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Abstract—The maintenance of assets is of critical impor-
tance for the economic viability of industrial enterprises, par-
ticularly in the context of combined-cycle power plants. This
Master’s Thesis, entitled ‘“Application of AI Techniques to the
Diagnosis and Maintenance of Power Plants,” investigates the
application of machine learning and artificial intelligence for
diagnosing and maintaining a feedwater pump in a combined
cycle steam turbine. The study encompasses the processes of
characterizing and modeling the pump’s typical operational be-
havior, the early detection of irregularities, and the identification
of potential failure modes. A data set spanning three years was
employed in the research, which utilized Python and PyTorch
Lightning for model development. The study highlights the shift
from a reactive to a proactive maintenance strategy through
the use of AI, with the objective of reducing downtime and
enhancing operational efficiency. The research addresses several
key challenges, including data noise, lack of generalization, and
effective data collection. The findings illustrate the effectiveness
of AI in predictive maintenance, offering a framework that can
be applied to a range of industrial assets.

Index Terms—Feedwater pump, Predictive maintenance, Al,
ML, Anomaly detection, Failure modes, Neural networks

I. INTRODUCTION

N industrial enterprises, the maintenance of assets is a

fundamental and indispensable undertaking. Without it, the
economic viability of a production facility would be severely
compromised. A well-designed maintenance plan serves to
extend the lifespan of the machinery in use, while simul-
taneously preventing unplanned production disruptions. This
ultimately results in a reduction of overall operational costs. In
this context, maintenance in combined cycle power plants is of
paramount importance, as they represent critical infrastructures
whose proper functioning is vital for the continuous large-scale
production of electrical energy.

This Master’s Thesis, entitled “Application of Al Tech-
niques for Diagnosis and Maintenance of Power Plants,” is
a study of the application of machine learning and artificial
intelligence techniques to the diagnosis and maintenance of
valuable assets in the energy sector, specifically a feedwa-
ter pump of a combined cycle steam turbine. The project’s
scope encompasses the characterization and modeling of the
pump’s normal operational behavior, as well as the preventive
detection of anomalies and potential failure modes. The ulti-
mate objective is to optimize the maintenance strategy. This
feedwater pump is a real asset in an existing combined cycle
plant. It is worth noting that this thesis builds on the work
previously conducted by doctoral candidate Francisco Javier
Bellido Lépez.

Inadequate maintenance can result in unanticipated fail-
ures, costly disruptions, and potential safety hazards. It is
therefore imperative that maintenance strategies are adopted
and enhanced using the most advanced techniques available.
An unanticipated failure of a plant can result in a prolonged
interruption of supply, which may entail considerable mone-
tary and reputational losses. Although this study focuses on a
single component of the plant, the methodology employed is
applicable to any other asset for which normal operating data
is available.

The application of artificial intelligence, machine learn-
ing, and predictive analysis techniques has the potential to
transform the traditional maintenance paradigm from a reactive
to a proactive and prescriptive approach. The incorporation
of these technologies facilitates the achievement of more
rapid and precise diagnostics, the detection of anomalies prior
to their transformation into failures, and the optimization
of maintenance cycles. This results in a notable reduction
in downtime and an enhanced operational efficiency of the
machines.

A. Main objectives of the project

First, an in-depth examination of potential failure modes
of the feedwater pump in a combined cycle power plant will
be conducted through a comprehensive analysis of the pump
to identify and categorize distinct failure modes.

Secondly, the normal operating condition (NOC) models
of the feedwater pumps are to be developed using real data.
This encompasses the analysis, processing, and modeling
of operational variables, including pressures, temperatures,
vibrations, etc. The models will be instrumental in facilitating
comparisons and the identification of any deviations that may
indicate the presence of anomalies or failures.

Thirdly, anomalies in the historical data series shall
be identified through the utilization of the aforementioned
normal operation models. The final objective is to employ
these models for the continuous monitoring of the status of
the feedwater pumps. Anomaly detection techniques will be
employed to identify deviations in operational data that may
indicate the imminent onset of a failure. This analysis will
facilitate the early diagnosis of any underlying issues.

B. Resources Employed

The dataset was constructed through the examination of
operational data from 23 variables that are associated with a
feedwater pump in a combined cycle steam turbine. The data
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set encompasses a three-year period, from 2020 to 2022, and
provides a comprehensive array of information for in-depth
analysis and modeling.

In regard to software development tools, Python was
selected as the programming language due to its versatility and
comprehensive support for data analysis and machine learn-
ing/Al model development. PyTorch and PyTorch Lightning
were selected as the machine learning and Al libraries, due
to their capacity to facilitate the implementation of intricate
models necessitating advanced learning techniques, such as
neural networks. PyTorch Lightning is designed to facilitate
the coding process, thereby enhancing clarity and efficiency
in the management of complex models.

The hardware specifications of the computer used during
all training and data analysis are:

« CPU: AMD Ryzen 7 5800H with Radeon Graphics, 3201
MHz, 8 cores, 16 logical processors.

« RAM: 16 GB at 3200MHz, sufficient for handling large
datasets and intensive computation processes.

o GPU: NVIDIA GeForce RTX 3060 Laptop, with 6 GB
dedicated memory plus 7.9 GB shared memory, essential
for efficient deep learning model training.

II. STATE OF THE ART

A. Maintenance Strategies

The evolution of industrial asset maintenance strategies
has been a significant and ongoing process throughout history,
driven by technological advances. In recent years, advances in
statistics and machine learning techniques have precipitated
profound changes in the field. Historically, the approach to
maintenance has evolved from a focus on reactive strategies,
such as corrective maintenance, to a greater emphasis on
proactive and data-driven techniques, including predictive and
prescriptive maintenance. This shift is a response to the
necessity of minimizing unplanned downtime and maximizing
operational efficiency.

In the field of predictive maintenance, there is a grow-
ing tendency towards the integration of machine learning
and artificial intelligence with the objective of enhancing
the predictive capabilities of these models [1]. Furthermore,
there is a growing inclination to integrate these data-driven
models with expert knowledge, with the aim of enhancing the
predictive capabilities of such models. The following section
outlines the key strategies and their respective advantages and
disadvantages, as outlined in [1].

1) Corrective maintenance: it is a strategy that involves
repairing or replacing parts only when they fail and the equip-
ment in question is unable to operate without intervention. The
primary advantage of this strategy is its simplicity. However,
this approach carries the disadvantage of potentially high costs
due to the necessity of unplanned repairs or replacements.

2) Preventive maintenance: it involves the periodic in-
spection of equipment in accordance with a pre-established
schedule or work cycles. This strategy is designed to reduce
the likelihood of unexpected failures, which represents its
primary advantage. One disadvantage of this approach is that it
may result in the unnecessary replacement of parts that remain
functional, which could lead to inefficiencies.

3) Condition-based maintenance: it employs the use of
sensors to facilitate the continuous monitoring of equipment
status, thereby enabling the performance of maintenance op-
erations only when the indicators indicate the onset of failure.
This approach permits more efficacious interventions based
on empirical data, thereby reducing superfluous maintenance.
Nevertheless, it requires an initial investment in sensors and
is contingent upon the reliability and accuracy of the data
obtained.

4) Predictive maintenance: it is a methodology that
employs sensors and data analysis to anticipate failures and the
remaining useful life of equipment. This enables the dynamic
scheduling of maintenance tasks. The principal advantages of
this approach are the prevention of failures and the planning
of maintenance in an efficient manner. However, this strategy
is more complex than previous ones and is contingent upon
the quality of the data obtained.

5) Prescriptive maintenance: in addition to forecasting
failures, it also proffers corrective measures to enhance the
asset’s lifespan, aligning with the predicted outcomes. It offers
the greatest possible operational efficiency and the most exten-
sive extension of the asset’s useful life. A prerequisite for this
approach is the existence of a well-developed implementation
of condition-based and predictive maintenance strategies.

B. Common algorithms used in fault diagnosis analysis

Having demonstrated the value of artificial intelligence
models in predictive maintenance of machines, it is now
necessary to identify the algorithms that are most commonly
employed. This paper presents a comparative analysis of
various Al and ML techniques applied to fault diagnosis in
rotating machines, with a particular focus on a combined cycle
feedwater pump [2].

1) k-Nearest Neighbour (k-NN) [3]: it is a relatively sim-
ple yet effective method for both regression and classification
tasks. The physical meaning of the algorithm is straightfor-
ward, facilitating intuitive comprehension of its operational
principles. However, k-NN requires a substantial amount of
memory and computational capacity, and its performance is
significantly influenced by the selection of the number of
neighbors, k. In the context of rotating machines, k-NN is
a prevalent methodology, particularly when discrete variables
are involved. It is frequently employed in conjunction with
dimensionality reduction techniques, such as principal com-
ponent analysis (PCA), to enhance efficiency and precision.

2) Naive Bayes classifiers [4]: they are robust to missing
values and efficient in terms of storage, which renders them
attractive for certain applications. However, these methods rely
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on the assumption of strong independence among features and
require prior knowledge of probability distributions, which can
be a limitation. In the context of rotating machines, Naive
Bayes is less frequently employed due to the interdependence
of variables that is characteristic of industrial machine data.

3) Support Vector Machines (SVM) [5]: renowned for
their exceptional accuracy in classification tasks and their
capacity to approximate intricate functions with remarkable
precision. Notwithstanding these advantages, SVMs are less
efficient with large volumes of data and do not provide a
direct physical interpretation of the model. In the context
of rotating machines, Support Vector Machines (SVMs) are
typically employed in conjunction with signal processing
techniques for effective feature extraction, thereby enhancing
their performance in the diagnosis of machine conditions.

4) Artificial neural networks (ANNs) [6]: they are ca-
pable of highly accurate classification and can effectively
approximate nonlinear, complex functions. However, they are
characterized by a multitude of parameters and are susceptible
to overfitting. Furthermore, the opacity of the training process
and the absence of a direct physical interpretation can present
significant challenges. In the field of rotating machine diagnos-
tics, artificial neural networks (ANNs) are the most commonly
utilized technique, particularly in the diagnosis of rotor-related
failures. In order for these applications to be effective, it is
generally necessary to perform a process of feature extraction
prior to their use.

5) Deep learning techniques [7]: they offer the advan-
tage of automatically learning features and handling complex
data structures. Furthermore, they necessitate the availability
of extensive datasets and prolonged training periods, and they
lack a direct physical interpretation, which can be perceived as
a limitation. In the field of rotating machines, deep learning is
demonstrating growing potential, particularly in the context of
large datasets comprising direct mechanical signal data, where
its efficacy is becoming increasingly apparent.

In [8] the most commonly utilized machine learning (ML)
techniques for the detection of failures in nuclear power plants
are delineated. In addition to the aforementioned techniques,
the text makes reference to regression algorithms (linear and
logistic) as well as random trees (RT). Conversely, Qian
(2022) outlines the utilization of Deep Learning Reinforce-
ment (DRL) as a predictive maintenance technique for fault
diagnosis, specifically in nuclear power plants and with a
particular focus on rotating machines. This technique com-
bines the advantages of automatic feature extraction from deep
learning and interactive learning from reinforcement learning,
thereby achieving an optimal fit even with a limited number
of fault data points. Two distinct DRL models are presented,
one based on convolutional neural networks (CNN) and the
other on gated recurrent units (GRU). Their performances are
then compared with those of three base models: The models
under consideration are SVM, CNN, and GRU without DRL.
The proposed models are demonstrated to outperform the base
models, achieving a diagnostic accuracy exceeding 99%.

The article [9] presents a model based on artificial neural
networks (ANNs) for the detection of faults in centrifugal
pumping systems. The model is designed to detect a total of
20 types of faults. To develop the model, training and test
data were generated under different operating conditions by
running the pumping system and creating several real-time
faults in an experimental laboratory model. These included
problems such as bearing wear and discharge valve leakage.
A feature extraction method based on principal component
analysis (PCA) was employed to reduce the dimensionality of
the input features. The neural network utilized is a feedforward
network trained using the backpropagation algorithm, which
adjusts the connection weights to minimize the error func-
tion, thereby achieving a generalization capability that allows
the network to handle previously unseen data. The results
demonstrated that the model with extracted features achieved
a 100% detection rate in only 170 epochs, while the model
with all features achieved a 99.3% detection rate, indicating the
efficacy of feature extraction in enhancing model performance
and efficiency.

Conversely, [10] proposes an innovative technique for
fault diagnosis in photovoltaic (PV) systems using ANNs,
developing two different algorithms: one is based on signal
thresholds to isolate faults with different combinations of
attributes, and another is based on ANNS to identify faults with
similar combinations of attributes. The simulation models were
experimentally validated with data from a PV array at Jijel
University, demonstrating that the algorithms can correctly
locate and identify different types of faults. Additionally,
the implementation of the technique on an FPGA was pre-
sented, showcasing its effectiveness in real and large-scale
applications. This approach offers an economical and efficient
solution to enhance the reliability of PV systems.

In [11], three machine learning methods for predicting
and diagnosing failures in nuclear power plants are com-
pared: Adaptive Neuro-Fuzzy Inference System (ANFIS),
Long Short-Term Memory (LSTM), and Radial Basis Function
Network (RBFN). Different Loss of Feed Water (LOFW)
events in the reactor are modeled. The results show that
ANFIS is superior in predicting the steam generator tube
temperature, RBFN excels in predicting the mass flow rate at
the reactor core inlet, and LSTM is best in estimating the fault
severity, suggesting that a combination of these models could
provide a more robust diagnostic system to improve safety and
operational efficiency in the nuclear industry.

It is also noteworthy to mention the innovative approach
proposed in [12]: the MACOL (Maintenance model Adapted
to the Continuous Observed Life of industrial components).
This approach is centered on the utilization of discernible risk
indicators derived from the actual behavior of wind turbine
components under standard operational conditions. The model
permits the real-time adjustment of maintenance plans based
on risk indicators, thereby reflecting deviations between actual
and expected behavior. The optimal time for maintenance
actions is determined by the application of fixed and variable
health thresholds, thereby providing a flexible mechanism



MASTER’S DEGREE IN SMART INDUSTRY THESIS, JULY 2024

sensitive to operating conditions and increasing the efficiency
of the maintenance strategy.

C. Main challenges [1]

1) Errors and noise in collected data: in industrial envi-
ronments, sensors are exposed to extreme conditions that can
generate erroneous or noisy data. Such inaccuracies may result
in erroneous diagnoses or predictions. To address this issue,
advanced anomaly detection techniques are being investigated
that use machine learning algorithms to differentiate between
normal data and anomalies resulting from sensor errors.

2) Lack of generalization: prediction models are often
designed for specific conditions, particular types of machines
or particular parts of machines, which limits their ability to be
generalized to different contexts or equipment. Furthermore,
the interdependence between different parts is frequently over-
looked.

3) The necessity to collect and process data in a mea-
sured and effective manner across a vast array of industrial
scenarios: this is a significant challenge, particularly in set-
tings where production assets are diverse and geographically
dispersed. The integration of technologies that facilitate local
data processing, such as the Internet of Things (IoT) and Edge
Computing, is regarded as a pivotal solution.

ITII. PROJECT SCOPE
A. Feedwater pumps in combined cycles

As previously stated, the project entails an analysis of
the normal operating conditions of a feedwater pump in a
combined cycle. The primary objective of a combined cycle is
to leverage the synergies between a steam cycle (Rankine) and
a gas cycle (Brayton) by utilizing the high temperature of the
gas turbine exhaust gases to heat the inlet water of the steam
turbine. The aforementioned heat exchange occurs within the
recovery boiler. In this manner, the gas cycle exploits the
high-temperature hot spot, while the steam cycle makes highly
efficient use of the low-temperature cold spot.

The transfer of heat occurs via phase change at a constant
temperature. In contrast to other cycles, the steam cycle does
not involve combustion, thus eliminating the necessity for
replenishing the working fluid. Furthermore, expansion can
be conducted up to vacuum pressures, constrained only by the
temperature of the cold focus. The boiler may be constructed
with a single pressure level or with multiple levels, and may be
configured in a series or parallel arrangement. The combined
cycle of this project comprises two pressure levels arranged
in a series. The feed water is preheated in the low-pressure
boiler and subsequently conveyed to the turbine inlet pressure,
where it is transformed into steam at that pressure in the high-
pressure boiler, utilizing the higher-temperature gases [13].

The configuration of combined cycle power plants may
vary in order to optimize performance. The most common
configurations include single-shaft and multi-shaft setups, with
variations such as the 1x1, 2x1, and 3x1 arrangements, in
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Fig. 1. Horizontal centrifugal pump [15]

which multiple gas turbines feed steam into a single steam
turbine. These configurations facilitate enhanced operational
flexibility, efficiency, and maintenance accessibility. In a 2x1
configuration of a combined cycle plant, as is the case with
the one under study, two gas turbines provide exhaust gases
to their respective heat recovery steam generators (HRSGs).
Subsequently, steam is obtained by heating the water in the
corresponding boiler, which is then used to power a single
steam turbine. This configuration provides enhanced opera-
tional flexibility and efficiency, particularly at partial loads, as
each gas turbine can be operated independently [14].

A centrifugal pump works by converting mechanical
energy from a motor into hydraulic energy to move liquids.
As seen in the diagrams (Figures 1 and 2), the electric motor
drives the drive shaft, which is protected by a sleeve. This
shaft is connected by the bearings of the motor-pump coupling,
which ensure smooth and aligned operation. The shaft drives
the impeller, which is located inside the casing. Fluid enters
through the impeller eye where it is caught by the impeller
vanes. As the impeller rotates, it creates a centrifugal force
that draws fluid through the suction tube and expels it at
high pressure through the discharge nozzle. The stuffing box
and packing prevent leakage around the shaft, while the wear
ring on the casing minimizes frictional wear of the fluid.
In addition, the thrust bearing helps support the axial loads
generated by the operation of the impeller. This process allows
efficient movement of fluid from a low pressure zone to a high
pressure zone through the piping system.

In the context of the steam cycle, the primary function
of the feed pump is to facilitate the supply of water to the
recovery boiler. In the case study, the feed pump is situated
between the low and high-pressure boilers. The feed pump
draws water from the LP boiler and feeds it into the HP
boiler. Additionally, the feed pump maintains the level of the
HP boiler within specified limits and injects high-pressure
feedwater between the HP superheater sections to temper the
flow. Each boiler has two pumps that alternate, with one pump
operating and the other always in standby. A diagram of a
combined cycle similar to this can be seen in Figure 3.

IV. FAILURE MODES

HE foundation for the standard operational conditions
models is an exhaustive examination of the potential
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failure modes associated with the pump. This is essential for
the accurate selection of variables to be modelled, with a view
to assessing the pump’s correct behavior. A comprehensive
examination of potential failure modes facilitates the identi-
fication of critical variables, including pressure, temperature,
vibration, and flow rate, which are indispensable for evaluating
the pump’s performance. By grasping these variables, we can
construct precise models that forecast the pump’s conduct in
diverse operational scenarios, thus guaranteeing dependability
and efficacy in its operation. As outlined in [17], three distinct
categories of failure can be identified.

A. Hydraulic failures

Hydraulic failures in pumps are caused by an inability to
efficiently transfer fluid from the suction side to the discharge
side. Such occurrences can be attributed to a number of factors,
including but not limited to issues such as cavitation, block-
ages, hydraulic instability, and recirculation. Cavitation occurs
when the local pressure within the pump drops below the
vapor pressure of the liquid, resulting in the formation of vapor
bubbles that collapse abruptly, causing damage to the impeller

and other internal components. Blockages impede the flow
of fluid, thereby reducing efficiency and potentially causing
damage. Hydraulic instability is defined as fluctuations in the
pump’s performance due to irregularities in fluid dynamics,
which often result in the generation of vibrations and noise.
The phenomenon of recirculation, occurring in both the suction
and discharge sides of the pump, is defined as the backflow of
fluid within the pump, which can result from inadequate sizing
or design flaws. In order to effectively monitor the occurrence
of hydraulic failures, it is essential to closely observe several
key variables, including the discharge flow, the pressure at
both the discharge and suction points, and the temperature of
the discharged liquid.

[Hydraulic Failures]

Cavitation

Discharge
pressure

Discharge
temperature

Discharge
flow

pressure

Fig. 4. Common hydraulic failure modes and related features

B. Mechanical failures

Mechanical failures encompass a broad range of issues
primarily related to the deterioration of pump components
due to the effects of wear and tear. Such issues include
seal malfunctions and leakage, inadequate lubrication, worn
bearings, and misalignment of the shaft. Bearing failures are
frequently attributable to inadequate lubrication, misalignment,
or contamination, which precipitate augmented friction and
heat generation. This can culminate in pump seizure. Seal
leaks may result from the degradation of seal material or
improper installation, which can lead to fluid leakage and a
reduction in pump efficiency. The deterioration of bearings can
result in the generation of vibrations and an increase in noise
levels, which may be indicative of the commencement of wear
or misalignment in the components. Shaft misalignment can
result in abnormal bearing vibrations, which in turn can have a
detrimental impact on the overall performance and longevity
of the pump system. Vibration and noise levels are crucial
indicators of potential mechanical failures, as they frequently
signal the early stages of component wear or misalignment.

C. Electrical failures

The majority of electrical failures in pumps are at-
tributable to issues within the motor or control systems.
The most common electrical failures include overloads, im-
balances, and short circuits. An overload can result from
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Fig. 5. Common mechanical failure modes and related features

excessive currents in the motor, which may lead to overheating
and potential failure of the motor windings. Imbalances in the
power supply, such as phase imbalances, have the potential
to impair the motor’s functionality, leading to inefficiencies
or even complete cessation of operation. Short circuits, fre-
quently attributable to insulation failure or electrical surges,
can precipitate elevated motor temperatures and subsequent
motor winding failures. It is essential to monitor key variables
such as motor currents and temperatures in order to identify
potential electrical failures.

(Electrical Failuresj

Overload Imbalance Short circuit

Motor currents [Motor temperatures]

Fig. 6. Common electrical failure modes and related features

V. MODELS’ DEVELOPMENT

NCE the various modes of pump failure have been

subjected to analysis, the development of models repre-
senting normal behavior may then commence. The following
section will delineate the steps necessary to carry out this
process, with each step illustrated by a real normal operational
model for the pump subject of study. The model under
consideration is the discharge flow rate, which may serve as
an indicator of pump leakage.

A. Data preprocessing and filtering

The initial phase of this process entails the preprocessing
and filtering of the data. The primary objective of this stage
is to prepare the raw data for analysis, ensuring its quality

and relevance to the model to be developed. This involves
several essential steps that facilitate the isolation and structure
of the information in an appropriate manner. The specific steps
involved in this phase are detailed below.

1) Isolation of the operating period: at this stage, the
time interval during which the system was operating at a
constant rate is selected. It is of the utmost importance to
prevent the introduction of non-representative data, such as
periods of start-up or shutdown, into the analysis. Such data
would not correspond to the normal mode of operation and
would therefore introduce noise into the analysis. Figure 7
depicts the unfiltered data for one of the variables, discharge
flow rate. It illustrates the presence of both operating and non-
operating periods, as well as transient states. To proceed to the
subsequent stage, the data from transient and non-operating
states must be removed. The outcome of this filtering process
is illustrated in Figure 8.
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Fig. 8. Filtered discharge flow data

2) Identification of a valid training period: once the
operating period has been isolated, it is necessary to identify
a sub-period within it that is suitable for model training.
This sub-period should be sufficiently lengthy to encompass
significant system variations while excluding outlier events
that do not align with the norm. To identify the optimal
subset of data for training purposes, the pump failure and
maintenance history is observed. In the case study, it was
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observed that no failures or major maintenance events occurred
between January 2020 and March 2021. Therefore, this period
was selected as the basis for obtaining the model. The data
set is divided into two portions: 80% for training and 20%
for testing. From the 80% designated for the training set, a
20% subset will be extracted as the validation set to prevent
overfitting of the model. This division is illustrated in Figure 9.
The discharge flow rate (x-axis) is plotted against steam power
(y-axis) for each of the training, test, and all the available data.

Discharge flow [t/h] comparison

Steam power [MW]
Steam power [MW]
Steam power [MW]

7 80 % 100 10 7 80 % 100 110 7 80 % 00 10
rain

Fig. 9. Train and test sets vs all the data

3) Creation of the required virtual variables and data
normalization: the subsequent phase is the generation of
virtual or derived variables, which can enhance the predictive
capacity of the model. The objective is to identify patterns
and relationships that are not immediately apparent in the
raw data. In this particular instance, two such variables have
been constructed. The first variable is the mean phase intensity
of the motor. This procedure yields a variable that is repre-
sentative of all the currents and less dependent on possible
network imbalances that may occur. The second variable is
binary in nature and serves to indicate the operational state of
the steam power within the pump. As illustrated in Figure
9, the two operational modes are separated by a limiting
value of approximately 35 MW. Additionally, the variables
have undergone normalization, with the training set exclusively
utilized for this purpose. This transformation aims to enhance
the model’s performance and efficiency by preventing features
with larger values from exerting an undue influence on the loss
function and model parameters.

B. Target feature and input feature selection

Once the data has been subjected to preprocessing and
filtering, the subsequent phase in the development of the
model is to determine which variables are to be modeled. The
selection of the target variable is contingent upon the specific
failure mode that is to be identified. The variable to be selected
is the one whose potential anomalous behavior serves as an
indicator of the occurrence of the failure. In the illustrative
example, the objective is to identify a potential leakage issue.
Consequently, the discharge flow rate has been selected as the
target variable for modeling.

The subsequent phase is the selection of the input vari-
ables for the model. To achieve this, it is necessary to identify
those pump variables that have a physical relationship with

the target variable. This selection process is a dynamic one
that will require adjustment according to the results obtained
during modeling and validation. It is possible that the initial
hypothesis regarding input variables will be disproven by the
data. Three input variables have been selected for the model
under study: suction pressure, steam power, and mean phase
intensity of the motor, due to their direct correlation with
the discharge flow rate. Suction pressure serves as a pivotal
indicator of pump inlet conditions. Low pressure may indicate
supply issues or obstructions within the inlet piping, directly
influencing the flow rate. Steam power quantifies the energy
supplied to the system, and fluctuations in this power may
reflect alterations in pump operational parameters. Finally,
motor mean phase current represents the electrical current
drawn by the pump motor. An increase in this current may
suggest the necessity for additional motor effort to maintain
flow.

C. Selecting and training the model

Once the target variable has been identified and the
input variables that can explain the behavior of this output
variable have been selected, the next step is to select and train
the model. A multilayer perceptron (MLP) neural network
has been chosen as base model for its capacity to capture
intricate non-linear relationships between input variables and
the target variable. Multilayer perceptrons are particularly well
suited for this type of problem because they are capable of
approximating highly complex functions and of discovering
patterns in the data that other modeling techniques might fail
to identify. Moreover, MLPs are robust and flexible, enabling
the integration of multiple input variables with disparate
characteristics. The hyperparameters for each model were as
follows: the number of layers, the number of neurons in each
layer, the learning rate, the batch size, and the dropout rate.
An optimization of these hyperparameters has been conducted
in order to identify the combination that produces the lowest
error.

At the time of training, the mean square error (MSE)
was employed as a metric. To prevent overfitting, a neuron
dropout has been incorporated between each layer, and the
MSE of the validation set has been monitored during training
to enable early stopping when no improvement in this metric
is observed. The following hyperparameters were employed
for the model of the discharge flow rate:

o Number of layers: 2

e Number of neurons layer 1: 16
o Number of neurons layer 2: 13
o Learning rate: 0.0082

« Batch size: 95

o Dropout rate: 0.21

Figure 10 illustrates the outcome of the training process.
The x-axis represents the actual values, while the y-axis
represents the predicted values. The closer the point cloud is
to the x = y line, the more accurate the model is. It can be
observed that the model demonstrates a high level of fit. The
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mean square error (MSE) was 0.08 for the training set and
0.02 for the validation set.

Training Data: Predictions vs Actual
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Fig. 10. Discharge flow training: predictions vs actual

D. Validation and residual analysis

Once the model has been trained, it is essential to validate
it to ascertain whether it has been able to generalize the typical
behavior of the pump. First, it is verified that the distribution
of the residuals is approximately normal. Figure 12 illustrates
that the residuals obtained from the training of the discharge
flow rate model satisfy this condition. Subsequently, the model
is employed in the test set to ascertain whether overfitting has
occurred, yielding the results depicted in Figure 11. The MSE
for the test set is 0.02, similar to the ones obtained in training.
It is then evident that the model exhibits a high degree of fit
with the test set, thereby providing compelling evidence that
it has effectively generalized the flow behavior.

Test Data: Predictions vs Actual
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Fig. 11. Discharge flow test: predictions vs actual
A further issue that requires examination is the relative
importance of each input variable in the model. To this end, the
integrated gradients [18] algorithm has been employed. Figure

Training Data: Residuals Distribution

Count

lID
Residuals [t/h]

Fig. 12. Discharge flow training residuals distribution

13 illustrates the relative importance of each of the three input
variables for the discharge flow model. As can be observed,
the average intensity is the most significant variable, aligning
with the initial hypothesis that changes on the intensity are
strongly reflected on the discharge flow value.

Feature Importance

,

Fig. 13. Discharge flow feature importance

At this point in the analysis, an appropriate model is avail-
able for the examination and identification of pump failures,
as will be explained in the following section.

VI. FAILURE RISK ASSESSMENT

In order to identify pump failures using the normal behav-
ior model, it is first necessary to obtain the Gaussian mixture
that best fits the model errors (Figure 14). Subsequently, the
99% confidence intervals for normal operation are calculated
from the normalized training residuals distribution (Figure 15).
When the model is applied to new data, any behavior that
falls outside the aforementioned intervals will be considered
anomalous. Conversely, if the data falls within the specified
range, it will be considered to exhibit normal behavior.

In order to achieve a temporal representation that demon-
strates the state of this potential failure mode that has been
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Fig. 14. Gaussian mixture of discharge flow model residuals
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Fig. 15. Confidence interval of normal behavior for discharge flow model
analyzed, the deviations of the residuals with respect to the

normal behavior model are represented, as illustrated in Figure
16.
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Fig. 16. Deviations using discharge flow model

The accumulation of deviations exceeding the unit yields
the risk curve, which is employed for the detection of anoma-
lies. Figure 17 illustrates the risk curve for the discharge flow.
It can be observed that the behavior is within the normal range

until the end of 2022, at which point an increase in anomalous
values is noted. This may be indicative of a potential leakage.
The model developed would have enabled the identification
of this failure prior to its occurrence, thereby allowing the
implementation of measures to mitigate its impact.

Risk Curve

Fig. 17. Risk curve of discharge flow model

VII. CONCLUSION

HIS Master’s Thesis has demonstrated the significant

potential of artificial intelligence and machine learning
techniques in the diagnosis and maintenance of critical assets
within combined cycle power plants. By focusing on a feed-
water pump, the study has showcased how normal operational
behavior can be modeled, and how anomalies and potential
failures can be preemptively detected. The application of
Al methodologies enables a transition from a reactive to a
proactive maintenance approach, thereby markedly reducing
downtime and enhancing operational efficiency.

The research employed a comprehensive three-year data
set and advanced Al tools, underscoring the benefits of using
Python, PyTorch, and PyTorch Lightning for such applications.
The study addressed key challenges, including the issue of
data noise and the need for effective data collection across a
range of industrial environments. The findings emphasize the
importance of integrating machine learning models with expert
knowledge to enhance predictive capabilities.

The developed model exhibited high accuracy in predict-
ing the normal behavior of the discharge flow of the feed-
water pump and identifying deviations that indicate potential
failures. The approach used in this study is adaptable to
other industrial assets, provided that normal operating data
is available, thus making it a versatile tool for improving
maintenance strategies across various sectors.

Future research could explore the integration of more
sophisticated AI models and techniques, such as reinforcement
learning, to further enhance predictive maintenance capabili-
ties. Additionally, the implementation of real-time monitoring
systems and the continuous updating of models with new
data will ensure ongoing accuracy and reliability in failure
prediction and maintenance optimization.
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