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Abstract

Urban traffic monitoring systems often rely on costly sensor networks, which cannot feasibly cover every street. This
work proposes a graph-based approach to estimate vehicle volumes on unmonitored roads using Graph Neural
Networks (GNNs). The street network of Barcelona is modeled as a graph where traffic volume estimation is framed
as a node-level regression task. Several architectures are explored, including GraphSAGE, GIN, Correct & Smooth
(C&S), and a custom GIN-based model with reconstruction tasks (DAGI). Baseline comparisons and extensive
experiments demonstrate that GNNs can achieve reasonable accuracy even with limited monitored data. The results
suggest a feasible reduction in sensor deployment without severely compromising traffic information quality,
supporting more sustainable and cost-efficient mobility systems.
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Highlights

+ A graph-based method is proposed to estimate
vehicle volumes on unmonitored urban streets.

+ The Barcelona Road network is modeled using both
node- and edge-level graph representations.

« Several GNN architectures are evaluated, including
GraphSAGE, GIN, and Correct & Smooth (C&S).

+ A custom model (DAGI), combining GIN with
Jumping Knowledge and reconstruction tasks, is
introduced.

+ Mean Absolute Error (MAE) is used to assess
prediction performance across various test ratios.

- Baseline comparisons demonstrate that some GNN-
based models outperform naive estimation methods.

- Results suggest a significant potential to reduce the
number of physical sensors required in cities.

« This approach contributes to more sustainable, cost-
effective, and scalable urban mobility monitoring
systems.
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1. Introduction

Monitoring urban traffic is essential for optimizing
mobility policies, reducing emissions, and improving
citizens’ quality of life. However, installing sensors on
every street is economically and technically unfeasible.
This limitation has sparked interest in alternative
methods to infer traffic conditions using partial data.
Graph Neural Networks (GNNs) have emerged as a
powerful tool to model complex urban networks and
infer missing information based on spatial relationships
and known observations.

This work explores the use of GNN-based models to
estimate vehicle volumes on unmonitored streets in the
city of Barcelona. The goal is to evaluate how accurately
traffic can be predicted using graph-based learning
approaches and how much physical sensor deployment
could potentially be avoided.

1.1. Motivation

Urban traffic monitoring is a critical component of
smart mobility systems, helping authorities manage
congestion, reduce emissions, and make data-driven
decisions. However, deploying physical sensors across
every street is costly and impractical, especially in large
cities. This constraint creates information gaps that limit
the potential of traffic prediction systems.
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Graph Neural Networks (GNNs) offer a promising
alternative by enabling the estimation of traffic
conditions in unmonitored streets using the topology of
the road network and partial sensor data. The motivation
behind this project is to explore whether GNN-based
approaches can provide accurate predictions while
reducing dependency on expensive infrastructure. From
a broader perspective, this work aligns with the goals of
promoting sustainable urban planning and cost-effective
public service management.

1.2. Objectives

The primary objective of this project is to evaluate how
well Graph Neural Networks can estimate traffic
volumes on unmonitored streets by learning from
partially observed traffic data and the topology of the
road network. The study is conducted using the urban
layout of Barcelona, a complex and realistic testbed for
validating GNN performance in real-world conditions.

The work explores different graph formulations and
GNN architectures to identify which combinations yield
better estimations and under what conditions. In
addition, the project aims to determine how the
proportion of monitored versus unmonitored streets
affects prediction accuracy. This contributes to the
long-term  goal of minimizing infrastructure
requirements while still achieving meaningful insights
into urban mobility patterns.

Main objectives:

- Develop a graph-based representation of the
Barcelona Road network.

- Convert traffic data into graph formats suitable for
node-level and edge-level regression.

+ Design and test several GNN models, including
GraphSAGE, GIN, DAGI, and Correct & Smooth.

- Implement baseline methods for comparison,
including global and local mean strategies.

- Evaluate model performance using Mean Absolute
Error (MAE) across various test splits.

- Investigate the impact of graph topology and
monitor coverage on model accuracy.

- Assess the feasibility of reducing sensor
deployment without compromising prediction

quality.

« Contribute to the development of more sustainable
and efficient traffic monitoring systems.

2. Related Work

Urban traffic prediction has traditionally been addressed
through a combination of statistical models and sensor-
based infrastructure. However, the sparsity and cost of
real-world traffic data have led researchers to explore
alternative methods capable of generalizing across
networks with incomplete or missing information.

Early approaches in this space applied neural models to
traffic forecasting using traditional feature-based
learning methods [20][21], or sequence-based
architectures such as Recurrent Neural Networks
(RNNs) for trajectory prediction [22]. As data
availability increased, so did the complexity of the
models, moving toward graph-based representations to
better capture the topological structure of urban
networks.

Graph Neural Networks (GNNs) have emerged as a
robust framework for learning over structured data.
Their capacity to leverage neighborhood information
makes them particularly well suited for tasks where
spatial dependencies are critical. Foundational models
in the field, such as GraphSAGE [19] and GIN [18],
introduced scalable ways to generate node embeddings
and proved the expressive power of message passing
mechanisms. These models laid the groundwork for a
growing body of research applying GNNs to
transportation problems.

Specifically, GNNs have been adopted for imputing
missing information in graphs. For instance, MRAP [2]
proposes a multi-relational propagation scheme to
complete node attributes, which is applicable to
heterogeneous or partially labeled graphs. This is
especially relevant in traffic networks, where many road
segments lack sensors. Other strategies like Correct and
Smooth (C&S) [11] decouple prediction and
propagation by combining a simple base model with
iterative graph-based error correction and label
smoothing. C&S has shown strong performance in
sparse-label and semi-supervised scenarios.

Another relevant technique is NoGE, introduced in [17],
which reframes imputation as a message-passing task on
missing node features. Its structure is particularly suited
for sparse sensing environments and aligns with the goal
of estimating unknown traffic volumes based on
topological relationships.

In this project, we also introduce a custom model named
DAGI (Deep Auxiliary GIN with Jumping Knowledge),
which builds on the GIN architecture and incorporates
Jumping Knowledge mechanisms to aggregate multi-
hop information. In addition, DAGI integrates



reconstruction tasks as auxiliary objectives, which aim
to reinforce structural learning in low-label regimes.
The model is specifically designed for edge-level
prediction reformulated as node-level regression
through extended graph formulations.

GNN-based imputation methods have also been
explored in biomedical and scientific applications.
Wang et al. [13] proposed a graph-based strategy for
imputing brain measurements across datasets,
illustrating the flexibility of these models across
domains. Similarly, Bayram et al. [2] and Huang et al.
[11] have developed graph frameworks focused on
recovering missing or incomplete node features with
high accuracy.

In the context of traffic networks, Liu et al. [12]
implemented GraphSAGE for segment-level traffic
speed forecasting with sparse data, highlighting its
inductive capabilities. Their work addresses conditions
similar to those faced in real urban settings, where only
partial sensor coverage is available.

Earlier works have also explored interpolation
techniques using spatial statistical models and spatio-
temporal kriging [5], as well as deep learning methods
applied to network-wide trajectory prediction [1] and
hybrid optimization-learning schemes [8].

This aligns with a previous work [10] that also
investigates the use of GNNs for static traffic volume
estimation rather than time-series forecasting. In this
setup, the goal is not to predict future flows, but to infer
current traffic conditions on unmonitored streets based
on available sensor data and the network topology.

Overall, the literature shows a shift from sensor-
dependent, temporally driven models to graph-based
learning and imputation approaches that can operate
under limited data availability. This study contributes to
this line of research by benchmarking existing models
such as C&S, MRAP, NoGE and GraphSAGE, and by
proposing DAGI, a new architecture tailored for semi-
supervised traffic volume estimation on real-world
urban networks.

3. Problem Description

This work addresses the challenge of estimating vehicle
volume on streets that are not equipped with monitoring
devices. In urban settings, only a limited portion of the
road network is instrumented with traffic sensors due to
the high cost of deployment and maintenance. As a
result, traffic information is often incomplete, limiting
the potential for comprehensive mobility analysis and
planning.

To overcome this limitation, the road network is

represented as a graph, where intersections are treated
as nodes and streets as edges. The goal is to estimate
traffic volume on streets without sensors by leveraging
the information available on monitored streets, as well
as the topological structure of the network.

Two graph representations are considered in this study:

- Segment Graph: In this formulation, each street
segment is modeled as a node, and connections
between adjacent streets are represented as edges.
This structure enables the use of standard node-
based GNN models but requires reinterpreting the
graph so that each node represents a street rather
than an intersection.

- Extended Graph: This approach creates artificial
nodes to represent each directed street segment,
embedding the traffic volume and other features into
them. These artificial nodes are connected to the
corresponding intersection nodes, enabling edge-
level information to be processed as node attributes.
This transformation makes the task compatible with
standard node regression architectures in GNNs.

The traffic estimation problem is framed as a semi-
supervised regression task, where only a portion of the
graph has known traffic volumes, and the remaining
values must be predicted. This setup allows the use of
Graph Neural Networks to infer missing data by
exploiting both the observed values and the structural
relationships within the urban network.

By comparing different formulations and neural
architectures, this study aims to determine how
accurately traffic can be estimated in unmonitored
streets, and under what conditions sensor deployment
could be optimized or reduced.

4. Methodology

The methodology of this study is based on formulating
the traffic volume estimation task as a semi-supervised
node regression problem over urban graphs. The main
goal is to infer vehicle volumes on unmonitored streets
by leveraging the structure of the city’s road network
and partial volume measurements from sensor-equipped
streets.

To this end, several Graph Neural Network (GNN)
models are implemented and evaluated using two types
of graph representations: segment graphs and extended
graphs, each offering a different abstraction of the urban
environment.  These formulations allow the
transformation of edge-level predictions into node-level
tasks, which are compatible with most GNN
architectures.



The study includes both classic and novel GNN-based
approaches, as well as baseline methods for
comparison:

+ GraphSAGE: An inductive framework that learns
node embeddings by aggregating features from
neighboring nodes. This model is suited for
generalizing to unseen graph components and has
been widely used in traffic-related tasks.

- GIN (Graph Isomorphism Network): A strong
baseline in graph learning, known for its expressive
power. It processes node features through multiple
layers and is used as a core component in other
models within this study.

+ Correct and Smooth (C&S): A hybrid method that
applies a base prediction using a simple regressor
(e.g., MLP or GAT), followed by correction and
smoothing steps based on the graph structure. This
decoupled strategy enhances performance in sparse-
label settings.

+ NoGE: A model specifically designed for missing
feature imputations in graphs. It treats unobserved
data as latent variables and propagates information
through message-passing layers to recover missing
values.

- DAGI (Deep Auxiliary GIN with Jumping
Knowledge): A custom architecture developed,
based on GIN. It incorporates Jumping Knowledge
to merge information from multiple layers and
includes graph reconstruction tasks as auxiliary
learning objectives. These tasks aim to improve the
model’s capacity to learn from limited labeled data
by enforcing structural consistency.

Each model is trained using only partial information
from the graph, simulating realistic scenarios where
traffic data is available for a limited set of streets. The
models are evaluated based on their ability to generalize
and accurately estimate traffic volume on the
unmonitored parts of the network.

In addition to GNNs, two baseline strategies are
implemented for comparison:

- Global Mean: Predicts the unknown traffic volume
using the average of all known values in the
network.

+ Local Mean: Uses the average traffic volume of
neighboring nodes (or edges) as the prediction for
unmonitored nodes (or edges).

To quantitatively assess model performance, the Mean
Absolute Error (MAE) is used as the primary
evaluation metric, enabling a consistent comparison
across models and test conditions.

5. Tools & Libraries

The implementation of this project relies on a modular
architecture that combines graph preprocessing, model
definition, training, and evaluation in a reproducible
pipeline. The workflow was designed to facilitate
experimentation with various Graph Neural Network
(GNN) models, while allowing flexibility in data
handling and graph construction.

The development was carried out entirely in Python,
using a combination of specialized libraries for graph
learning and machine learning:

- PyTorch: Used as the core deep learning
framework to define and train all models.

+ PyTorch Geometric (PyG): A high-level extension
for PyTorch that provides modules and utilities for
building GNNs. PyG was used to implement
standard architectures like GIN and GraphSAGE, as
well as the custom DAGI model.

+ Scikit-learn: Utilized baseline regressors (e.g.,
linear models, tree-based regressors) and evaluation
metrics.

- NetworkX: Used for graph
manipulation, and basic visualization.

construction,

- Pandas and NumPy: Employed for data
manipulation, loading, and preprocessing.

Hyperparameter optimization was performed using
manual search.

All experiments were executed in local environments,
using GPUs or CPU. The project was version-controlled
using Git and documented via Jupyter notebooks.



6. Experimental Setup

To evaluate the performance of different GNN models
in the task of traffic volume estimation, a series of
controlled experiments were designed. The evaluation
focused on measuring the predictive accuracy of each
model under varying levels of data availability,
simulating real-world scenarios where only a portion of
the street network is monitored.

Graph Data

All experiments were performed on the Barcelona Road
network, formed in two ways:

- Segment Graph: Each node represents a street
segment, and edges represent connectivity between
adjacent segments.

- Extended Graph: Artificial nodes were created to
represent directed street segments, allowing traffic
volume (originally an edge attribute) to be predicted
via node regression.

Each graph contains real traffic volume data assigned to
a subset of streets, with remaining volumes treated as
unknown.

Label Masking Strategy

To simulate partial monitoring, only a percentage of the
streets were assumed to be observed in each
experiment. Test sets were generated by randomly
selecting a proportion of the labeled nodes (or edges),
while ensuring that no pair of bidirectional edges was
simultaneously hidden, to avoid underdetermined
configurations.

The percentage of hidden labels varied between 2% and
30%, with ten repetitions per split to account for
variance due to random selection. This strategy enabled
the analysis of how model performance degrades as
fewer monitored streets are available.

Baselines

Two simple baseline estimators were used:

- Global Mean: Assigns the average of all known
volumes as the prediction for unknown segments.

- Local Mean: Assigns the average of the
neighboring known volumes.

These baselines serve as reference points for comparing
the added value of graph-based learning.

Model Configuration

All GNN models were trained using supervised node
regression. Each model used the known traffic volumes
as supervision and was validated on the masked test set.
Hyperparameters such as learning rate, hidden
dimensions, dropout, number of layers, and aggregation
type were manually tuned per model.

Models were trained for a fixed number of epochs
(typically between 150 and 1000, depending on
convergence speed), and evaluated on the test set using
the Mean Absolute Error (MAE) as the main metric.

7. Results (See Annex for detailed metrics)
7.1. Individual Results
GIN

Two versions of GIN were evaluated: one trained for
200 epochs and another extended to 600 epochs. The
longer training consistently improved results across all
test percentages, but neither version was able to surpass
the performance of Correct and Smooth (C&S) or
DAGI. The average MAE remained in the range of
1004-1117, depending on test split and training
duration. Although GIN provided stable performance
and competitive results in mid-range splits (e.g., 10%—
20%), its expressiveness was not sufficient to
compensate for the lack of supervision in more sparse
scenarios.

GraphSAGE

GraphSAGE delivered stable yet moderate results, with
MAE values ranging between 1162 and 1267. Its
performance remained relatively constant regardless of
the proportion of hidden labels, suggesting robustness
but limited adaptability. Despite its inductive
capabilities, GraphSAGE was consistently
outperformed by Correct and Smooth variants.

NoGE

NoGE achieved improved accuracy compared to
standard GNNs in most test cases, with MAEs ranging
from 1088 to 1194. While it never achieved the best
result in any single split, it showed consistent
improvements over GraphSAGE and performed on par
with the GIN models. Its main limitation was the lack of
significant gains as label sparsity increased, possibly
due to its reliance on initial feature completeness.



DAGI

DAGI obtained consistently better performance than
GIN, GraphSAGE, and NoGE, with MAEs ranging
from 1100 to 1212, depending on the test percentage. In
any case, it was not the best model overall, as it was
surpassed in all test splits by the Correct and Smooth
variants.

Correct and Smooth (C&S)

C&S was the best-performing family of models across
all test scenarios. When applied to MLP, MLP Linear,
and GAT base predictors, it consistently reduced the
MAE by 50% or more in comparison to the raw
predictions.

C&S + MLP reached the lowest MAE overall: 462 at
4% test, and remained under 500 in most splits.

C&S + MLP Linear also performed quite well, with
MAE:s as low as 833-914 depending on the test.

C&S + GAT, both with 25 and 5 epochs, showed robust
results post-correction, although the raw (pre-C&S)
GAT models were among the worst performers prior to
smoothing.

The effectiveness of C&S is especially notable in
scenarios, where traditional GNNs tend to struggle. Its
correction and smoothing phases demonstrated strong
regularization and error propagation across the graph
structure, validating previous findings in the literature

[11].

7.2. Global Comparison

The overall results of the study show that model
simplicity combined with graph-aware correction
mechanisms  outperforms  more  sophisticated
architectures in the task of estimating traffic volumes on
unmonitored streets.

The Correct and Smooth (C&S) strategy was by far the
most effective across all test splits. Regardless of the
base regressor used (MLP, Linear MLP, or GAT), the
post-processing stages of correction and smoothing
significantly reduced the error, often halving the MAE
compared to the raw predictions. In particular, C&S
with MLP achieved the best performance globally,
reaching MAE values as low as 462 at 18% test, and
remaining consistently below 500 up to 30% of missing
data.

Surprisingly, simpler models combined with correction
(like C&S + MLP) were able to outperform deeper
architectures such as GIN, NoGE, and DAGI. These
more sophisticated GNNs despite incorporating
mechanisms like message passing, jumping knowledge,

or auxiliary reconstruction failed to deliver competitive
performance in this specific setting. In fact, DAGI did
not surpass even the simplest baselines, suggesting that
model complexity may not be beneficial when input
features are limited.

A key insight from the experiments is that the lack of
informative node and edge attributes in the graph
(beyond topology and traffic volume) limits the ability
of complex models to generalize effectively. In such
low-feature scenarios, approaches like C&S, which
focus on refining basic predictions through the graph’s
structure, prove more effective than deep architectures
that rely on rich feature sets.

Finally, baseline methods based on global and local
means, although clearly outperformed by C&S,
performed better than expected, especially when
compared to models like DAGI and NoGE. This
reinforces the idea that simple aggregation methods can
still be useful when feature quality is poor.

In summary, the experiments demonstrate that the most
successful strategies are not necessarily the most
complex, but those that best exploit the available
structure, even with minimal supervision.

8. Discussion & Analysis

The results obtained in this study offer several important
insights regarding the practical application of Graph
Neural Networks (GNNs) for estimating traffic volumes
on unmonitored streets in urban settings.

First, the performance gap between different model
families reveals that structural refinement strategies like
Correct and Smooth (C&S) are better suited to scenarios
with limited sensor coverage and sparse graph
attributes. Despite its simplicity, C&S consistently
outperformed more complex models by focusing on
propagation of label information rather than learning
deep feature representations.

This outcome challenges the common assumption that
more sophisticated architectures (e.g., GIN, DAGI,
NoGE) will necessarily outperform simpler alternatives.
While such models are theoretically powerful and
designed for generalization, their advantage diminishes
in practical conditions where node and edge features are
minimal, as is often the case in urban traffic networks.
Without access to rich metadata (e.g., speed limits,
number of lanes, neighborhood type), the expressive
capacity of deep models cannot be fully exploited.

Moreover, the DAGI model, which incorporates



Jumping Knowledge and auxiliary reconstruction tasks,
failed to improve upon even the most basic baselines.
This highlights a key limitation: when structural and
feature information is poor, model complexity may
introduce more noise than benefit, particularly if the
task is formulated as node regression based on limited
supervision.

Another significant observation is the robustness of the
C&S framework, especially when applied to weak base
predictors such as shallow MLPs or undertrained GATs.
The ability of C&S to improve performance even from
very poor initial predictions (as seen in the GAT
variants) underlines its potential for deployment in
resource-constrained or data-scarce environments.

The sensitivity to test size also provides useful
guidance. While all models degraded as the proportion
of unknown volumes increased, C&S variants showed
graceful performance deterioration, whereas standard
GNNs and DAGI exhibited steeper drops or plateaued
carly.

In terms of hypothesis validation, the study confirms
that leveraging the graph topology is essential for
inferring traffic in unmonitored areas. However, it also
shows that not all GNN-based strategies benefit equally
from the topology alone. Methods that explicitly
enforce local consistency (as in C&S) are more
effective in sparse-label regimes than those relying
solely on learned embeddings.

Finally, the fact that simple baselines like Local Mean
outperformed complex GNNs like DAGI and NoGE in
several test splits indicate that a clear understanding of
data limitations is critical when selecting models for
real-world  applications. Investing in  model
sophistication without addressing data sparsity or
enriching the feature space may lead to
counterproductive results.

9. Future Work

The results obtained throughout this study point to
several promising research directions that could
enhance both the accuracy and applicability of traffic
volume estimation using graph-based models.

A key extension involves incorporating temporal
dynamics into the estimation process. While this project
focused on static daily volumes, traffic patterns are
time-dependent. Future work should aim to predict
hourly volumes by incorporating temporal sequences
into the model, potentially using spatio-temporal GNNs
or recurrent architectures adapted to graph inputs.

Additionally, the models used here relied almost
exclusively on graph topology and a single numerical
feature (weight) and the label (traffic volume). This
limitation affected the performance of more
sophisticated architecture, as shown in the results. A
clear avenue for improvement lies in enriching the input
data with additional node and edge features, such as the
number of lanes, average speeds, land use, or known
congestion levels. These attributes would allow
expressive models like DAGI or NoGE to reach their
full potential.

Another future direction is to apply these techniques to
new real-world urban networks, beyond the Barcelona
graph used here. Testing on networks of different size,
structures, and sensor distribution such as Madrid or
global cities would provide a clearer picture of the
generalizability of the results obtained. This could also
include cities with less regular topologies or networks
designed for public transport.

A particularly relevant research line is the optimal
sensor placement problem. Rather than predicting
volumes from a fixed set of sensors, future work could
develop algorithms that identify the most valuable
subset of streets to monitor, minimizing the number of
sensors required while keeping the estimation error
within acceptable bounds. This optimization could be
formulated as a budget-constrained sensor allocation
problem.

Further work could also explore the estimates of
emissions maps from predicted volumes. Integrating
traffic forecasts with environmental models would
provide urban planners with valuable tools for
sustainability planning and air quality assessment.

Finally, a more theoretical direction involves
understanding which topological structures or graph
formulations (e.g., segment-based vs. node-based)
better support the task of traffic volume estimation. This
includes comparing different formulations across the
same city or exploring how to design synthetic graphs
that maximize estimation accuracy under constraints of
sparsity and noise.

In summary, while this project demonstrates that GNN-
based imputation is a feasible and efficient method for
estimating traffic volumes in real urban settings, its
practical deployment still depends on further advances
in temporal modeling, feature engineering, urban
generalization, and strategic data acquisition.



10. Conclusion

This project sets out to explore the feasibility of
estimating traffic volumes on unmonitored streets using
graph-based learning approaches, with a focus on Graph
Neural Networks (GNNs) and their capacity to
generalize from partial observations in real urban
environments.

The work addressed a relevant and practical problem:
the limited spatial coverage of physical sensors in traffic
monitoring systems. By representing the road network
as a graph and formulating the estimation task as a semi-
supervised regression problem, it was possible to test
various architectures on the real case of the city of
Barcelona.

The experimental results confirm that leveraging the
topology of the urban network significantly improves
the accuracy of traffic volume estimation compared to
baseline methods. However, they also show that model
complexity does not necessarily translate into better
performance. While advanced GNN models like GIN,
NoGE, and DAGI were designed to exploit structural
patterns, they failed to outperform simpler strategies
under sparse labeling and low-feature conditions.

In contrast, Correct and Smooth (C&S) proved to be the
most effective approach across all scenarios. Its
decoupled architecture combining a simple base
regressor with graph-aware error propagation
consistently achieved the lowest Mean (MAE),
especially in highly sparse setups. These findings
validate the hypothesis that graph structure alone can
compensate for the absence of dense sensor data,
provided that the model architecture is adapted to
propagate information efficiently.

Nevertheless, the study also revealed critical
limitations. The lack of rich node and edge attributes
hindered the performance of expressive architectures
and highlighted the need for better feature engineering.
Furthermore, the results suggest that performance
plateaus beyond a certain threshold of missing data,
indicating that not all streets are equally predictable
through structural inference alone.

In conclusion, this work demonstrates that semi-
supervised graph learning is a viable and scalable
solution for estimating traffic volumes in partially
monitored cities. It provides a strong foundation for
future research in the direction of temporal modeling,
sensor optimization, and sustainable urban planning.
More broadly, it underscores the importance of aligning
model complexity with data availability, a principle
applicable across many domains of deep learning.

11. Sustainability and SDG Alignment

The work carried out in this project contributes
directly to several of the United Nations' Sustainable
Development Goals (SDGs), by addressing the need
for more intelligent, efficient, and environmentally
conscious mobility systems.

SDG 3 — Good Health and Well-Being

By enabling the estimation of traffic volumes without
requiring full sensor coverage, the proposed
methodology can support the identification of high-
congestion areas and traffic-related health risks. This
facilitates better-informed public policies aimed at
reducing exposure to air pollution and noise — two
critical factors for urban health.

SDG 11 — Sustainable Cities and Communities

The development of scalable, data-efficient methods for
urban traffic estimation contributes to the broader goal
of building inclusive, safe, and sustainable cities. This
project provides a framework that can help cities
monitor mobility more cost-effectively, even in
underserved or low-income areas with limited
infrastructure.

SDG 13 — Climate Action

By reducing the need for widespread physical sensor
deployment, and enabling smarter mobility planning,
this approach supports the design of strategies aimed at
lowering emissions and optimizing traffic flow.
Accurate traffic estimation is a key input for carbon
footprint modeling and environmental impact
assessments.

In summary, the results of this work are not only
relevant from a technical perspective but also offer a
pathway toward more sustainable and equitable urban
mobility, aligning with global efforts to mitigate climate
change and improve quality of life in cities.
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Annex (Results Metrics)

Table 1: Summary table of Results

C&S C&S C&S C&S
L Bl GraphSage NoGE DAGI MLP MLP Linear GAT 25 epochs GAT5 epcohs
Test (200epochs) | (600epochs)
MeanMAE | MeanMAE | MeanMAE Mean MAE Mean MAE Mean MAE Mean MAE
MeanMAE | MeanMAE
After C&S | Before C&S | AfterC&S | Before C&S [ AfterC&S | Before C&S | AfterC&S | Before C&S
2% 1117 1089 1267 1194 1212 483 1217 912 1259 1243 3166 797 1137
4% 1072 1023 1175 1122 1194 467 1194 833 1131 1184 3416 798 1134
6% 1080 1033 1205 1136 1113 494 1234 885 1186 1211 3265 846 1242
8% 1077 1024 1203 1133 1134 485 1243 914 1228 1337 4170 818 1206
10% 1049 1007 1175 1110 1117 483 1255 882 1181 1326 4091 830 1213
12% 1040 999 1173 1105 1101 483 1255 887 1194 1262 3614 829 1192
14% 1052 1006 1165 1099 1124 484 1216 890 1188 1145 3137 817 1166
16% 1052 1017 1164 1095 1100 487 1232 896 1198 1278 3845 813 1181
18% 1041 1019 1163 1092 1094 462 1192 878 1193 un 2846 832 1180
20% 1037 1017 1162 1088 1120 478 1203 890 1181 1329 4032 818 1176
22% 1065 1004 1171 1093 1137 474 1234 896 1192 1229 3397 814 1184
24% 1051 1016 1169 1094 1106 485 1226 884 1176 1330 4188 823 1184
26% 1051 1014 1170 1089 1112 485 1248 911 1230 1312 3932 834 1199
28% 1054 1004 1170 1093 1123 467 1211 889 1186 1167 2888 820 1188
30% 1049 1029 1178 1096 1144 474 1205 889 1189 1241 3576 819 1174
Chart 1: Summary Chart of Results
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