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Abstract

For n > 1, the n'® Ramanujan prime is defined as the smallest
positive integer R, such that for all > R,, the interval (3, x] has
at least n primes. We show that for every € > 0, there is a positive
integer N such that if a = 2n <1 + log2+.e>’ then R,, < pjy for

logn + j(n)
all n > N, where p; is the i*" prime and j(n) > 0 is any function that
satisfies j(n) — oo and nj’(n) — 0.

1 Introduction

For n > 1, the n'® Ramanujan prime is defined as the smallest positive
integer R, such that for all + > R, the interval (5, ] has at least n primes.
Note that by the minimality condition, R, is prime and the interval (%, R,
contains exactly n primes. Let R, = p,, where p; denotes the i*® prime.
Sondow [7] showed that py, < R, < ps, for all n, and conjectured that
R,, < psp for all n. This conjecture was proved by Laishram [4], and the upper
bound p3, improved by various authors ([I], [8]). Subsequently, Srinivasan
[9] and Axler [I] improved these bounds by showing that for every e > 0,
there exists an integer N such that

Ry, < ppn(i4e) for all n > N.
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Using the method in [9] (outlined below), a further improvement was pre-
sented by Srinivasan and Nicholson, who proved that

s<2n |1+ 5
logn + log(logn) — 4

for all n > 241. The above result follows from a special case of our main
theorem given below. Yang and Togbe [11], also used the method in [9], to
give tight upper and lower bounds for R, for large n (greater than 103%).
For some interesting generalizations of Ramanujan primes the reader may
refer to [2], [5] and [6].

The main idea in [9] is to define a function F(z) that is decreasing for
x > 2n and that satisfies F'(s) > 0. Then, an o > 2n is found such that
F(a) < 0 for n > N, which would imply that s < « for n > N given the
decreasing nature of F. We employ a variation of this method, where we
first show that F(«) is a decreasing function for n > N. Then we find an
integer greater than N for which F(«) < 0, which leads us to the desired
result. Our main result is the following.
Theorem 1.1. Let R, = ps and € > 0. Let j(n) > 0 be a function such that
j(n) = oo and nj'(n) — 0 as n — oo and let

B logn + j(n)
9(n) = log2+¢

Then there exists a positive integer N such that for alln > N, we have s < a,

where o = 2n (1 + ﬁ)

Let log, x denote loglog z. In the following corollary we record a bound
obtained with € = 0.5, where j(n) is chosen so as to minimize the number of
calculations. Similar results can be given for smaller values of € (with different
j(n)) where the determination of N depends solely on computational power.

Corollary 1.1. Let R, = ps. Then for n > 43 we have s < 2n (1 + ﬁ),

where
_logn +logyn —log2 — 0.5

9(n) log2 + 0.5

2 The basic functions and lemmas

We will use the following bounds for the £ prime given by Dusart.
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Lemma 2.1. The following hold for the k'™ prime py.

1. pi >k (logk + logy b — 1+ 2525221) for all k> 3.

2 pp <k <logk tlogy k — 1+ oz ’“—2) for all k > 638383.

log k
Proof. See [3] O
Let oo k9
08y ¥ —
= 1 1 -1+ —=——
U(k) k(ogk—ir 0gy k + log I )
and log, k — 2.1
L(k) = 1 1 —14+—=—].
(k) k(ogk—l— ogy k + log )
0.1z
Note that U(z) = L(z) + f(x) where f(x) = gz We define

F(z,n)=U(x) —2L(x —n) =U(x) —2U(x — n) + 2f(x — n)

and
G(n) = F(a,n),

where a = 2n (1 + ﬁ) and g(n) is a function that satisfies g(n) > 1 and

g(n) — oo as n — o0.

Lemma 2.2. Let R, = ps. Then the following hold.
1. pson < 5ps.
2. 2n < s < 24n for all n > 43.

3. F(x,n) is a decreasing function for all x > 2n and F(s,n) > 0 for
n > 688383.

Proof. For parts 1 and 2 see [9, Lemma 2.1] and [9, Remark 2.1] respectively.
For part 3 see [L1]. O

The following lemma contains useful results that include an expression
for the derivative G’(n) in terms of the function U(z).

Lemma 2.3. Let A=U'(a) — U'(a — n). Then the following hold.
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1. A= A(n) = log2 as n — oo.

2 3G'(n) = A+ o —n) + (525) (A=Ula—n) + 2/ (a —n))

g(n)

3. L'(x) > logx + logy x for x > 20.

log o log, o 1.1 logs (a—n)
4' A+ f/(a - n) - 10g2 < log <log(§—n)> + logg2a + log(a—n) + loig(a—n) :
Proof. We have

1 3 1 1
U'(x) =logx + logy z — _ 26t D8

(1)

logz  log’z log’z logx

A =log (ﬁ) +log (%) +t(n),

where t(n) — 0 as n — 00. As a = 2n (1 + %) and g(n) — oo, we have

g(n
A — log 2.
For the second part of the lemma, G(n) = U(«a) —2U(a—n)+2f(a —n),
which gives G'(n) = U'(a)a —2U' (v — n)(¢/ — 1) + 2f"(a — n)(a/ — 1). As

!/
a’:2+2<ﬁ>,wehave

%G’(n) = U'(a) (1 + (g)) + (1 +2 (S)) (f'(a=n) =U'(a—n))

and the result follows by the definition of A.
For part 3 we have

and hence

log,z  logy 1.1 3.1

L'(z) =logx + log, x + - -
(z) & B2 logz  log’z logz = log’z

logy x logy 1.1

from which the claim follows as for n > 20 we have gz  lostr  logz = 0
For the last part, we have
A—log2+ f'(a—n)
g log av log, a N 1.1 N logg(a —n) LT
log(av — n) loga  log(a—n)  log*(a —n)
where
T+ 55\ logy(a— 11 3 3.1
T - log ) logy(a—mn) _logya SR <0
1+ 255 log(ae —n) loga log°a loga log”(a —n)
3 3.1
as log? o - log?(a—n) <0. 0



3 Proofs of main results

The following lemma shows that G’(n) is a decreasing function for large n,
which is crucial in the proof of Theorem 1.1.

Lemma 3.1. Let € > 0 and

g(n) =

logn + j(n)

log2 + €
where j(n) > 0 is a function that satisfies j(n) — oo and nj'(n) — 0 as
n — oo. Then G'(n) — —2e.

/
—0

/
n _ (log2+e€)(lognt+j(n)—1—nj’(n)) n
Proof. We have <ﬁ> — T3 ()7 and therefore <—g(n)

as n — oo. By our assumptlon on j(n) it follows (using L’Hopital’s rule) that

fo(gni — 0 which gives ( )> log(a—n) — log 2+e€ (as 10%(04_") —1). Tt is easy

to see that ( @ )> log,(aw—n) — 0. It follows that ( ) U'(a—n) — log 2+e

(see equation (1)). Lastly note that f’(z) — 0 as x — oo. The result follows
now on using all the above and the fact that A — log2 (Lemma 2.3 part 1)
in part 2 of Lemma 2.3. O

Proof of Theorem 1.1 We will first show that there exists a positive
integer N, such that G(n) < 0 for n > N. We have G'(n) — —2¢ by the
lemma above, which means that if 0 < 6 < 2¢, then there exists an integer
M, such that for all n > M we have |G'(n) + 2¢|< 0, that is

—2¢—0 < G'(n) < —2e+ 90,

for all n > M. Let a and b be two integers such that M < a < b. Then
G(b f G'(n)dn < (b—a)(—2¢+4) < 0. If a is fixed, it follows that
G( ) < G( ) (b— )( 2e+5) < 0 for large b. Therefore there exists a positive
integer N > M, such that for all n > N, we have G(n) = F(a,n) < 0.

We may assume that N > 688383 so that from Lemma 2.2, part 3 we have
F(s,n) > 0. Moreover, from the same lemma we have F'(x,n) is decreasing
for x > 2n. As s and « are both bigger than 2n, we have s < « for n > N
and the result follows. O

Proof of Corollary 1.1

Let € = ¢ + €3 = 0.5. We will first show that for n > 688383 we have
G'(n) < 0.



Let €; = 0.1. It is easy to verify that for n > 688383 we have

1+ logn - €1
logn(logn +logyn —log2 —¢€) log2+¢€

It follows that for all n > 688383
ng(n)" (log2 + €)(1 +logn) €1

= . (2
g(n)?  logn(logn +logy,n —log2 —€)?2 ~logn+logyn —log2 — ¢ )
Next, we will show that A+ f'(a —n) —log2 < €.
Using Lemma 2.3, part 4 and Lemma 2.2 part 2, we have
log(2.4n)\ logy(2.4n) 1.1  logy(1.4n)
A+ f'(a—n)—log2 < 1 -3
F/{a—n)—log2 <log < logn ) log(2n) logn  log*n )
Observe that for n > 36734
log(2.4n) €9
1 —— | <= 4
°8 ( logn > 5 @)

€ €2
as log (%) < 2 holds if % < e?, that is if 2.4n < n°® . The above

holds if 2.4 < n°* ' or n > 36734.
Computation yields that for n > 688383

logy(2.4n) 1.1  log,y(1.4n) _ dey
log(2n) logn log® n 5

(5)

From equations (3)-(5) we have A+ f'(o —n) —log2 < €. From Lemma
2.3 part 3, L'(a —n) =U'(a — n) — f'(a — n) > log(a — n) + logy(aw — n) >
log n + log, n and hence for n > 688383 we have

A+ f'(a—n) - log2 + € (©)
—A+U(a—n)—2f(a—n) logn+logyn —log2— e
As €1 + €5 = €, equations (2) and (6) give
A+ f'(a—n) +ng(n)’< log2 + €1 + € 1
~A+U(a—n)—2f(a—n) g(n)> ~logn+logyn—log2—¢ g(n)
(7)



1 ng(n)’

/
From Lemma 2.3, part 2, noting that (ﬁ) = — — =, we have
G'(n

g(n) g(n)?2 >

) < 0 for all n > 688383. Also, G(688383) < 0 and hence we conclude

that G(n) < 0 for n > 688383.

From Lemma 2.2, part 3 we have F(s,n) > 0 and F(z,n) is decreasing

for x > 2n. As s and a are both bigger than 2n, it follows that s < «
for n > 688383. That the result holds for 43 < n < 688383 is a simple
calculation. O

Remark 3.1. Similar results for lower bounds for R, can be given using
G(z,n) = L(x) —2U(x —n + 1) instead of F(x,n).
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