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Abstract 

Urban traffic monitoring systems often rely on costly sensor networks, which cannot feasibly cover every street. This 

work proposes a graph-based approach to estimate vehicle volumes on unmonitored roads using Graph Neural 

Networks (GNNs). The street network of Barcelona is modeled as a graph where traffic volume estimation is framed 

as a node-level regression task. Several architectures are explored, including GraphSAGE, GIN, Correct & Smooth 

(C&S), and a custom GIN-based model with reconstruction tasks (DAGI). Baseline comparisons and extensive 

experiments demonstrate that GNNs can achieve reasonable accuracy even with limited monitored data. The results 

suggest a feasible reduction in sensor deployment without severely compromising traffic information quality, 

supporting more sustainable and cost-efficient mobility systems. 

Keywords: Graph Neural Networks (GNN), Unmonitored Roads, Traffic, Urban Graphs, Prediction, Neural 

Networks. 

 

Highlights 

• A graph-based method is proposed to estimate 

vehicle volumes on unmonitored urban streets. 

• The Barcelona Road network is modeled using both 

node- and edge-level graph representations. 

• Several GNN architectures are evaluated, including 

GraphSAGE, GIN, and Correct & Smooth (C&S). 

• A custom model (DAGI), combining GIN with 

Jumping Knowledge and reconstruction tasks, is 

introduced. 

• Mean Absolute Error (MAE) is used to assess 

prediction performance across various test ratios. 

• Baseline comparisons demonstrate that some GNN-

based models outperform naive estimation methods. 

• Results suggest a significant potential to reduce the 

number of physical sensors required in cities. 

• This approach contributes to more sustainable, cost-

effective, and scalable urban mobility monitoring 

systems. 
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1. Introduction 

Monitoring urban traffic is essential for optimizing 

mobility policies, reducing emissions, and improving 

citizens’ quality of life. However, installing sensors on 

every street is economically and technically unfeasible. 

This limitation has sparked interest in alternative 

methods to infer traffic conditions using partial data. 

Graph Neural Networks (GNNs) have emerged as a 

powerful tool to model complex urban networks and 

infer missing information based on spatial relationships 

and known observations. 

This work explores the use of GNN-based models to 

estimate vehicle volumes on unmonitored streets in the 

city of Barcelona. The goal is to evaluate how accurately 

traffic can be predicted using graph-based learning 

approaches and how much physical sensor deployment 

could potentially be avoided. 

 

1.1. Motivation 

Urban traffic monitoring is a critical component of 

smart mobility systems, helping authorities manage 

congestion, reduce emissions, and make data-driven 

decisions. However, deploying physical sensors across 

every street is costly and impractical, especially in large 

cities. This constraint creates information gaps that limit 

the potential of traffic prediction systems. 
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Graph Neural Networks (GNNs) offer a promising 

alternative by enabling the estimation of traffic 

conditions in unmonitored streets using the topology of 

the road network and partial sensor data. The motivation 

behind this project is to explore whether GNN-based 

approaches can provide accurate predictions while 

reducing dependency on expensive infrastructure. From 

a broader perspective, this work aligns with the goals of 

promoting sustainable urban planning and cost-effective 

public service management. 

 

1.2. Objectives 

The primary objective of this project is to evaluate how 

well Graph Neural Networks can estimate traffic 

volumes on unmonitored streets by learning from 

partially observed traffic data and the topology of the 

road network. The study is conducted using the urban 

layout of Barcelona, a complex and realistic testbed for 

validating GNN performance in real-world conditions. 

The work explores different graph formulations and 

GNN architectures to identify which combinations yield 

better estimations and under what conditions. In 

addition, the project aims to determine how the 

proportion of monitored versus unmonitored streets 

affects prediction accuracy. This contributes to the 

long-term goal of minimizing infrastructure 

requirements while still achieving meaningful insights 

into urban mobility patterns. 

Main objectives: 

• Develop a graph-based representation of the 

Barcelona Road network. 

• Convert traffic data into graph formats suitable for 

node-level and edge-level regression. 

• Design and test several GNN models, including 

GraphSAGE, GIN, DAGI, and Correct & Smooth. 

• Implement baseline methods for comparison, 

including global and local mean strategies. 

• Evaluate model performance using Mean Absolute 

Error (MAE) across various test splits. 

• Investigate the impact of graph topology and 

monitor coverage on model accuracy. 

• Assess the feasibility of reducing sensor 

deployment without compromising prediction 

quality. 

• Contribute to the development of more sustainable 

and efficient traffic monitoring systems. 

2. Related Work 

Urban traffic prediction has traditionally been addressed 

through a combination of statistical models and sensor-

based infrastructure. However, the sparsity and cost of 

real-world traffic data have led researchers to explore 

alternative methods capable of generalizing across 

networks with incomplete or missing information. 

Early approaches in this space applied neural models to 

traffic forecasting using traditional feature-based 

learning methods [20][21], or sequence-based 

architectures such as Recurrent Neural Networks 

(RNNs) for trajectory prediction [22]. As data 

availability increased, so did the complexity of the 

models, moving toward graph-based representations to 

better capture the topological structure of urban 

networks. 

Graph Neural Networks (GNNs) have emerged as a 

robust framework for learning over structured data. 

Their capacity to leverage neighborhood information 

makes them particularly well suited for tasks where 

spatial dependencies are critical. Foundational models 

in the field, such as GraphSAGE [19] and GIN [18], 

introduced scalable ways to generate node embeddings 

and proved the expressive power of message passing 

mechanisms. These models laid the groundwork for a 

growing body of research applying GNNs to 

transportation problems. 

Specifically, GNNs have been adopted for imputing 

missing information in graphs. For instance, MRAP [2] 

proposes a multi-relational propagation scheme to 

complete node attributes, which is applicable to 

heterogeneous or partially labeled graphs. This is 

especially relevant in traffic networks, where many road 

segments lack sensors. Other strategies like Correct and 

Smooth (C&S) [11] decouple prediction and 

propagation by combining a simple base model with 

iterative graph-based error correction and label 

smoothing. C&S has shown strong performance in 

sparse-label and semi-supervised scenarios. 

Another relevant technique is NoGE, introduced in [17], 

which reframes imputation as a message-passing task on 

missing node features. Its structure is particularly suited 

for sparse sensing environments and aligns with the goal 

of estimating unknown traffic volumes based on 

topological relationships. 

In this project, we also introduce a custom model named 

DAGI (Deep Auxiliary GIN with Jumping Knowledge), 

which builds on the GIN architecture and incorporates 

Jumping Knowledge mechanisms to aggregate multi-

hop information. In addition, DAGI integrates 
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reconstruction tasks as auxiliary objectives, which aim 

to reinforce structural learning in low-label regimes. 

The model is specifically designed for edge-level 

prediction reformulated as node-level regression 

through extended graph formulations. 

GNN-based imputation methods have also been 

explored in biomedical and scientific applications. 

Wang et al. [13] proposed a graph-based strategy for 

imputing brain measurements across datasets, 

illustrating the flexibility of these models across 

domains. Similarly, Bayram et al. [2] and Huang et al. 

[11] have developed graph frameworks focused on 

recovering missing or incomplete node features with 

high accuracy. 

In the context of traffic networks, Liu et al. [12] 

implemented GraphSAGE for segment-level traffic 

speed forecasting with sparse data, highlighting its 

inductive capabilities. Their work addresses conditions 

similar to those faced in real urban settings, where only 

partial sensor coverage is available. 

Earlier works have also explored interpolation 

techniques using spatial statistical models and spatio-

temporal kriging [5], as well as deep learning methods 

applied to network-wide trajectory prediction [1] and 

hybrid optimization-learning schemes [8]. 

This aligns with a previous work [10] that also 

investigates the use of GNNs for static traffic volume 

estimation rather than time-series forecasting. In this 

setup, the goal is not to predict future flows, but to infer 

current traffic conditions on unmonitored streets based 

on available sensor data and the network topology. 

Overall, the literature shows a shift from sensor-

dependent, temporally driven models to graph-based 

learning and imputation approaches that can operate 

under limited data availability. This study contributes to 

this line of research by benchmarking existing models 

such as C&S, MRAP, NoGE and GraphSAGE, and by 

proposing DAGI, a new architecture tailored for semi-

supervised traffic volume estimation on real-world 

urban networks. 

 

3. Problem Description 

This work addresses the challenge of estimating vehicle 

volume on streets that are not equipped with monitoring 

devices. In urban settings, only a limited portion of the 

road network is instrumented with traffic sensors due to 

the high cost of deployment and maintenance. As a 

result, traffic information is often incomplete, limiting 

the potential for comprehensive mobility analysis and 

planning. 

To overcome this limitation, the road network is 

represented as a graph, where intersections are treated 

as nodes and streets as edges. The goal is to estimate 

traffic volume on streets without sensors by leveraging 

the information available on monitored streets, as well 

as the topological structure of the network. 

Two graph representations are considered in this study: 

• Segment Graph: In this formulation, each street 

segment is modeled as a node, and connections 

between adjacent streets are represented as edges. 

This structure enables the use of standard node-

based GNN models but requires reinterpreting the 

graph so that each node represents a street rather 

than an intersection. 

• Extended Graph: This approach creates artificial 

nodes to represent each directed street segment, 

embedding the traffic volume and other features into 

them. These artificial nodes are connected to the 

corresponding intersection nodes, enabling edge-

level information to be processed as node attributes. 

This transformation makes the task compatible with 

standard node regression architectures in GNNs. 

The traffic estimation problem is framed as a semi-

supervised regression task, where only a portion of the 

graph has known traffic volumes, and the remaining 

values must be predicted. This setup allows the use of 

Graph Neural Networks to infer missing data by 

exploiting both the observed values and the structural 

relationships within the urban network. 

By comparing different formulations and neural 

architectures, this study aims to determine how 

accurately traffic can be estimated in unmonitored 

streets, and under what conditions sensor deployment 

could be optimized or reduced. 

 

4. Methodology 

The methodology of this study is based on formulating 

the traffic volume estimation task as a semi-supervised 

node regression problem over urban graphs. The main 

goal is to infer vehicle volumes on unmonitored streets 

by leveraging the structure of the city’s road network 

and partial volume measurements from sensor-equipped 

streets. 

To this end, several Graph Neural Network (GNN) 

models are implemented and evaluated using two types 

of graph representations: segment graphs and extended 

graphs, each offering a different abstraction of the urban 

environment. These formulations allow the 

transformation of edge-level predictions into node-level 

tasks, which are compatible with most GNN 

architectures. 
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The study includes both classic and novel GNN-based 

approaches, as well as baseline methods for 

comparison: 

• GraphSAGE: An inductive framework that learns 

node embeddings by aggregating features from 

neighboring nodes. This model is suited for 

generalizing to unseen graph components and has 

been widely used in traffic-related tasks. 

• GIN (Graph Isomorphism Network): A strong 

baseline in graph learning, known for its expressive 

power. It processes node features through multiple 

layers and is used as a core component in other 

models within this study. 

• Correct and Smooth (C&S): A hybrid method that 

applies a base prediction using a simple regressor 

(e.g., MLP or GAT), followed by correction and 

smoothing steps based on the graph structure. This 

decoupled strategy enhances performance in sparse-

label settings. 

• NoGE: A model specifically designed for missing 

feature imputations in graphs. It treats unobserved 

data as latent variables and propagates information 

through message-passing layers to recover missing 

values. 

• DAGI (Deep Auxiliary GIN with Jumping 

Knowledge): A custom architecture developed, 

based on GIN. It incorporates Jumping Knowledge 

to merge information from multiple layers and 

includes graph reconstruction tasks as auxiliary 

learning objectives. These tasks aim to improve the 

model’s capacity to learn from limited labeled data 

by enforcing structural consistency. 

Each model is trained using only partial information 

from the graph, simulating realistic scenarios where 

traffic data is available for a limited set of streets. The 

models are evaluated based on their ability to generalize 

and accurately estimate traffic volume on the 

unmonitored parts of the network. 

In addition to GNNs, two baseline strategies are 

implemented for comparison: 

• Global Mean: Predicts the unknown traffic volume 

using the average of all known values in the 

network. 

• Local Mean: Uses the average traffic volume of 

neighboring nodes (or edges) as the prediction for 

unmonitored nodes (or edges). 

 

To quantitatively assess model performance, the Mean 

Absolute Error (MAE) is used as the primary 

evaluation metric, enabling a consistent comparison 

across models and test conditions. 

 

5. Tools & Libraries 

The implementation of this project relies on a modular 

architecture that combines graph preprocessing, model 

definition, training, and evaluation in a reproducible 

pipeline. The workflow was designed to facilitate 

experimentation with various Graph Neural Network 

(GNN) models, while allowing flexibility in data 

handling and graph construction. 

The development was carried out entirely in Python, 

using a combination of specialized libraries for graph 

learning and machine learning: 

• PyTorch: Used as the core deep learning 

framework to define and train all models. 

• PyTorch Geometric (PyG): A high-level extension 

for PyTorch that provides modules and utilities for 

building GNNs. PyG was used to implement 

standard architectures like GIN and GraphSAGE, as 

well as the custom DAGI model. 

• Scikit-learn: Utilized baseline regressors (e.g., 

linear models, tree-based regressors) and evaluation 

metrics. 

• NetworkX: Used for graph construction, 

manipulation, and basic visualization. 

• Pandas and NumPy: Employed for data 

manipulation, loading, and preprocessing. 

Hyperparameter optimization was performed using 

manual search. 

All experiments were executed in local environments, 

using GPUs or CPU. The project was version-controlled 

using Git and documented via Jupyter notebooks. 
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6. Experimental Setup 

To evaluate the performance of different GNN models 

in the task of traffic volume estimation, a series of 

controlled experiments were designed. The evaluation 

focused on measuring the predictive accuracy of each 

model under varying levels of data availability, 

simulating real-world scenarios where only a portion of 

the street network is monitored. 

Graph Data 

All experiments were performed on the Barcelona Road 

network, formed in two ways: 

• Segment Graph: Each node represents a street 

segment, and edges represent connectivity between 

adjacent segments. 

• Extended Graph: Artificial nodes were created to 

represent directed street segments, allowing traffic 

volume (originally an edge attribute) to be predicted 

via node regression. 

Each graph contains real traffic volume data assigned to 

a subset of streets, with remaining volumes treated as 

unknown. 

Label Masking Strategy 

To simulate partial monitoring, only a percentage of the 

streets were assumed to be observed in each 

experiment. Test sets were generated by randomly 

selecting a proportion of the labeled nodes (or edges), 

while ensuring that no pair of bidirectional edges was 

simultaneously hidden, to avoid underdetermined 

configurations. 

The percentage of hidden labels varied between 2% and 

30%, with ten repetitions per split to account for 

variance due to random selection. This strategy enabled 

the analysis of how model performance degrades as 

fewer monitored streets are available. 

Baselines 

Two simple baseline estimators were used: 

• Global Mean: Assigns the average of all known 

volumes as the prediction for unknown segments. 

• Local Mean: Assigns the average of the 

neighboring known volumes. 

These baselines serve as reference points for comparing 

the added value of graph-based learning. 

 

 

 

 

Model Configuration 

All GNN models were trained using supervised node 

regression. Each model used the known traffic volumes 

as supervision and was validated on the masked test set. 

Hyperparameters such as learning rate, hidden 

dimensions, dropout, number of layers, and aggregation 

type were manually tuned per model. 

Models were trained for a fixed number of epochs 

(typically between 150 and 1000, depending on 

convergence speed), and evaluated on the test set using 

the Mean Absolute Error (MAE) as the main metric. 

 

7. Results (See Annex for detailed metrics) 

7.1. Individual Results 

GIN 

Two versions of GIN were evaluated: one trained for 

200 epochs and another extended to 600 epochs. The 

longer training consistently improved results across all 

test percentages, but neither version was able to surpass 

the performance of Correct and Smooth (C&S) or 

DAGI. The average MAE remained in the range of 

1004–1117, depending on test split and training 

duration. Although GIN provided stable performance 

and competitive results in mid-range splits (e.g., 10%–

20%), its expressiveness was not sufficient to 

compensate for the lack of supervision in more sparse 

scenarios. 

GraphSAGE 

GraphSAGE delivered stable yet moderate results, with 

MAE values ranging between 1162 and 1267. Its 

performance remained relatively constant regardless of 

the proportion of hidden labels, suggesting robustness 

but limited adaptability. Despite its inductive 

capabilities, GraphSAGE was consistently 

outperformed by Correct and Smooth variants. 

NoGE 

NoGE achieved improved accuracy compared to 

standard GNNs in most test cases, with MAEs ranging 

from 1088 to 1194. While it never achieved the best 

result in any single split, it showed consistent 

improvements over GraphSAGE and performed on par 

with the GIN models. Its main limitation was the lack of 

significant gains as label sparsity increased, possibly 

due to its reliance on initial feature completeness. 
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DAGI 

DAGI obtained consistently better performance than 

GIN, GraphSAGE, and NoGE, with MAEs ranging 

from 1100 to 1212, depending on the test percentage. In 

any case, it was not the best model overall, as it was 

surpassed in all test splits by the Correct and Smooth 

variants. 

Correct and Smooth (C&S) 

C&S was the best-performing family of models across 

all test scenarios. When applied to MLP, MLP Linear, 

and GAT base predictors, it consistently reduced the 

MAE by 50% or more in comparison to the raw 

predictions. 

C&S + MLP reached the lowest MAE overall: 462 at 

4% test, and remained under 500 in most splits. 

C&S + MLP Linear also performed quite well, with 

MAEs as low as 833–914 depending on the test. 

C&S + GAT, both with 25 and 5 epochs, showed robust 

results post-correction, although the raw (pre-C&S) 

GAT models were among the worst performers prior to 

smoothing. 

The effectiveness of C&S is especially notable in 

scenarios, where traditional GNNs tend to struggle. Its 

correction and smoothing phases demonstrated strong 

regularization and error propagation across the graph 

structure, validating previous findings in the literature 

[11]. 

 

7.2. Global Comparison  

The overall results of the study show that model 

simplicity combined with graph-aware correction 

mechanisms outperforms more sophisticated 

architectures in the task of estimating traffic volumes on 

unmonitored streets. 

The Correct and Smooth (C&S) strategy was by far the 

most effective across all test splits. Regardless of the 

base regressor used (MLP, Linear MLP, or GAT), the 

post-processing stages of correction and smoothing 

significantly reduced the error, often halving the MAE 

compared to the raw predictions. In particular, C&S 

with MLP achieved the best performance globally, 

reaching MAE values as low as 462 at 18% test, and 

remaining consistently below 500 up to 30% of missing 

data. 

Surprisingly, simpler models combined with correction 

(like C&S + MLP) were able to outperform deeper 

architectures such as GIN, NoGE, and DAGI. These 

more sophisticated GNNs despite incorporating 

mechanisms like message passing, jumping knowledge, 

or auxiliary reconstruction  failed to deliver competitive 

performance in this specific setting. In fact, DAGI did 

not surpass even the simplest baselines, suggesting that 

model complexity may not be beneficial when input 

features are limited. 

A key insight from the experiments is that the lack of 

informative node and edge attributes in the graph 

(beyond topology and traffic volume) limits the ability 

of complex models to generalize effectively. In such 

low-feature scenarios, approaches like C&S, which 

focus on refining basic predictions through the graph’s 

structure, prove more effective than deep architectures 

that rely on rich feature sets. 

Finally, baseline methods based on global and local 

means, although clearly outperformed by C&S, 

performed better than expected, especially when 

compared to models like DAGI and NoGE. This 

reinforces the idea that simple aggregation methods can 

still be useful when feature quality is poor. 

In summary, the experiments demonstrate that the most 

successful strategies are not necessarily the most 

complex, but those that best exploit the available 

structure, even with minimal supervision. 

 

8. Discussion & Analysis 

The results obtained in this study offer several important 

insights regarding the practical application of Graph 

Neural Networks (GNNs) for estimating traffic volumes 

on unmonitored streets in urban settings. 

First, the performance gap between different model 

families reveals that structural refinement strategies like 

Correct and Smooth (C&S) are better suited to scenarios 

with limited sensor coverage and sparse graph 

attributes. Despite its simplicity, C&S consistently 

outperformed more complex models by focusing on 

propagation of label information rather than learning 

deep feature representations. 

This outcome challenges the common assumption that 

more sophisticated architectures (e.g., GIN, DAGI, 

NoGE) will necessarily outperform simpler alternatives. 

While such models are theoretically powerful and 

designed for generalization, their advantage diminishes 

in practical conditions where node and edge features are 

minimal, as is often the case in urban traffic networks. 

Without access to rich metadata (e.g., speed limits, 

number of lanes, neighborhood type), the expressive 

capacity of deep models cannot be fully exploited. 

Moreover, the DAGI model, which incorporates  
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Jumping Knowledge and auxiliary reconstruction tasks, 

failed to improve upon even the most basic baselines. 

This highlights a key limitation: when structural and 

feature information is poor, model complexity may 

introduce more noise than benefit, particularly if the 

task is formulated as node regression based on limited 

supervision. 

Another significant observation is the robustness of the 

C&S framework, especially when applied to weak base 

predictors such as shallow MLPs or undertrained GATs. 

The ability of C&S to improve performance even from 

very poor initial predictions (as seen in the GAT 

variants) underlines its potential for deployment in 

resource-constrained or data-scarce environments. 

The sensitivity to test size also provides useful 

guidance. While all models degraded as the proportion 

of unknown volumes increased, C&S variants showed 

graceful performance deterioration, whereas standard 

GNNs and DAGI exhibited steeper drops or plateaued 

early. 

In terms of hypothesis validation, the study confirms 

that leveraging the graph topology is essential for 

inferring traffic in unmonitored areas. However, it also 

shows that not all GNN-based strategies benefit equally 

from the topology alone. Methods that explicitly 

enforce local consistency (as in C&S) are more 

effective in sparse-label regimes than those relying 

solely on learned embeddings. 

Finally, the fact that simple baselines like Local Mean 

outperformed complex GNNs like DAGI and NoGE in 

several test splits indicate that a clear understanding of 

data limitations is critical when selecting models for 

real-world applications. Investing in model 

sophistication without addressing data sparsity or 

enriching the feature space may lead to 

counterproductive results. 

 

9. Future Work 

The results obtained throughout this study point to 

several promising research directions that could 

enhance both the accuracy and applicability of traffic 

volume estimation using graph-based models. 

A key extension involves incorporating temporal 

dynamics into the estimation process. While this project 

focused on static daily volumes, traffic patterns are 

time-dependent. Future work should aim to predict 

hourly volumes by incorporating temporal sequences 

into the model, potentially using spatio-temporal GNNs 

or recurrent architectures adapted to graph inputs. 

Additionally, the models used here relied almost 

exclusively on graph topology and a single numerical 

feature (weight) and the label (traffic volume). This 

limitation affected the performance of more 

sophisticated architecture, as shown in the results. A 

clear avenue for improvement lies in enriching the input 

data with additional node and edge features, such as the 

number of lanes, average speeds, land use, or known 

congestion levels. These attributes would allow 

expressive models like DAGI or NoGE to reach their 

full potential. 

Another future direction is to apply these techniques to 

new real-world urban networks, beyond the Barcelona 

graph used here. Testing on networks of different size, 

structures, and sensor distribution such as Madrid or 

global cities would provide a clearer picture of the 

generalizability of the results obtained. This could also 

include cities with less regular topologies or networks 

designed for public transport. 

A particularly relevant research line is the optimal 

sensor placement problem. Rather than predicting 

volumes from a fixed set of sensors, future work could 

develop algorithms that identify the most valuable 

subset of streets to monitor, minimizing the number of 

sensors required while keeping the estimation error 

within acceptable bounds. This optimization could be 

formulated as a budget-constrained sensor allocation 

problem. 

Further work could also explore the estimates of 

emissions maps from predicted volumes. Integrating 

traffic forecasts with environmental models would 

provide urban planners with valuable tools for 

sustainability planning and air quality assessment. 

Finally, a more theoretical direction involves 

understanding which topological structures or graph 

formulations (e.g., segment-based vs. node-based) 

better support the task of traffic volume estimation. This 

includes comparing different formulations across the 

same city or exploring how to design synthetic graphs 

that maximize estimation accuracy under constraints of 

sparsity and noise. 

In summary, while this project demonstrates that GNN-

based imputation is a feasible and efficient method for 

estimating traffic volumes in real urban settings, its 

practical deployment still depends on further advances 

in temporal modeling, feature engineering, urban 

generalization, and strategic data acquisition. 
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10.   Conclusion 

This project sets out to explore the feasibility of 

estimating traffic volumes on unmonitored streets using 

graph-based learning approaches, with a focus on Graph 

Neural Networks (GNNs) and their capacity to 

generalize from partial observations in real urban 

environments. 

The work addressed a relevant and practical problem: 

the limited spatial coverage of physical sensors in traffic 

monitoring systems. By representing the road network 

as a graph and formulating the estimation task as a semi-

supervised regression problem, it was possible to test 

various architectures on the real case of the city of 

Barcelona. 

The experimental results confirm that leveraging the 

topology of the urban network significantly improves 

the accuracy of traffic volume estimation compared to 

baseline methods. However, they also show that model 

complexity does not necessarily translate into better 

performance. While advanced GNN models like GIN, 

NoGE, and DAGI were designed to exploit structural 

patterns, they failed to outperform simpler strategies 

under sparse labeling and low-feature conditions. 

In contrast, Correct and Smooth (C&S) proved to be the 

most effective approach across all scenarios. Its 

decoupled architecture combining a simple base 

regressor with graph-aware error propagation 

consistently achieved the lowest Mean (MAE), 

especially in highly sparse setups. These findings 

validate the hypothesis that graph structure alone can 

compensate for the absence of dense sensor data, 

provided that the model architecture is adapted to 

propagate information efficiently. 

Nevertheless, the study also revealed critical 

limitations. The lack of rich node and edge attributes 

hindered the performance of expressive architectures 

and highlighted the need for better feature engineering. 

Furthermore, the results suggest that performance 

plateaus beyond a certain threshold of missing data, 

indicating that not all streets are equally predictable 

through structural inference alone. 

In conclusion, this work demonstrates that semi-

supervised graph learning is a viable and scalable 

solution for estimating traffic volumes in partially 

monitored cities. It provides a strong foundation for 

future research in the direction of temporal modeling, 

sensor optimization, and sustainable urban planning. 

More broadly, it underscores the importance of aligning 

model complexity with data availability, a principle 

applicable across many domains of deep learning. 

11.   Sustainability and SDG Alignment 

The work carried out in this project contributes 

directly to several of the United Nations' Sustainable 

Development Goals (SDGs), by addressing the need 

for more intelligent, efficient, and environmentally 

conscious mobility systems. 

SDG 3 – Good Health and Well-Being 

By enabling the estimation of traffic volumes without 

requiring full sensor coverage, the proposed 

methodology can support the identification of high-

congestion areas and traffic-related health risks. This 

facilitates better-informed public policies aimed at 

reducing exposure to air pollution and noise — two 

critical factors for urban health. 

SDG 11 – Sustainable Cities and Communities 

The development of scalable, data-efficient methods for 

urban traffic estimation contributes to the broader goal 

of building inclusive, safe, and sustainable cities. This 

project provides a framework that can help cities 

monitor mobility more cost-effectively, even in 

underserved or low-income areas with limited 

infrastructure. 

SDG 13 – Climate Action 

By reducing the need for widespread physical sensor 

deployment, and enabling smarter mobility planning, 

this approach supports the design of strategies aimed at 

lowering emissions and optimizing traffic flow. 

Accurate traffic estimation is a key input for carbon 

footprint modeling and environmental impact 

assessments. 

In summary, the results of this work are not only 

relevant from a technical perspective but also offer a 

pathway toward more sustainable and equitable urban 

mobility, aligning with global efforts to mitigate climate 

change and improve quality of life in cities. 
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Annex (Results Metrics) 

 

Table 1: Summary table of Results 

 

 

Chart 1: Summary Chart of Results  

After C&S Before C&S After C&S Before C&S After C&S Before C&S After C&S Before C&S
2% 1117 1089 1267 1194 1212 483 1217 912 1259 1243 3166 797 1137
4% 1072 1023 1175 1122 1194 467 1194 833 1131 1184 3416 798 1134
6% 1080 1033 1205 1136 1113 494 1234 885 1186 1211 3265 846 1242
8% 1077 1024 1203 1133 1134 485 1243 914 1228 1337 4170 818 1206
10% 1049 1007 1175 1110 1117 483 1255 882 1181 1326 4091 830 1213
12% 1040 999 1173 1105 1101 483 1255 887 1194 1262 3614 829 1192
14% 1052 1006 1165 1099 1124 484 1216 890 1188 1145 3137 817 1166
16% 1052 1017 1164 1095 1100 487 1232 896 1198 1278 3845 813 1181
18% 1041 1019 1163 1092 1094 462 1192 878 1193 1171 2846 832 1180
20% 1037 1017 1162 1088 1120 478 1203 890 1181 1329 4032 818 1176
22% 1065 1004 1171 1093 1137 474 1234 896 1192 1229 3397 814 1184
24% 1051 1016 1169 1094 1106 485 1226 884 1176 1330 4188 823 1184
26% 1051 1014 1170 1089 1112 485 1248 911 1230 1312 3932 834 1199
28% 1054 1004 1170 1093 1123 467 1211 889 1186 1167 2888 820 1188
30% 1049 1029 1178 1096 1144 474 1205 889 1189 1241 3576 819 1174

C&S 
MLP

Mean MAE

C&S 
MLP Linear
Mean MAE

C&S 
GAT 25 epochs

Mean MAE

C&S 
GAT 5 epcohs

Mean MAETest
GINN 

(200 epochs)
Mean MAE
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(600 epochs)

Mean MAE
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Mean MAE
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