoelectron peak observations near Titan found by the algorithm when applied 
to CAPS-ELS data from one specific Titan flyby: T40. 

 
Note: The radial distance from the centre shows the distance from Titan in Titan radii (RT = 2574 km), and the angles show the SZA (Solar 
Zenith Angle). The position of anode N has been shifted sideways by (N-2)*0,1 RT to distinguish it clearly from the neighbouring anodes. The 
grids below 1 RT indicates the photoelectron peak altitude and the photoelectron exobase altitude, respectively. Saturn’s nominal 
magnetospheric plasma flow comes from the top during this flyby. 

Source: Own elaboration  
 

5. Conclusions 
 
We have designed and developed a new automated four-step method to determine the 
locations of 24eV photoelectron peaks in Titan’s plasma environment and characterized these 
using a quality factor. It has been applied to data from all Titan flybys using signal analysis. 
The algorithm can be a powerful tool to automatically detect photoelectron energy peaks with 
high accuracy and precision and coherently assigning their quality index.  
 
Advancements in our understanding of planetary plasma environments through 
photoelectron peak detection can lead to the development of sustainable space exploration 
technologies. By studying spatial distributions of photoelectron peaks, scientists can design 
more efficient spacecraft propulsion systems, leading to reduced resource consumption and 
environmental impact in space exploration endeavors. Understanding planetary plasma 
environments is crucial for predicting and mitigating the impacts of space weather events on 
Earth's climate. By studying photoelectron peaks, scientists can improve models that forecast 
space weather phenomena, allowing for better preparation and mitigation strategies to 
safeguard critical infrastructure, such as satellite networks and power grids, thereby 
contributing to climate resilience. Photoelectron peak detection contributes to our 



15 
 

understanding of the composition and dynamics of celestial bodies like Titan. This knowledge 
informs sustainable resource management practices for future space missions, ensuring the 
responsible extraction and utilization of resources while minimizing environmental impact.  
 
Additionally, understanding planetary environments supports planetary protection efforts, 
preserving celestial bodies and their potential for scientific exploration. Furthermore, research 
on planetary plasma environments and photoelectron peak detection fosters public awareness 
and engagement in space exploration and environmental stewardship. By communicating the 
importance of studying celestial bodies and their atmospheres, including the role of 
photoelectron peaks, scientists can inspire future generations to pursue careers in science, 
technology, engineering and mathematics (STEM) fields, driving innovation and sustainable 
development efforts. In conclusion, the study of photoelectron peaks and planetary plasma 
environments contributes to sustainable development by informing the development of 
sustainable space technologies, supporting climate change mitigation efforts, promoting 
responsible resource management practices, and fostering public engagement in science and 
environmental stewardship. Then, photoelectron peak detection and the study of planetary 
plasma environments contribute to SDG 9 (Industry, Innovation, and Infrastructure) by 
fostering innovation and technological advancement in the field of space exploration. 
 
By enhancing our understanding of planetary systems, we can develop more efficient and 
sustainable technologies for space exploration and colonization. This includes the 
development of cleaner and more efficient propulsion systems, as well as the creation of space 
infrastructures that minimize environmental impact. While knowledge of photoelectron peaks 
on Titan would not provide direct solutions to mitigating climate change on Earth, it could 
have significant implications for improving our understanding of climate overall and for 
developing technologies and strategies to address climate challenges on our own planet.  
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