COMILLAS

UNIVERSIDAD PONTIFICIA

MSC OF INDUSTRIAL ENGINEERING
MSC OF SMART INDUSTRY

MASTER'S THESIS

SENSOR DESIGN FOR
CHARACTERIZATION OF METALLIC
NANOPARTICLES

Author: Alvaro Martin Martin

~

-

RO/ (AR

Supervisors:
Romano Giannetti
Francisco Javier Herraiz Martinez

Madrid
July 2025



Declaro, bajo mi responsabilidad, que el Proyecto presentado con el titulo
....SENSOR DESIGN FOR CHARACTERIZATION

OF METALLIC NANOPARTICLES... en la ETS de Ingenieria - ICAl de |a

Universidad Pontificia Comillas en el
curso académico ...2024/25. es de mi autoria, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es

plagio de otro, ni total ni parcialmente y la informacién que ha sido tomada

de otros documentos esta debidamente referenciada.

Fdo.: Alvaro Martin Martin Fecha: 14/07/2025

Autorizada la entrega del proyecto

LOS DIRECTORES DEL PROYECTO

Fdo.: Romano Giannetti Fecha; ..15./ .07 7 2025
Firmado por GIANNELTI ROMANO -

***%3425* el dia 15/07/2025 con
certific itidg"por AC FN Suarios

Fdo.: Francisco Javier Herraiz Martinez Fecha; ..15/.07 ./ 2025

Fi rmado por HE Z NARTI NEZ
FRANCI SCO JAVI E *x*1376**
el dia 15/07/20 con un

certifi 0, @mi
FNMT Us

Sensor Design for Characterization of Metallic Nanoparticles
Alvaro Martin Martin



COMILLAS

UNIVERSIDAD PONTIFICIA

MSC OF INDUSTRIAL ENGINEERING
MSC OF SMART INDUSTRY

MASTER'S THESIS

SENSOR DESIGN FOR
CHARACTERIZATION OF METALLIC
NANOPARTICLES

Author: Alvaro Martin Martin

~

-

RO/ (AR

Supervisors:
Romano Giannetti
Francisco Javier Herraiz Martinez

Madrid
July 2025



Contents

1. State of the Art 13
1.1. Introduction . . . . . . .. e e e e e e e e e e 13
1.2. Nano-particles: Whatarethey? . . . . .. ... . ... ... ... ... ..... 14

1.2.1. Classification Criteria . . . . . . . . . . o v v v v ittt 14
1.2.1.1. Nanomaterial classification . . .. ... ... .. ... ...... 14

1.2.1.2. Nanoparticle classification . . . . .. ... ... ... ....... 15

1.2.2. Nanoparticle Production Methods . . . . . . . ... ... .. ........ 16
1.2.2.1. Top-Down Approaches . . . . . ... .. ... ... ........ 16

1.2.2.2. Bottom-Up Approaches . . . ... ... ... ... ........ 16

1.2.2.3. Wire Explosion as a Nanoparticle Production Method . . . . . . . 17

1.2.3. Properties of Nanoparticles. . . . . .. ... ... ... ... ........ 17
1.2.3.1. Physicochemical Properties of Nanoparticles. . . . . ... .. .. 17

1.2.3.2. Mechanical Properties . . . . . ... ... ... ......... 17

1.2.3.3. Thermal Properties . . . . . . . . . . . . v v v .. 18

1.2.3.4. Magnetic Properties . . . . . . . . . . . o i e 18

1.2.3.5. Electronic and Optical Properties . . . . . . ... ... ...... 18

1.2.3.6. Catalytic Properties . . . . . . . . . . . v v i 18

1.2.3.7. Characterization Techniques . . ... ... ... ... ...... 19

1.2.4. Applications . . . . . . . . .. 19
1.2.4.1. Industrial Applications . . . . . ... ... ... ... ... ... 19

1.2.4.2. Biomedical and Biological Applications . . ... ... ... ... 20

1.3. Nano-particle Characterization and Classification Techniques . . . ... ... .. 21
1.3.1. Nano-particle Characterization and Classification Techniques . . . . . . . . 21
1.3.1.1. Imaging Techniques . .. ... ... ... ... ......... 21

1.3.1.2. Spectroscopic and Scattering Techniques . . . . . . ... ... .. 22

1.3.1.3. Size Distribution and Surface Charge . . . . .. ... ....... 23

1.3.1.4. Scanning Electron Microscopy (SEM) . .. ... ... ...... 23

1.4. Electromagnetic Meta-materials and Resonator-based Sensors . . . . . ... ... 26
1.4.1. Introduction to Metamaterials . . . . . . ... ... ... .. ........ 26
1.4.2. Physical Principles of Metamaterial-Based Sensing . . . . . ... ... ... 27
1.4.3. Key Applications in Chemical, Biological, and Physical Sensing . . . . . . . 29
1.4.3.1. Chemical Sensing . . .. ... ... ... ... ... ... 29

1.4.3.2. Biological Sensing . . . . .. ... .. ... ... .. .. .. ... 30

1.4.3.3. Physical Sensing . . . ... ... ... ... ... ... ... 30

1.4.4. Advances and Challenges . . . . . . ... ... ... .. ... ........ 31

2. Sensing 33
Sensor Design for Characterization of Metallic Nanoparticles ii

Alvaro Martin Martin



Contents

2.1. Sensor Design Motivation and Context . . . . . . . . . . .. v v v v v i 33
2.2. Electromagnetic Modeling and Design Methodology . . . . . ... ... ... .. 36
2.3. Resonator Tuning and Material Considerations . . . ... ... ... ....... 38
2.4. Fabrication Process and Expected Performance . .. ... ............. 39
2.5. Measurement Protocol for Sedimentation Profiling . . . .. ... ... ...... 41

3. Measurements 43
3.1. MUT Preparation . . . . . . . . . 0t ittt e e e e 43
3.2. Sonication Time Determination . . . . . . . . . . . . .. v v vt 46
3.3. Material Differentiation . . . . . . . . .. .. ... e 48
3.4. Size Differentiation . . . . . . . . . . ... e e e 50
4. Time Constant Extraction 52
4.1. Time Constant Extraction Procedure . . . .. ... ... ... ... ........ 52
4.1.1. Multi-Exponential Formulation . . .. ... ... ... ... ........ 53

4.1.2. Inverse Problem and Ill-Posedness . . . . . ... ... ... ......... 54

4.1.3. Regularization and Stabilization of the Solution . . . . .. ... ... ... 55

4.1.4. Implementation . . . . . . . . ... oL e e e e e e e e e e 56

4.2. Differentiating Between Copper Nanoparticle Samples . . . ... ... ... ... 57
4.3. Mixing Copper Nanoparticles . . . . . . ... .. ... 59
4.4. Differentiating Between Copper and Iron Nanoparticle Samples . . . . . ... .. 61
4.5. Comparison with University of Pisa’sResults . . . . . ... ... ... ... .... 63

5. Conclusion 65
5.1. Overview of the Research and Findings . . . . . ... ... ... .. ........ 65
5.2. Relevance to Industry 4.0 and Smart Manufacturing . . .. ... ... ...... 65
5.3. Limitations and Challenges . . . . . . ... ... ... . ... .. ... 66
5.4. Alignment with the Sustainable Development Goals (SDGs) . ... ... ... .. 67
References 68
Sensor Design for Characterization of Metallic Nanoparticles iii

Alvaro Martin Martin



Abstract

This thesis addresses the growing need for rapid, reliable characterization of metallic
nanoparticles by demonstrating the experimental validation of a compact metamaterial sensor.
We employ a microwave-frequency resonator whose response shifts measurably when the local
material properties change.

Copper and iron nanoparticles (synthesized via controlled wire-explosion methods) are
suspended in a liquid medium and introduced over the sensor surface. As the particles settle,
they alter the effective electrical properties immediately above the resonator, producing a
time-dependent change in its response. By continuously recording these shifts with a Virtual
Network Analyzer, we obtain detailed frequency-vs-time curves that capture both how quickly
particles sediment and the overall magnitude of their effect.

To extract meaningful parameters from these curves, we employ an established inversion
algorithm. This algorithm fits the recorded data with a sum of exponential terms, yielding
characteristic sedimentation time constants. The results demonstrate clear differentiation
between copper and iron systems, even being able to differentiate between same-material
samples given that they have sufficiently different size distributions.

By combining metamaterial resonance with data-driven inversion, this work establishes a
non-destructive, optics-free methodology for real-time nanoparticle analytics. Its compact form
factor and minimal sample preparation make it well suited for integration into flow-through
process lines. This thesis lays the groundwork for future enhancements (including arrays of
sensors for multiplexed measurements, extension to other nanomaterial types, and closed-loop
control systems for autonomous process monitoring and optimization).
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Resumen

Esta tesis aborda la necesidad de caracterizacion rapida y fiable de nanoparticulas metdlicas
al demostrar la validacién experimental de un sensor metamaterial compacto. Empleamos un
microwave-frequency resonator cuya respuesta se desplaza de manera medible cuando cambian
las propiedades del material circundante.

Nanoparticulas de cobre e hierro (sintetizadas mediante métodos controlados de explosion de
hilo) se suspenden en un medio liquido y se introducen sobre la superficie del sensor. A medida
que las particulas se asientan, modifican las propiedades eléctricas efectivas de la superficie del
resonador, produciendo un cambio temporal en su respuesta. Al registrar continuamente estos
desplazamientos con un Virtual Network Analyzer, obtenemos curvas detalladas de frecuencia
contra tiempo que capturan tanto la velocidad de sedimentacion de las particulas como su
magnitud.

Para extraer parametros significativos de estas curvas, empleamos un algoritmo de inversion.
Dicho algoritmo ajusta los datos registrados como una suma de exponenciales, obteniendo
las constantes de tiempo de sedimentacion caracteristicas. Los resultados demuestran una
clara diferenciacion entre sistemas de cobre y de hierro, llegando incluso a distinguir entre
muestras del mismo material siempre que presenten distribuciones de tamafio suficientemente
diferentes.

Al combinar la resonancia del metamaterial con la inversién basada en datos, este trabajo
establece una metodologia no destructiva y sin uso de lentes para la analitica en tiempo real de
nanoparticulas. Su factor de forma compacto y la preparaciéon minima de muestras lo hacen
idoneo para su integracién en lineas de proceso de flujo continuo. Esta tesis define las bases
para futuras mejoras (incluyendo arrays de sensores para mediciones, extension a otros tipos
de nanomateriales y sistemas de control en lazo cerrado para la monitorizacién y optimizacion
auténoma de procesos).

Sensor Design for Characterization of Metallic Nanoparticles 2
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Summary

Introduction

Characterization of nanoparticles (NPs) is crucial in nanoscience, but traditional measurement
methods (electron microscopy, light scattering, etc.) are often slow, expensive, and require
laborious procedures [1, 2]. This work proposes a sensor based on a square-spiral planar
resonator (SSR) coupled to a vector network analyzer (VNA) to monitor NP sedimentation in
a fluid in real time. When NPs settle onto the sensor, they modify the effective permittivity
near the resonator, causing a shift in the resonance frequency [3]. The magnitude of this shift
depends on the permittivity and volume of nanoparticulate material interacting with the sensor
[3]. By measuring the sedimentation profile (frequency change versus time), it is possible
to infer NP properties quickly, serving as an alternative to slower conventional techniques

[4].

Methodology

An SSR with a high quality factor (Q) was designed to maximize sensitivity to small dielectric
changes in its vicinity [5]. The SSR was connected to a VNA that continuously monitored the
resonant frequency during the experiments. As case studies, metallic nanoparticles produced by
wire explosion (a physical top-down method) were used [6]. In particular, the University of Pisa
fabricated three batches of copper (Cu) nanoparticles—denoted A, B, and C—using different
explosion parameters to obtain distinct size distributions. Additionally, a sample of iron (Fe)
nanoparticles produced by the same method was considered. All NPs were dispersed in pure
paraffin oil at a concentration of 10 mg/mL, chosen to ensure an almost saturated medium in
which particles would eventually sediment.

To guarantee a homogeneous dispersion of the NPs before each measurement, sonication
was applied for different time intervals. A preliminary experiment revealed that 15 minutes of
sonication were sufficient to achieve a stable dispersion, since longer times (e.g., 30 minutes)
did not show significant improvements in the sedimentation curves obtained.

During the measurement, a fixed volume of the sonicated dispersion was poured into a small
container placed on the surface of the SSR. Figure 2.1 schematically illustrates this measurement
process. As the NPs sediment under the action of gravity, the SSR’s resonant frequency gradually
decreases until stabilizing once a layer of particles has formed on the sensor. The resonant
frequency was recorded as a function of time using the VNA, thus obtaining a characteristic
sedimentation curve for each sample.

Results

Material Differentiation
The SSR sensor is capable of detecting different responses depending on the material present,

due to differences in their electrical properties. For example, pure media (air, hexane, paraffin)

Sensor Design for Characterization of Metallic Nanoparticles 3
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Dispersed MUT Sedimented MUT
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Figure 1. Schematic of the MUT measurement process. First (left), the SSR and container are cleaned of
all liquid and solid residues to prepare the device for measurement; second (center), the dispersed MUT
is poured into the PLA container; finally (right), over time the NPs sediment onto the PCB, causing a
measurable shift in the MUT’s resonant frequency.

exhibit distinct resonant frequencies when placed in the sensor’s environment [7]. In the case
of NPs dispersed in paraffin (a fixed-permittivity medium), the type of nanoparticle influences
the magnitude and dynamics of the resonance shift. Comparative experiments with Cu and Fe
NPs (dispersed in paraffin at the same concentration) showed clearly different sedimentation
curves for each material [3].

Resonance Frequency Peak Shift Over Time for Different MUTs
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Figure 2. Resonant frequency as a function of the material under test (MUT).

Each material exhibits an exponential trend with a different time constant, reflecting
that factors such as particle density and permittivity affect the sedimentation speed. This
demonstrates that the sensor system can distinguish different nanoparticle materials through
their sedimentation profile in a fluid.

Size Distribution Differentiation
Figure 3.8 shows the sedimentation curves (resonant frequency as a function of time) for the

three Cu samples (A, B, C). All exhibit the typical exponential decay behavior, with comparable
total frequency shifts between samples. At first glance, the differences between curves A, B, and
C are subtle, making it difficult to classify the samples solely by direct inspection of these raw
curves.

Since NP sedimentation in a fluid can be modeled as the superposition of multiple exponential
processes (each associated with a particle size range), a multi-exponential decomposition
analysis was applied to extract the sedimentation time-constant distribution of each sample [8].
This procedure is equivalent to solving an inverse Laplace transform problem with Tikhonov
regularization [8, 9], yielding a distribution f(7) that assigns weight to different values of

Sensor Design for Characterization of Metallic Nanoparticles 4
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Resonance Frequency Peak Shift Over Time for Different Copper Nanoparticles
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Figure 3. Resonant peak frequency as a function of time for copper nanoparticle dispersions A, B, and C.

7 (characteristic sedimentation times) present in the signal. Intuitively, 7 relates to particle
size: larger particles tend to sediment faster (smaller 7), while smaller particles sediment more
slowly (larger 7).

In the experimental Cu data, Figure 4.2 shows the time-constant distribution obtained for
the copper nanoparticle samples A, B, and C.
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Figure 4. Time-constant distribution for copper nanoparticle samples A, B, and C.

Figure 4.3 provides a zoomed-in view of the main region where the most significant
contributions are concentrated.

It can be observed that the distributions for A and B are practically indistinguishable,
overlapping in the same 7 range. In contrast, sample C exhibits a different distribution,
with greater weight in a different time-constant region than A/B. This indicates that the size
distribution in C differs from that of A/B; for example, sample C may contain a higher proportion
of larger particles than samples A and B.
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Figure 5. Zoomed-in time-constant distribution in the main region for copper nanoparticle samples A, B,
and C.

Independent Validation by DLS

To corroborate this interpretation, the University of Pisa performed an independent characteri-
zation of the samples using dynamic light scattering (DLS). The results, presented in Figure 12,
showed that A and B have very similar size distributions, while sample C is distinguished by
containing a larger fraction of bigger particles than those in A and B.

SP-1000 _seso0 SP-1500

Figure 6. DLS data obtained by the University of Pisa in a double-blind analysis of the nanoparticles.

This qualitative trend agrees with the inference from the SSR sensor, providing confidence
in the validity of the proposed method.

Additionally, a test was carried out by mixing nanoparticles from samples B and C in
equal proportions to evaluate whether the sensor could discern a composite distribution. The
sedimentation curve of this mixture was, as expected, intermediate between those of B and C
alone.

It was shown that the time-constant distribution of the mixture falls between those of B and
C, although skewed more toward that of C.

This suggests that in the mixture, the larger particles from C dominate the initial
sedimentation (sedimenting earlier), so that the contribution of the smaller particles from
B is partially masked in the overall behavior.

Extension to Other Materials
As mentioned, the method was also tested with iron (Fe) nanoparticles. The time-constant

distributions for an Fe sample contrasted with those of Cu show marked differences.

Sensor Design for Characterization of Metallic Nanoparticles 6
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Even without isolating only the main component of 7, the full distribution for Fe is
distinguishable from those of Cu, suggesting that the material’s specific properties (higher
density of Fe, different dielectric behavior, etc.) influence the sedimentation profile in a
detectable manner. Therefore, the technique could be extended to classify nanoparticles of
different materials, not just for size differences within the same material.

Conclusions

A novel sensor system based on a square-spiral planar electromagnetic resonator was presented
and validated for the rapid characterization of metallic nanoparticles. By monitoring NP
sedimentation in a fluid in real time, the sensor provides a “fingerprint” for each sample,
enabling differentiation of both particle-size variations and material differences among the
NPs.

Experiments demonstrated that the SSR sensor, combined with a network analyzer and
numerical inversion techniques, can distinguish between Cu nanoparticle samples with different
size distributions, aligning with results obtained by traditional methods (SEM/TEM, DLS) but
in a fraction of the time and effort. It was also verified that the resonant response differentiates
nanoparticles of different composition (Cu vs. Fe) under identical dispersion conditions,
suggesting versatile applications in nanomaterial classification.

Advantages of this approach include its speed (results in minutes or hours instead of days),
simplicity of sample preparation (simply dispersing them in a liquid), and the feasibility of
automating the process for online NP production monitoring [4]. However, there are limitations:
the method provides relative information and requires calibration with reference samples to
translate measured parameters (e.g., time constants) into absolute size or concentration values.
Resolution for distinguishing very subtle size differences may be limited by measurement noise
and by signal overlap when distributions are very similar (as occurred between A and B).
Additionally, for very small nanoparticles (well below 100 nm), gravitational sedimentation is
very slow, which could hinder characterization in reasonable times or require acceleration (e.g.,
via centrifugation).

In conclusion, the planar-resonator-based sensor has proven to be a promising tool
for rapid nanoparticle characterization, complementing existing techniques. With future
developments—such as more robust calibrations, resonator designs with higher sensitivity,
or the use of more sophisticated analysis algorithms—this methodology could be integrated into
industrial environments for real-time quality control and classification of nanomaterials.

Sensor Design for Characterization of Metallic Nanoparticles 7
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Resumen

Introduccion

La caracterizacién de nanoparticulas (NPs) es crucial en la nanociencia, pero los métodos
tradicionales de medicién (microscopia electrénica, dispersién de luz, etc.) suelen ser lentos,
costosos y requieren procedimientos laboriosos [1, 2]. Este trabajo propone un sensor basado en
un resonador planar de espiral cuadrada (SSR, por sus siglas en inglés) acoplado a un analizador
vectorial de redes (VNA) para monitorear en tiempo real la sedimentacién de NPs en un fluido.
Cuando las NPs se depositan sobre el sensor, modifican la permitividad efectiva cercana al
resonador, provocando un corrimiento de la frecuencia de resonancia [3]. La magnitud de
este corrimiento depende de la permitividad y el volumen de material nanoparticulado que
interactia con el sensor [3]. Al medir el perfil de sedimentacion (cambio de frecuencia versus
tiempo), es posible inferir propiedades de las NPs de forma rdpida, sirviendo como alternativa a
técnicas convencionales mas lentas [4].

Metodologia

Se disefid un SSR de alto factor de calidad (Q) para maximizar la sensibilidad a pequefios
cambios dieléctricos en su cercania [5]. El SSR se conecté a un VNA que monitorea
continuamente la frecuencia resonante durante los experimentos. Como casos de estudio, se
utilizaron nanoparticulas metdlicas producidas mediante explosién de alambre (Wire Explosion,
un método fisico de top-down) [6]. En particular, la Universidad de Pisa fabricé tres lotes de
nanoparticulas de cobre (Cu) —denominados A, B, C— utilizando distintos parametros de
explosion para obtener distribuciones de tamario diferenciadas. Adicionalmente, se considerd
una muestra de nanoparticulas de hierro (Fe) producidas con el mismo método. Todas las
NPs se dispersaron en aceite de parafina pura a una concentraciéon de 10 mg/mlL, elegida para
asegurar un medio casi saturado donde las particulas eventualmente sedimentan.

Para garantizar una dispersion homogénea de las NPs antes de cada medicién, se aplico
sonicacién por diferentes intervalos de tiempo. Un experimento preliminar revelé que 15
minutos de sonicacion son suficientes para lograr una dispersién estable, ya que tiempos
mayores (por ejemplo, 30 minutos) no mostraron mejoras significativas en las curvas de
sedimentacién obtenidas.

Durante la medicién, un volumen fijo de la dispersion sonicada se vertié en un pequefio
contenedor colocado sobre la superficie del SSR. En la Figura 2.1 se ilustra esquematicamente
este proceso de mediciéon. A medida que las NPs sedimentan bajo la acciéon de la gravedad,
la frecuencia de resonancia del SSR disminuye gradualmente hasta estabilizarse al formarse
una capa de particulas sobre el sensor. La frecuencia resonante se registré en funcién del
tiempo usando el VNA, obteniendo asi una curva de sedimentacién caracteristica para cada
muestra.

Sensor Design for Characterization of Metallic Nanoparticles 8
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Dispersed MUT Sedimented MUT
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Figure 7. Esquema del proceso de medicién del MUT. Primero (izquierda), se limpian el SSR y el
contenedor, retirando todos los residuos liquidos y sélidos para dejar el dispositivo listo para la medicion;
Segundo (centro), se vierte el MUT disperso en el contenedor de PLA; Finalmente (derecha), con
el tiempo las NPs sedimentan sobre la PCB, provocando un corrimiento medible en la frecuencia de
resonancia del MUT.

PLA container

Resultados

Diferenciacion de materiales

El sensor SSR es capaz de detectar distintas respuestas segin el material presente, debido a las
diferencias en sus propiedades eléctricas. Por ejemplo, medios puros (aire, hexano, parafina)
exhiben frecuencias de resonancia distintas cuando se colocan en el entorno del sensor [7]. En
el caso de NPs dispersas en parafina (medio con permitividad fija), el tipo de nanoparticula
influye en la magnitud y dindmica del corrimiento de la resonancia. Experimentos comparativos
con NPs de Cu y de Fe (dispersadas en parafina a la misma concentracién) mostraron curvas de
sedimentacién claramente diferentes para cada material [3].

Resonance Frequency Peak Shift Over Time for Different MUTs
22645
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Figure 8. Frecuencia de resonancia segtin el material bajo prueba (MUT).

Cada material presenta una tendencia exponencial con distinta constante de tiempo,
reflejando que factores como la densidad y la permitividad de las particulas afectan la velocidad
de sedimentacion. Esto demuestra que el sistema sensor puede distinguir distintos materiales
de nanoparticulas a través de su perfil de sedimentacion en un fluido.

Diferenciacion de distribuciones de tamano
La Figura 3.8 muestra las curvas de sedimentacion (frecuencia resonante en funcién del tiempo)

para las tres muestras de Cu (A, B, C). Todas exhiben el comportamiento tipico de decaimiento
exponencial, con desplazamientos totales de frecuencia comparables entre muestras. A simple
vista las diferencias entre las curvas de A, B y C son sutiles, lo que dificultaria clasificar las
muestras Unicamente mediante inspeccion directa de estas curvas brutas.

Sensor Design for Characterization of Metallic Nanoparticles 9
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Resonance Frequency Peak Shift Over Time for Different Copper Nanoparticles
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Figure 9. Frecuencia de resonancia pico en funcién del tiempo para las dispersiones de nanoparticulas
de cobre A, By C.

Dado que la sedimentacion de NPs en un fluido puede modelarse como la superposicion de
multiples procesos exponenciales (cada uno asociado a un rango de tamaifios de particula), se
aplicé un andlisis matematico de descomposicion multi-exponencial para extraer la distribucion
de constantes de tiempo de sedimentacién de cada muestra [8]. Este procedimiento equivale
a resolver un problema inverso de transformada de Laplace con regularizaciéon (Tikhonov)
[8, 91, obteniendo una distribucién f(7) que asigna peso a diferentes valores de 7 (tiempos
caracteristicos de sedimentacién) presentes en la sefial. Intuitivamente, 7 se relaciona con
el tamafio de particula: particulas mds grandes tienden a sedimentar mds rdpido (menor 7)
mientras que particulas mas pequefias sedimentan mas lentamente (mayor 7).

En los datos experimentales de Cu, la Figura 4.2 presenta la distribucién de constantes de
tiempo obtenida para las muestras A, B y C de nanoparticulas de cobre.

f(T2) with Optimum Regularization Parameter of Lambda = 0.1

0.0008
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Figure 10. Distribucidn de constantes de tiempo para las muestras A, B y C de nanoparticulas de cobre.
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La Figura 4.3 amplia la regién principal donde se concentran las contribuciones mas
significativas.
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Figure 11. Distribucién de constantes de tiempo ampliada en la regién principal para las muestras A, B
y C de nanoparticulas de cobre.

Se observa que las distribuciones de A y B son practicamente indistinguibles entre si,
solapandose en un mismo rango de 7. En contraste, la muestra C exhibe una distribucién
diferente, con mayor peso en otra zona de constantes de tiempo distinta a la de A/B. Esto indica
que la distribucién de tamafios en C difiere de la de A/B; por ejemplo, la muestra C podria
contener una mayor proporcion de particulas de mayor tamafio que las de A y B.

Para corroborar esta interpretacién, la Universidad de Pisa realizd una caracterizacidon
independiente de las muestras mediante dispersion de luz (DLS). Los resultados, presentados
en la Figura 12, mostraron que A y B tienen distribuciones de tamafio muy similares, mientras
que la muestra C se distingue por contener una mayor fracciéon de particulas de mayor tamafio
que las presentes en Ay B.

SP-1000 _ seso0 SP-1500
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Figure 12. Datos del DLS realizado por la Universidad de Pisa en un andlisis doble ciego de las
nanoparticulas.

Esta tendencia cualitativa concuerda con lo inferido a partir del sensor SSR, brindando
confianza sobre la validez del método propuesto.

Adicionalmente, se efectué una prueba mezclando nanoparticulas de las muestras By C en
proporciones iguales, para evaluar si el sensor podia discernir una distribucién compuesta. La
curva de sedimentacion de esta mezcla resultd, como era de esperar, intermedia entre las de By
C por separado.
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Se demostrd que la distribucién de constantes de tiempo de la mezcla se ubica entre las
correspondientes a B y C, aunque inclindndose mas hacia la de C.

Esto sugiere que en la mezcla, las particulas mas grandes de C dominan la sedimentacién
inicial (sedimentando antes), de modo que la contribucién de las particulas mds pequefias de B
queda en parte enmascarada en el comportamiento global.

Extension a otros materiales

Como se menciond, el método se prob6 también con nanoparticulas de hierro. Las distribuciones
de constantes de tiempo para una muestra de Fe contrastada con las de Cu evidencia diferencias
marcadas.

Incluso sin aislar solo la componente principal de 7, la distribucién completa de Fe se
distingue de las de Cu, lo que sugiere que las propiedades particulares del material (mayor
densidad del Fe, distinto comportamiento dieléctrico, etc.) influyen en el perfil de sedimentacion
de forma detectable. Por lo tanto, la técnica podria extenderse para clasificar nanoparticulas de
distintos materiales, no solo para diferencias de tamafio dentro del mismo material.

Conclusiones

Se presentd y valido un sistema sensor novedoso basado en un resonador electromagnético
planar tipo espiral cuadrada para la caracterizaciéon rapida de nanoparticulas metdlicas.
Mediante el monitoreo en tiempo real de la sedimentacién de NPs en un fluido, el sensor
proporciona una “firma” o huella digital de cada muestra, permitiendo distinguir tanto
diferencias en tamafio de particula como diferencias de material de las NPs.

Los experimentos demostraron que el sensor SSR, combinado con un analizador de redes
y técnicas de inversién numérica, puede diferenciar entre muestras de nanoparticulas de Cu
con distribuciones de tamafio distintas, alineandose con los resultados obtenidos por métodos
tradicionales (SEM/TEM, DLS) pero en una fraccion del tiempo y esfuerzo. Asimismo, se verifico
que la respuesta resonante distingue nanoparticulas de diferente composicion (Cu vs Fe) bajo
las mismas condiciones de dispersion, lo que sugiere aplicaciones versatiles en la clasificacion
de nanomateriales.

Entre las ventajas de este enfoque destacan su rapidez (resultados en minutos u horas en
lugar de dias), la sencillez en la preparacién de las muestras (basta con dispersarlas en un
liquido) y la factibilidad de automatizar el proceso para monitoreo en linea de la produccién de
NPs [4]. No obstante, existen limitaciones: el método brinda informacion relativa y requiere
calibracion con muestras de referencia para traducir los parametros medidos (p.ej., constantes
de tiempo) a valores absolutos de tamafio o concentracién. La resolucion para distinguir
diferencias muy sutiles en tamafios cercanos puede verse limitada por el ruido de medicién y
por la superposiciéon de sefiales cuando las distribuciones son muy similares (como ocurrié entre
Ay B). Adicionalmente, para nanoparticulas de dimensiones muy pequefias (mucho menores de
100 nm), la sedimentacién gravitacional es muy lenta, lo que podria dificultar su caracterizacion
en tiempos razonables o requerir aceleracién (p.ej., mediante centrifugacién).

En conclusién, el sensor basado en resonador planar demostré ser una herramienta
prometedora para la caracterizacion expedita de nanoparticulas, complementando las
técnicas existentes. Con desarrollos futuros, como calibraciones mas robustas, disefios de
resonadores con mayor sensibilidad o el empleo de algoritmos de andlisis mas sofisticados, esta
metodologia podria integrarse en entornos industriales para control de calidad y clasificacion
de nanomateriales en tiempo real.

Sensor Design for Characterization of Metallic Nanoparticles 12
Alvaro Martin Martin



State of the Art

1.1. Introduction

Nanotechnology refers to the branch of science and engineering which studies structures
less than 100 nanometers in length. Nanotechnology has many applications in revolutionary
fields such as electronics, biotechnology and medicine.[1] The demand for low-cost sensors
in all industries is increasing. Particles ranging from 1nm to 100 nm are usually referred
to as nanoparticles (NPs). These powders show easy bonding with the contact materials,
have a large surface area, low melting point and peculiar electromagnetic and optical
characteristics[2].

Characterizing nanoparticles is the first step to guaranteeing they behave the way they
should. Evaluating the outcome of the production processes is important in order to readjust the
production parameters to obtain the desired output in a closed loop. Measuring some properties,
including particle size, size distribution, surface charge, or shape is generally not an easy
task [10]. Key size parameters are commonly obtained using microscopy techniques, mainly
Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). These
methods are used alongside visual measurements, since they output images of the particles,
enabling the assessment of dimensional distributions.

These characterization methods often require a time-consuming process with complex
instrumentation and many manual interventions, causing huge delays in the fabrication process
and verification of the experiments while making them quite expensive. The development of
new, faster and cheaper fabrication processes is key in the development and integration of
nanotechnology and nanoparticles into industrial processes[2].
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1.2. Nano-particles: What are they?

Due to their unique properties, nanoparticles and nanomaterials are used in a variety of
applications, ranging from water treatment, medicine, agriculture to energy storage [11]. There
are two main factors which lead to the different behaviour of NPs in contrast to the same
materials at larger dimensions: surface effects and quantum effects . These factors make
nanomaterials exhibit enhanced or novel mechanical, thermal, magnetic, electronic, optical,
and catalytic properties [12].

Nanomaterials have different surface effects compared to the bulk materials mainly due to
their high surface area to mass ratio and the number of direct neighbours of surface atoms [12].
As a consequence of this, nanomaterial properties change regarding their bulk counterpart. For
example, having fewer direct neighbor atoms for the atoms situated at the surface results in
lowering the binding energy per atom for nanomaterials. This changes the melting point of the
material following the Gibbs-Thomson equation (equation 1.1):

4oy

(d) B (d) B pod

(1.1)

where [13]:

* T.np = bulk melting temperature

* 04 = solid-liquid interface energy (per unit area)

* H; = bulk enthalpy of fusion (per gram of material)
* ps = density of solid

* d = nanoparticle size

Therefore, following this equation, the melting point of a 2.5 mm gold NP is 407 degrees
lower than the melting point of bulk gold [14].

1.2.1. Classification Criteria

1.2.1.1. Nanomaterial classification

Nanomaterials are fundamental to the field of nanotechnology. These materials are uniquely
defined by having at least one of their dimensions within the nanoscale range, which typically
means they measure less than 100 nanometers.

Nanomaterials can be categorized into four primary types based on their dimensional
characteristics:

1. Zero-dimensional (0D) nanomaterials: In this category, all three spatial dimensions are
confined to the nanoscale. These materials are essentially nanoscale in every direction.
Common examples include quantum dots, fullerenes, and spherical nanoparticles.

2. One-dimensional (1D) nanomaterials: These materials have two dimensions within
the nanoscale, while the third extends beyond it. They typically have a high aspect ratio
and are elongated in one direction. Examples include nanowires, nanotubes, nanorods,
nanofibers, and nanohorns.

3. Two-dimensional (2D) nanomaterials: In this group, only one dimension remains at the
nanoscale, while the other two dimensions are larger. These materials often appear as
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thin films or sheets and include structures like graphene layers, nanosheets, nanofilms,
and nanolayers.

4. Three-dimensional (3D) nanomaterials or bulk nanostructured materials: These
materials are not restricted to the nanoscale in any of their dimensions. However, they
still contain nanoscale features within their overall structure. This category includes bulk
powders, nanocomposites, dispersed nanoparticle systems, and assemblies of nanowires
or nanotubes.

Each class of nanomaterial offers unique properties and potential applications, making their
classification an important step in understanding and leveraging their capabilities in fields such
as electronics, medicine, energy, and materials science.

1.2.1.2. Nanoparticle classification
Composition based classification:

Based on their composition, NPs are generally classified into three classes [15]:

* Organic Nanoparticles: Organic nanoparticles (NPs) are composed of organic compounds
such as proteins, carbohydrates, lipids, and polymers [16]. Common examples include
dendrimers, liposomes, micelles, and protein complexes like ferritin.

These NPs are typically biodegradable, non-toxic, and, in some cases, such as liposomes,
may have a hollow core. They are sensitive to heat and light [15] due to their organic
nature and are generally stabilized through non-covalent interactions, making them less
structurally rigid but allowing for easier breakdown and elimination from the body.
Their functionality depends on factors such as composition, surface morphology, and
stability. Currently, organic NPs are widely used in biomedicine, especially for targeted
drug delivery [15] and cancer therapy.

* Carbon-based Nanoparticles: This class includes nanoparticles composed exclusively of
carbon atoms [15]. Notable examples are fullerenes, carbon black, and carbon quantum
dots.

Fullerenes, such as Cgg, have a closed-cage structure resembling a soccer ball [17].
Carbon black consists of aggregates of fused carbon particles, while carbon quantum dots
are sub-10 nm spherical particles with distinct optical and electronic properties [14].
Carbon-based NPs are applied in fields like drug delivery, energy storage, bioimaging,
photovoltaics, and environmental sensing. More complex carbon forms such as
nanodiamonds and carbon nano-onions also show promise, particularly due to their
low toxicity and high biocompatibility, making them suitable for drug delivery and tissue
engineering[14].

* Inorganic Nanoparticles: Inorganic NPs are those not derived from carbon-based or
organic sources. They include metal, semiconductor, and ceramic nanoparticles. Metal
NPs, which can be monometallic, bimetallic, or polymetallic, exhibit unique optical,
thermal, electrical, and magnetic properties due to phenomena like localized surface
plasmon resonance [18].

Their synthesis can be finely tuned to control size, shape, and surface characteristics,
which is crucial for advanced technological applications [19].

Semiconductor NPs, made from materials with intermediate conductivity, show tunable
bandgap properties that differ significantly from their bulk forms. This makes them
valuable in photocatalysis and optoelectronic devices. Ceramic NPs, composed of inorganic
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compounds such as oxides, carbides, and phosphates, are usually formed through high-
temperature processes.

Found in various structural forms, they are notable for their high stability and loading
capacity, making them useful in both medical applications and industrial areas like
catalysis, dye degradation, and photonics [14].

1.2.2. Nanoparticle Production Methods

Synthesis methods for NPs are often classified into top-down and bottom-up approaches, each
with their advantages and limitations regarding particle size distribution, morphology, cost,
scalability and environmental impact.

1.2.2.1. Top-Down Approaches

Top-down methods begin with bulk materials, reducing them to nano-scale dimensions through
physical or mechanical processes. Relevant techniques within this approach include mechanical
milling, laser ablation and wire explosion.

Mechanical milling involves the grinding of bulk materials in high-energy ball mills, where
particle size is reduced through repeated impact and abrasion. This method is widely used
for large-scale production due to its cost-effectiveness and ability to yield high-purity particles.
However, mechanical milling poses challenges such as potential contamination from the milling
media and often requires extended processing to achieve smaller particle sizes. It is used to
blend metals like aluminium with magnesium to modify their combustion properties [6].

Laser ablation is useful for generating highly pure particles with narrow size distributions.
This technique is particularly advantageous for generating highly pure particles with narrow
size distributions. Nonetheless, laser ablation is energy-intensive and may experience reduced
efficiency over time as particles accumulate and obstruct the laser path. Laser ablation is used
to produce NPs such as Al203 and silicon when high purity and controlled particle size are
critical [6].

Wire Explosion (WE), which consists of a metal wire undergoing explosive fragmentation
when subjected to a high-current pulse, presents unique benefits for NP synthesis. During the WE
process, the wire material is rapidly ejected in the form of metal droplets and vapour, forming
NPs in a surrounding medium. This method proves particularly efficient and environmentally
favourable, especially in underwater applications, where energy loss is minimized as water
prevents plasma formation along the wire surface and efficiently transfers the electrical energy to
the wire for disintegration. While challenging to characterize due to broad and multi-modal size
distributions, WE is highly reproducible for specific applications requiring stable, high-quality
NPs [20].

1.2.2.2. Bottom-Up Approaches

In contrast to top-down methods, bottom-up approaches synthesize nanoparticles from atomic
or molecular precursors, assembling them into nanoscale structures. Bottom-up methods include
chemical reduction, sol-gel synthesis, and chemical vapour deposition (CVD), each offering
advantages for applications requiring specific particle shapes or material compositions.

Chemical reduction is a widely employed technique in which metal ions are reduced in a
solution to yield NPs. This method offers substantial control over particle size and shape and is
a relatively low-cost option. However, chemical reduction requires stabilized agents, which may
introduce contaminants. It is frequently used to synthesize gold and silver NPs, particularly in
biomedical applications where particle stability and uniformity are essential [6].
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Chemical vapour deposition (CVD) involves vaporizing metal precursors and depositing
them onto a substrate, where they decompose to form NPs. This technique is extensively applied
in electronics and solar cells, as it produces high-purity NPs with controlled morphology. While
CVD is scalable and effective for high-purity NP production, it requires expensive equipment and
poses hazards due to the use of toxic precursors and high operating temperatures [21].

1.2.2.3. Wire Explosion as a Nanoparticle Production Method

As discussed previously, the WE method presents a robust and environmentally favourable
alternative for NP synthesis, offering the potential for high-quality, stable NP production suitable
for various scientific and industrial applications. The method’s unique capabilities make it
well-suited for fields that demand consistent, high-quality NP production [6].

Copper and Iron nanoparticles are produced at the University of Pisa using the wire-explosion
method. These NP’s characteristics are assessed using the above-mentioned SEM techniques.
These NPs are produced by flowing 1107 A/m? to 1-10° A/m? through a cylindrical copper
or iron wire with a diameter of 1 mm and with a length of 30 mm. As shown in Figure 1.1,
the circuit which provides the current consists of a 765 uF with a voltage limit of 10 kV loaded
through a High Voltage (HV) power supply. Voltage is monitured using a 1:1000 voltage
probe and current using a Rogowski coil, connected to an oscilloscope. In order to collect the
resulting NPs from the fabrication process, distilled water was used as a medium surrounding
the exploding wire.

Wireless
trigger
Rogowsk vessel ' _/
coil o _L r b -1
: 11000 Capacitor HV
probe + control power
sample system supply

L

Figure 1.1. To the left, circuit for the wire-explosion fabrication process. To the right, vessel with a
loaded wire sample used for the wire-explosion fabrication process.

1.2.3. Properties of Nanoparticles

1.2.3.1. Physicochemical Properties of Nanoparticles

Nanoparticles (NPs) exhibit unique physiochemical properties that significantly differ from
their bulk counterparts due to quantum effects and surface phenomena. These differences
become pronounced at the nano-scale and include mechanical, thermal, magnetic, electronic,
optical, and catalytic characteristics [22, 23, 24, 25]. These unique properties arise primarily
from enhanced surface effects and quantum confinement, which considerably alter the
chemical reactivity, melting temperature, electrical conductivity, and optical behaviours,
providing nanoparticles with mixed functionalities that are applicable in diverse scientific
and technological fields.

1.2.3.2. Mechanical Properties

The mechanical properties of nanoparticles merge attributes such as brittleness, toughness,
hardness, elasticity, ductility, and rigidity. At the nano-scale, nanoparticles typically demonstrate
mechanical behaviours distinct from their bulk equivalents. For instance, FeAl alloy powders
exhibit superior ductility and plasticity when their dimensions are reduced to nano-scale sizes.
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These improved mechanical characteristics are largely due to intensified surface forces, including
Van der Waals forces, electrostatic interactions, and hydration forces. Moreover, prominent
theories such as DIVO (Derjaguin—Landau-Verwey—Overbeek), JKR (Johnson-Kendall-Roberts),
and DMT (Derjaguin—-Muller-Toporov) have been developed and utilized to better understand
and predict the behaviour of nanoparticles in different mechanical contexts, especially focusing
on surface adhesion and deformation behaviours [26, 27, 28, 29, 30].

1.2.3.3. Thermal Properties

The thermal characteristics of nanoparticles, including thermal conductivity, thermoelectric
power, heat capacity, and thermal stability, are mainly affected by their reduced sizes. The
thermal conductivity of nanoparticles tends to increase as their size decreases, primarily due
to an elevated surface-to-volume ratio, allowing greater electron-mediated heat conduction.
For example, suspensions containing copper nanoparticles in ethylene glycol exhibit substantial
improvements in thermal conductivity compared to pure ethylene glycol. Furthermore,
nanoparticles possess significantly lowered melting points compared to their bulk materials, an
effect attributable to their elevated surface free energy and reduced binding energies. These
unique thermal behaviors ease their applications in advanced thermal management systems
and energy storage solutions [31, 32, 33, 34].

1.2.3.4. Magnetic Properties

Nanoparticles frequently exhibit magnetic properties such as superparamagnetism, characterized
by zero residual magnetization once the external magnetic field is removed. This phenomenon
occurs due to the decreased magnetic anisotropy energy in nanoparticles as their size is reduced
below certain thresholds. The magnetic coercivity of nanoparticles also strongly depends on
their dimensions, transitioning from superparamagnetic to ferromagnetic behaviours as particle
size increases beyond critical radii. Moreover, the magnetic properties of nanoparticles are
significantly affected by their shape, composition, and crystal structure, with alloy nanoparticles
often showing enhanced magnetic characteristics compared to their single-metal examples.
These magnetic attributes are essential for numerous applications, including magnetic resonance
imaging (MRI) contrast agents, targeted drug delivery systems, and magnetic data storage
technologies [35, 36, 37].

1.2.3.5. Electronic and Optical Properties

Nanoparticles display distinctive electronic and optical properties primarily attributed to
quantum confinement and localized surface plasmon resonance (LSPR). Quantum confinement
effects become significant when nanoparticles approach the exciton Bohr radius, altering their
electronic energy levels hence influencing their optical properties. LSPR emerges prominently
in metallic nanoparticles when photon frequencies resonate with collective oscillations of
conduction electrons, resulting in notable optical absorption and scattering phenomena. These
effects are dependent on nanoparticle size, shape, and the dielectric properties of their
environment. Also, noble metal nanoparticles like silver and gold are widely investigated
due to their pronounced plasmonic characteristics, enabling their application in fields such as
biosensing, photovoltaic cells, and photocatalysis [38, 39, 40].

1.2.3.6. Catalytic Properties

Nanoparticles are highly advantageous in catalysis due to their significant surface-to-volume
ratios, providing abundant reactive sites that enhance their catalytic efficiency and selectivity.
At reduced dimensions, nanoparticles exhibit altered electronic structures, facilitating reaction
mechanisms by lowering activation energy barriers. Catalytic properties of nanoparticles
are strongly influenced by their size, shape, composition, oxidation states, and support
materials. Bimetallic or alloy nanoparticles frequently exhibit superior catalytic performance,
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demonstrating enhanced reaction rates, greater selectivity, and improved resistance to catalyst
poisoning compared to monometallic nanoparticles. Such attributes are critical in industrial
catalytic processes, environmental remediation, and energy conversion technologies [41, 42,
43].

1.2.3.7. Characterization Techniques

Characterizing the physiochemical properties of nanoparticles involves employing sophisticated
methodologies, including electron microscopy techniques such as SEM and TEM. These
techniques provide detailed insights into the size, morphology, crystallinity, and structural
composition of nanoparticles. Dynamic light scattering (DLS) and nanoparticle tracking
analysis (NTA) offer complementary approaches to measuring nanoparticle size distribution
and aggregation states. Additionally, spectroscopic techniques like X-ray diffraction (XRD),
energy-dispersive X-ray spectroscopy (EDX), X-ray photo-electron spectroscopy (XPS), and
Fourier-transform infrared spectroscopy (FTIR) enable comprehensive characterization of
chemical composition, oxidation states, surface charge, and functional groups. These detailed
characterizations are indispensable for correlating nanoparticle properties with their specific
applications [44, 45, 46, 47].

1.2.4. Applications

1.2.4.1. Industrial Applications

Nanoparticles have already found a wide array of uses across electronics, healthcare,
chemical, cosmetics, composites and energy sectors.[48] Their size- and structure-dependent
properties enable lighter, stronger and multifunctional materials, often delivering performance
unattainable with their bulk counterparts [49]. Key industrial applications include:

1.2.4.1.1. Surface coatings and corrosion protection.

Engineered nanoparticle-enhanced epoxy coatings resist biofouling, salt-water corrosion
and temperature cycling on ships and offshore platforms. By functionalising ZnO or SiO2
nanoparticles for compatibility with epoxy resins, AIMPLAS demonstrated coatings that after
45 days in simulated seawater showed virtually no algal attachment or pitting, versus severe
degradation on uncoated controls [50].

1.2.4.1.2. Smart textiles and heating elements.

Multi-walled carbon nanotubes (MWCNTs) dispersed in acrylic binders deposit evenly on
polyester—cotton substrates to yield flexible, homogeneous heating elements. CTAG’s prototype
auto-heating seat reaches a 30 °C rise under safe voltages, with no loss of fabric comfort or
rigidity [51].

1.2.4.1.3. Water treatment via photocatalysis.

Nano-TiO, provides highly efficient photocatalytic degradation of textile azo-dyes, achieving
100 % decolourization and up to 75 % TOC (Total Organic Carbon) removal under UV (and
even sunlight) within 2 hours. A decrease in TOC indicates the effective breakdown of organic
contaminants during treatments such as photocatalysis [52].

1.2.4.1.4. De-icing and thermal management.

Conductive polymer-nanoparticle paints (e.g. polyaniline-based) can be spray-applied to aircraft
leading edges. Joule heating under mild voltages melts ice at —15 °C ambient within minutes,
with surface temperatures approaching +15 °C, all without heavy wiring harnesses [53].
1.2.4.1.5. Micro-cavity tooling and wear resistance.

Hot-filament CVD of nanocrystalline diamond (100 nm grains) onto CrN-interlayered steel
inserts yields coatings with extreme hardness, low friction and excellent thermal conductivity.
In micro-injection moulding these coatings buffer heat-transfer spikes and reduce tool wear,
improving both part fidelity and tool life [54].
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1.2.4.2. Biomedical and Biological Applications

Biological systems operate at dimensions comparable to nanoparticles (5-100 nm), unlocking
uses in imaging, therapy, diagnostics and tissue engineering [55, 56]. Major application areas
include:

1.2.4.2.1. Fluorescent biological labels.

Semiconductor quantum dots (QDs) provide size-tunable, narrow-band emission far more
photostable than organic dyes [57, 58, 59]. By controlling QD size and surface coatings,
multiplexed imaging across six distinct colours and ten intensity levels permits over 10° unique
optical barcodes for high-throughput assays.

1.2.4.2.2. Drug and gene delivery.

Polymeric and lipid nanoparticles are engineered to carry therapeutic payloads across biological
barriers. For example, poly(butylcyanoacrylate) NPs coated with surfactants cross the
blood-brain barrier for CNS drug delivery [60, 61].

1.2.4.2.3. Pathogen and protein detection.

Magnetic nanoparticle-antibody conjugates enable rapid immunomagnetic separation of
bacteria and cells [62], while gold-oligonucleotide-Raman dye probes amplify protein detection
via surface-enhanced Raman scattering with no cross-reactivity [63].

1.2.4.2.4. DNA probing and structural studies.
CdTe QD luminescence reports oligonucleotide conformation (straight, bent, kinked) at single-
molecule resolution, offering new insights into DNA mechanics [64].

1.2.4.2.5. Tissue engineering and implants.

Nano-textured surfaces (60-100 nm features) on hip and dental implants stimulate osteoblast
adhesion and growth, reducing fibrous encapsulation and improving osseointegration [65,
66].

1.2.4.2.6. Cancer therapy and hyperthermia.

Porous Ormosil nanoparticles encapsulate photosensitisers for photodynamic therapy, preventing
off-target dye migration while allowing oxygen diffusion for efficient tumour cell killing [67].
Magnetic liposome—nanoparticles generate local hyperthermia under alternating fields for
selective tumour ablation [68].

1.2.4.2.7. Separation, purification and MRI contrast enhancement.

Dextran-coated ultrasmall superparamagnetic iron oxides (USPIOs) enhance MRI contrast
[69], while ferromagnetic iron-dextran beads enable high-purity cell isolation in microfluidic
platforms [62].

1.2.4.2.8. Phagokinetic and cell motility studies.
Quantum-dot imaging of phagokinetic tracks elucidates metastatic potential and cell motility
patterns on biomaterial surfaces [70].
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1.3. Nano-particle Characterization and Classification

Techniques

1.3.1. Nano-particle Characterization and Classification Techniques
Nanoparticle characterization is critical to understanding the physicochemical properties
that dictate functionality in applications ranging from catalysis to biomedicine. Metallic
nanoparticles (MNPs), in particular gold, silver, and platinum nanosystems, exhibit size-,
shape-, and composition-dependent optical, electronic, and catalytic behaviors [71, 72].

However, a comprehensive characterization strategy often requires combining multiple
techniques to capture complementary information on morphology, size distribution, surface
chemistry, and crystallinity [73].

This subsection reviews the principal techniques for nanoparticle analysis, with emphasis
on metallic systems while also covering broader nanoparticle classes. We discuss the operating
principles, experimental workflows, analytical outputs, and practical considerations including
capital and operating costs.

1.3.1.1. Imaging Techniques

1.3.1.1.1. Transmission Electron Microscopy (TEM)

TEM provides high-resolution images (< 0.1 nm) by transmitting an electron beam through
an ultrathin sample [74]. Sample preparation involves drop-casting a dilute nanoparticle
suspension on a carbon-coated copper grid, followed by solvent evaporation.

Contrast arises from differences in electron scattering cross-sections, allowing direct
visualization of shape anisotropy in crystalline MNPs [74]. However, TEM suffers from limited
statistical sampling (tens to hundreds of particles per image) and potential beam-induced
damage in sensitive materials. Capital cost for a modern field-emission TEM is in the range
of 800000<€-1500000<€, with annual maintenance and operation costs around 50 000 €-
100000< [75].

1.3.1.1.2. Scanning Electron Microscopy (SEM)

SEM images surface topography by scanning a focused electron beam and detecting secondary
electrons. While resolution (~ 1 nm — —5nm) is lower than TEM, SEM excels at bulk imaging
over larger fields of view (tens of microns) and 3D-like contrast [76]. Conductive coating or
low-voltage operation is necessary to mitigate charging in non-metallic nanoparticles.

Modern field-emission SEM instruments cost approximately 300 000€-600000<, with
annual operating costs around 30 000 € [76]. SEM cannot directly resolve internal crystallinity
or lattice defects.

1.3.1.1.3. Atomic Force Microscopy (AFM)

AFM probes surface topography by rastering a sharp tip over the sample, measuring cantilever
deflection to generate height profiles with ~ 0.1nm vertical resolution [77]. AFM can
characterize nanoparticles on insulating substrates without vacuum, enabling in-liquid imaging
for biological NPs.

Limitations include tip convolution effects that distort lateral dimensions and slow scan
rates (~ minutes per image) [77]. AFM systems cost approximately 200 000 €, with moderate
annual costs (around 10 000 €) for tips and maintenance.
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Figure 1.2. Imaging Techniques.

1.3.1.2. Spectroscopic and Scattering Techniques

1.3.1.2.1. Dynamic Light Scattering (DLS)

DLS measures the temporal fluctuations of scattered light intensity due to Brownian motion,
yielding hydrodynamic diameter distributions [73]. It provides ensemble-averaged size with
high throughput (measurements in minutes) but assumes spherical geometry and is sensitive
to aggregates and polydispersity [73]. DLS instruments range from 30 000€-70 000 €, with
minimal consumables.

1.3.1.2.2. UV-Visible Spectroscopy

Localized surface plasmon resonance (LSPR) peaks of metallic nanoparticles produce size-
and composition-dependent absorption bands (e.g., gold NPs at ~ 520nm) [78]. UV-Vis
spectrophotometers (10 000€-30000<€) offer rapid, non-destructive assays, but spectral
deconvolution is required for polydisperse or complex mixtures. Organic and dielectric NPs lack
plasmonic signals and thus require complementary methods.

1.3.1.2.3. X-ray Diffraction (XRD)

XRD analyzes crystalline structure by measuring Bragg diffraction of X-rays from lattice
planes. Scherrer analysis provides average crystallite size, while phase identification confirms
composition [79]. XRD is ensemble-based (mg-scale samples), with capital costs around
150 000€-300 000 € and operating costs mainly for X-ray tubes and filters (approximately
5000 €/year). Limited sensitivity to amorphous coatings and small (< 3 nm) particles reduces
applicability to ultrasmall NPs.

1.3.1.2.4. Raman and Fourier-Transform Infrared Spectroscopy (FTIR)

Surface-enhanced Raman scattering (SERS) on metallic NPs yields molecular fingerprinting
of surface ligands with high sensitivity [80], while FTIR characterizes functional groups
on nanoparticle surfaces [81]. Both techniques cost 50 000€-100 000 <€, with consumables
(IR cells, substrates) around 2000 €/year. SERS requires careful substrate preparation and
reproducibility challenges.
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1.3.1.2.5. Energy-Dispersive X-ray Spectroscopy (EDX)

Coupled to TEM/SEM, EDX provides elemental composition mapping via characteristic X-
ray emission [74]. Spatial resolution ranges from ~1nm in TEM to ~1um in SEM.
Limitations include detection limits (~ 0.1 wt%) and peak overlap for neighboring elements.
No additional capital cost beyond TEM/SEM, but requires detector maintenance (around
10000 €/year).

1.3.1.3. Size Distribution and Surface Charge

1.3.1.3.1. Nanoparticle Tracking Analysis (NTA)

NTA tracks individual particles in Brownian motion via optical microscopy, extracting size
distributions and concentration [82]. Provides number-based rather than intensity-weighted
distributions, but lower throughput and operator bias in threshold settings. Instruments cost
approximately 80 000 €.

1.3.1.3.2. Zeta Potential Measurements

Electrophoretic light scattering yields zeta potential, reflecting surface charge and colloidal
stability [83]. Essential for predicting aggregation behavior in suspension. Instruments (around
40000 €) require dilute suspensions and assume uniform surface potential.

1.3.1.4. Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) is one of the most versatile and widely used techniques
for nanoparticle characterization, particularly for metallic systems. By rastering a focused
electron beam across a sample and detecting emitted electrons, SEM provides high-resolution
topographic, compositional, and crystallographic information over large fields of view [76,
84]. In this section we delve into the principles of operation, instrumentation components,
imaging modes, sample preparation workflows, analytical outputs, and practical considerations
including throughput, resolution limits, and costs.
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Figure 1.3. (left) Scanning Electron Microscope (right) SEM Image

1.3.1.4.1. Principle of Operation
In SEM, a thermionic or field-emission electron gun provides a beam of electrons accelerated to
energies between 0.5 kV-30kV. The beam is focused by electromagnetic lenses and scanned
in a raster pattern over the sample surface. Interactions between primary electrons and the
specimen generate several signals:
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* Secondary electrons (SE): Low-energy (< 50eV) electrons emitted from the top few
nanometers of the surface, providing high-contrast topographic images with lateral
resolution down to 1 nm [84].

* Backscattered electrons (BSE): High-energy electrons reflected by elastic scattering;
contrast scales with atomic number (Z), enabling compositional imaging of metallic
nanoparticles against lower-Z substrates [76].

e X-rays (EDS): Characteristic X-rays emitted upon electron-shell ionization; collected by
an energy-dispersive spectrometer for elemental mapping [76].

1.3.1.4.2. Instrumentation and Detectors

Modern SEMs employ a field-emission gun (FEG) for sub-nanometer probe sizes, vacuum
chambers adjustable between high (< 1-107%Pa) and variable pressure (1 Pa) modes [85].
Key components include aperture and stigmator assemblies for beam shaping, objective lenses
for focusing, scan coils for beam deflection, and multiple detectors:

* Everhart-Thornley SE detector: A scintillator-photomultiplier system optimized for SE
collection.

* Solid-state BSE detector: Semiconductor diode array offering faster signal and
compositional contrast.

* In-column detectors: Position below the pole piece for high-efficiency SE collection and
enhanced resolution in FEG-SEMs [84].

* EDS detector: Silicon drift detector (SDD) with energy resolution ~ 130¢V, enabling
rapid elemental mapping.

Capital investment for a state-of-the-art FEG-SEM with EDS and variable-pressure capability
ranges from 300 000€-700000<€. Annual service contracts, cryo-pumps, detectors’ mainte-
nance, and consumables (stubs, carbon/tungsten tape, conductive coatings) add approximately
25000€-40 000 € to operating costs.

1.3.1.4.3. Sample Preparation
Accurate imaging of metallic nanoparticles demands meticulous preparation:

1. Deposition: Drop-cast or spin-coat a dilute NP suspension on conductive substrates
(carbon-coated stubs, silicon wafers).

2. Drying: Gentle drying under inert gas or vacuum to prevent aggregation and coffee-ring
effects.

3. Coating (if needed): For non-conductive matrices or biological samples, sputter-coat
with a 2nm-5 nm layer of gold or platinum to mitigate charging; may obscure sub-5nm
features [76].

4. Low-vacuum/Variable-pressure mode: For uncoated samples, operate at 10 Pa-50 Pa
water vapor or nitrogen to neutralize charge without coating [85].

1.3.1.4.4. Imaging Modes and Analytical Workflows

Plan-view imaging is performed using standard SE imaging at 5kV-15kV to measure particle
size, shape distributions, and surface assemblies (Fig. ??). Tilted-view and stereo-pair
approaches involve dual-axis tilting to reconstruct the three-dimensional morphology of
anisotropic nanoparticles [84]. BSE mapping provides qualitative information on alloy
composition or core—shell contrast in bimetallic NPs (e.g., Au@Ag core—shell) when operated
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at 20kv-30kV. Finally, EDS spectral imaging entails automated mapping across regions of
interest with a pixel dwell time of approximately 1 ms to quantify elemental distribution and
detect trace impurities (< 0.1 wt%).

1.3.1.4.5. Resolution, Throughput, and Limitations

Spatial resolution can reach down to 1nm in SE mode (FEG-SEM), though beam-sample
interactions (interaction volume < 50nm at 15kV) and coating layers may degrade true
resolution [84]. Throughput is limited by typical raster scans (1024 x 768 pixels), which require
30s-120s per frame; automated stage and gallery loading can increase sample throughput
but necessitate scripting [76]. Prolonged exposure can induce carbon buildup and sintering
in metallic nanoparticles; using low-kV imaging (< 5kV) and intermittent beam blanking
helps mitigate beam damage and contamination [85]. In terms of cost, although SEM
operating expenses are lower than TEM, the total cost per hour of instrument time (including
amortization and staffing) is approximately 50€-100<€, depending on regional and facility
overhead [76].

1.3.1.4.6. Summary of Advantages and Limitations for Metallic Nanoparticles

SEM offers high-resolution surface imaging over large fields (um-mm scale) and provides
compositional contrast via BSE and EDS without destructive sectioning. It also supports flexible
sample environments, including high-vacuum, variable pressure, and cryo-SEM modes. However,
true sub-nanometer resolution is limited by electron-sample interactions and coating layers, and
non-conductive samples may exhibit charging artifacts that require coating or environmental
SEM modes. Additionally, throughput is moderate, and quantitative image analysis demands
operator expertise. Overall, SEM remains a cornerstone technique for the morphological and
compositional characterization of metallic nanoparticles; when combined with complementary
TEM, AFM, and spectroscopic methods, it yields critical insights into nanoparticle synthesis,
assembly, and functional performance.

Technique  Advantages Limitations / Costs

TEM Atomic-scale resolution, direct Low throughput; sample damage;
morphology/crystallinity 800000€-1500000€ + 50000€-

100 000 € per year

SEM Large-area imaging; 3D-like Lower resolution; surface only; 300 000 €-
contrast 600000<€ + 30000<€ per year

AFM In-liquid imaging; vertical Tip convolution; slow; 200000€ +
resolution 0.1 nm 10000 € per year

DLS Rapid size distributions; en- Assumes spherical; sensitive to aggregates;
semble average 30000€-70000€

UV-Vis Non-destructive; low cost; Limited to plasmonic NPs; overlap in
plasmonic sensing peaks; 10000€-30000€

XRD Phase identification; crystal- Ensemble average; low for < 3nm;
lite size 150 000€-300000€

Raman/SERS Molecular fingerprint; high Substrate prep; reproducibility; 50 000 €-
sensitivity 100000€

EDX Elemental mapping Detection limits ~ 0.1 wt%; peak overlap;

maintenance 10 000 € per year

NTA Number-based size Low throughput; operator bias; 80 000 €

Zeta Poten- Surface charge; stability pre- Assumes uniform surface; 40 000€

tial diction

Table 1.1. Comparison of nanoparticle characterization techniques.
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In summary, no single technique suffices for complete nanoparticle characterization. Metallic
nanoparticles often require high-resolution imaging (TEM/SEM) combined with ensemble
spectroscopic (UV-Vis, DLS) and crystallographic (XRD) analyses to fully resolve size, shape,
composition, and surface properties. Emerging classification algorithms and machine learning
further enhance throughput and objectivity but necessitate extensive datasets and computational
infrastructure.

1.4. Electromagnetic Meta-materials and Resonator-based

Sensors

1.4.1. Introduction to Metamaterials

Metamaterials are artificially structured materials engineered to exhibit electromagnetic
properties not observed in natural materials. They consist of sub-wavelength periodic inclusions
(e.g., metallic resonators) that give rise to an effective medium with designed permittivity e.g
and permeability u.g [86]. By appropriate design, metamaterials can achieve exotic phenomena
such as negative refractive indices, leading to backward wave propagation and reversed Doppler
or Cherenkov effects [86].

Metamaterials are typically composed of periodic unit cells much smaller than the operating
wavelength. This allows them to be treated as an effective medium described by bulk parameters.
For example, a metamaterial’s effective refractive index can be defined as:

Neff = \/ €eff X Meff (1.2)

Where €5 and pg are the effective permittivity and permeability arising from the structured
inclusions. By tailoring the geometry of these inclusions, €. and peg can be made to attain
values not found in natural materials (including negative values) over a certain frequency band
[86].

A key feature is the strong localization and enhancement of electromagnetic fields within
meta-material unit cells. This field confinement provides novel opportunities to significantly
boost the sensitivity and resolution of sensors [87]. As a result, metamaterials have emerged
as a promising platform for next-generation sensors with high performance. Indeed, meta-
material-based sensors have demonstrated enhanced sensitivity, expanded detection range, and
even new functionalities (e.g., electromagnetic “stealth” sensing) beyond the capabilities of
traditional sensors [88].

Initial works in metamaterials demonstrated that arrays of metallic wires and split-ring
resonators could achieve simultaneous e,z < 0 and p.z < 0, enabling a negative index
of refraction [86]. Such engineered media can bend light or other electromagnetic waves
“backwards” (as seen on Figure 1.4 and realize phenomena like perfect lensing and cloaking,
which sparked tremendous interest in the field.

Early meta-material research focused on novel electromagnetic capabilities (e.g., superlenses
and invisibility cloaks). More recently, attention has expanded to practical applications, notably
in sensing and detection. Metamaterials operate across a broad range of frequencies, from
radio-frequency and microwave up to terahertz (THz) and optical regimes.

In all cases, the sub-wavelength structuring allows metamaterials to manipulate incident
waves in unconventional ways, concentrating electromagnetic energy in tiny volumes (e.g.,
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() (b)

Figure 1.4. Light bending "backwards".

nanogaps) and producing high @ factor resonances. These attributes are extremely useful
for sensing: a localized high field intensifies light-matter interaction, and a sharp resonance
makes even small perturbations detectable as frequency or amplitude changes [87]. Therefore,
metamaterial sensors can achieve greater sensitivities than traditional sensor designs.

Metamaterials and their two-dimensional counterparts, metasurfaces, have gained increasing
attention as sensor platforms. Metasurfaces (ultrathin layers of patterned meta-atoms) provide
similar electromagnetic control in a planar form factor, making it easier to integrate into devices.
Both 3D metamaterials and 2D metasurfaces can be engineered for specific sensing tasks. They
support a variety of resonant modes (electric, magnetic, or plasmonic) that respond to changes
in the environment.

Figure 1.4 shows an example metamaterial structure: a periodic array of split-ring resonators
on a substrate, as seen in a scanning electron microscope (SEM) image. Such resonant elements
form the building blocks of many metamaterial sensors.

In summary, metamaterials offer never-before seen control over electromagnetic fields
through sub-wavelength design. Features such as negative-index response, strong field
confinement, and high @ resonances make them attractive for sensor applications. Researchers
have demonstrated metamaterial-based sensors for a wide range of uses, from determining
material properties to detecting chemical and biological substances.

1.4.2. Physical Principles of Metamaterial-Based Sensing
The operation of metamaterial sensors relies on the interaction between resonant electromag-

netic modes of the metamaterial and the external stimulus (analyte, or physical quantity to
be measured). In essence, a metamaterial sensor transduces a change in its environment into
a measurable shift in its electromagnetic response. This typically occurs through a resonance
frequency shift or a change in amplitude of a resonance.

The physical principles can be understood by modeling metamaterial elements as resonant LC
circuits or antennas that are perturbed by the presence of an analyte. Considering a simple split-
ring resonator (SRR) which behaves like an LC resonant circuit, it has an effective inductance L
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(from the current loop) and capacitance C' (across the gap). An example of an approximate
equivalent circuit can be seen on Figure ??. The resonant frequency fy, of this metamaterial
resonator is approximately:

1
~ 2ny/LsgCsg’

where Lgr and Cgp are functions of the device geometry and the surrounding dielectric.
When the SRR is exposed to an analyte or a change in the ambient medium, the effective
capacitance C'sp (and possibly Lsg) is modified due to the analyte’s permittivity or permeability.
This in turn shifts the resonance frequency to a new value fy + Af. The sensing principle
is that Af correlates with the property of interest (e.g., analyte concentration or refractive
index).

fo (1.3)

w
4 .
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Figure 1.5. Diagram and equivalent circuit of a Square Spiral Resonator[89].

A key performance metric is the refractive index sensitivity. For resonance-based sensors, the
sensitivity S is defined as the change in resonance frequency per unit change in refractive index
of the surrounding medium:

_Af

5= An

(1.4

often reported in units such as GHz/RIU (refractive index unit) or nm/RIU for optical
wavelengths. A high S means that even a small refractive index variation (due, for example, to
a thin film of analyte on the sensor) produces a large frequency shift, making it easier to detect.
In practice, one measures the transmission or reflection spectrum of the metamaterial sensor
(using, e.g., a network analyzer for microwaves/THz or a spectrometer for optical frequencies)
and observes the resonant dip or peak shifting as the analyte is introduced.

The sensitivity of metamaterial sensors is fundamentally linked to their field distribution.
Metamaterials are great at concentrating electromagnetic fields in sub-wavelength volumes.
This field enhancement means that a small perturbation (a tiny volume of analyte) can induce a
relatively large change in the response.

To maximize sensitivity, designers often create structures with hot spots of intense electric
field where the analyte attaches. For instance, adding sharp tips or narrow gaps in a resonator
concentrates the field in those regions, dramatically increasing the interaction with any dielectric
loading there [87]. In essence, the more the electromagnetic field “feels” the analyte, the greater
the sensor response.
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Another important consideration is the quality factor (@) of the resonance. A high-Q
resonance (narrow linewidth) makes it easier to detect small frequency shifts, since the spectral
feature is sharp. Metamaterial absorbers, for example, can exhibit high-(Q) resonance dips
in transmission. By matching impedance and minimizing radiation loss, Q-factors in the
tens or hundreds are achievable even in THz or optical metamaterials. However, there is
an inconvenience: extremely high-Q) resonances can become very narrowband and weakly
coupled, potentially limiting the magnitude of the shift or requiring fine spectral resolution to
detect. In practice, designers balance sensitivity and () by evaluating the figure of merit (FOM),
often defined by Equation 1.5(sensitivity divided by resonance linewidth, or similar equations)
[90].

S

FOM = mman

(1.5)

where S = Af/An quantifies the sensitivity (the frequency shift per refractive-index unit)
and FWHM denotes the full-width at half-maximum of the resonance. This dimensionless
ratio elegantly balances the sensor’s ability to detect small refractive-index changes against its
spectral linewidth, such that a higher FOM corresponds to both large signal shifts and narrow
resonance features, thereby indicating higher sensing performance.

A high FOM indicates a sensor that is both sensitive and has a sharp resonance. Maximizing
FOM is an ongoing design challenge, as improving S (e.g., stronger field overlap with analyte)
can sometimes come at the cost of a broader linewidth (lower Q) due to increased loss or
radiation.

1.4.3. Key Applications in Chemical, Biological, and Physical Sens-
ing

Metamaterial sensors have been developed for a wide range of applications in the chemical,
biological, and physical domains. They appear in contexts as diverse as industrial gas sensing,
biomedical diagnostics, environmental monitoring, and material characterization. In all cases,
the advantage of metamaterials lies in their high sensitivity and the ability to tailor them to
specific sensing targets or conditions. Metamaterial-based sensors are now found in areas such
as biomedical analysis, chemical processing, food quality testing, and agriculture [91]. They
can operate from microwave frequencies up through the optical regime, enabling detection of
phenomena across the electromagnetic spectrum [92].

In fact, the operational frequency can be chosen to suit the application: gigahertz-
range metamaterials are effective for bulk material sensing (and can penetrate opaque
media), terahertz metamaterials can probe molecular vibrational modes (useful for chemical
identification), and optical metasurfaces offer extremely fine detection of biomolecular
interactions [92].

1.4.3.1. Chemical Sensing

Metamaterials have shown great promise for detecting chemical substances, including gases,
liquids, and explosive or hazardous compounds. One approach is to exploit the spectral
fingerprint of molecules (many chemicals have characteristic absorption lines or resonances at
THz and infrared frequencies). A metamaterial sensor can be designed to enhance and detect
this absorption [90].

Such sensors have been demonstrated for gases like ammonia, where an array of
metamaterial resonators coated with a reactive film showed a clear THz resonance shift upon
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gas exposure. In another example, a metasurface with functionalized gold resonators was used
to detect volatile organic compounds via wavelength shifts in the mid-IR, corresponding to
each compound’s absorption features. Metamaterial chemical sensors often achieve detection
limits far below the parts-per-million (ppm) level, since the strong field confinement effectively
increases the interaction path length for the analyte.

They can also be made selective by tailoring the surface chemistry: for instance, coating
metamaterial resonators with a thin layer that selectively absorbs a target chemical (like a certain
gas) will cause a resonance shift only for that analyte. This combination of electromagnetic
selectivity (via frequency targeting) and chemical selectivity (via surface functionalization)
leads to powerful sensors for environmental monitoring and industrial safety.

1.4.3.2. Biological Sensing

One of the most active areas for metamaterial sensors is in biology and medicine. Label-free
biosensors that can detect biomolecules (DNA, proteins, viruses, etc.) in real time are of great
interest. Metamaterial and plasmonic metasurface sensors perform well here by providing high
sensitivity in compact, planar formats.

A common example is the plasmonic metasurface biosensor: an array of metallic
nanostructures on a chip that supports surface plasmon resonances. When target biomolecules
bind to the sensor surface (which is usually functionalized with a biorecognition element like
an antibody or aptamer), the local refractive index near the metasurface changes, shifting the
resonance condition. This can be observed as a wavelength shift or intensity change in the
reflected light.

In practical biosensing setups, metamaterial chips are often integrated with microfluidic
sample delivery and measured with optical methods (e.g., measuring the resonance wavelength
shift with an imaging spectrometer). The label-free, real-time nature of these sensors
and their compatibility with small sample volumes are major advantages for biomedical
diagnostics[55].

1.4.3.3. Physical Sensing

In addition to chemical and biological targets, metamaterials are employed to measure an array
of physical parameters. These include temperature, pressure, strain, and the electromagnetic
properties of materials. Metamaterial absorbers have been reported as high-performance
sensors for temperature and pressure changes: because the resonance condition can depend
on the dielectric properties of substrates or on thermal expansion, a change in temperature
can produce a shift in the metamaterial’s resonance frequency or a change in its absorption
amplitude [91].

For instance, deformable metamaterials have been used as strain sensors: if a substrate
supporting a metasurface is bent or stretched, the periodic geometry alters (changing L and
C values in Equation 1.3), which can be tracked via the resonance shift. These metamaterial
strain gauges can be extremely compact and can even be made stretchable for attachment to
surfaces or structures.

Another important category is material characterization sensors. Here, the goal is to
determine unknown properties (like permittivity, permeability or thickness) of a material under
test by using the metamaterial sensor as a probe. One example is a microwave metamaterial
sensor for thin-film characterization: an X-band SRR array is placed near a dielectric film, and
the resonant frequency shift (or splitting) is measured to extract the film’s dielectric constant
and thickness. Because the metamaterial’s field is strongly confined and sensitive to the presence
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of the film, this approach allows nondestructive testing of films much thinner than the free-space
wavelength [93].

In general, metamaterial-inspired resonators (including complementary split-ring resonators
etched in waveguides or coaxial lines) have been widely used to measure the dielectric constant
of liquids, powders, or solids placed in proximity. They offer high accuracy and require only a
small sample volume. For instance, a microwave metamaterial sensor could distinguish different
powder materials by signature shifts in an array of resonant peaks.

In all physical sensing examples, the common theme is that metamaterials provide a
resonant transducer that converts a physical change into an electromagnetic signal (frequency
or amplitude) that can be remotely sensed with high precision.

1.4.4. Advances and Challenges

Research in metamaterial sensing has progressed rapidly in recent years. Between 2020 and
2024, significant advancements have been made both in sensor design and in integrating
metamaterials into practical devices. A major trend is the shift from bulk 3D metamaterials
to planar 2D metasurfaces. These ultra-thin structures can be fabricated using standard
lithographic processes over large areas, making them well-suited for scalable, commercial
sensors. Recent metasurface sensors use sub-wavelength nanoantennas to replicate the effects
of bulk metamaterials while offering a compact form factor.

One notable development is the integration of metasurfaces with microfluidic channels,
creating on-chip chemical sensors. In these devices, a small liquid sample flows over the
metasurface and is analyzed in real time. Since 2020, high-sensitivity metasurface sensors have
emerged that are more easily integrated with optical or electronic systems than earlier designs.
This shift towards chip-scale platforms is bridging the gap between lab-based prototypes and
real-world sensing technologies [92].

Another key advancement lies in tunable and reconfigurable metamaterial sensors. Traditional
sensors are passive, with fixed responses defined during fabrication. Modern designs incorporate
tunable elements (such as graphene, liquid crystals, or phase-change materials) to enable
dynamic control. Graphene-based sensors are particularly promising: graphene supports tunable
plasmonic modes in the mid-IR and THz regimes. By applying a voltage, the resonance frequency
can be modified according to the user’s needs [92]. This allows for active reconfiguration (such
as scanning through multiple resonances to detect different analytes or compensating for
baseline drift). These tunable designs introduce an additional degree of freedom: not only do
they sense environmental changes, but their spectral properties can also be actively controlled.
This enables multi-parameter sensing and in-situ calibration. A 2021 example includes a dual-
mode sensor that switches between two resonance frequencies via electrical tuning, allowing
simultaneous measurement of refractive index and temperature.

Despite these advances, several challenges persist:

* Scalability: Metamaterials operating at optical frequencies require precise nanoscale
features over large areas. Techniques like electron-beam lithography offer high resolution
but are slow and costly, limiting scalability. Alternative methods like nanoimprint
lithography and roll-to-roll printing show promise, but issues such as yield and uniformity
remain. Additionally, the use of expensive noble metals (e.g., gold, silver) poses cost
barriers for disposable sensors.
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* Reproducibility: Even minor fabrication variations can shift resonance frequencies or
degrade Q-factors, complicating sensor calibration. Reliable manufacturing processes or
built-in calibration schemes are needed to ensure consistency across sensor batches.

¢ Narrow bandwidth: This is inherent to resonant metamaterials. While this allows for
high sensitivity, it restricts each sensor to a specific frequency or analyte.
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Sensing

2.1. Sensor Design Motivation and Context

Nanoparticles (NPs) exhibit unique properties that make them valuable in applications ranging
from sensor coatings to biochemical detection. However, characterizing NP size and distribution
typically requires time-consuming and complex instrumentation.

Traditional methods such as electron microscopy (scanning or transmission) provide direct
imaging of particle dimensions but involve lengthy sample preparation and analysis [94].
Other techniques like dynamic light scattering rely on Brownian motion to infer particle size
distributions, yet they often demand elaborate setups and still face limitations in throughput
[94, 4]. An alternative approach is to analyze NP sedimentation behavior in a fluid, since the
mix of gravity and diffusion during sedimentation is influenced by particle size and density.
By monitoring how NPs settle over time (their sedimentation profile), one can potentially
estimate these characteristics when combined with appropriate modeling [4]. Unfortunately,
many conventional characterization protocols require significant manual intervention and long
wait times between fabrication and measurement steps. This creates a need for faster, analysis
techniques that minimize sample usage and accelerate feedback in nanoparticle production

[4].

Honrrubia et al.’s work [95] addresses that need by introducing a microwave planar resonator
sensor designed to continuously monitor NP sedimentation. Microwave resonator sensors
(particularly those based on split-ring resonators (SRRs) and related structures) offer a flexible,
method to characterize materials through their dielectric properties [3]. The general principle is
that the resonator acts as an LC circuit with a high Q-factor; when a material is brought into the
near field of the resonator, it modifies the effective capacitance and therefore shifts the resonant
frequency [3]. The magnitude of the frequency shift depends on the permittivity and volume of
the material interacting with the sensor: materials with higher dielectric constant cause larger
downward shifts in the resonance frequency [3]. By designing the resonator appropriately,
one can target a specific frequency range and tailor the sensitivity for a given application [7].
Spiral resonator designs are especially attractive because they achieve a longer resonant path
within a compact area, yielding potentially higher Q-factor and sensitivity [5]. Planar resonator
sensors have already shown promise for thin-film dielectric measurements, since miniaturized
resonators confine electromagnetic fields in a small volume near the sensor surface [96].
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In this context, a square spiral resonator (SSR) sensor is proposed to monitor nanoparticle
sedimentation profiles in real time. The idea is that as NPs dispersed in a fluid settle onto the
sensor surface, they form an accumulating layer in the sensor’s sensing volume (the region of
the electromagnetic near-field above the resonator).

PLA container

Dispersed MUT Sedimented MUT
) 2
Resonator Antenna

Figure 2.1. Diagram showing the measurement process of the MUT. First (left) the SSR and container
are cleaned and all liquid and solid residues are removed, leaving the container and the PCB with the
resonator antenna ready for measurement; Second (center), the dispersed MUT is poured inside the
PLA container; Lastly (right), as time passes, the dispersed NPs will sediment over the PCB, leading to a
measurable shift in the resonance frequency of the MUT.

This progressive deposition leads to a continuous change in the sensor’s effective capacitance
and hence a time-dependent shift in its resonance frequency[1]. The process is illustrated
conceptually in Figure 2.1. Initially, the resonator is exposed to the NP dispersion (with particles
distributed throughout the fluid). Over time, gravity causes NPs to migrate and concentrate
near the bottom, eventually forming a uniform layer on the sensor. Once a significant layer
has formed and the local NP concentration in the sensing region reaches an equilibrium, the
resonance frequency stabilizes at a new value. The difference between the initial and final
resonance frequencies (and the time taken to reach equilibrium) provides a “sedimentation
profile” characteristic of the nanoparticle type and concentration. For a theoretical description of
this phenomenon, one can employ the Mason-Weaver equation to model the NP concentration
c¢(x,t) along the vertical direction x over time ¢ [97]. This model combines diffusion (Brownian
motion) and gravitational drift in one dimension:

Oc d%c oc

where D is the diffusion coefficient and v is the settling velocity. These parameters depend
on particle characteristics (e.g., D = kgT'/F relates to thermal energy and friction, while v is
proportional to the buoyant mass of the particle) [97]. The Mason-Weaver model predicts that
the particle concentration at the bottom (on the sensor surface) will asymptotically approach
a steady value, often in an exponential-like fashion with a characteristic time constant. By
capturing the sensor’s resonant frequency as a function of time, we essentially measure the
integral effect of this concentration build-up in the sensor’s near field.
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The result is a sedimentation profile curve that can be analyzed to extract meaningful
parameters (such as the time constant of sedimentation and the final frequency shift) which
correlate with NP properties. Thus, the SSR sensor provides a novel route to rapidly characterize
nanoparticles via their sedimentation dynamics, using a simple electrical measurement instead
of elaborate microscopy or optical methods[2].

A
Sedimentation Profile

Resonance Frequency

Time

Figure 2.2. Conceptual diagram of the sedimentation process as sensed by the SSR sensor. Nanoparticles
initially dispersed in the fluid (top) gradually settle under gravity and form a layer on the sensor surface
(bottom). x-axis represents time while y-axis represent the peak of the resonance frequency measured by
the VNA.
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2.2. Electromagnetic Modeling and Design Methodol-
ogy

The sedimentation sensor is based on a planar Square Spiral Resonator structure that is
electromagnetically coupled to a feed transmission line. The SSR geometry was chosen to
achieve a target resonant frequency in the microwave range (on the order of a few gigahertz)
while maintaining a compact footprint. The resonator consists of a square spiral trace etched in
copper on a dielectric substrate, forming a planar inductor-capacitor (LC) circuit. Each turn
of the spiral contributes inductance, while the gaps between adjacent turns and between the
spiral and ground plane contribute distributed capacitance. For the design, as discussed in
[95], a standard FR4 printed circuit board (PCB) was used as the substrate due to its low cost
and ease of fabrication. The substrate has a thickness of 1.5 mm and a relative permittivity of
approximately 4.5, which influences the electromagnetic field distribution and the base resonant
frequency of the spiral. A microstrip transmission line (TL) on the same PCB layer is used to
excite the resonator: the TL runs adjacent to the spiral and serves as a feed that inductively
(magnetically) couples energy into the spiral resonator. When the device is connected to a
vector network analyzer (VNA) in reflection mode, the spirals produce a notch (dip) in the
reflected signal (S11) at their resonant frequency.

To optimize the sensor design, electromagnetic (EM) simulations were carried out using a
full-wave solver. The layout was modeled with two identical square spiral resonators placed
symmetrically on either side of a central microstrip line. This dual-resonator configuration was
adopted because it produces a more pronounced resonance (a deeper notch in .S1;) compared to
a single resonator [98]. Each spiral in the final design has an outer side length of s, = 5.06 mm
and a trace width wgp equal to the gap between turns (also 5.06 mm overall outer size with a
single-turn gap of d = 0.44 mm).

These dimensions were tuned such that, in simulation, the resonant frequency in absence
of any nanoparticles (with the spirals in air above the substrate) is approximately 2.44 GHz.
The microstrip feed line is 2.82 mm wide, chosen to match a 50 Q) characteristic impedance on
FR4. It traverses the PCB and passes between the two spiral resonators, with a small gap of
d = 0.44 mm separating the line from each spiral’s inner end. This gap distance controls the
coupling strength between the line and the resonators; matching it to the spiral gap ensured
symmetric coupling and helped achieve a good impedance match at the resonant frequency.
The PCB ground plane on the back side provides the return path for the microstrip and forms
the reference for the spiral’s capacitance.

Using the EM solver, the sensor’s frequency response was simulated under various conditions
to validate the design and understand its sensing behavior. Figure 2.3 shows the top-view layout
of the SSR sensor as implemented. In simulation, the device exhibits a clear reflection notch
around 2.44 GHz when the spirals are in vacuum (or air). The electromagnetic fields are strongly
confined around the spiral traces and in the gap regions. Notably, a significant portion of the
electric field extends a short distance above the PCB in the vicinity of the spirals — this is the
sensing volume where the presence of any material (with dielectric constant different from air)
will perturb the resonant frequency. To demonstrate this principle, a simulation was performed
with a dielectric overlayer on the sensor to mimic the effect of deposited nanoparticles. In one
scenario, a homogeneous material layer (representing, for instance, a liquid or solid covering)
with relative permittivity ¢, ~ 2.13 (comparable to a hydrocarbon oil or a low-permittivity NP
layer) was applied over the spirals.
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The result was a downward shift in the resonant frequency from about 2.444 GHz to about
2.247 GHz, confirming that the sensor is indeed sensitive to dielectric loading as expected. In
essence, the resonator’s inductance is relatively fixed by its geometry, while the capacitance
increases when a higher-permittivity material occupies the space near the spiral, thus reducing
the frequency fj ~ #ﬁ This simulation outcome aligns with theoretical expectations and
provides a baseline for the magnitude of frequency shift one might observe for a complete
coverage of the sensor with a low-¢ material. Higher-permittivity or higher-volume loading
would induce larger shifts, potentially at the cost of damping the resonance if the material is
lossy.

Wn=2.82 mm

lc = 25mm =W

W. = 20mm
Figure 2.3. Layout of the fabricated SSR sensor.

The sensor model can be understood not only through full-wave simulations but also via
an equivalent circuit representation. Each spiral resonator can be approximated as an LC
tank with a certain inductance (proportional to the length of the spiral trace and the PCB’s
inductive coupling to ground) and capacitance (stemming from the inter-trace gaps and the
capacitance to the ground plane). The two coupled spirals and the feed line form a resonant
network that manifests as a notch in the reflection coefficient when measured from the feed
line port. Key performance parameters such as the resonant frequency f, and quality factor Q
can be extracted either from simulation or from this circuit analogy. A high ) implies a narrow
and deep resonance, which is beneficial for sensing since even small shifts in frequency can be
resolved. However, one must also consider that introducing a lossy sample (e.g., conductive or
polar nanoparticles) will reduce the @) by absorbing energy, which could broaden the resonance
and slightly reduce sensitivity. Therefore, the design aimed to maximize @ in the unloaded state
to have headroom for any () degradation once the NPs are introduced.
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Another outcome of the EM modeling was insight into the spatial distribution of the sensor’s
sensitivity. The simulations confirm that the electric field (and thus dielectric sensitivity) is
concentrated in the immediate vicinity of the spirals—roughly within a few millimeters above
the PCB surface. This defines the effective sensing volume. Nanoparticles that settle into this
volume will have the strongest impact on the resonant frequency, whereas particles remaining
farther away (e.g., still suspended higher in the fluid) have a negligible effect. This aspect
justifies the assumption in our sensing approach that the resonant frequency change over time
directly corresponds to the amount of nanoparticles that have settled onto or near the sensor
surface.

2.3. Resonator Tuning and Material Considerations

Designing the SSR sensor required careful tuning of both geometry and material parameters to
meet the desired performance. The primary design goal was to place the resonant frequency
in a convenient range for measurement (around 2-3 GHz) and to ensure a high sensitivity
to dielectric changes due to nanoparticle deposition. Starting from initial estimates based on
analytical formulas for spirals and transmission lines, the design was iteratively refined using
the EM simulations described above.

The spiral side length and number of turns were the dominant factors controlling the
resonance frequency: a larger spiral (longer total conductor length) lowers fj, while a smaller
spiral raises it. Likewise, the inter-turn spacing and the gap to the feed line influence the
coupling and effective capacitance. A square spiral with a single turn was chosen (essentially
a loop with a spiral shape) primarily for simplicity and because it allowed us to achieve the
target frequency with the given substrate. More turns could increase the inductance further, but
would also introduce more capacitance and potentially more loss; thus a balance was found
with the one-turn square spiral of 5 mm side, which yielded f, ~ 2.4 GHz on FR4.

Material considerations extend beyond the substrate to the nanoparticles and the dispersion
medium. In our design, the medium in which NPs are dispersed is a non-polar liquid (paraffin
oil) with a low relative permittivity (epar ~ 2.13). This choice is deliberate: a low-permittivity,
non-conductive host fluid has minimal initial impact on the sensor (so the baseline resonance
with just the liquid is still near the designed frequency) and it ensures that the NPs do not
experience any significant electrostatic stabilization (since paraffin is non-polar and does
not induce surface charges on the particles). Thus, gravity is the dominant force driving
sedimentation, consistent with the assumptions of the model [4].

If a polar or high-¢ liquid (like water) were used, the resonant frequency would shift
considerably just from the liquid, and the high dielectric loading could dampen the resonance
severely. Additionally, water or polar solvents often impart surface charges to particles and can
lead to phenomena like electrical double layers, which would slow down or alter sedimentation
behavior. By using paraffin oil, we avoid these complications. Nanoparticles in the oil essentially
behave as solid particles settling due to gravity, without additional forces, which simplifies both
the modeling and the interpretation of results.

Another material consideration is the construction of a physical container for the liquid
sample. A small well or container is needed to hold the NP dispersion over the flat sensor
during the experiment. We employed a 3D-printed rectangular container made of polylactic
acid (PLA) attached to the PCB around the spirals to serve as a fluid reservoir. PLA was chosen
for its chemical inertness and low microwave loss; however, it does have a moderate dielectric
constant (on the order of 3).
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While this container was not included in the simulation model, it introduces a slight
perturbation in the experimental device. In practice, the presence of the PLA ring and the
adhesive used to attach it (cyanoacrylate) can cause a small additional shift in the baseline
resonance frequency (a few MHz) and a minor reduction in ). These effects were accounted
for by calibrating the measurement baseline with the container in place before adding any
nanoparticles. The key point is that all fixed structures (substrate, container, etc.) remain
constant between measurements, so their influence can be treated as part of the sensor’s
inherent baseline. The dynamic changes we observe are then purely due to the nanoparticles’
sedimentation.

2.4. Fabrication Process and Expected Performance

The SSR sensor was fabricated using standard PCB manufacturing techniques. The design
pattern (two spirals and the feed line) was transferred onto a copper-clad FR4 board and
etched to define the conductive traces. The board dimensions are approximately 25 mm x
20 mm, providing ample area to include the resonators and an edge-mounted connector. A
SubMiniature-A (SMA) coaxial connector was soldered to the end of the microstrip line to
interface the sensor with external instrumentation (e.g., a VNA). After fabrication, the two
copper spiral resonators and the microstrip line are clearly visible on the top surface, with the
bottom surface being a continuous ground plane.

The fabrication tolerances (etching precision, substrate dielectric tolerance, etc.) can
lead to slight deviations in the resonant frequency (on the order of a few tens of MHz).
Indeed, when the sensor was first tested with no sample, its resonance in air was observed
to be within a few percent of the 2.44 GHz design target, which was acceptable. Any small
discrepancy can be attributed to the FR4 dielectric constant tolerance and the presence of the
SMA connector and PLA container, none of which were perfectly represented in simulations.
Nonetheless, the device functioned as expected, showing a sharp reflection notch in the S-
parameter measurement.

After verifying the baseline operation, the next step was to integrate the sample container. A
rectangular PLA well was bonded onto the PCB, centered over the spiral resonator area using a
cyanoacrylate-based adhesive. The well was created by 3D printing to ensure it fit snugly and
was leak-proof when glued. Once attached, the sensor could securely hold a small volume of
liquid (0.1 mL-0.2 mL of dispersion) covering both spirals uniformly. This volume was sufficient
to submerge the resonator area while being minimal enough to qualify as a “low-volume” test,
consistent with the goal of conserving the precious nanoparticle samples.

With the complete sensor assembly, we evaluated its expected performance metrics. One
important metric is the sensitivity, which in this context can be thought of as the change
in resonant frequency per quantity of nanoparticles deposited. While it is challenging to
express this analytically (since it depends on the complex permittivity of a growing porous
NP layer), we can gauge sensitivity from the experimental results and simulations. The full
coverage simulation (with a uniform dielectric layer ¢, =~ 2.1 mimicking a dense layer of NPs
or oil) produced a frequency shift of nearly Af ~ 197 MHz (from 2.444 GHz-2.247 GHz). In
practice, the final frequency shifts observed in experiments were somewhat smaller, because the
nanoparticle layer that forms is not a continuous high-permittivity film but rather a layer of
particles with oil filling the interstices (thus the effective permittivity of the layer is closer to
that of oil plus a small increment). Nevertheless, a substantial frequency shifts were recorded
on the order of tens to over a hundred MHz, depending on NP concentration. This is well
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above the sensor’s frequency resolution limit: the VNA measurement setup had a frequency
resolution better than 1 MHz, and baseline drifts of only 3 MHz over hours were observed
(due to temperature and instrument drift) [5]. Therefore, even the smallest shifts due to
sedimentation were discernible above the noise floor.

Another performance parameter is the quality factor @) of the resonance during sensing.
As nanoparticles accumulate, they can introduce losses (for instance, conductive losses
from metallic particles or increased dielectric loss if the particles form a lossy composite).
Correspondingly, we noticed a slight reduction in the depth of the S1; notch over time, alongside
the frequency shift. However, the notch remained clearly trackable throughout the experiment,
indicating the sensor maintained sufficient () to allow frequency determination at each time
point.

An expected outcome of the sedimentation experiment was that the resonant frequency
would approach a stable value once sedimentation effectively completed. Indeed, across various
tests, the resonance frequency versus time curves leveled off after a certain duration (on the
order of a few hours). For example, in all trials the resonance stopped shifting appreciably after
roughly 3 hours, implying that by that time a quasi-static NP layer had formed on the sensor
surface [4].

The final frequency shift (difference between the starting frequency and the plateau
frequency) correlated with the initial concentration of NPs in the dispersion. Higher
concentrations produced larger shifts, as expected since more particles ultimately settled
to form a thicker or denser layer. Likewise, the time required to reach the plateau (which we
can associate with a sedimentation time constant) varied with particle properties: in qualitative
agreement with sedimentation theory, larger or heavier particles settled faster, yielding quicker
frequency decay, whereas smaller or lighter particles took longer. The ability to measure these
differences is a strong validation of the sensor’s effectiveness. It shows that the SSR sensor can
not only detect the presence of nanoparticles but can also resolve dynamic differences in how
they settle.

To further characterize the sensor’s performance, we also examined its repeatability and
reproducibility. Multiple runs with the same type of nanoparticles and concentration showed
that the frequency vs. time profile could be reproduced with only minor variation, especially
when experimental conditions (temperature, initial dispersion method, etc.) were carefully
controlled. This repeatability is crucial if the sensor is to be used as a characterization tool,
as it means the extracted parameters (time constant, final frequency shift) are reliable and
characteristic for a given sample. Additionally, since the sensor operates in the microwave
regime, the measurements are relatively immune to optical turbidity or sample opacity (an
advantage over optical monitoring of sedimentation).
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Figure 2.4. Sensor + PLA container.

2.5. Measurement Protocol for Sedimentation Profil-
ing

To experimentally utilize the SSR sensor for sedimentation profiling, a well-defined measurement

protocol was followed.

First, the VNA (Vector Network Analyzer), particularly, the Anritsu Shockline MS46122B,
was calibrated over the frequency range of interest (2.23 GHz-2.46 GHz in our case) using
a one-port calibration at the SMA connector. This calibration ensures that the subsequent
reflection measurements (.S7;) accurately represent the sensor’s response, free from systematic
errors of cables and connectors. The sensor (with the empty PLA container attached) was
measured to record a baseline resonance frequency. The calibration consists of four phases,
which are kept standard thanks to the calibration kit by Anritsu. Firstly, the VNA is turned on
and left to warm-up for 20-30 minutes. Secondly, a no-load measurement is done, later a short
circuit measurement and lastly a 50 ) load is attached. This calibration procedure guarantees
a consistent and comparable output through the different measurements, eliminating any
displacement due to external factors.

Once the VNA is calibrated, the nanoparticles are mixed with paraffin creating a 10 mg/mL
dispersion (more details provided in Chapter 3.1). These nanoparticles are dispersed through
the paraffin using a BRANSON Digital Sonifier (Figure 2.5). This sonifier, equiped with a tip
narrow enough to reach the end of the test-tube will sonify the dispersion for 15 minutes. These
15 minutes are distributed in intervals of 15 s with the sonifier ON and 5 s with the sonifier OFF.
Therefore, in total the sonication process spands over 20 minutes.

The sonication process is performed with the test tube containing the dispersion submerged
in a water-ice bath in order to prevent it from overheating and changing the paraffin’s properties.
This process can be seen on Figure 2.6.

Once the sonication process is complete, 10 uL of the dispersion are pipetted onto the sensor.
The first seconds after the sonication is complete are critical since the sedimentation curve
is exponential and the largest nanoparticles will sediment the quickest, therefore, the time
between the end of the sonication and the beggining of the measurement is reduced to the
minimum possible.

The VNA measurements are started and the temperature of the room is recorded to guarantee
that it remains constant through the measurement.
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Figure 2.5. BRANSON Digital Sonifier.

Figure 2.6. Test tube containing paraffin and nanoparticles submerged in an ice bath with the sonicator
probe, ready to start the sonication process.

Three to four hours later, as determined by [95], the measurements are stopped, thus leading
to a completed iteration of one measurement.

Sensor Design for Characterization of Metallic Nanoparticles 42
Alvaro Martin Martin



Measurements

3.1. MUT Preparation

Copper nanoparticles (Cu-NPs) were synthesized using the wire explosion method, a top-down
physical fabrication technique well-suited for the production of metallic nanopowders (see
Chapter 1.2.2). This method relies on the rapid vaporization of a metal conductor by the
discharge of a high-voltage capacitor, leading to nanoparticle formation upon condensation in a
surrounding medium.

In this study, the Cu-NPs were fabricated at the University of Pisa. The experimental setup
involved cylindrical copper wires with a diameter of 1 mm and a length of 30 mm. A high-
current density, ranging from 1 - 10’ A/m? to 1 - 10° A/m?, was applied by discharging a 765 uF
capacitor charged up to 10 kV. This intense current caused adiabatic heating of the wire, leading
to its explosive vaporization. The vaporized copper then condensed into nanoparticles upon
interaction with a surrounding medium of distilled water, which also served to contain and
collect the resulting product.

The explosion process was monitored using a dedicated voltage probe (1:1000), a calibrated
Rogowski coil, and a high-bandwidth oscilloscope, ensuring precise characterization of the
electrical parameters during the event. The entire environment was optimized to minimize
contamination: post-explosion, the vessel and electrodes were carefully cleaned with deionized
water before repeating the procedure.

To ensure reproducibility and sufficient material yield, the explosion cycle was iterated
ten times. The collected suspensions were subsequently subjected to a low-temperature
evaporation process to isolate the dry nanopowder. The obtained Cu-NPs were then re-dispersed
in deionized water, deposited onto substrates, and analyzed via scanning and transmission
electron microscopy (FEG-SEM and HR FEG-TEM) to evaluate their size distribution and
morphology.

This method offers several advantages, including the ability to produce nanoparticles without
the use of chemical reagents, the rapid generation of high-purity products, and the potential
to fabricate complex or multicomponent nanostructures. However, challenges such as precise
control over particle size and shape, as well as the potential for oxidation, remain areas for
further optimization.
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Following the above-mentioned method, three samples of copper nanoparticles were created.
These samples were generated using different parameters, aiming to create different sized
distributions of the nanoparticles. The samples (and the names A, B, C chosen for each one)
can be seen on Figure 4.9.

Figure 3.1. Three test tubes containing the three different nanoparticles, labeled A, B, C through the
rest of the Thesis.

In order to measure the different sedimentation curves of the different nanoparticles, a
dispersion has to be made with them. For this, pure paraffin was used as a medium in
which to disperse the copper nanoparticles. The same paraffin bottle was used for all the
measurements.

A concentration of 10 mg/mL was used in order to create a saturated medium in which the
nanoparticles will precipitate due to gravity and sediment at the bottom of the sensor. If a
non-saturated concentration was chosen, the sedimentation process would be slower and a
higher percentage of nanoparticles would remain in suspension through the medium and never
precipitate.

A high precision scale was used to prepare the mix of paraffin and Cu-NPs. The nanoparticles
were poured in first into the test tube (Figure 3.2 and then the correct amount of paraffin was
pipetted into the test tube to guarantee the desired concentration of 10 mg/mL.
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Figure 3.2. Measurement of the weight of nanoparticles per test-tube.

The result before the sonication is that shown in the left side of Figure 4.9. After the process
mentioned in Section 2.5, the result should be similar to the one shown on Figure 4.9 left
side.

Figure 3.3. Before (left) and after (right) the sonication process.
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3.2. Sonication Time Determination

In order to determine a suitable sonication time for the dispersion and avoid sonicating for an
unnecessary ammount of time, an experiment was conducted. Samples of the same nanoparticle
type (in this case we chose NP A, since it was the one we had more of) would be sonicated for
different time intervals and their sedimentation curves would be recorded and compared.
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Figure 3.4. Sedimentation curves of the same dispersion during different sonication times.

As seen on Figure 4.9, the sedimentation curves keep having a slower exponential decay the
longer they are sonicated until a saturation point is reached at around 15 min—-30 min. At this
point, the resolution of the measurement is thee key difference since the difference between
both measurements (red and purple) is only =1 MHz (in constrast with the 5 MHz in between
the 1 min and the 15 min measurements).

With this graph, we can determine that a suitable time to sonicate the dispersion would
be 15 minutes, since it grants the same results as the 30 minute one and takes half the time,
allowing for faster iterations of measurements.
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All of the sonications performed were done in the same conditions. The sonicated test tube
would have a minimum of 5 mL and a maximum of 10 mL. The test tube would be submerged
inside an ice bath with the probe tip inside the test tube just barely not touching the bottom of
the test tube as seen on Figure 4.9.

Figure 3.5. Test tube with nanoparticles submerged into the ice bath with the probe inside.
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3.3. Material Differentiation

As mentioned in Chapter 1, a difference in a material’s properties (permitivity, conductivity and
magnetic permeability) lead to distinct shifts in a resonant sensor’s response. When a planar
resonator is loaded with a MUT, its resonance frequency typically shifts downwards due to the
increase in the effective permittivity.

This variation can be seen on Figure 3.6. The main value of interest for this research is the
resonance frequency, not so much the magnitude of the peak. We can see that there is a clear
distinction between some materials (for example, air and hexane), while some other materials
have more similar frequencies.
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Figure 3.6. Resonance frequencies depending on the MUT.

It is important to note that both the Iron NPs and the Copper NPs are measurements
performed in a paraffin dispersion, which is the reason their frequencies are slightly lower than
that of the paraffin while still being quite close to it.

With the SSR and the VNA, the resolution of the measurements performed can perceive
changes of less than 1 MHz in the resonance frequency, therefore a very viable application of
this sensor is to classify different materials depending on their resonance frequency.
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Appart from having different resonance frequency peaks at a certain common time after
sonication, two dispersions of different material NPs will have different sedimentation curves.
These curves depend on many factors, mainly the material, temperature, concentration and
sonication times.

If we try and keep the changes to a minimum, we can reach some conclussions. As seen
on Figure 3.7, even when sonicating and exposing paraffin to the same conditions as the NP
dispersions, the resonance frequency does not shift significantly (the drift observed in the
measurement is due to a slight temperature change in the measurement room and due to the
inherent measurement error of the VNA measurement device. This error is less than 1 MHz and
therefore can be ignored for our analysis.
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Figure 3.7. Resonance frequencies depending on the MUT.

When considering two types of metallic nanoparticles (in this case Copper and Iron), apart
from a difference in any instantaneous resonance frequency peak, both sedimentation curves
are different. These two NPs were fabricated following the same method, a Wire Explosion
method and both are dispersions in paraffin of the same concentration. Also, it can be seen
that the sedimentation process seems to follow an exponential curve. This exponential curve
seems to have different time constants depending on the material. Hence, determining this
time constant might prove useful for classifying the materials. This will be addressed in Chapter
4.
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3.4. Size Differentiation

As previously mentioned, the main goal of this Thesis is to determine wether a SSR and a
VNA can be used to consistently and correctly classify nanoparticles of the same material with
different size distributions.

Three copper samples were provided by the University of Pisa as described in Section
3.1. The main intentios was to generate nanoparticles using three widely different settings
during the Wire Explosion in order to try and generate three different size distributions in the
nanoparticles.

Once these nanoparticles were shipped to ICAI, we used the VNA alongside the SSR to
measure their sedimentation curves.

Three dispersions of nanoparticles were created using a concentration of 10 mg/mL. The
medium in which the nanoparticles would be dispersed in is pure paraffin oil, which proves to
be a non-polar liquid, cheap, and non-reactive with the nanoparticles.

The sonication times for each one of the measurements was kept constant, as well as the
temperature and measurement times. Each sample was sonicated for 15 minutes in intervals
of 55 ON and 10s OFF (leading to a total of 20 minutes for one sonication), as explained in
Section 3.2.

All nanoparticles’ sedimentation times were measured multiple times in order to remove
any outliers and also to take into account the variability noise inside the measurement can
create.
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Figure 3.8. Peak resonance frequency over time depending on the nanoparticle sample sonicated.
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On Figure 3.8, we can observe the sedimentation curves of the different nanoparticles. This
graph was obtained measuring the peak resonance frequency of the nanoparticle dispersion
using the VNA and the SSR mentioned in this Thesis.

As it can be observed, the curves seem quite similar, all following an exponential-like
behaviour, common for sedimentation curves. The bigger nanoparticles will take less time to
sediment while the smaller ones will remain a longer time suspended in the paraffin.

With this graph, a clear distinction between the nanoparticles can’t be determined easily. All
of the measurements seem to be very similar and, at least with a simple visual inspection, if no
colors were used in the plot, it would be extremely difficult to differentiate and classify these
nanoparticles.

Hence, a method to extract more information from this experiment is required. Since these
signals are similar to exponentials, it would be interesting to obtain a time-constant distribution
for each signal and see if with that information, classification would be easier. This will be
explored in Chapter ??
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4.1. Time Constant Extraction Procedure

Exponential decay processes are common in many areas of science and engineering. In a
simple exponential decay, a quantity m(t) decreases at a rate proportional to its current value.
Equation 4.1 describes this behavior for a single decay component:

m(t) = f exp(j_) +g 4.1)

where 7 is the characteristic time constant of the decay, f is the decay amplitude (initial
magnitude), and g is a baseline offset [99]. Processes such as radioactive decay, population
decline, certain chemical reactions, fluorescence, and magnetic resonance relaxation often
follow this single-exponential model [99]. In these cases, the time constant 7 (or its reciprocal,
the rate constant 1/7) is a key parameter that can be obtained from experimental data.

However, not all systems can be characterized by a single time constant. Many complex
systems exhibit multi-exponential behavior, meaning the observed decay is a combination of
multiple exponential components or even a continuous distribution of time constants. For
example, the decay of magnetization in confined media (as in NMR experiments on porous
materials) involves multiple decay rates, and the effective “time constant” of such a system is
actually a distribution rather than a single value [8]. In these cases, using a single 7 in Equation
4.1 is insufficient; instead, one must consider multiple exponentials contributing to m(t).
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4.1.1. Multi-Exponential Formulation

To model systems with more than one decay process, the single-exponential model generalizes to
a sum or continuum of exponentials. In the simplest multi-exponential scenario, one might have
a discrete sum of two or more exponential terms. For instance, a system with two sequential
decay processes could be described (conceptually) by an expression like [99]:

m(ti,ta) = f1 em(—?) + fa eXp(—2> +g (4.2)

1

In equation 4.2, | and 7» are two distinct time constants for two stages of decay (with ¢;
and ¢, being time variables in each stage), and this would yield a bi-exponential decay behavior.
While this two-component example illustrates multiple decays, real systems can be even more
complex.

In the most general case, the decay signal can be viewed as a continuous superposition of
many exponential decays with different time constants. Instead of summing a few discrete
terms, one can consider a distribution function f(7) that tells us how much contribution comes
from decays of characteristic time 7. Equation4.3 expresses the measured signal as an integral
(continuous sum) of exponential decays weighted by this distribution:

mit) = /O e exp<—i> dr + g, 4.3)

where f(7) is the time-constant distribution (often normalized so that its integral gives the
total signal amplitude) and ¢ is again any constant offset [8]. Equation 4.3 generalizes the
decay model to account for an entire spectrum of time constants. In practice, g (baseline) can
often be measured or assumed zero after appropriate corrections [8], so we will focus on the
core integral term.

It is worth noting that the concept extends to higher dimensions as well. For processes
involving two independent time variables (e.g. two-step decays or correlation experiments),
one can define a two-dimensional distribution f(7,72) and write a double integral analogous to
Equation 4.3 [8]. Such formulations allow modeling of even more complex decay behaviors. For
simplicity, we will continue our discussion with the one-dimensional case, as the core concepts
are similar for higher dimensions.
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4.1.2. Inverse Problem and Ill-Posedness

Determining the distribution f(7) from the measured signal m(t), as formulated in Equation 4.3,
is a classic inverse problem[100]. This particular inverse problem is essentially an inverse Laplace
transform: given the Laplace-transformed data m(t¢), we aim to recover the original distribution
function f(7) [8].

Inverse Laplace transform problems are well-known to be severely ill-posed [8]. An ill-posed
problem is one in which small errors or noise in the measured data m(t) can lead to large and
unstable variations in the solution f(7), or worse, the solution may not be unique or may not
exist at all in a meaningful way. In practical terms, this means that experimental imperfections
or measurement noise make it very difficult to directly compute f(7) with confidence.

This challenge arises because many different distributions of time constants can produce very
similar decay curves when integrated together. As a result, distinguishing which distribution
is truly responsible for the observed signal requires very accurate data and careful analysis.
Simply put, multi-exponential decay analysis is not a straightforward curve-fitting problem—it
is a delicate process.

A common and practical approach is to discretize the time constants into a finite set of N,
discrete values. Rather than evaluating an integral, the measured signal is approximated as a
sum of exponential decays, each associated with a specific time constant 7;:

N,
m(t) ~ Y fiexp <—j> : (4.4)
i=1 v

where f; is the weight (or amplitude) of the decay corresponding to 7; [8]. Equation 4.4
serves as a numerical approximation of the continuous model in Equation 4.3, and it is widely
used in practical data analysis.

In this discretized form, the problem becomes a system of linear equations. Let A be a matrix
of size N; x N, where N, is the number of time samples and NN, is the number of assumed time
constants. Each element of A is defined as:

Ar=~b,
where = = [f1, fo,..., fn,]T is the vector of unknown distribution weights, and b =
[m(t1), m(t2),...,m(ty,)]? is the vector of measured data [9].

However, due to the nature of exponential functions, the matrix A is typically ill-conditioned
or nearly singular, which again reflects the ill-posedness of the problem. Solving such a
system directly often yields unstable and oscillatory solutions, especially in the presence of
noise. Therefore, to obtain meaningful and interpretable results, we must apply stabilization
techniques, which are discussed in the next section.
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4.1.3. Regularization and Stabilization of the Solution

To reliably extract the time-constant distribution = = {f;} from noisy data, it is necessary to
apply regularization techniques. Regularization introduces additional constraints or penalties
that favor reasonable, smooth solutions for f(7) at the expense of exactly fitting the noise.

A common approach is to solve a regularized least-squares optimization instead of a plain
least-squares fit. In a regularized formulation, we seek the vector x that balances fitting the
data with keeping x “well-behaved.” This can be written as an optimization problem:

. 2 2
min {[| Az —bll; +3*Q(2)} (4.5)

where the first term || Az — b||3 is the usual sum of squared errors (ensuring we fit the data
closely), and the second term A\? () is a regularization penalty that discourages undesirable
solutions. The parameter A controls the trade-off between fidelity to the data and the smoothness
or size of the solution. The notation = > 0 indicates that we also enforce a non-negativity
constraint on the solution (since negative amplitudes f; would be non-physical in most decay
scenarios).

The choice of the penalty functional 2(x) determines the type of regularization. A very
common choice is Tikhonov regularization, which uses:

Q(z) = |l2II3 (4.6)

i.e., the sum of squares of the components of x. In other words, the solution is penalized for
having large overall magnitude or many large components. Using (x) = ||z||3 (with = > 0) in
Equation 4.5 corresponds to a classical ridge-regression or Tikhonov approach. This tends to
produce a smoother, more stable distribution f(7) by filtering out the high-frequency oscillations
that typically come from fitting noise. In practical terms, regularization filters out the effects of
noise in the solution, at the cost of a slight loss in resolution (e.g., very sharp features in the
true distribution might be smoothed out).

The non-negativity constraint = > 0 is also important. Since each f; represents a contribution
to the signal, it makes physical sense that f; should be zero or positive (you cannot have a
“negative” amount of signal component). Enforcing f; > 0 further stabilizes the solution
and avoids unphysical oscillations where positive and negative components cancel out. Many
algorithms for this problem use Non-Negative Least Squares (NNLS) or similar methods to impose
this constraint.

Solving the regularized problem (Equation 4.5) can be done efficiently. One convenient way
(as implemented by the authors of the reference study) is to augment the matrix system Ax = b
with additional rows corresponding to the regularization term. For example, in the Tikhonov
case, one can augment A with A/ (and augment b with a vector of zeros), which turns the
minimization of || Az — b||3 + A\?||z|3 into an equivalent extended linear least-squares problem.
Standard algorithms can then solve this augmented system, yielding the regularized solution
for x.

The end result is a computed distribution f(7) that fits the experimental data within noise
limits and avoids excessive oscillation or noise amplification.
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4.1.4. Implementation

The methodology above might sound involved, but modern tools make it quite accessible. In
fact, the authors of the study have provided simple MATLAB and Python scripts to perform this
multi-exponential analysis [101]. Thanks to high-level numerical libraries, the entire inversion
procedure (with regularization and constraints) can be implemented in only a few lines of
code.

In order to test the performance of this tool, we generated a synthetic example by manually
building an exponential signal which was the sum of two exponentials. We used Equation
4.7:

x(t) = 10010 4 30100 4.7)

Yielding the results shown on Figure 4.1.

Time Domain Signal T2 Distribution
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Figure 4.1. (left) Synthetic data generated for testing the time constant extraction; (right) results over
the data.

As it can be seen on Figure 4.1, the time constants are perfectly determined by this
method.

The output of this method is interpreted the same way as the output of a Fourier transform
when talking about the sum of sinusoidal signals, but, in this case, they are exponential
signals.
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4.2. Differentiating Between Copper Nanoparticle Sam-
ples

The main goal of this Thesis is to try and differentiate in between the three Copper NP Samples
fabricated at the University of Pisa. Therefore, the data in Figure 3.8 was input to the Python

code and the results were recorded.

If we look at the whole time constant distribution of this dataset, we can see the results

shown on Figure 4.2.
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Figure 4.2. Time constant distribution for samples A, B and C of copper nanoparticles.

Looking at this, we see a wide variety of signals and the plot is quite confusing. However,
we do see that the principal components are grouped in a single time constant range (between
103 s and 10* s). Therefore, we can zoom into this range, which yields the results shown on

Figure 4.3.
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Figure 4.3. Time constant distribution zoomed into the principal components for samples A, B and C of
copper nanoparticles.

With this new view of the results, we can clearly see two things. Firstly, nanoparticles A and
B seem to be highly intertwined, with their measurements being mostly similar all the time.
Secondly, nanoparticle C seems to differ more with one of the results being quite more different

than the other two. This right-most result may be due to noise or even some external factors
which might have affected the measruement.

Therfore, with these results, we can conclude that nanoparticles A and B will have a very

similar size distribution and nanoparticle C will have a different size distribution to the one
present in the other two.
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4.3. Mixing Copper Nanoparticles

Since in the previous section we have determined that nanoparticles B and C are the most
different, we designed a new measurement set by mixing two dispersions of nanoparticles B
and C, both with the same concentration (10 mg/mL) and measuring them to compare and see
if this new mix would have intermediate results to those measured in B and C.

The sedimentation curves can be seen on Figure 4.4.

Resonance Frequency Peak Shift Over Time for Different Copper Nanoparticles
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Figure 4.4. Sedimentation curves of copper nanoparticles B and C and the mix of BC nanoparticles.

A good sign is that these measurements are in between the values of both nanoparticles,
therefore the results provided by the time constant analysis look promising.

These results can be seen on Figure 4.5. This figure has the same issues than the previous
one, therefore, we will only focus on the principal components, which can be seen on Figure
4.6.

As expected the results for the BC mix of nanoparticles lay in between the results for both of
the particles separetely. However, we can see that the results are very similar to those of the C
nanoparticle. A simple hypothesis would be that sample C has larger nanoparticles and that
when mixing nanoparticles B and C, these larger nanoparticles sediment before and therefore
the B nanoparticles have a lower impact on the signal.
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Figure 4.5. Time constant distribution for samples B, C and the BC mix of copper nanoparticles
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Figure 4.6. Time constant distribution zoomed into the principal components for samples B, C and the
BC mix of copper nanoparticles.
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4.4. Differentiating Between Copper and Iron Nanoparti-
cle Samples

Since we have been able to differentiate between nanoparticle size in the same material, the
question as to wether this method can also be used to differentiate nanoparticles of different
materials is only natural.

Therfore, we input the data represented in Figure 3.7 and compared it with the nanoparticles
A B and C. The results can be seen on Figures 4.7 and 4.8 (close-up into the principal time
constant).

These results show that even when not only considering the principal time constant, iron
naopaprticles have a different distribution in comparison to the copper nanoparticles. Therefore,
this method could potentially also be used to classify different materials.
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Figure 4.7. Time constant distribution for samples A, B and C of copper nanoparticles and one of iron
nanoparticles.
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Figure 4.8. Time constant distribution zoomed into the principal components for samples A, B and C of
copper nanoparticles and one of iron nanoparticles.
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4.5. Comparison with University of Pisa’s Results

During our experiments on the nanoparticles provided by the University of Pisa, they were
perfoming a characterization of the nanoparticles. This characterization was kept independant
from our results, and vice-versa, so as to perform a double-blind experiment and not influnence
the results of both parties.

Table 4.1. Largest and smallest particle size depending on the sample.

NP Large Particles Diameter (nm) Small Particles Diameter (nm)

A 462 164
B 490 156
C 483 122

When looking at the results on Table 4.1, they do not seem to match those obtained by our
research since they show that the nanoparticles in C have the smallest nanoparticles and do
not have the largest particles. However, when looking at the results in Figure 4.9, we see that
indeed nanoparticles A and B have a very similar size distribution, while C has a different size
distribution.

Also, we can see that even if C does not have the largest nanoparticles, it does have more
quantity of larger nanoparticles that A or B and therefore relates correctly with our results and
hypotheses.

Therefore, while these two experiments were performed independently, they yield the same
results. This serves as a corroboration of the results obtained in Figure 4.3.
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Figure 4.9. Data from the DLS performed by the University of Pisa on a double-blind analysis of the NPs.
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Conclusion

5.1. Overview of the Research and Findings

This thesis has presented the design and validation of a novel sensor system for characterizing
metallic nanoparticles, addressing a critical need for faster and more automated nanoparticle
analysis in industrial and research settings. The proposed sensor is based on a metamaterial-
inspired electromagnetic resonator (specifically, a planar square spiral resonator), which is
highly sensitive to the presence and distribution of nanoparticles in its proximity.

By monitoring the real-time response of this resonator when nanoparticle dispersions are
introduced, the system can profile the sedimentation of nanoparticles in a fluid and extract
meaningful signatures related to their physical characteristics. This approach transforms
the traditionally time-consuming task of nanoparticle characterization into an automated
process, aligning with modern industry demands for smart, in-line instrumentation. The
research performed extensive experimental testing with metallic nanoparticle samples. Through
this approach, the thesis demonstrated that the sensor can reliably capture the dynamic
sedimentation curves of nanoparticle suspensions and translate them into information about
particle size distribution and material composition. In essence, the work bridges the gap
between advanced nanomaterials characterization techniques and practical sensing technology,
providing a prototype that is both scientifically insightful and practically relevant.

5.2. Relevance to Industry 4.0 and Smart Manufactur-
ing
A strong motivation behind this work is the growing demand for advanced sensing

solutions in the context of Industry 4.0, the modern paradigm of smart manufacturing and
automation.

Industry 4.0 production environments require sensors that can operate in real-time,
with minimal human intervention, high precision, and reliability. Traditional nanoparticle
characterization methods (such as electron microscopy or laboratory particle analyzers) do not
meet these criteria — they are labor-intensive, slow, and cannot be easily integrated into an
automated production line.

In contrast, the sensor developed in this thesis is inherently suited for an Industry 4.0 setting.
Once deployed, it functions as a real-time monitoring device: it continuously converts the
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state of a nanoparticle dispersion (an external environmental condition) into an electrical
signal (a resonant frequency shift or amplitude change) that can be automatically recorded
and interpreted. No manual sampling and imaging are needed after the initial setup, and the
measurement is non-destructive (the sample can remain in the production flow).

This means that manufacturing processes involving nanoparticles could be equipped with
this kind of sensor to achieve in-line quality control and feedback. Moreover, metamaterial-
based sensors like the one presented offer additional advantages that align with smart factory
requirements. They are typically compact, inexpensive to fabricate (the resonator in this work
is a simple printed circuit), and potentially capable of wireless or networked operation when
connected to appropriate electronics. Research has shown that sensors based on metamaterials
can achieve the high sensitivity and low detection limits needed in advanced industrial
applications, while also being readily integrable into larger systems.

The ease of system integration is particularly important: it implies such sensors can
be embedded in production equipment or pipelines without large footprints or special
infrastructure.

Currently, verifying the size and consistency of manufactured nanoparticles might require
taking samples to a lab and running lengthy analyses (microscopy, centrifugation, etc.), during
which the production might continue unchecked or be paused. Our sensor, on the other hand,
gives near-instant feedback on each batch or even continuously during production, thus avoiding
the delays associated with off-line analysis. This improves throughput and can prevent batches
with out-of-specification nanoparticles from going undetected until much later.

5.3. Limitations and Challenges

While the results of this thesis are promising, it is important to acknowledge the limitations and
challenges of the developed sensor approach.

One fundamental limitation is that the sensor currently provides a relative or qualitative
characterization rather than an absolute one. In other words, while it can tell if one sample’s
particles are larger on average than another’s, it does not directly output the exact particle size
distribution or exact material composition without reference to calibration data.

Traditional methods like electron microscopy or Dynamic Light Scattering (DLS) can give
absolute measurements (e.g. an average diameter in nanometers, or a full size distribution
curve).

In contrast, our resonator sensor measures an electromagnetic response that must be
interpreted to infer particle properties. This interpretation typically relies on models or
comparisons. For example, we might need to calibrate the sensor with known samples to
create a mapping between the “time constant distribution” extracted from the sedimentation
curve and actual particle size ranges. Developing a robust calibration for every new type
of nanoparticle is a challenge and would be necessary before the sensor could be used as a
stand-alone metrology tool.

Another challenge lies in the resolution and overlapping signatures. If two nanoparticle
samples have very subtle differences in size distribution, the sensor’s ability to distinguish
them is constrained by signal noise and the fundamental resolution of the method. In our
experiments, Samples A and B were intentionally fairly similar, and indeed the sensor correctly
indicated they were alike (which is as expected). However, distinguishing subtle differences
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might be difficult if those differences do not produce a sufficiently different sedimentation
profile within the time window of observation.

Additionally, the sensor’s measurements are governed by physical contrasts (density,
permittivity, magnetic permeability) between materials. If those contrasts are small, more
sensitive or different resonator designs might be required.

The method’s reliance on sedimentation introduces its own limitations. Sedimentation is a
process that depends on gravity (or centrifugal force if aided by centrifugation), fluid viscosity,
and particle density. Very small nanoparticles (say, much below 100 nm, especially if stabilized
in solution) may take a very long time to sediment or might exhibit significant Brownian motion
that counteracts sedimentation. In such cases, the “sedimentation profile” might be extremely
slow or almost flat over practical timescales, making it hard for the sensor to get a reading
within a reasonable time.

In summary, while the sensor provides rich data, making sense of that data in an automated
way is non-trivial. We managed it in post-processing for the thesis, but an industrial monitor
would need a reliable on-line algorithm. This could be considered a limitation of the current
state of the system though it is also an opportunity for improvement.

5.4. Alignment with the Sustainable Development Goals
(SDGs)

A key strength of the sensor technology developed in this thesis is its clear alignment with
several United Nations Sustainable Development Goals:

* SDG 7: Affordable and Clean Energy
Precise, real-time monitoring of metallic nanoparticles supports the reliable production of
nanomaterials used in advanced catalysts, battery electrodes, and photovoltaic coatings,
thereby accelerating access to clean energy technologies.

* SDG 9: Industry, Innovation and Infrastructure
The low-cost, compact metamaterial sensor fosters resilient and sustainable industrializa-
tion by enabling inline quality control, automated process optimization, and smart factory
integration without human intervention.

* SDG 12: Responsible Consumption and Production
By shortening the feedback loop for detecting deviations in nanoparticle size and
composition, the sensor minimizes waste from off-specification batches and reduces
the consumption of reagents, promoting more resource-efficient manufacturing.
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