GENERAL INFORMATION | Data of the subject | | | | |---------------------|---|--|--| | Subject name | Electric Power Lines | | | | Subject code | DIE-MII-631 | | | | Mainprogram | Official Master's Degree in Industrial Engineering | | | | Involved programs | Máster Universitario en Ingeniería Industrial y Máster Universitario en Sistemas Ferroviarios [Second year] Máster Universitario en Ingeniería Industrial + Máster en Industria Conectada / in Smart Industry [Second year] Máster Universitario en Ingeniería Industrial [Second year] Máster Universitario en Ingeniería Industrial y Máster Universitario en Sector Eléctrico [Second year] | | | | Level | Postgrado Oficial Master | | | | Quarter | Semestral | | | | Credits | 4,5 ECTS | | | | Туре | Obligatoria | | | | Department | Department of Electrical Engineering | | | | Coordinator | Pablo Rodríguez Herrerías | | | | Schedule | As per official timetable | | | | Office hours | By appointment | | | | Teacher Information | | | |---------------------|--------------------------------------|--| | Teacher | | | | Name | Pablo Rodríguez Herrerías | | | Department | Department of Electrical Engineering | | | Office | D-301 | | | EMail | prodriguez@icai.comillas.edu | | ## **DESCRIPTION OF THE SUBJECT** # **Contextualization of the subject** # **Prerequisites** It is advisable that students have prior knowledge on the following areas: - Circuit theory. - Mechanical and structural calculations. - Heat transfer problem resolution. - Resolution of practical problems and report preparation - Skills in the use of calculation software (such as MS Excel or Matlab). #### **Course contents** #### **Contents** #### **Subject 1: Introduction** - 1. Definitions. Overhead lines main components. - 2. Basic design. Line configurations and future challenges. #### **Subject 2: Electrical calculations** - 1. Line constants. Equivalent circuits. - 2. Corona effect. - 3. Impacts of electrical origin. Influence of line configuration. - 4. Thermal transmission capacity. #### **Subject 3: Sag-tension calculations** - 1. Span geometry. Parabola and Catenary. Catenary constant. Sag. - 2. Loading cases on conductors and ground wires - 3. Sag-tension calculations. State Change Equation. EDS. Stress-Strain behavior - 4. Ruling span theory. Line section. Stringing chart. - 5. Wind-induced vibrations in overhead conductors. Types and mitigation. #### **Subject 4: Towers and foundations** - 1. Tower types. Lattice. Tubular. Self-support. Guyed. - 2. Loading assumptions for tower calculations. Wind span. Weight span. Loading trees. Interaction diagrams. - 3. Tower top geometry. Lightning and grounding design. - 4. Tower foundations. Block and separate footing foundations. Theory and calculations. #### **Subject 5: Insulation** - 1. Insulator types. Characteristics and performance comparison. - 2. Electrical and mechanical design. Pollution levels. ## **Subject 6: Electric Power Lines Project** - 1. National Electrical Safety Code. Minimum clearances. - 2. Line routing. Graphical Information Systems (GIS). Tower spotting. - 3. Minimum project content. - 4. Basic project management. - 5. Overhead line construction. Civil works. Tower erection. Conductor stringing. #### **Subject 7: Underground cables** - 1. Introduction. Overhead vs underground electric power lines. - 2. Components. Cables and accessories. Basic design. - 3. Grounding and sheath bonding systems. Transmission capacity. - 4. Underground cables construction. Trench types. Galleries. ## **Subject 8: Line uprating** - 1. Needs and solutions. - 2. Voltage increase solutions. Line modifications. - 3. Ampacity increase solutions. HTLS conductors. Dynamic Line Rating (DLR) ## **EVALUATION AND CRITERIA** | Evaluation activities | Evaluation criteria | Weight | |-----------------------------|--|--------| | Midterm exams | Understanding of theoretical concepts. Problem resolution by means of theoretical concepts application. Problem results analysis and interpretation. | 15 | | Technical report assignment | Understanding of theoretical concepts. Problem resolution by means of theoretical concepts application. Problem results analysis and interpretation. Written and oral communication skills. Learned skills in the use of line design software. | 15 | | Final Exam | Understanding of theoretical concepts. Problem resolution by means of theoretical concepts application. Problem results analysis and interpretation. | 70 | ## **Grading** ### Regular assessment • Final Grade: 15% midterms, 15 % technical report assignment, 70% final exam. ## Retakes • Final Grade: 30% grade from regular assessment (15% midterms and 15% technical report assignment), 70 % retake exam. Class attendance is mandatory according to Article 93 of the General Regulations (Reglamento General) of Comillas Pontifical University and Articles 6 and 7 of the Academic Rules (Normas Académicas) of the ICAI School of Engineering. Not complying with this requirement may have the following consequences: • Students who fail to attend more than 15% of the lectures may be denied the right to take the final exam during the regular assessment period as well as the retake. ## **BIBLIOGRAPHY AND RESOURCES** # **Basic References** - Overhead Power Lines. F. Kiessling, P.Nefzger, J.F. Nolasco, U. Kaintzyk. Springer, 2003 - CIGRE Green Book on Overhead Lines. CIGRE, París 2014 - CIGRE Green Book on Compact Overhead Line Design. CIGRE, París 2024 In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data <u>that you have accepted on your registration form</u> by entering this website and clicking on "download" https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792