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PROJECT SUMMARY 

1. Introduction 

This project was born from the need to improve the localization of an autonomous 

wheelchair operating in indoor environments, where technologies such as GPS are not 

viable. Until now, the system relied mainly on encoder-based odometry, which exhibited 

limited accuracy and significant drift over time. The main objective of this work has been to 

replace that system with a new, more accurate and robust visual odometry module capable 

of reliably estimating the robot’s position and orientation. 

In particular, the project explores and integrates different visual odometry approaches: stereo 

odometry using a ZED X Mini [1] camera, classical monocular odometry (based on 

geometric techniques), and learning-based monocular odometry (using models such as 

TartanVO [2]), both implemented with a ZED X One [3] camera. Additionally, a sensor 

fusion system based on an Extended Kalman Filter (EKF) is developed to combine multiple 

sources of information and generate a more robust estimate of the robot’s motion. 

2. Previous and New Architecture 

The original system architecture was based on encoder odometry and LiDAR sensors within 

a ROS2 [4] environment. The Nav2 navigation stack [5] was used for path planning, motion 

control, and localization. However, this architecture exhibited notable limitations in 

accuracy—especially during long maneuvers or tight turns—where accumulated drift 

significantly impacted system reliability, due to the encoders effect. 

The new architecture remains fully compatible with ROS2 and Nav2, but introduces major 

improvements: a ZED X Mini camera is added as the main stereo visual odometry source, a 

new learning-based monocular odometry node (using the ZED X One camera) is 

implemented, and the TF transformation tree is restructured to resolve previous 

inconsistencies. All components are integrated through an EKF node that fuses the available 

odometry sources. This modular design allows the system to evaluate, compare, and switch 

between different odometry sources while maintaining overall consistency. 



 

Figure 1: New architecture in odometry module 

3. Odometry Modules 

3.1 Stereo Visual Odometry 

The stereo visual odometry solution was implemented using the Stereolabs ZED X Mini 

camera, capable of providing 6DOF pose estimates by combining stereo images and inertial 

measurements from its built-in IMU. 

The zed-ros2-wrapper node publishes odometry data to the /zed/zed_node/odom topic, but 

issues arose due to the relative offset between the camera and the robot’s center of mass 

when integrating the data into the EKF. To resolve this, a custom zed_odom_transformer 

node was implemented to re-reference the pose from the camera frame to the robot’s base 

frame (base_link). 

 

Figure 2: Trajectory test with stereo visual odometry 



3.2 Classical Monocular Odometry 

To explore lower-cost alternatives, a classical monocular visual odometry module was 

developed using the ZED X One camera. This approach was based on geometric techniques 

including ORB [6] feature detection, FLANN [7] matching, and motion estimation via the 

essential matrix. A ROS2 node was created to process rectified images and estimate the 

robot’s relative trajectory. 

However, testing revealed instability: the lack of scale information caused cumulative errors, 

and the system was highly sensitive to poor lighting or low-texture environments. Although 

useful as a conceptual tool, this method was not included in the final system due to its lack 

of robustness. 

3.3 Learning-Based Monocular Odometry 

As a third approach, deep learning was explored for monocular odometry estimation. Several 

models were evaluated, with TartanVO selected for its lightweight design, pretrained 

weights, and ROS compatibility. A ROS2 node named tartanvo_node was implemented to 

process monocular images from the ZED X One. A scale calibration module was developed 

based on test trajectories, and an IMU-based motion filter was integrated to prevent 

erroneous pose updates while the robot was stationary. 

 

Figure 3: Trajectory test with monocular visual odometry and learning based techniques 

Although the system successfully tracked short trajectories, translation estimates were 

unstable. Since the model was not retrained on real-world data, its pretrained weights showed 

poor generalization and unreliable performance under the test conditions. 



4. EKF Integration. Tests and Results 

To combine the strengths of each sensor, an EKF-based fusion system was implemented 

using the ekf_filter_node from the robot_localization package [8]. The EKF was configured 

to operate in 2D mode (planar motion), taking stereo visual odometry and encoder odometry 

as inputs. Sensor covariances were tuned to reflect their relative reliability: encoders 

provided accurate linear velocity but unreliable orientation data, whereas the ZED camera 

delivered more precise position and orientation estimates. 

Two test scenarios were defined: straight-line trajectories of 1.2 m and 3.6 m, and a closed-

loop path. In the straight-line tests, all sources produced acceptable results, with the largest 

error being 4.2% from the stereo VO at the 1.2-meter mark: 

 

Table 1: Straight line test results 

Real distance 

(m) 

Encoders (m) Visual Stereo (m) EKF (m) 

3.6 3.594 3.500 3.586 

1.2 1.173 1.250 1.223 

 

In the closed-loop test, encoder-only odometry accumulated 1.45 m of drift, while the EKF 

solution reduced the error to just 6.5 cm. This clearly demonstrated the encoder's main 

weakness—poor angular displacement estimation—and the advantage of sensor fusion: 

Table 2: Euclidean distance between inicial and final position in closed loop test 

Method Accumulated drift (m) 

Encoders   1.454 

Visual Stereo 0.065 

EKF 0.109 

 



 

Figure 4: Close loop test results for encoders, stereo visual odometry and EKF 

5. Conclusions 

The project achieved its primary goal: replacing an encoder-only odometry system with a 

more accurate and robust solution. The ZED X Mini camera proved reliable for real-time 

pose estimation, and its integration with the ROS2/Nav2 stack was successful. 

Tests also confirmed that monocular solutions, though appealing for their lower cost, still 

present major challenges, such as scale ambiguity and sensitivity to environmental 

conditions. Both classical and learning-based monocular methods require extensive 

calibration or retraining to match the performance of stereo systems. Without such 

adjustments, they cannot yet be considered viable standalone alternatives. 

Lastly, sensor fusion via EKF emerged as a robust and effective solution. By combining the 

advantages of each input, the resulting system demonstrated low accumulated error, 

resilience to partial sensor failure, and consistent navigation performance. 

For future work, the project proposes extending this module into a full visual SLAM solution 

that could eventually replace the current LiDAR-based system entirely opening the path to 

more efficient, robust, and cost-effective autonomous navigation. 
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RESUMEN DEL PROYECTO 

1. Introducción 

Este proyecto nace de la necesidad de mejorar la localización de una silla de ruedas 

autónoma en entornos interiores, donde tecnologías como el GPS no ofrecen una solución 

viable. Hasta ahora, el sistema se apoyaba principalmente en odometría basada en encoders, 

lo que presentaba una precisión limitada y una acumulación significativa de error con el paso 

del tiempo. El objetivo principal del trabajo ha sido sustituir ese sistema por un nuevo 

módulo de odometría visual más preciso y robusto, que permita estimar de manera fiable la 

posición y orientación del robot.  

En particular, el proyecto plantea integrar y evaluar diferentes enfoques de odometría visual: 

estereoscópica (con cámara ZED X Mini [1]), monocular clásica (basada en técnicas 

geométricas) y monocular con aprendizaje profundo (empleando modelos como TartanVO 

[2]), ambos haciendo uso de una cámara ZED X One [3]. Además, se desarrolla un sistema 

de fusión de sensores mediante un Filtro de Kalman Extendido (EKF) que combine múltiples 

fuentes de información para ofrecer una estimación final más robusta del movimiento del 

robot. 

2. Arquitectura previa y arquitectura nueva 

La arquitectura original del sistema se basaba en el uso de odometría de encoders y sensores 

LiDAR integrados en un entorno ROS2 [4]. El stack de navegación Nav2 [5] se utiliza para 

la planificación de rutas, navegación y control. Sin embargo, esta arquitectura presentaba 

limitaciones en precisión, especialmente durante maniobras prolongadas o giros cerrados, 

donde el error acumulado comprometía la fiabilidad del sistema, debido al efecto de los 

encoders. 

La nueva arquitectura mantiene la compatibilidad con ROS2 y Nav2, pero introduce mejoras 

significativas: se incorpora una cámara ZED X Mini como fuente principal de odometría 

visual estéreo, un nuevo nodo de odometría visual monocular basado en aprendizaje 

profundo (con la cámara ZED X One), y se reestructura el árbol de transformaciones TF para 



resolver inconsistencias previas. Todo ello se integra a través de un nodo EKF que fusiona 

los datos disponibles. Este diseño modular permite evaluar, comparar e intercambiar 

distintas fuentes de odometría manteniendo la coherencia del sistema completo. 

 

Figura 1: Nueva arquitectura en el módulo de odometría 

3. Módulos de odometría 

3.1 Odometría estéreo 

La solución de odometría estéreo se construyó utilizando la cámara ZED X Mini de 

StereoLabs, capaz de proporcionar estimaciones de pose en 6 grados de libertad a través de 

la combinación de imágenes estéreo y datos inerciales (IMU).  

El nodo zed-ros2-wrapper publica información de odometría en el topic 

/zed/zed_node/odom, pero se encontraron problemas en la referencia de la pose debido a la 

posición relativa entre la cámara y el centro de masa del robot a la hora de su integración en 

el EKF. Para resolverlo, se implementó un nodo adicional zed_odom_transformer que 

transforma la odometría del marco de la cámara al marco del robot base (base_link).  

 

Figura 2: Ensayo de trayectoria con odometría visual estéreo 



3.2 Odometría monocular. Métodos clásicos 

Para comparar alternativas de menor coste, se desarrolló también un módulo de odometría 

visual monocular clásica utilizando la cámara ZED X One. El enfoque se basó en técnicas 

geométricas como la detección de características (ORB [6]), emparejamiento con FLANN 

[7] y estimación de movimiento mediante la matriz esencial. Se desarrolló un nodo en ROS2 

capaz de procesar imágenes rectificadas y estimar la trayectoria relativa del robot.  

Sin embargo, las pruebas demostraron que esta solución resultaba inestable: la ausencia de 

información de escala provocaba errores acumulativos, y la sensibilidad a condiciones de 

iluminación o baja textura limitaba su robustez. Aunque útil como herramienta conceptual, 

este método no fue integrado en el sistema final. 

3.3 Odometría monocular. Métodos con aprendizaje profundo 

Como tercera vía, se exploró el uso de redes neuronales profundas para estimar odometría a 

partir de imágenes monoculares. Se evaluaron varios modelos existentes, siendo TartanVO 

el seleccionado por su ligereza, disponibilidad de pesos preentrenados y soporte para ROS. 

El nodo tartanvo_node fue desarrollado en ROS2 y adaptado para recibir imágenes 

monoculares de la cámara ZED X One. Se implementó un sistema de calibración de escala 

mediante trayectorias de prueba y se incorporó un filtro basado en la aceleración del IMU 

para evitar estimaciones erróneas en reposo.  

Aunque el sistema fue capaz de seguir trayectorias a corto plazo, los resultados mostraron 

inestabilidad en la estimación de la traslación. Además, al no haber sido reentrenado 

específicamente en datos del entorno real, los pesos del modelo resultaron poco 

generalizables, y consecuentemente obteniendo unos resultados poco fiables y robustos.  

 

Figura 3: Ensayo de trayectoria con odometría visual monocular y aprendizaje profundo 



4. Integración del EKF. Ensayos y resultados 

Con el objetivo de aprovechar las fortalezas de cada sensor, se configuró un sistema de fusión 

mediante el nodo ekf_filter_node del paquete robot_localization [8]. El EKF se diseñó para 

operar en modo 2D (movimiento planar), utilizando como entradas la odometría visual 

estéreo y la odometría de encoders. La covarianza asociada a cada sensor se ajustó para 

reflejar su fiabilidad: los encoders contribuyen con la velocidad lineal, pero su información 

de orientación se consideró menos fiable, mientras que la cámara ZED aporta la estimación 

de posición y orientación con mayor precisión.  

Las pruebas se realizaron bajo dos escenarios: trayectorias rectas de 1.2 m y 3.6 m, y un 

recorrido en bucle cerrado.  

En las trayectorias rectas, todas las fuentes obtuvieron resultados aceptables, siendo el mayor 

de los errores de un 4,2% en la estimación a los 1,2 metros de la odometría visual estéreo.  

Tabla 1: Resultados de ensayo de odometría en línea recta 

Distancia real 

(m) 

Encoders (m) Visual Stereo (m) EKF (m) 

3.6 3.594 3.500 3.586 

1.2 1.173 1.250 1.223 

 

En el test de bucle cerrado, la odometría basada en encoders acumuló un error de 1.45 m, 

mientras que la solución EKF redujo la deriva a solo 6.5 cm, demostrando una mejora 

significativa en precisión y robustez. Este ensayo puso de manifiesto la principal debilidad 

de los encoders: su imprecisión en la estimación del desplazamiento angular.   

Tabla 2: Distancia euclídea entre el punto inicial y final tras ensayo de lazo cerrado 

Método Drift acumulado (m) 

Encoders   1.454 

Visual Stereo 0.065 

EKF 0.109 

 



 

Figura 4: Resultados de ensayo de lazo cerrado para encoders, odometría visual estéreo y EKF 

5. Conclusiones 

El proyecto logró uno de los objetivos principales: reemplazar un sistema de odometría 

basado exclusivamente en encoders por uno más preciso. La cámara ZED X Mini demostró 

ser una herramienta fiable y precisa para la estimación de pose en tiempo real, y su 

integración dentro del stack de navegación ROS2/Nav2 resultó satisfactoria. 

Las pruebas también evidenciaron que las soluciones monoculares, aunque atractivas por su 

coste reducido, aún presentan desafíos importantes, como la ambigüedad en la escala y la 

sensibilidad a las condiciones del entorno. Tanto los métodos clásicos como los basados en 

aprendizaje requieren una calibración o entrenamiento adicional para alcanzar niveles 

similares de rendimiento. Por tanto, mientras no se realicen estos ajustes de manera 

exhaustiva, no pueden ser considerados alternativas viables por sí solas. 

Por último, la fusión de sensores mediante EKF se consolidó como una solución robusta y 

fiable. Combinando las ventajas de cada fuente, el sistema resultante mostró bajo error 

acumulado, buena respuesta ante fallos parciales y coherencia en la navegación.  

Como trabajo futuro, se propone extender este módulo hacia una solución completa de 

SLAM visual, para eventualmente sustituir por completo el sistema LiDAR mediante 

cámaras, abriendo el camino a una navegación más eficiente, robusta y económica.   
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Chapter 1.  INTRODUCTION 

 

This project is part of the second edition of the UNIJES SocialTech Challenge. It is a robotics 

competition that involves the collaboration among four Jesuits universities: Universidad de 

Deusto, Universitat Ramon Llull, Universidad Pontificia Comillas, and Universidad Loyola, 

all of which belong to UNIJES, the network of universities associated with the Society of 

Jesus in Spain. The goal of this competition is to demonstrate the social impact of technology 

while promoting innovation and creativity among participants. 

This year, the competition took place in an indoor environment resembling a normal office, 

unlike last year when the environment was a maze with flat and texture-less surfaces. The 

goal  of this project is to improve the solutions developed in the previous year, developing 

further and adapting the existing models into the new conditions.   

The existing platform uses a wheel encoder as odometry source, giving bad quality 

information and performing poorly on slippery surfaces.  

The objective of this master's thesis project is to develop a new odometry module based on 

Visual Odometry (VO), making use of stereo and monocular cameras. This odometry system 

is integrated into a robotics platform, enabling more precise and efficient navigation in rich-

textured environments, and providing better performance than the existing wheel encoders.  

1.1 STATE OF THE ART  

1.1.1 LOCALIZATION IN AUTONOMOUS SYSTEMS 

Accurate localization is fundamental to autonomous systems' navigation. A primary 

challenge is the estimation of a robot's ego-motion, which involves determining its position 
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and orientation over time. With this information, the system can track changes in position 

and orientation after the robot has moved. 

For tasks such as path planning, object tracking, and obstacle avoidance, effective 

localization is crucial for the safe and efficient operation of autonomous systems. It ensures 

that the system can precisely determine its position relative to its surroundings, allowing it 

to make informed decisions about its movements, avoid obstacles, and follow planned 

trajectories. 

One of the most conventional and widely used techniques for localization in autonomous 

systems is the Global Positioning System (GPS), a subset of the broader Global Navigation 

Satellite System (GNSS). GPS is extensively used in outdoor environments due to its global 

coverage and relatively low cost in applications like autonomous vehicles, drones, and 

agricultural robots [4]. Despite advancements in GPS technology, which improves accuracy 

to centimeter levels, several challenges remain inherent to this method of localization, as it 

heavily relies on an external signal. Factors such as satellite signal blockage, multipath 

effects, high noise levels, and low bandwidth can degrade its accuracy, reducing the 

effectiveness of autonomous navigation, especially in high precision applications [2].  

As a result, research focuses mainly on developing alternative localization techniques that 

rely on onboard sensors to ensure more robust and reliable performance, particularly in 

environments where GPS is not available, such as indoor conditions. Techniques that involve 

the use of onboard sources of information allow robots to estimate their position and 

orientation by tracking movement relative to their starting point without the dependence on 

external signals.  

1.1.2 THE LOCALIZATION PROBLEM 

Localization refers to the process by which an autonomous mobile robot determines its 

position and orientation within a given map. It aims to answer the key question: "Where am 

I?", allowing the robot to perform tasks efficiently in dynamic or static environments. When 

it comes to the localization problem, the main challenges are [7]:  
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• Global localization (First-location problem): The robot has a map of the 

environment but starts without any prior knowledge of its pose (position and 

orientation) and must determine where it is from scratch, considering all possible 

locations. 

• Pose tracking: The robot knows its initial pose and continuously updates its location 

as it moves, correcting errors from sensors and movement. 

• Kidnapped robot problem: After being localized, the robot is moved to an 

unknown location and must acknowledge this situation and reinitiate the localization 

process to find its new pose. 

To estimate their pose, robots use sensors and internal data to make the most accurate 

estimation possible. The system captures environmental data using sensors such as LiDAR 

or cameras, which can be compared to a known map to help the robot determine its position. 

However, this data is often subject to noise and can be influenced by specific environmental 

conditions. For instance, LiDAR performance may degrade when operating on transparent 

or reflective surfaces, while camera-based systems can struggle in textureless environments. 

On the other hand, dead reckoning estimates the robot’s position by tracking its movement 

from a known starting point using odometry and inertial sensors. While it provides 

continuous position updates, dead reckoning suffers from error accumulation over time due 

to wheel slippage or sensor noise [8]. 

When a known map is available, the robot can localize itself by comparing its sensor data to 

this map, refining its pose as it moves. However, in unknown environments, the robot must 

use Simultaneous Localization and Mapping (SLAM) to both estimate its location and build 

a map of its surroundings simultaneously. It involves estimating both the robot's trajectory 

and the location of landmarks without any prior knowledge of the environment [10].  

All sensors, movements, and the map are subject to uncertainty. Therefore, the robot's pose 

is modeled as a probability distribution over its possible locations using the gathered data. 

To estimate its location, probabilistic methods are used to determine the likelihood of the 
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robot being at different positions on the map. Some of these methods include Markov 

localization, Kalman filters, particle filters, and topological localization [7]. 

Odometry 

As mentioned before, one core method for tracking movement in the localization process is 

dead reckoning, which estimates the robot's pose based on its movement from a known 

starting point. This technique relies on odometry and inertial sensors to provide the system 

with information about the robot's change in position and orientation. 

Odometry can be defined as the use of the data of local sensors to estimate an agent's change 

in pose over time, given a particular starting point [1]. The most common sensors and 

techniques applied are the following.  

Table 1: Comparative Analysis of Odometry Sensors and Techniques [4] 

Odometry 

Method 

Technology used Advantages Disadvantages 

Wheel 

Odometry 

Uses encoders 

attached to the 

robot’s wheels to 

measure rotations, 

converting them into 

linear distance based 

on wheel radius. 

• Simple and cost-

effective 

• Easy to implement 

• Works well on 

smooth, even 

surfaces 

• Prone to cumulative 

errors due to wheel 

drift. Incrementing 

inaccuracies over 

time 

• Problematic on 

slippery or uneven 

surfaces.  

• Wheel slippage leads 

to deviations from 

actual movement 

INS 

Odometry 

Utilizes an Inertial 

Navigation System 

with accelerometers 

and gyroscopes to 

continuously 

calculate position 

and velocity. 

• Provides high-

frequency updates 

on position and 

orientation. 

• Crucial for real-

time applications 

• Prone to drift 

accumulation due to 

sensor errors 

• Errors compound 

over time leading to 

inaccuracies 
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• Requires high-cost 

equipment for 

accuracy 

• Often used alongside 

other systems to 

enhance accuracy 

Laser 

Odometry 

Employs laser 

sensors (e.g., 

LIDAR) to measure 

distance by 

transmitting laser 

beams and analyzing 

reflected light; 

includes Time of 

Flight and phase-

shift methods. 

• High-resolution 

performance. 

• Effective in 

obstacle detection, 

mapping, and 3D 

motion capture 

• High cost 

• Requires significant 

computational 

resources for data 

analysis 

• Ineffective with 

transparent materials 

like glass due to 

unreliable reflections 

Visual 

Odometry 

Estimates motion by 

analyzing changes in 

consecutive images 

from onboard 

cameras, tracking 

visual features across 

frames. 

• Immune to wheel 

slippage. 

• Provides accurate 

trajectory 

estimates (relative 

errors as low as 

0.1% to 2%) 

• Applicable to 

wheeled, aerial, or 

legged systems.  

• Highly dependent on 

lighting and visual 

texture. 

• Struggles in low-light 

or featureless 

environments 

• Sensitive to motion 

blur and occlusions 

• Drift accumulates 

over time without 

correction 

• Requires substantial 

computational 

resources 

 

Considering the comparative analysis of odometry methods presented in Table 1, Visual 

Odometry (VO) has been selected as the focus of this project. VO aligns closely with the 

specific requirements of the use case.  
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1.1.3 VISUAL ODOMETRY  

Visual Odometry consists in estimating a vehicle’s change in position and orientation over 

time, relying on the acquisition of image frames. The challenge of recovering relative camera 

poses and three-dimensional structures from a series of camera images is referred to as 

structure from motion (SfM) in the computer vision field. Visual Odometry can be viewed 

as a specific instance of SfM [5].  

The problem lies in identifying the rigid body transformation matrix between two camera 

frames. This matrix encodes both the rotation and translation of the camera, transforming a 

point in the previous frame to its new position in the current frame. This can be expressed in 

the following way: 

𝑻𝒌
𝒌−𝟏 =  [𝑹𝒌

𝒌−𝟏 𝒕𝒌
𝒌−𝟏

𝟎 1
] (1) 

Where 𝑹𝒌
𝒌−𝟏 is the rotation matrix (3x3) and 𝒕𝒌

𝒌−𝟏 is the translation vector (3x1), representing 

the transformation from frame 𝒌 − 𝟏 to frame 𝒌. Therefore, when there is a succession of 

frames, relative transformations can be concatenated to obtain the relation between the initial 

 𝑿𝟎 and final camera pose 𝑿𝒌 [5].  

𝑿𝒌 = 𝑻𝒌
𝟎 𝑿𝟎 (2) 

VO methods can be classified in various ways. In this project, the classification will be based 

on the way motion is estimated. The classification can be seen in:  

 

Figure 5: Visual Odometry categorization based on motion estimation [1] 
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Knowledge-based Methods 

Knowledge-based methods, also called classical approaches, use camera geometry to 

estimate motion by analyzing how features shift between frames. These methods are reliable 

and well-understood, forming the basis of many traditional VO systems. However, their 

accuracy depends on good feature detection and can be limited in environments with bad 

illumination conditions or weak visual features. 

Motion estimation 

Motion estimation is a fundamental step in VO systems, as it calculates the camera's 

movement between consecutive images obtaining the transformation matrix 𝑻𝒌
𝒌−𝟏 between 

two images, 𝐼𝑘−1 and 𝐼𝑘, using two sets of corresponding features 𝑓𝑘−1, and 𝑓𝑘 identified at 

time instances 𝑘 − 1 and 𝑘 [5]. The complete trajectory of the camera (and the agent it is 

attached to) can be reconstructed by concatenating all the transformation matrices through a 

trajectory. Depending on whether the feature correspondences are expressed in two or three 

dimensions, there are three main methods for motion estimation, 2D to 2D, 3D to 3D and 

3D to 2D [12].  

2D to 2D 

In this method, both feature sets from consecutive images are represented in 2D coordinates. 

It relies on the Essential Matrix, which encapsulates the camera motion parameters, 

including rotation and translation, but with an unknown scale factor [5]. This method is 

particularly beneficial due to the epipolar constraint, ensuring that corresponding feature 

points in one image lie along a line in the other image. This constraint simplifies the 

estimation process, and algorithms like the five-point algorithm or eight-point algorithm are 

often employed [12].  

The 2D-to-2D method is favored for its efficiency in motion estimation, avoiding the need 

for triangulation, making it highly suitable for monocular VO setups where 3D points 

cannot be directly measured. 
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3D to 3D 

In this method, both feature sets are represented in 3D, often through triangulation using 

stereo camera systems. The camera motion is calculated by determining the optimal rigid-

body transformation that best aligns the two sets of 3D points. This optimization process 

minimizes the sum of squared distances between corresponding 3D points in the two frames, 

involving the use of algorithms such as Iterative Closest Point (ICP) or Singular Value 

Decomposition (SVD) [5]. 

The ICP algorithm aligns 3D point clouds generated from consecutive frames. It iteratively 

refines the transformation (rotation and translation) between two sets of 3D points by 

minimizing the Euclidean distance between corresponding points in the point clouds. ICP is 

especially effective in scenarios where accurate depth information is available. It can be used 

to complement other motion estimation methods by refining the initial pose estimate 

obtained from algorithms like RANSAC or model-based predictions [8]. 

On the other hand, the SVD algorithm works computing the rigid transformation (rotation 

and translation) between two sets of 3D point, minimizing the distance between 

corresponding points in the two datasets. It is often employed for initial pose estimation in 

visual odometry systems, offering robust performance when complemented by techniques 

like Sparse Bundle Adjustment for refinement [9]. 

While these methods provide absolute scale directly, they suffer from significant depth 

uncertainty in 3D points, especially along the depth axis. This uncertainty can lead to less 

accurate motion estimates, which is why it is less frequently used compared to the 3D-to-2D 

approach. However, in environments with precise 3D data, this method can still be effective. 

3D to 2D 

This approach uses 3D points from the previous frame and matches them to their 

corresponding 2D projections in the current frame. This method offers greater accuracy by 

minimizing reprojection errors, making it advantageous over the 3D-to-3D method, which 

minimizes pose errors [6].  
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In stereo VO systems, 3D points can be triangulated directly from stereo image pairs, while 

in monocular systems, 3D points need to be triangulated across multiple frames. The PnP 

algorithm (Perspective-n-Point) is commonly used to calculate the camera pose [14]. This 

method provides a balance between computational cost and accuracy and is commonly seen 

in real-time VO applications. 

Feature-based methods 

Feature-based methods in Visual Odometry (VO) leverage prominent points or regions 

within each frame to estimate camera movement. These key features, which include corners, 

edges, lines, and blobs, are distinguishable based on intensity, color, or texture, making them 

more likely to correspond across multiple images [19].  

The primary advantage of feature-based VO lies in its robustness against geometric 

distortions and illumination inconsistencies. However, by focusing on a limited set of points, 

these methods may discard valuable information, making them highly dependent on accurate 

correspondence and minimizing outliers. The typical pipeline for feature-based algorithms 

includes a feature detection and matching stage, followed by motion estimation and 

optimization [1].  

The common pipeline for this method is as follows:  

 

Figure 6: Common pipeline for feature-based techniques [1] 
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Common algorithms applied in feature-based techniques are: SIFT [33], SURF [14], ORB 

[15], BRISK [16] or the Harris Corner Detector [17], among others.  

Appearance-based methods 

Appearance-based Visual Odometry estimates the camera's pose by analyzing the intensity 

of all image pixels and minimizing photometric error between consecutive frames. Unlike 

feature-based VO, which focuses on detecting and matching distinct points, appearance-

based methods use the entire geometric information from the camera’s images. This holistic 

approach reduces aliasing issues often encountered in scenes with similar patterns, leading 

to more accurate and robust pose estimates. It is particularly effective in low-texture or low-

visibility environments, where feature-based methods tend to struggle [20]. They can be 

categorized into:  

• Regional based methods: The motion is estimated by concatenating camera poses 

by performing an alignment process for two consecutive images. This technique has 

extended its implementation by measuring the invariant similarities of local areas 

and using global constraints.  

• Optical flow-based methods: This method analyzes raw visual pixel data using an 

optical flow (OF) algorithm to estimate camera motion by examining changes in 

pixel intensity between two consecutive frames. As the illumination of a pixel 

changes, the camera's motion is determined by computing the 2D displacement 

vector of points projected in both frames [18].  

Learning-based Methods 

Learning-based methods in Visual Odometry leverage data-driven approaches to estimate 

camera motion, allowing for a better understanding of the scene without the need for explicit 

modeling. These methods require training on sufficiently large and representative datasets, 

making them more robust against image noise and eliminating the necessity for a priori 

knowledge of camera calibration parameters. As a result, there has been a significant shift 
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toward learning-based techniques in VO in recent years [1]. A common pipeline in this 

method is shown in Figure 7.   

 

Figure 7: Common pipeline for machine learning techniques [1]. 

With this configuration, the neural network can either complement one of the traditional 

algorithms for better performance, but it can also directly provide the position and rotation 

estimation.  

These methods provide more complex scene representations without the need for explicit 

geometric modeling, making them capable of understanding a wide variety of environments. 

They also enable end-to-end learning, as the pipeline for motion estimation can be simplified 

into a single model. Additionally, they are camera agnostic, eliminating the necessity to 

calibrate the sensors [3]. 

Despite their advantages, learning-based methods in Visual Odometry (VO) have notable 

disadvantages stemming from their reliance on deep learning. They depend heavily on large, 

representative datasets for training; thus, insufficient or biased data can lead to poor 

generalization and inaccurate estimations [21]. These methods require significant 

computational resources, making them less suitable for real-time applications. Furthermore, 

they are also prone to overfitting which can reduce performance when encountering new 

scenarios. Lastly, learning-based approaches may struggle in edge cases, such as low-texture 

environments or highly dynamic scenes, where traditional methods often excel [3]. 
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1.2 MOTIVATION 

The rapid advancements in robotics and autonomous systems have significantly contributed 

to improving the quality of life for individuals with mobility challenges. As society continues 

to embrace technology, there is a growing need to develop innovative solutions that enhance 

accessibility and independence for people with disabilities. The integration of autonomous 

navigation technologies, such as Visual Odometry (VO), plays a critical role in achieving 

these objectives. 

This project aims to address the limitations identified in last year's solution by developing a 

new odometry module system using VO. The motivation stems from the recognition that 

accurate and reliable localization is essential for autonomous systems. By enhancing 

localization and mapping capabilities, the proposed VO module will provide more efficient 

navigation for the wheelchair system.  

Furthermore, the challenges presented by indoor environments, including variable lighting 

conditions and dynamic obstacles, underscore the need for robust motion estimation 

techniques. By focusing on improving the odometry system, this project seeks to contribute 

to ongoing research in robotics and to develop practical applications that can positively 

impact on the lives of users. 

1.3 PROJECT OBJECTIVES 

The primary goal of this master's thesis is to explore and develop a new odometry system 

for the autonomous wheelchair, with the aim of replacing the existing wheel encoder-based 

odometry. This project is divided into two main phases: stereo visual odometry integration 

and monocular visual odometry exploration. 

In the first phase, the objective is to integrate the Stereolabs ZED X Mini stereo odometry 

system, which combines visual odometry with IMU data, into the existing robotic platform. 

This involves obtaining better results than the existing odometry module by leveraging the 

advantages of a stereo system.  
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Once the stereo system is integrated, the project focuses on monocular visual odometry 

solutions. This phase consists of two main objectives. First, knowledge-based techniques are 

explored to evaluate traditional algorithms for motion estimation. Second, learning-based 

techniques are investigated to further improve the performance of monocular odometry.  

All solutions are compared, focusing on the key objective of this thesis, that is to conduct a 

comprehensive comparison between the stereo visual odometry system and the developed 

monocular visual odometry solutions, with the aim of establishing a cost-effective 

monocular model that reduces hardware acquisition costs.   
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Chapter 2.  ARCHITECTURE 

 

2.1 HARDWARE 

AGILEX TRACER AGV  

The autonomous navigation system is built upon the ROBOT TRACER AGV platform, 

developed by AgileX Robotics [22]. This platform features a robust mechanical structure 

designed for indoor and light outdoor use and is equipped with embedded wheel encoders 

that can serve as a source of odometry data. The encoder system measures the angular 

velocity of the wheels, from which the linear and angular velocities of the entire platform 

are derived, enabling basic dead-reckoning capabilities for pose estimation. 

 

Figure 8: Agilex Tracer AGV robotic platform [22] 

While functional for general motion tracking, this encoder-based odometry system presents 

several limitations. The most remarkable is the accumulation of drift over time, which is 

particularly problematic in environments with slippery or uneven surfaces. Wheel slippage 

and mechanical wear also contribute to inaccuracies in trajectory estimation, degrading the 

quality of localization and mapping modules. Furthermore, one of its main limitations lies 

in its poor precision when estimating angular velocities. 
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NVIDIA Jetson AGX Orin 

The computational core of the system is the NVIDIA Jetson AGX Orin [23], a high-

performance embedded processing unit optimized for real-time AI and robotics applications. 

This module hosts all the critical software components responsible for planning, localization, 

and control, leveraging the capabilities of the Nav2 stack within ROS2. 

In the context of this project, focused on visual odometry using camera data, the Jetson AGX 

Orin plays a central role, as it must process high-resolution image streams, extract visual 

features, and estimate motion in real time. 

This computer integrates a GPU based on the NVIDIA Ampere architecture, featuring 2048 

CUDA cores and 64 Tensor cores, capable of delivering up to 275 TOPS (trillions of 

operations per second). These characteristics make it well-suited for deep learning inference 

and computer vision pipelines. Moreover, it includes a 12-core ARM Cortex-A78AE CPU 

and 64 GB of LPDDR5 RAM, which enable high-throughput parallel processing and low-

latency computation. These features are essential for maintaining accurate and responsive 

odometry estimation during autonomous navigation [23].  

The platform runs on Ubuntu 22.04 LTS and utilizes the NVIDIA JetPack SDK, providing 

an integrated development environment with optimized libraries for AI, vision, and robotics. 

StereoLabs ZED X Mini 

The StereoLabs ZED X Mini [24] is a compact stereo camera specifically engineered for 

robotics and autonomous systems. It features dual global shutter sensors capable of capturing 

synchronized stereo image pairs with high resolution and low latency, making it well-suited 

for visual odometry tasks in dynamic environments. The camera is designed to operate 

reliably under challenging lighting conditions and is enclosed in a robust IP66-rated housing 

for improved durability. 
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For visual odometry applications, the ZED X Mini offers the advantage of real-time depth 

perception, derived from stereo disparity. This allows direct metric-scale motion estimation, 

an essential requirement for autonomous navigation in indoor and structured environments. 

In addition to its stereo imaging capabilities, the ZED X Mini includes an integrated Inertial 

Measurement Unit (IMU), which provides accelerometer and gyroscope data for motion-

aware computations and sensor fusion [24]. 

The camera connects to the embedded system via a GMSL2 interface, which ensures high-

bandwidth and low-latency data transfer. In the configuration with the NVIDIA Jetson AGX 

Orin, a dedicated capture card is employed to receive and decode the high-speed video 

stream [24]. 

 

Figure 9: StereoLabs ZED X Mini [24] 

StereoLabs ZED X One 

The StereoLabs ZED X One [25] is a monocular camera designed for embedded AI and 

computer vision applications. It is equipped with a single global shutter sensor that captures 

high-resolution images with minimal motion blur, which is critical for feature tracking in 

visual odometry. Its compact form factor and industrial-grade build make it a suitable option 

for real-world robotic deployments. The ZED X One supports both monochrome and color 

imaging, offering flexibility in algorithm design depending on lighting conditions and 

computational constraints.  

 

Figure 10: StereoLabs ZED X One [25] 
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2.2 PREVIOUS ARCHITECTURE  

2.2.1 ROS2 AND NAV2 

The system developed in this project is based on Robot Operating System 2 (ROS2) [61], a 

modular and real-time oriented middleware designed to support the development of 

distributed robotic systems. ROS2 provides a communication infrastructure based on the 

DDS (Data Distribution Service) standard, enabling efficient and scalable data exchange 

between components through publish/subscribe topics, services, and actions. It is an ideal 

choice for modern robotic applications, particularly in industrial or embedded contexts. 

The main components in ROS2 are:  

• Nodes: In ROS2, nodes are the fundamental execution units that perform specific 

tasks such as sensor data acquisition, actuator control, or running planning 

algorithms. Each node operates as an independent process and communicates with 

other nodes through message exchange. 

• Messages: Nodes transmit data using messages, which are predefined data structures 

that encapsulate various types of information—such as numerical values, strings, or 

vectors. Messages enable structured and consistent communication across the 

system. 

• Topics: Topics serve as communication channels where nodes can publish or 

subscribe to messages. For instance, a node collecting distance sensor data may 

publish it to a topic, allowing other nodes to receive and process that information if 

they subscribe to the same topic. 

• Launch files: Launch files are scripts that automate the initialization of multiple 

nodes and configure their parameters. They are essential for managing complex 

robotic systems by facilitating synchronized execution and configuration. 

• Workspaces: A ROS2 workspace is a structured development environment that 

organizes source code, build artifacts, and installation outputs. It supports efficient 
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code management and modular development, typically structured into src, build, and 

install directories. 

• Packages: Packages are the basic units of software organization in ROS2. Each 

package includes nodes, libraries, configuration files, and other resources needed to 

implement a specific functionality. This modular design supports code reuse and 

collaborative development in ROS2. 

Within this ecosystem, the Nav2 (Navigation 2) stack is the ROS2-native navigation 

framework. It offers a comprehensive suite of tools for enabling autonomous navigation, 

including global and local path planning, localization, obstacle avoidance, costmap 

generation, and motion control. NAV2 is designed to operate in dynamic and real-world 

environments, leveraging sensor inputs and map data to continuously compute safe and 

efficient paths for mobile robots [2]. 

For proper functionality, NAV2 requires three essential inputs: 

• Odometry data, used to estimate the robot’s current position and velocity in real 

time.  

• Laser scan data, essential for obstacle detection and costmap generation.  

• Static map, used for global localization and path planning when operating in mapped 

environments. This input is required when using AMCL but may be optional when 

using real-time SLAM or pure odometry-based navigation. 

The proposed module will directly publish to the /odom topic, allowing operation within the 

NAV2 navigation pipeline. As such, the design and implementation of this module have 

been tightly coupled with the structural and operational assumptions of the ROS2 and NAV2 

systems. 

Another essential element in the ROS 2 architecture is the use of TF (Transform). The TF 

system plays a fundamental role in managing the spatial relationships between different 

coordinate frames of a robot. Similar to many robotics’ applications, ROS 2 relies on a 

dynamic transformation tree that keeps track of how these frames relate to one another over 
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time. This transformation tree is time-buffered, meaning it stores the history of transforms, 

enabling the system to compute the position of points, vectors, and other geometric entities 

in any frame of reference at any specific timestamp. By maintaining this consistent spatial 

context, TF allows different components of the robot such as perception, planning, and 

control systems to interpret sensor data, issue movement commands, and localize the robot 

within its environment in a synchronized and coherent way [26][27]. 

2.2.2 EXISTING WORKSPACE ARCHITECTURE 

The robotic platform used in this project was developed within a ROS2 workspace named 

ros2_tracer_ws, integrating multiple subsystems essential for autonomous navigation [63].  

This workspace includes the following packages: 

• lidar_bringup: Contains launch files (lidar_display.launch.xml, 

lidar.launch.xml) to start and verify the LiDAR system, either for standalone 

testing or full system deployment. 

• livox_ros_driver2: The official device driver provided by the LiDAR manufacturer, 

responsible for publishing raw point cloud data in PointCloud2 format. 

• p2l_remapper: Introduced to adapt the Quality of Service (QoS) settings of the 

LiDAR output. This package ensures compatibility between the output of 

pointcloud_to_laserscan and the NAV2 stack’s expectations, 

• tracer_bringup: Central package for system orchestration, with launch files like 

tracer_real.launch.xml for navigation mode and 

tracer_real_scan.launch.xml for mapping or scan acquisition mode. 

• tracer_description: Provides the robot’s structural model, including .urdf and .stl 

files, defining frames, sensors, and physical dimensions used by TF and visualization 

tools. 
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• tracer_odometry: Generates odometry based on wheel encoder feedback. This 

module publishes estimated robot pose and velocity on the /odom topic. 

• tracer_tcp_ros_bridge: Establishes TCP/IP communication with a Raspberry Pi, 

enabling bidirectional data exchange for robot feedback and waypoint tracking. 

• waypoint_finder and waypoint_commander: These packages manage route 

planning and control. The former identifies target and current poses, while the latter 

sends ordered waypoint sequences to be executed by the robot. 

The general execution of the system can be understood and is depicted in: 

Figure 11: ROS2 system graph [63] 

2.2.3 ODOMETRY 

The initial odometry system relied exclusively on the wheel encoders embedded in the 

AgileX TRACER AGV platform. As aforementioned, these encoders provide measurements 

of linear and angular velocities.  

The architecture is based on the ROS2 node /odometry_node, contained in the 

tracer_odometry package. This node subscribes to the velocity measurements transmitted 
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via CAN bus and processes the incoming measurements to publish pose estimates (position 

and orientation) and velocity (twist) data published to the /odom topic.  

The published /odom topic has the following structure:  

odom_msg = Odometry() 

odom_msg.header.stamp = self.get_clock().now().to_msg() 

odom_msg = Odometry() 

odom_msg.header.frame_id = 'odom' 

odom_msg.child_frame_id = 'base_footprint'  

odom_msg.pose.pose.position.x = self.x_ 

odom_msg.pose.pose.position.y = self.y_ 

odom_msg.pose.pose.position.z = 0.0 

w, x, y, z = euler2quat(0, 0, self.theta_) 

odom_msg.pose.pose.orientation.x = x 

odom_msg.pose.pose.orientation.y = y 

odom_msg.pose.pose.orientation.z = z 

odom_msg.pose.pose.orientation.w = w 

odom_msg.twist.twist.linear.x = self.vel_x 

odom_msg.twist.twist.linear.y = self.vel_y 

odom_msg.twist.twist.angular.z = self.vel_theta 

self.publisher_.publish(odom_msg) 

Code 1: /odom publisher 

As it was seen before, the Nav2 stack subscribes to /odom to perform localization, path 

planning, and motion control.  

Extracting from the entire system only the odometry pipeline, the structure is depicted as in 

Figure 12. 

 

Figure 12: Odometry module in previous architecture 

As it was remarked before, the TF system is also crucial is this type of system. In this 

autonomous navigation project, the TF tree has the following hierarchy: 
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• map → odom: This transformation is published by the localization module (Nav2). 

It accounts for global corrections to the robot's estimated position, allowing the 

system to correct drift in odometry and maintain long-term consistency relative to a 

known map [26].  

• odom → base_footprint: Published by the odometry module, this dynamic 

transformation represents the incremental pose changes of the robot calculated from 

sensor data, providing continuous, real-time updates of the robot's pose relative to its 

starting position. 

In this case, this transformation is published by the /odometry_node, and has the 

following structure:  

transform_msg = TransformStamped() 

transform_msg.header.stamp = self.get_clock().now().to_msg() 

transform_msg.header.frame_id = 'odom' 

transform_msg.child_frame_id = 'base_footprint' 

transform_msg.transform.translation.x = self.x_ 

transform_msg.transform.translation.y = self.y_ 

transform_msg.transform.translation.z = 0.0 

transform_msg.transform.rotation.x = x 

transform_msg.transform.rotation.y = y 

transform_msg.transform.rotation.z = z 

transform_msg.transform.rotation.w = w 

self.tf_broadcaster_.sendTransform(transform_msg) 

Code 2: Transform publisherin /odometry_node 

• base_footprint → base_link: This is the first of the static transformations defined 

in the robot’s URDF file (tracer_v1.xacro). Static transforms define fixed spatial 

relationships between the robot’s structural components and its reference frames, 

ensuring consistent alignment across all sensors and processing modules [25]. In this 

case, base_footprint serves as a 2D projection of the robot’s physical center. 

Therefore, it is located at its base, at ground level with no vertical (Z-axis) 

component. It simplifies the representation of the robot’s pose for 2D navigation 

systems, such as those used in Nav2, which operate under the assumption that the 

robot moves exclusively on a planar surface.  
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• base_link → [fixed_links]: This set of static transformations connects the robot’s 

base to fixed components such as lidar_link or the different wheel_links. Defined in 

the URDF file (tracer_v1.xacro), these transforms specify the exact position of 

sensors and mechanical parts relative to the robot’s body. They ensure consistent 

spatial alignment for sensor data interpretation and control. 

 

Figure 13: Previous architecture TF tree generated with ros2 run tf2_tools view_frames 

System shortcomings 

While this initial setup provided basic autonomous navigation capability, it exhibited 

shortcomings that significantly limited the system’s performance for autonomous 

navigation.  

One of the problematic issues was the accumulated drift, inherent to wheel encoder-based 

odometry, caused by continuous integration of small measurement errors. This drift became 

particularly severe when operating on slippery or uneven surfaces, which are common in 

real-world operational environments. This led to a system performance very dependent on 

the conditions where the autonomous wheelchair would be deployed.  

Additionally, the system displayed a significant lack of accuracy in estimating angular 

velocities, therefore exacerbating localization errors over time when calculating the 
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orientation. Consequently, cumulative inaccuracies severely compromised trajectory 

estimation.  

These limitations highlighted the urgent need to design and implement a more precise and 

robust odometry system.  

2.3 NEW ODOMETRY ARCHITECTURE 

The new architecture was developed taking into consideration all available data sources 

within the scope of the project, with the explicit goal of enhancing robustness, accuracy, and 

adaptability across diverse operational conditions. These sources, most of them already 

mentioned in the hardware section, are: 

• Wheel encoders 

• Stereo camera 

• Monocular camera 

• Inertial data, obtained from embedded IMUs in the cameras. 

The detailed methodology and algorithms applied to obtain, process and produce these data 

streams into consistent odometry information will be discussed in subsequent chapters. 

As discussed in the state-of-the-art section, accurate localization is crucial for autonomous 

mobile robots, which must continually estimate their position and orientation (pose) within 

their operating environment. Using data from a single sensor can lead to cumulative errors 

and drift over time, particularly when dealing with noisy measurements or incomplete 

information. For instance, relying solely on wheel encoders typically introduces inaccuracies 

due to wheel slippage or uneven surfaces, while visual sensors alone might suffer from 

lighting changes or featureless environments. Therefore, these processes typically require 

integrating data from multiple sensors, each subject to noise, bias, or incompleteness.  

 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL 

 

ARCHITECTURE 

27 

Extended Kalman Filter  

The Extended Kalman Filter (EKF) is a widely adopted method in robotics to perform sensor 

fusion, providing robust state estimation by probabilistically combining information from 

diverse sensor sources, even under uncertain and noisy conditions. 

The EKF is a recursive Bayesian estimator designed to handle nonlinear state estimation 

problems. It extends the classical linear Kalman Filter by linearizing the nonlinear system 

dynamics and sensor models at each estimation step, effectively approximating the system 

as locally linear around the current state estimate [28] [29]. The state estimation consists of 

the following two phases:  

1. Prediction 

This step uses a motion model to project the previous state estimate forward in time, 

incorporating expected robot motion. The EKF computes a predicted mean state and 

associated covariance, based on previous state information and assumed motion 

noise. This covariance quantifies the filter's confidence in its prediction, allowing it 

to gauge how much weight to give to subsequent sensor measurements.  

2. Correction 

When a new sensor measurement becomes available, the filter performs an update 

step. The EKF compares the difference between the actual sensor measurement and 

the measurement predicted by the current state estimate. A weighting term, known 

as the Kalman gain, which is derived from the relative uncertainties between 

prediction and observation, is used to adjust the state estimate accordingly. Sensors 

with lower measurement uncertainty (noise) have a more significant impact on the 

updated state.  

This iterative prediction-correction cycle enables continuous refinement of the robot's pose 

estimate, integrating noisy and partial sensor data into a single coherent and statistically 
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optimal estimate. The linearization approach, however, requires the system dynamics to be 

approximately linear within short intervals between updates, which is typically valid in 

mobile robotics [29].  

To implement this functionality within the ROS2 framework, the project relies on the 

robot_localization package. This package provides a robust and flexible EKF 

implementation through its main node, ekf_localization_node, which supports full 3D pose 

estimation and multi-sensor fusion. It allows selective integration of specific state variables 

per sensor input, making it highly adaptable to a wide range of robotic platforms. 

With all the above in place, the resulting architecture replaces the previous encoder-only 

approach. This solution offers a more modular design, allowing each sensor input to be 

selectively integrated as needed.  It integrates the different odometry inputs as ROS2 topics 

and routes them to the EKF node, which fuses the data and publishes the refined state 

estimate on the /odom topic. The EKF configuration is described in detail in subsequent 

chapters. This new structure is illustrated in the diagram in Figure 14.  

 

Figure 14: Odometry module in new architecture 

It has to be noted that the node /zed_odom_transformer is designed to work only with one 

input, as both cameras will never be working at the same time.  
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As discussed in the previous section, the system maintains a TF tree to represent the spatial 

relationships between multiple coordinate frames over time. This structure remains largely 

similar in the new architecture; however, certain key differences have been introduced to 

accommodate the updated odometry modules: 

• map → odom: This transformation remains unchanged and continues to be 

published by the localization module. 

• odom → base_footprint: This transformation reflects one of the most significant 

changes. In the previous architecture, it was published by the sole odometry source—

namely, the encoder-based odometry. In the updated system, this transformation is 

published by the Extended Kalman Filter (EKF) node (/ekf_filter_node), which also 

generates the odometry message. This configuration is further detailed in the EKF 

parameter section. 

• base_footprint → base_link: This static transformation remains unchanged and is 

still defined within the URDF file, maintaining the same fixed spatial relationship. 

• base_link → [fixed_links]: These static transforms also remain the same, with the 

addition of a new link corresponding to the camera. This is defined as 

zed_camera_link and is published as part of the ZED camera's TF tree. 

 

Figure 15: New architecture TF tree 
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Chapter 3.  STEREO VISUAL ODOMETRY 

 

3.1 STEREOLABS SOLUTIONS 

The hardware and software used in this module are based on solutions provided by 

StereoLabs. This company is specialized in stereo vision hardware and software solutions 

that tries to provide robots with “human vision”, enabling advanced perception through 

spatial analytics and depth sensing. Its ecosystem, centered around the ZED series of 

cameras, integrates high-performance stereo and monocular cameras as hardware, with a 

Software Development Kit (SDK) solution, creating a unified perception and processing 

framework for autonomous systems [30].  

StereoLabs pioneered depth-sensing camera technology, originally stemming from a 

collaboration with the entertainment industry to stabilize 3D footage. Since then, the 

company has evolved to serve different industrial sectors such as agriculture, construction, 

or logistics, enabling robots to perform tasks like crop assessment, material handling, and 

space monitoring in dynamic environments. The StereoLabs solution tries to address 

limitations of traditional sensors (LiDAR or radar), offering an accurate and scalable 

alternative for detailed spatial perception [30].  

As mentioned in previous chapters, the hardware chosen for this solution is the ZED X Mini 

stereo camera.  

3.2 ZED SDK AND SYSTEM INTEGRATION 

For robotics projects using ROS2, the ZED SDK is accessed with the zed-ros2-wrapper 

package. This ROS2 interface provides comprehensive and high-level integration with the 
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ZED camera system, allowing for both hardware configuration and real-time acquisition and 

processing of visual and spatial data. 

Among the main types of data published by the wrapper are: 

• Rectified and unrectified left and right images 

• Depth data 

• 3D point cloud 

• IMU data 

• Detected objects 

• Visual Inertial Odometry (VIO).  

 

VIO integration 

The zed-ros2-wrapper package includes a modular ROS2 node that publishes real-time pose 

estimation through the topic /zed/zed_node/odom, representing the camera’s position and 

orientation in space as computed from stereo visual data combined with inertial 

measurements from the onboard IMU. The result offers a 6DOF robust pose tracking 

solution.  

This odometry output follows the standard nav_msgs/Odometry message format, which 

includes both pose and twist information, along with their respective covariance matrices, 

which are internally provided by the system.  

However, by default, the system is configured to compute a full VSLAM solution, and 

therefore, it publishes the whole transformation tree [32], as illustrated in Figure 16. 
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Figure 16: ZED full VSLAM TF tree 

The first step to implement the ZED X Mini VIO odometry solution is to disable the internal 

VSLAM computation, thereby stopping the publication of the map → odom transform. If 

this is not deactivated, it may cause a conflict with the transform published by the Nav2 

stack. This is controlled via the publish_map_tf parameter. 

Secondly, the publication of the odom → zed_camera_link transform by the ZED camera 

must also be disabled. As described in the New Odometry Architecture section, this 

transform will instead be published by the EKF fusion node to ensure consistency. To 

prevent conflicting publishers, the publish_tf parameter should be set to false. 

Additionally, the base frame is changed to base_footprint to maintain consistency with the 

rest of the system. This transformation will later be linked to its real physical position 

through static transforms. This configuration is set via the odometry_frame parameter. 

Several other adjustments were made to improve system efficiency and alignment with the 

robot's operating conditions: 
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• two_d_mode is enabled to constrain the system to 2D pose tracking, as the robot 

operates on a planar surface with no motion along the Z-axis. 

• pos_tracking_enabled is activated to ensure that position tracking is properly 

initialized and maintained. 

All these parameters can be configured in the zed-ros2-wrapper package, in the following 

relative path: zed_wrapper/config/common_stereo.yaml 

Publishing transforms 

During the integration of the stereo odometry system using the ZED X Mini camera, an 

inconsistency was encountered in the TF tree. Despite having defined a static transformation 

between the robot’s base frame (base_link) and the camera frame (zed_camera_link) in the 

URDF model, the system failed to interpret and apply this transform correctly when using 

the visual-inertial odometry published by the ZED SDK on the topic /zed/zed_node/odom. 

This caused misalignment in the estimated poses, particularly in the rotational components. 

Since the camera is physically offset from the robot's base, any rotation of the robot 

introduces additional apparent motion at the camera’s position. If this offset is not properly 

accounted for, the published odometry reflects a trajectory that deviates from the robot's 

actual motion. In contrast, translational movement along a straight line is less affected by 

the offset, which is why position estimates during linear motion remained more consistent., 

as can be seen in  Figure 17.  
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Figure 17: TF issue with zed_camera_link 

This issue led to incorrect pose interpretation by downstream components such as the EKF 

and the navigation stack, which expect odometry information to be expressed relative to the 

robot’s physical base (base_link). As a solution, a dedicated ROS2 node named 

zed_odom_transformer was developed. This module adjusts the original odometry data by 

applying the inverse of the known static transformation between the camera and the base 

frame, effectively re-referencing all poses to base_link. 

The node subscribes to the raw ZED odometry topic (/zed/zed_node/odom) and publishes 

the corrected output on a new topic (/odom_zed_corrected). The transformation applied is 

defined by: 

• Translation: A static vector from base_link to zed_camera_link, defined as [0.22, 

0.25, 0.7] in meters. 

• Rotation: A fixed identity rotation (no roll, pitch, or yaw) was assumed, based on the 

known mechanical alignment of the camera. 
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Chapter 4.  MONOCULAR VISUAL ODOMETRY. 

CLASSIC TECHNIQUES 

As discussed in the state-of-the-art section, Visual Odometry (VO) can broadly be 

categorized into two groups: knowledge-based methods and learning-based methods. 

Knowledge-based (also called classic or geometric-based) approaches leverage traditional 

geometric principles and explicit camera models to estimate motion from image sequences. 

These approaches rely on accurately detecting and tracking visual features across 

consecutive frames. In contrast, learning-based methods utilize data-driven approaches from 

large datasets to “teach” models to estimate camera motion.  

This chapter focuses on knowledge-based methods, exploring their fundamental components 

and algorithms. The exploration and implementation of learning-based approaches are 

reserved for subsequent chapters. 

4.1 THEORETICAL BACKGROUND 

A standard Visual Odometry system, as illustrated in Figure 18, consists of several sequential 

processing steps: 

 

Figure 18: Main components of a VO system [5] 
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In Visual Odometry, establishing point correspondences between successive images can be 

approached in two principal ways: feature tracking and feature matching.  

Feature tracking involves detecting features in one image and subsequently locating their 

positions in the next frames using local search techniques such as optical flow, as it was seen 

in the state of the art, or normalized cross-correlation. This approach is particularly effective 

when the motion between frames is small, as it preserves temporal continuity and is 

computationally efficient [5].  

On the other hand, feature matching detects features independently in each frame and 

associates them based on similar metrics between their descriptors. This method is more 

robust to larger inter-frame motions and changes in viewpoint, as it does not rely on 

proximity in pixel space but rather on descriptor distinctiveness. While tracking offers better 

temporal consistency, matching is often more resilient in dynamic or visually complex 

scenes [5].  

Feature detection 

Local features, which are also called keypoints or interest points, are distinct patterns in an 

image that stand out from their neighborhood in intensity, color, or texture. The main types 

are corners and blobs.  

A corner is typically defined as the intersection of two or more edges, appearing as a sharp 

change in intensity along at least two directions. Intuitively, one can recognize a corner by 

observing that moving a small window in any direction over a corner yields a significant 

change in intensity (unlike a flat region, which shows no change, or an edge, which shows 

change in only one direction). Because they represent distinctive geometric junctions, 

corners tend to be highly repeatable features, meaning that the same physical corner can be 

reliably detected in multiple images under different conditions. In contrast, a blob is an 

image region that is internally uniform or distinct from its surrounding neighborhood in 

intensity, color, or texture. Therefore, blobs are neither edges nor corners. Instead of a sharp 

junction, a blob is a cohesive region (for example, a spot or textured patch) that stands out 
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against its background. Unlike a corner, which can be pinpointed by a single pixel coordinate 

(the exact intersection points of edges), a blob is defined by an area and thus can only be 

localized by its boundary. As a result, the spatial location of a blob is less precise than that 

of a corner, but its scale and shape are much better defined by the size of its region. 

Furthermore, while a corner’s appearance remains similar across slightly different scales 

(making its inherent scale ambiguous), a blob’s extent immediately indicates its 

characteristic scale [34]. 

When choosing a good feature detector in computer vision, it should exhibit several key 

properties to reliably support tasks. The most relevant ones are [34]:  

• Repeatability: Given two images of the same scene under different viewpoints, 

scales (zoom levels), or illumination conditions, the detector should find a high 

percentage of the same physical features in both images. High repeatability requires 

the detector to be invariant to common geometric and photometric transformations, 

so that true scene points are still detected despite rotations, scale changes, or lighting 

differences.  

• Distinctiveness: The features must be salient and unique in appearance so that they 

can be correctly matched between images. The image patch around a detected point 

should carry rich, distinguishing information. Consequently, a simple repetitive 

pattern is not distinctive and would lead to ambiguous matches. 

• Accurate feature localization: It must be ensured that each feature’s coordinates 

and scale correspond closely to the true location and size of the pattern of interest.  

• Quantity of features: The detector should also produce an appropriate quantity of 

features for the task at hand. For example, tasks like object recognition, image 

retrieval, or 3D mapping benefit from a large number of features to increase 

robustness and coverage of the scene, whereas if features represent high-level 

semantic landmarks, a smaller number might suffice.  

• Invariance: The most useful features are those resilient to changes in viewpoint, 

scale, and illumination, remaining stable under such transformations. Invariance 
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greatly improves the chance that the same real-world point will be detected in 

different images.  

• Computational efficiency: A feature detector should ideally operate fast enough to 

handle large image datasets or real-time video streams. Efficiency considerations are 

crucial in practice. Increasing a detector’s invariance usually results in more complex 

computations, so a balance must be reached to keep detection and matching time 

reasonable for the given application.  

• Robust to noise: It should tolerate reasonable levels of image noise, compression 

artifacts, blur, and other imperfections without losing the true features.  

No single detector perfectly optimizes all these criteria, and there are often trade-offs. For 

example, as aforementioned, making a feature highly distinctive (or invariant to many 

transformations) can increase computational cost.  

Various feature detectors and descriptors have been developed through time to balance the 

properties previously mentioned. Each algorithm adopts different strategies for identifying 

and encoding salient image regions, and their performance varies depending on the specific 

demands of visual odometry. Some of the most common detectors, well known in the 

computer vision field are: SIFT, SURF, FAST, BRISK and ORB.  

SIFT  

SIFT (Scale-Invariant Feature Transform) is a feature detection and description algorithm 

developed by David Lowe in 1999 [39]. Its main advantage lies in its invariance to scale and 

rotation, which makes it ideal for tasks such as object recognition and image matching. 

It detects scale-space extrema using a Difference-of-Gaussian (DoG) filter to locate blob-

like keypoints at multiple scales. Each keypoint is assigned a dominant orientation based on 

local gradient directions, providing rotation invariance.  

For description, SIFT uses a 128-dimensional vector of real-valued gradient orientation 

histograms around the keypoint, with 8 orientations in 4×4 spatial regions, effectively 

encoding the local image structure [36]. 
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One of the main advantages of SIFT is that its features are highly distinctive and remarkably 

robust. According to [36], SIFT together with SURF is widely regarded as one of the most 

accurate image feature descriptors. Its robustness extends to rotation and scale changes by 

design, and the gradient-based descriptor offers some tolerance to illumination variations 

through normalization. SIFT keypoints tend to exhibit high repeatability and consistently 

match across varying viewpoints. 

However, this robustness comes at a high computational cost. One of SIFT's major 

drawbacks is its speed: extracting DoG keypoints and computing 128-dimensional 

descriptors is slow and memory-intensive. Consequently, SIFT is often impractical for real-

time applications, particularly on resource-constrained hardware.  

SURF 

SURF is a feature detector and descriptor inspired by SIFT but designed with a focus on 

speed improvements. It uses a blob detector based on the Hessian matrix, approximating the 

determinant of the Hessian using Haar wavelet filters and integral images for efficient 

convolution [40]. This approach enables multi-scale keypoint detection that is significantly 

faster than SIFT’s Difference-of-Gaussian (DoG) method. 

Like SIFT, SURF assigns an orientation to each keypoint by summing Haar wavelet 

responses within a circular region, achieving rotation invariance. The SURF descriptor is a 

64-dimensional real-valued vector, aggregating Haar wavelet intensities and their 

magnitudes across 4×4 subregions aligned with the keypoint's orientation. This compact 

representation captures the distribution of intensity variations around the keypoint [40]. 

SURF provides robustness comparable to SIFT in terms of repeatability and accuracy, while 

offering substantial improvements in computational efficiency. It has also demonstrated 

great performance in monocular visual odometry tasks, outperforming SIFT, ORB, and A-

KAZE by achieving the lowest drift error in monocular VO benchmarks, as reported by [36].  

Despite its advantages, SURF still presents some limitations. Although it is lighter than 

SIFT, it still requires a significant amount of computational resources, especially when 
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applied in real-time contexts. Furthermore, as a patented algorithm, its use is restricted in 

certain applications, limiting its accessibility to use in other purposes different that 

educational or research [60].  

ORB 

ORB (Oriented FAST and Rotated BRIEF) is a high-performance feature detection and 

description algorithm specifically designed to balance accuracy and computational 

efficiency. It was developed by OpenCV Labs, and as an open-source algorithm, ORB is 

freely available and suitable for commercial and academic applications [42].  

It integrates two core components: a keypoint detector based on the FAST algorithm and a 

binary descriptor derived from BRIEF, both modified to achieve rotation and partial scale 

invariance.  

Keypoints are detected using the FAST-9 corner detector across a multi-scale image 

pyramid, enabling the extraction of features at different resolutions. To ensure quality and 

suppress edge responses, keypoints are ranked using the Harris corner measure, and only the 

top N are retained per pyramid level. Orientation invariance is introduced by computing the 

intensity centroid within a circular patch around each keypoint, defining the dominant 

direction as the angle between the keypoint center and its brightness-weighted centroid. This 

orientation is then used to steer the descriptor [41].  

For description, ORB employs a learned and decorrelated version of BRIEF, known as 

rBRIEF, which consists of a compact 256-bit string constructed from a set of binary intensity 

comparisons within the image patch. These tests are selected to maximize variance and 

minimize correlation, improving discriminative power and matching efficiency. Overall, 

ORB achieves a favorable trade-off between robustness, speed, and invariance, making it 

particularly well-suited for real-time VO on resource-constrained platforms [41]. 

The primary advantage of ORB is its computational efficiency, ranking best among common 

VO feature extractors according to [36], with the lowest processing time compared to SIFT, 

SURF, and AKAZE. ORB’s use of FAST makes detection extremely fast, and the binary 
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descriptors allow very rapid matching, due to their binary nature. Furthermore, despite its 

speed, ORB maintains robustness through built-in invariances: it is rotation-invariant and 

partially scale-invariant. ORB has also been shown to perform well under different 

conditions, according to [43], noted to be especially effective on images with affine 

distortions or changes in brightness, indicating strong robustness to lighting changes. 

As efficiency is one of its greatest advantages, in the trade-off between computational needs 

and performance, ORB’s descriptors, being binary and shorter, are less discriminative than 

SIFT/SURF’s richer descriptors. Thus, ORB can have a slightly lower matching accuracy 

and may produce more false matches, especially under extreme viewpoint or appearance 

changes.  

For a real-time monocular visual odometry system, ORB emerges as the most well-rounded 

choice when comparing these feature algorithms. SIFT and SURF offer excellent accuracy 

and robustness. SIFT in particular is often a gold standard for feature distinctiveness, but 

their high computational cost makes them impractical for real-time use like this project 

concerns. SURF, while faster than SIFT, may still fall slightly short in terms of 

computational efficiency when looking for a real time solution. Furthermore, another of its 

biggest drawbacks is the need of the license for its use.  

The final choice for this project is ORB because it provides the best balance of accuracy and 

efficiency for monocular VO. It is fast enough for real-time operations and yet robust enough 

in feature tracking to maintain accuracy over a sequence, ORB’s feature tracking accuracy 

being not far behind that of SURF/SIFT for VO purposes. Moreover, ORB’s free and widely 

available implementation in OpenCV and its proven success in systems like ORB-SLAM 

make it a reliable choice [44]. This comparison can be seen in Table 2.  
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Table 2: Comparison between main features detectors 

Algorithm Descriptor 

type 

Computational 

cost 

Accuracy License Main 

advantages 

Main 

drawbacks 

SIFT 
128-dim 

float vector 

High Very high Patent 

expired 

in 2020 

Highly 

distinctive 

and robust; 

excellent 

repeatability 

Slow; memory-

intensive; not 

suitable for 

real-time or 

embedded use 

SUFT 64-dim 

float vector 

Moderate High Patented Faster than 

SIFT; very 

robust for 

VO; low 

drift 

Still 

computationally 

heavy; license-

restricted 

ORB 256-bit 

binary 

Moderate Moderate-

high 

Open 

source 

Very fast; 

real-time 

capable; 

robust under 

lighting 

changes; 

free 

Less 

distinctive; 

slightly lower 

matching 

accuracy; 

sensitive to 

extreme 

viewpoint 

changes 

 

Feature matching 

ORB (Oriented FAST and Rotated BRIEF) produces binary descriptors (bit strings) instead 

of floating-point feature vectors. Therefore, feature matching techniques must utilize 

appropriate metrics suited for binary descriptors. In practice, the Hamming distance, which 

counts the number of differing bits between two descriptors, is the suitable measure for 

comparing ORB descriptors, unlike the Euclidean distance commonly used for continuous 

descriptors such as SIFT or SURF. The two main features of matching methods used with 

binary descriptors are:  
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Brute-force matcher 

In this method, each descriptor from the source image is exhaustively compared against all 

descriptors from the target image by computing the Hamming distance for each pair and 

selecting the match with the smallest distance. This is the most straightforward approach: a 

brute-force matcher finds the nearest neighbor by comparing each descriptor individually 

with all those in the opposing set [45]. 

Brute-force matching with Hamming distance is simple to implement and guarantees the 

identification of the exact nearest match for each descriptor, as it exhaustively searches the 

entire descriptor space of the other image. With short binary descriptors (e.g., 256 bits = 32 

bytes in ORB), Hamming comparisons are fast, as they can be executed through efficient 

bit-wise operations.  

However, the exhaustive nature of brute-force matching comparing everything with 

everything results in a computational complexity of N×M, where N and M are the number 

of descriptors in each image. This approach can become slow when handling large feature 

sets, as the computation time increases linearly with the total number of comparisons, 

leading to a high latency [46]. Therefore, another drawback is that it does not leverage 

redundancy or prior information: each matching operation is a full search from scratch. For 

example, in a real-time video application, comparing 500 points from the current frame 

against 500 from the previous frame would involve 500×500 = 250,000 comparisons per 

cycle. Although feasible for small feature sets, this becomes inefficient at scale as the 

computational cost scales rapidly with larger sets or real-time applications 

FLANN based matcher 

For large numbers of descriptors, it is common to use approximate nearest neighbor search 

methods instead of exhaustively comparing every pair. FLANN (Fast Library for 

Approximate Nearest Neighbors) is a library and algorithm that performs fast approximate 

nearest neighbor searches using efficient data structures. In the case of float-based 

descriptors (such as SIFT), FLANN typically uses KD-Tree indices. However, for binary 
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descriptors like ORB, FLANN provides an index based on Locality-Sensitive Hashing 

(LSH) to operate in Hamming space [47].  

LSH is a widely used technique for solving the Approximate Nearest Neighbor (ANN) 

problem in high-dimensional spaces. It maps data into multiple hash tables using random, 

data-independent functions, so that similar points are likely to fall into the same “bucket” 

with high probability. LSH offers sub-linear query times and theoretical accuracy 

guarantees, which makes it highly suitable for dynamic or large-scale data applications with 

evolving distributions [48]. In the case of ORB descriptors, FLANN+LSH applies this 

approach by restricting comparisons to candidate buckets, to avoid exhaustive matching and 

yielding approximate but significantly more efficient results at scale. 

Therefore, the main advantage of FLANN+LSH lies in its speed when working with large 

datasets. By using hashing structures, the number of effective comparisons is significantly 

reduced compared to brute-force methods, especially when matching great amounts of 

descriptors. This makes feature matching feasible within reasonable time frames.  

However, this increased efficiency in large-scale also leads to approximation, meaning there 

is a small probability of failing to find the optimal match if it falls into a different hash 

bucket. It is still possible to obtain suboptimal matches or lose weak correspondence due to 

the probabilistic nature of hashing. If the number of descriptors is not very high, the 

advantage of using FLANN may become marginal. 

Motion estimation  

As discussed in the state of the art, motion estimation is a crucial component of visual 

odometry, responsible for calculating the camera’s pose change between consecutive frames 

[5]. Three main motion estimation paradigms were identified based on the dimensionality of 

feature correspondences: 2D-to-2D, 3D-to-3D, and 3D-to-2D methods.  

For the system developed in this project, which uses a monocular camera, the 2D-to-2D 

motion estimation approach is the one chosen. This choice is motivated by the nature of a 

monocular setup: since a single camera cannot directly measure depth from one frame, 
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methods that rely on immediate 3D point correspondences (the 3D-to-3D or 3D-to-2D 

approaches) are not possible without additional processing. Even though the 3D-to-2D 

method is possible using point triangulation across multiple frames and is widely used in 

practice according to [5], it requires maintaining a persistent 3D map of landmarks and 

performing repeated triangulation and perspective-n-point (PnP) optimization steps. This 

significantly increases computational requirements and challenges real-time performance. 

In contrast, the 2D-to-2D approach offers a lightweight and robust alternative by relying on 

image-space correspondences and computing the essential matrix, which encodes the 

relative pose up to scale. This method avoids the complexity of 3D reconstruction while still 

providing reliable motion estimates between consecutive frames, making it highly suitable 

for monocular visual odometry in real-time robotics applications. 

By matching 2D features between consecutive frames, the camera’s relative pose can be 

estimated using only image-space information through the essential matrix. A major benefit 

of this method is that it avoids the computational burden of continuously triangulating 

features or performing heavy 3D point-cloud alignments, which significantly reduces 

complexity and helps meet real-time performance requirements.  

To compute the essential matrix, one of the most common methods used is RANSAC 

(Random Sample Consensus) [64] to handle noisy feature correspondences. RANSAC 

iteratively estimates a candidate transformation from randomly sampled minimal subsets of 

feature matches and then selects the model that has the highest consensus among all 

correspondences. This consensus approach effectively rejects outliers in the feature matches, 

ensuring that the estimated transformation is not skewed by erroneous correspondences [55].  

For monocular visual odometry with a calibrated camera, Nistér’s five-point algorithm 

provides an efficient minimal solver for the essential matrix using only five point 

correspondences [12]. This five-point algorithm is typically embedded in a RANSAC 

framework to generate pose hypotheses from minimal samples, allowing robust estimation 

of the camera’s motion from two views. By using the smallest necessary number of 
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correspondences to determine the essential matrix, one can significantly reduce the number 

of RANSAC iterations required compared to older 6-, 7-, or 8-point methods.  

To improve match quality before running RANSAC, it is also common to apply Lowe’s ratio 

test as a filtering strategy to reduce false correspondences. Lowe’s test compares the 

descriptor distance of the best match to that of the second-best match for each feature and 

rejects the match if this distance ratio is too high. Lowe demonstrated that discarding 

matches with a distance ratio greater than 0.8 eliminates about 90% of false matches while 

removing less than 5% of correct matches [33].  

4.2 DEVELOPMENT AND IMPLEMENTATION 

The monocular visual odometry system developed uses the ORB algorithm, implemented as 

a ROS2 node named visual_odometry_node using Python and OpenCV. The complete 

pipeline consists of several key stages: image acquisition and conversion, keypoint detection 

and description, feature matching, motion estimation, and pose integration and publication. 

Image Acquisition and Preprocessing 

The node subscribes to /zed/zed_node/left_gray/image_rect_gray and its corresponding 

/camera_info topic. The use of rectified grayscale images ensures that epipolar geometry 

assumptions are valid, while reducing computational load compared to RGB data. The 

intrinsic matrix, extracted once from the CameraInfo message, is cached and reused to avoid 

repeated computation and maintain consistency. 

Feature Detection and Description 

Keypoints are detected using OpenCV's ORB detector with a cap of nfeatures=1000. This 

value was selected as standard, to provide enough features for stable tracking while 

maintaining fast computation. 
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Feature Matching and Filtering 

Feature correspondences between consecutive frames are computed using a FLANN-based 

matcher with LSH indexing. This method was preferred over brute-force matching due to 

the real-time constraints of the system and the highly dynamic nature of the operating 

environments. Although brute-force matching ensures exact nearest neighbors, its 

computational cost becomes prohibitive as the number of features increases, particularly in 

scenes with high visual variability.  

This performance difference was evident during testing, where the frame processing rates 

on the NVIDIA Jetson Orin AGX were:  

• Brute force: ~ 4 fps 

• FLANN + LSH: ~ 16 fps 

FLANN_INDEX_LSH = 6 

        index_params = dict(algorithm=FLANN_INDEX_LSH, table_number=6,  

key_size=12, multi_probe_level=1) 

        search_params = dict(checks=50) 

        self.flann = cv2.FlannBasedMatcher(index_params, search_params) 

Code 3: FLANN matcher parameter configuration 

The values were chosen to balance matching speed and accuracy for real-time performance.  

To improve robustness, Lowe’s ratio test with a threshold of 0.8 is applied to filter out 

ambiguous or poorly matched descriptors: 

good_matches = [] 

        for m_n in matches: 

            if len(m_n) == 2: 

                m, n = m_n 

                if m.distance < 0.8 * n.distance: 

                    good_matches.append(m) 

Code 4: Lowe’s ration test 

Each item in the matches list is the result of a k-nearest neighbor search. This means that for 

every descriptor in the previous frame, the two closest matches in the current frame are 
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returned. These are stored in the tuple (m,n), containing m as the best match, and n as the 

second-best match. 

The condition if m.distance < 0.8 * n.distance compares the distance of the best 

match to the second-best. If the best match is significantly better, meaning that it is less than 

80% of the second best’s, then it is considered a reliable match and is added to the list of 

good_matches. 

Motion estimation 

The relative pose is estimated using the essential matrix, computed with the OpenCV 

function findEssentialMat using RANSAC to discard outliers. The 5 point algorithm from 

Níster is embedded in the use of RANSAC. The function recoverPose then extracts the 

relative rotation and translation up to an unknown scale. This approach was chosen for its 

simplicity, robustness, and compatibility with monocular data. 

After estimating the essential matrix E using the five-point algorithm within a RANSAC 

framework, the system implements a post-validation check to ensure the reliability of the 

motion estimate. Specifically, the solution is discarded if the essential matrix is not found, if 

the inlier mask is missing, or if fewer than eight inlier correspondences are detected. 

Although the five-point algorithm only requires five-point pairs to compute a minimal 

solution, pose recovery through cv2.recoverPose is sensitive to degenerate configurations 

and noisy correspondences. Imposing a higher inlier threshold increases the robustness of 

the pose estimation by ensuring that the underlying geometry is sufficiently constrained.   

 E, mask = cv2.findEssentialMat(pts_prev, pts_curr, self.K, method=cv2.RANSAC, 

threshold=1.0) 

        if E is None or mask is None or np.count_nonzero(mask) < 8: 

            self.get_logger().warn("Essential matrix estimation failed or too few 

0

                inliers") 

            self.prev_frame = frame 

            self.prev_keypoints = keypoints 

            self.prev_descriptors = descriptors 

            return 

_, R_rel, t_rel, _ = cv2.recoverPose(E, pts_prev, pts_curr, self.K) 

Code 5: Esential matrix and pose recovery 
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Furthermore, the estimated motion is validated by checking the norm of the translation 

vector. This filter is introduced to suppress static noise from the pose estimation.  If the 

displacement is too small or unrealistically large, it is also rejected. 

t_norm = np.linalg.norm(t_rel) 

        if t_norm < 0.001: 

            self.get_logger().info("Estimated motion is too small, skipping 

0

       

0

                update") 

            self.prev_frame = frame 

            self.prev_keypoints = keypoints 

            self.prev_descriptors = descriptors 

            return 

        if t_norm > 1.0: 

            self.get_logger().warn("Motion too large, skipping this frame") 

            self.prev_frame = frame 

            self.prev_keypoints = keypoints 

            self.prev_descriptors = descriptors 

            return 

Code 6: Static noise suppression  

Pose Integration and Publishing 

The estimated relative motion is accumulated into a global pose estimate and transformed 

into a quaternion for ROS2 publication. 

quat = R.from_matrix(self.R_global).as_quat()     

self.prev_t_global = self.t_global.copy() 

self.prev_R_global = self.R_global.copy() 

 

odom_msg = Odometry() 

odom_msg.header.stamp = msg.header.stamp 

odom_msg.header.frame_id = "odom" 

odom_msg.child_frame_id = "base_link" 

odom_msg.pose.pose.position.x = float(self.t_global[0]) 

odom_msg.pose.pose.position.y = float(self.t_global[1]) 

odom_msg.pose.pose.position.z = float(self.t_global[2]) 

odom_msg.pose.pose.orientation.x = float(quat[0]) 

odom_msg.pose.pose.orientation.y = float(quat[1]) 

odom_msg.pose.pose.orientation.z = float(quat[2]) 

odom_msg.pose.pose.orientation.w = float(quat[3]) 

Code 7: Transformation into quaternion and odometry publisher  
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4.3 RESULTS AND CONCLUSION 

Despite the comprehensive development of a classical monocular visual odometry system in 

this chapter, initial tests revealed that this approach was not feasible for reliable deployment. 

The implemented method was highly unstable, introducing significant noise that rendered it 

unsuitable for real-world deployment. Consequently, it was decided not to integrate the 

monocular VO solution into the final system. Nevertheless, the exploration and findings 

presented here offered valuable technical insights and a foundational understanding, of 

monocular visual odometry and informing the pursuit of more robust odometry techniques 

in subsequent work. 
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Chapter 5.  MONOCULAR VISUAL ODOMETRY. 

LEARNING-BASED TECHNIQUES 

 

5.1 THEORETICAL BACKGROUND 

Traditionally, VO has been covered with classical geometry-based methods that rely on 

feature detection, matching, and geometric computations. These methods have matured 

significantly and demonstrated notable accuracy in controlled environments, but their 

robustness under real-world challenges such as dynamic scenes, lighting variations, or 

textureless regions remains limited. In this context, learning-based techniques, particularly 

those using deep learning, have emerged as a compelling alternative for improving visual 

odometry performance under such constraints.  

Deep learning offers a data-driven approach to VO that can automatically extract robust and 

meaningful representations, such as depth, optical flow, and ego-motion, directly from raw 

image sequences, without requiring explicit geometric computations. These models can 

learn complex spatial and temporal patterns from large-scale datasets, allowing them to 

generalize across scenes and handle noise, occlusion, or motion blur better than many 

classical algorithms [49].  

As was previously seen, the VO pipeline main core consists of three interrelated 

components: feature detection, feature matching, and motion estimation. For all three stages, 

deep neural networks can replace traditional operations with learned modules. This 

substitution can be in the following illustration:  
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Figure 19: Representation of a neural network replacing the classical VO pipeline stages [49] 

Learning-based VO methods can be trained under different learning paradigms, that can be 

supervised, unsupervised, or self-supervised frameworks, each with distinct requirements 

and trade-offs. In supervised learning, the model is explicitly trained on datasets that provide 

ground truth annotations such as 6-DoF camera poses or dense depth maps. These labels 

allow the network to directly minimize the error between predicted and true motion 

parameters during training. While this approach can yield highly accurate models, it is 

constrained by the availability and quality of labeled data, as obtaining precise pose 

information often requires expensive motion capture systems, LiDAR-based SLAM setups, 

or high-precision GPS/IMU sensors, which limits scalability and generalization. 

To address this, unsupervised and self-supervised strategies allow to eliminate the 

dependency on external ground truth by designing loss functions that enforce geometric 

consistency between frames. For instance, the network learns to predict depth and relative 

pose by reconstructing one image from another using differentiable view synthesis. The 

reconstruction error is used as an indirect supervisory signal. Other geometric cues, such as 

epipolar constraints or temporal consistency, are also leveraged to guide learning [49].  
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Despite the advantages in robustness and semantic awareness, learning-based VO still faces 

several challenges. Computational efficiency is a major constraint, particularly in embedded 

and real-time robotic systems, where deep models may demand more resources than are 

practically available. Furthermore, generalization remains an open problem: models trained 

on specific datasets can struggle in unfamiliar environments due to overfitting or domain 

shift.  

5.1.1 MODEL SELECTION  

After reviewing the theoretical foundations and design paradigms of learning-based visual 

odometry, the next step in this work involved identifying and selecting concrete models 

suitable for implementation. While numerous deep VO systems have been proposed over the 

last decade, their applicability to real-world robotics varies significantly depending on a 

combination of architectural, practical, and deployment-related factors.  

To narrow down the candidates, four primary selection criteria were established aligned with 

the constraints and objectives of this project: the ability to run the model in real time, 

availability of pretrained weights for the model, proven robustness in indoor scenarios, and 

existence of a reliable and well-maintained implementation, preferably compatible with 

ROS1 or ROS2 environments. 

Well known models like DeepVO [50], UnDeepVO [51], and GANVO [52], were 

considered for this application. However, most of them lack official support or strong 

generalization performance, especially for indoor conditions. Also, most of them required 

significant adaptation to ROS and did not always include pretrained weights for immediate 

deployment, making it necessary to undertake training tasks.  

Based on this evaluation, two models stood out as the most promising for integration into 

this system: TartanVO [53] and TSformer-VO [54]. TartanVO is a supervised model with a 

lightweight CNN architecture, pretrained on synthetic data and with available weights, and 

validated in real environments with official ROS1 support and proven real-time 

performance. In parallel, TSformer-VO represents a more recent model based on Vision 
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Transformers, with state-of-the-art accuracy and temporal consistency. Although it is not 

ROS-native, its robust codebase is officially supported, and availability of pretrained weights 

makes it ideal for quick integration and testing.  

5.1.2 TSFORMER-VO 

TSformer-VO is a recent monocular visual odometry model that approaches the VO problem 

from a video sequence understanding perspective. Instead of processing frames pairwise or 

with a recurrent neural network, TSformer-VO employs a Transformer-based architecture to 

handle a window of successive frames simultaneously. The goal of TSformer-VO is to 

directly regress the camera’s 6-DoF motion using spatio-temporal and self-attention 

mechanisms, effectively treating VO as a sequence regression problem rather than a frame-

to-frame estimation alone. By doing so, the model can learn to aggregate information across 

multiple frames, potentially improving robustness [54].  

It is an end-to-end learned VO system, that does not rely on explicit geometric modules or 

feature matching. It takes raw RGB frames and outputs the camera’s trajectory. The authors 

state to achieve competitive results on standard benchmarks, such as KITTI, outperforming 

well known models such as DeepVO in terms of average trajectory error. TSformer-VO’s 

purpose is to bring the power of video Transformers to VO, achieving high accuracy through 

learning temporal features, and its scope is a future-proof VO approach that could be 

extended to many settings in robotics.  

The training strategy is based on a supervised regression task using the KITTI odometry 

dataset [65]. KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) 

is one of the most widely used datasets in mobile robotics and autonomous driving research. 

Its dataset comprises traffic scenarios recorded using a variety of sensors, such as RGB and 

grayscale cameras and 3D LiDARs, providing both visual data and ground-truth trajectory 

information. The training loss is a straightforward Mean Squared Error (MSE) over all 

predicted pose components. 
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5.1.3 TARTANVO  

TartanVO [53] is a learning-based monocular visual odometry model designed with a 

primary goal of cross-environment generalization. Unlike prior deep VO methods that tend 

to overfit a single dataset or scenario, TartanVO was the first to demonstrate that a single 

learned model can perform well on multiple datasets like the previously mentioned KITTI, 

EuRoC drone or indoor scenes, without fine-tuning. The authors achieve this by leveraging 

the large-scale TartanAir simulation dataset, which provides diverse training data like 

indoor, outdoor, urban, natural, and even sci-fi scenes with ground-truth labels. This 

diversity addresses a key issue that limited earlier learning-based VO, which was the lack of 

variety in motion and scenery.  

TartanVO adopts a two-stage neural architecture inspired by the traditional VO pipeline of 

feature matching and pose estimation. As illustrated in Figure 20Figure 20, the model 

consists of a matching network followed by a pose regression network. 

 

Figure 20: Diagram of two-stage neural architecture of TartanVO [53] 

The Matching Network uses a pre-trained optical flow model (PWC-Net) to compute dense 

correspondences between two consecutive frames. This optical flow is calculated at a lower 

resolution to save computational resources but still provides accurate motion cues. By 

freezing this module, the system can rely on stable inputs for training the next stage. 

The Pose Network takes the optical flow and predicts the relative camera motion. It uses a 

modified ResNet-50 that treats the flow as a two-channel input (horizontal and vertical 

motion). The network has two separate output branches: one estimates the 3D translation 

and the other the 3D rotation. These outputs are learned independently to improve accuracy. 
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TartanVO does not predict the absolute scale of translation, only the direction and relative 

amount. This two-part design allows the system to focus on learning motion from reliable 

visual cues efficiently. 

5.2 DEVELOPMENT AND IMPLEMENTATION 

The system was developed to support both TSFormer and TartanVO. However, experimental 

results showed that TSFormer was significantly slower, achieving approximately 4 frames 

per second, whereas TartanVO reached up to 12 frames per second. Based on this 

performance difference, the final implementation was built around the TartanVO module. 

Nonetheless, the integration approach described here remains applicable to both models, as 

both were fully implemented. 

The integration of the TartanVO model into the ROS2 ecosystem was achieved through the 

development of a custom node implemented in Python, named tartanvo_node. This node 

encapsulates the entire inference and pose accumulation process required for monocular 

visual odometry using a pretrained deep learning model.  

Although an official implementation of TartanVO is available [56], it is designed for ROS1, 

requiring substantial modifications for compatibility with ROS2. During the adaptation 

process, numerous challenges emerged, particularly related to dependency management and 

version conflicts. These incompatibilities required an extensive effort to refactor and 

reconfigure the system, resulting in a prolonged integration period to ensure functional 

stability within the ROS2 environment. 

Data subscription 

The node subscribes to raw monocular images from the topic /zed/zed_node/rgb/raw/image, 

published by the ZED X One camera. It also takes camera calibration data from 

/zed/zed_node/rgb/raw/camera_info and IMU information from /zed/zed_node/imu/data.  
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The system has initial camera intrinsics values that are updated once, before starting to 

compute the motion estimation between frames. This is done in the handle_caminfo() 

function.  

def handle_caminfo(self, msg): 

        w = msg.width 

        h = msg.height 

        fx = msg.k[0] 

        fy = msg.k[4] 

        ox = msg.k[2] 

        oy = msg.k[5] 

        new_intrinsics = [w, h, fx, fy, ox, oy] 

        if new_intrinsics != self.cam_intrinsics: 

            self.intrinsic = make_intrinsics_layer(w, h, fx, fy, ox, oy) 

            self.cam_intrinsics = new_intrinsics 

            self.get_logger().info('Camera intrinsics updated.') 

Code 8: Definition of handle_caminfo() function  

The image data is processed using a predefined transformation pipeline (CropCenter, 

DownscaleFlow, ToTensor) to match the resolution and format expected by the model. This 

preprocessing ensures consistency with the training configuration of TartanVO.  

self.transform = Compose([CropCenter((448, 640)), DownscaleFlow(), ToTensor()]) 

Code 9: Definition of transformation pipeline 

Pose acquisition 

The core motion estimation is performed by the function test_batch() of the TartanVO 

class, which outputs a relative pose between the two most recent frames. This is defined in 

TartanVO.py file. The motion is represented as a 6-DoF vector (3 for translation, 3 for 

rotation), which is then converted into a 4x4 transformation matrix using the se2SE function. 

The accumulated pose is updated incrementally by chaining transformations over time, 

resulting in a full trajectory estimation in the camera frame. 

Calibration test 

As it is a monocular system, the estimated pose is inherently relative, meaning it lacks an 

absolute scale. To address this limitation, the node applies a scaling factor to the estimated 
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translation vector. This scale can be fixed, manually calibrated, or dynamically adjusted via 

an external topic. In this project, a specific test was conducted to calibrate the scale as 

accurately as possible.  

The procedure begins by storing the current pose as the initial reference when the system 

starts or when calibration is triggered. The node then accumulates frames over a fixed 

interval of 60 consecutive frames, which correspond to approximately 5 seconds at 12 FPS. 

After this interval, the system computes the displacement vector between the initial and final 

poses and calculates the norm of this translation as the estimated visual odometry distance. 

To calibrate the scale, the real physical distance traveled during the test is manually 

measured, in this case, 0.60 meters. The system then computes the scale factor as the ratio 

between the real-world distance and the VO-estimated distance. If the estimated 

displacement is sufficiently large, the computed scale is accepted and applied to subsequent 

translation vectors. Otherwise, the system discards the result.  

        if not hasattr(self, 'pose_start'): 

            self.pose_start = self.pose.copy() 

            self.frame_count = 0 

            self.get_logger().info("[CALIBRATION] Initial pose saved. START") 

        else: 

            self.frame_count += 1 

            if self.frame_count == 60:  # frames in test  

                self.pose_end = self.pose.copy() 

                delta = self.pose_end[:3, 3] - self.pose_start[:3, 3] 

                distance_vo = np.linalg.norm(delta) 

                real_distance = 0.60  # real distance in meters 

                if distance_vo > 1e-6: 

                    scale = real_distance / distance_vo 

                    self.get_logger().info(f"[CALIBRATION] Estimated VO distance:      

0

                        {distance_vo:.4f} m") 

                    self.get_logger().info(f"[CALIBRATION] Calibrated scale: 

00

   

0

                        {scale:.4f}") 

                    self.scale = scale 

                else: 

                    self.get_logger().warn("[CALIBRATION] Too small movement. No  

0

                        scale calculation.") 

                # Reset calibration variables 

                del self.pose_start 

                del self.pose_end 

                del self.frame_count 

Code 10: Scale calibration test 
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To assess the consistency and reliability of the scale calibration process, a total of 15 

calibration trials were conducted. The following table summarizes the results obtained in 

each trial.  

Table 3: Results of Monocular VO Scale Calibration 

Trial Relative VO 

distance (m) 

Calibrated scale 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

15.9726 

15.9108 

15.465 

16.175 

17.843 

16.797 

17.188 

15.7795 

16.7883 

16.2608 

16.0527 

16.0363 

15.5442 

15.6437 

15.3163 

0.0376 

0.0377 

0.0388 

0.0371 

0.0336 

0.0357 

0.0377 

0.038 

0.0357 

0.0369 

0.0374 

0.0374 

0.0386 

0.0384 

0.0392 

 

From the data, the following descriptive statistics were derived: 

• Mean calibrated scale: 0.0371 

• Standard deviation: 0.00156 

• 95% confidence interval: [0.0363, 0.0380] 

These results indicate that the calibrated scale values are tightly clustered around the mean, 

with low variability and a narrow confidence interval. This reflects a high degree of 

repeatability in the calibration procedure. Consequently, the average scale factor of 0.0371 

was considered a statistically robust estimate for rescaling the translation vector in the 

TartanVO system under the tested conditions. 

This parameter is set under the self.scale parameter.  
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Static noise filtering 

An important implementation detail is the integration of an IMU-based motion filter. Before 

updating the pose, the system checks whether the linear acceleration magnitude is below a 

threshold (0.05 m/s²). If so, the frame is considered stationary and the motion is discarded, 

reducing drift in low-motion conditions. This was introduced as major issues with motion 

induced in the pose message when the camera was fully static.  

if self.last_accel is not None: 

                norm = np.linalg.norm(self.last_accel) 

                if norm < 0.05:  # m/s²  

                    self.get_logger().info(f"[IMU] No movement detected (|a| = 

{norm:.3f} m/s²), no increment in pose.") 

                    self.last_img = image_np.copy() 

                    return 

Code 11: Static noise suppression filter with IMU 

The final odometry output is published in the ROS2 topic /odom_zed_mono using the 

nav_msgs/Odometry message type. For system-wide consistency, the published odometry 

includes appropriate frame identifiers, odom and zed_camera_link.  

Publishing transforms 

The same issue encountered with the stereo camera also affected the monocular system. 

Consequently, the same zed_odom_transformer node was implemented to address it. The 

only modification lies in the subscription topic, which changes from /zed/zed_node/odom to 

/odom_zed_mono. 

As a result, the two cameras are not operated at the same time.  
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Chapter 6.  RESULTS AND COMPARISON 

 

To evaluate the performance of each odometry source integrated into the system, a common 

testing protocol was defined as follows. The goal was to assess both the accuracy of distance 

estimation and the accumulated drift over short trajectories. 

Two distinct experimental trials were conducted under controlled conditions: 

1. Straight-Line Test (Absolute Distance Estimation):  

The robot was instructed to move along a straight-line path covering a known 

physical distance. Two different target distances (3.6 and 1.2 meters) were used to 

verify consistency and evaluate how accurately the odometry estimated the 

translation. The estimated trajectory produced by the system was then compared to 

the ground truth distance. The objective of this test was to quantify the scale accuracy 

of each odometry method, particularly relevant in monocular systems where scale 

ambiguity is a known limitation. 

2. Rectangular Loop Test (Drift Evaluation): 

In this trial, the robot followed a closed-loop trajectory approximating a rectangle 

and returned to its starting point. The Euclidean distance between the estimated 

starting and ending positions was recorded as a measure of accumulated drift. This 

test provides insight into each system's ability to maintain consistency over time and 

to cope with compounded errors from successive motion estimations. 

Each odometry method was tested independently following this same protocol. The 

corresponding results are presented in the following sections, allowing for a direct and fair 

comparison of their performance across both metrics: absolute distance estimation and drift 

over closed trajectories. 
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6.1 EKF CONFIGURATION 

The robot_localization EKF node is configured with specific parameters to fuse wheel 

encoder odometry and stereo camera visual odometry for a planar (2D) mobile platform. 

These parameters are defined in the ekf.yaml file, which specifies the frame conventions, 

filter behavior, and sensor input settings used by the node. 

The EKF node is launched through the ekf_launch.py script, which invokes the ekf_node 

from the robot_localization package and sets the path to the ekf.yaml configuration file. 

EKF internal functioning 

The robot_localization package [66] implements an Extended Kalman Filter (EKF) that 

estimates the robot’s state by combining information from various sensors. Internally, the 

EKF maintains a 15-dimensional state vector representing the robot’s full 3D pose, 

velocities, and accelerations. The full state vector is: 

𝒙 = [𝒙 𝒚 𝒛 𝒓𝒐𝒍𝒍 𝒑𝒊𝒕𝒄𝒉 𝒚𝒂𝒘 𝒗𝒙 𝒗𝒚 𝒗𝒛 𝒘𝒙 𝒘𝒚 𝒘𝒛 𝒂𝒙 𝒂𝒚 𝒂𝒛]𝑇 (3) 

However, since the robotic platform operates on flat indoor surfaces, and the EKF is 

configured to work in that condition, the filter ignores vertical motion and rotation along roll 

and pitch. This mode is specifically designed for ground robots constrained to motion on a 

flat surface, where variations in altitude or tilt (roll and pitch) are not relevant. As a 

consequence, the Extended Kalman Filter (EKF) internally reduces the size of its state vector 

by discarding dimensions that are not observable or necessary in a 2D context. Among the 

variables removed are all linear and angular accelerations. Since no IMU data was fused in 

this implementation, and the estimation of accelerations was not required by any subsystem 

(such as the navigation stack), the filter automatically excludes them to simplify the model 

and avoid incorporating noisy or unused information. This simplification reduces the 

effective state vector to: 

𝒙 = [𝒙 𝒚 𝒚𝒂𝒘 𝒗𝒙 𝒗𝒚 𝒘𝒛] (4) 
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As it was seen in the state-of-art, the EKF operation consist of two main stages: prediction 

and correction.  

In the prediction step, the filter applies a nearly constant-acceleration kinematic model to 

estimate the robot’s next state based on its previous state. This estimation uses motion 

equations, where the subscript 𝑘 − 1 refers to the previous timestep. The state prediction is 

performed as follows: 

• Position update:  

𝑥𝑘 =  𝑥𝑘−1 + 𝑣𝑥𝑘−1
∙  ∆𝑡 +  

1

2
 𝑎𝑥𝑘−1

∙ ∆𝑡2 (5) 

• Velocity update:  

𝑣𝑥𝑘
=  𝑣𝑥𝑘−1

+  𝑎𝑥𝑘−1
∙ ∆𝑡 (6) 

• Yaw angle update 

𝑦𝑎𝑤𝑘 =  𝑦𝑎𝑤𝑘−1 +  𝑤𝑧𝑘−1
∙ ∆𝑡 (7) 

During this phase, the filter also updates the state covariance matrix 𝑷 to reflect the 

uncertainty of the predicted state. This update is computed using the Jacobian of the system 

model and the predefined process noise covariance matrix 𝑸: 

𝑷𝒌
− = 𝑭𝒌𝑷𝒌−𝟏𝑭𝒌

𝑻 + 𝑸𝒌 (8) 

Where 𝐹𝑘  is the Jacobian of the motion model with respect to the state variables and 𝑃𝑘
− is 

the corrected covariance.  

In the correction step, the EKF incorporates new measurements from the sensors. Each 

incoming message is treated as a measurement vector 𝒛 of some subset of the state. The filter 

uses the following standard EKF equations.  
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• State update:  

𝑥𝑘 = 𝑥𝑘
− + 𝑲(𝑧𝑘 − 𝑯𝑥𝑘

−) (9) 

In the update, 𝑥𝑘
− is the prediction of the state, before measuring, and 𝑥𝑘 is after the correction. 𝑲 is 

the Kalman gain, which determines how much the filter trusts the measurement versus the prediction. 

𝑲 =  𝑷𝒌
−𝑯𝑻(𝑯𝑷𝒌

−𝑯𝑻 + 𝑹)−1 (10) 

𝑯 is the measurement matrix, mapping state variables to the expected measurement. 

The covariance 𝑷 is also updated at this stage:  

𝑷 =  (𝑰 − 𝑲𝑯)𝑷 (11) 

This correction phase reduces uncertainty in the state estimate by weighting the prediction 

against the incoming measurement, depending on their respective covariances. 

General filter configuration 

Frame definition 

The EKF operates using standard ROS frame conventions. The global map frame is set to 

“map”, the local odometry frame to “odom”, and the base frame to “base_footprint”. As 

shown in Figure 15 in Chapter 2, the new responsible for publishing the odom to 

base_footprint transformation is the EKF node.  

The world_frame is configured as “odom”, meaning the filter uses the odom frame as the 

world reference. Since only continuous odometry data is used, and no global fixes like GPS 

are fused, the EKF outputs the robot pose in the odom frame. With world_frame = odom, 

the filter will publish the transform from odom to base_footprint directly, as it was discussed 

in Chapter 2.   
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Timing and Frequency 

The filter update frequency is set to 30.0 Hz. This rate is chosen to balance timeliness against 

computational load, and it aligns with the expected sensor update rates (the wheel and 

camera odometry data are available roughly on the order of tens of Hz). The use_sim_time 

parameter is false, indicating the node uses real system time.  

Planar Motion Mode 

The EKF is configured in two-dimensional mode (two_d_mode: true), appropriate for a 

ground robot on flat terrain. In this mode, the filter constrains motion to the XY-plane and 

ignores changes in Z, roll, and pitch. This prevents unobservable or irrelevant degrees of 

freedom from causing state drift and simplifies the filter since the wheelchair operates on a 

level floor. 

Output and TF Settings  

The system is set to broadcast the transform (publish_tf: true) so that the fused odometry 

is available to the rest of the system via the TF tree. Because the world frame is odom, the 

node will publish an odom → base_footprint transform representing the filtered pose. 

Accelerations are not published (publish_acceleration: false), since acceleration data is not 

needed by other modules in this setup. 

Process noise covariance 

Within the general configuration of the robot_localization EKF node, the 

process_noise_covariance matrix was set to relatively high values, with diagonal entries 

set to 8.0 corresponding to state variables, in order to reflect limited confidence in the 

prediction model and prioritize the contribution of sensor measurements in the correction 

step. This decision was made after empirical observation showed that the sensor inputs 

provided more consistent and accurate information than the motion prediction generated by 

the internal EKF process model. By increasing the process noise, the filter becomes more 
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responsive to incoming measurement updates, weighting them more heavily in accordance 

with their specified covariances during the fusion process. 

Wheel encoder odometry (odom0) 

The first sensor input, odom0, corresponds to wheel encoder odometry coming from the 

platform’s wheel sensors, coming from the /encoders_odom topic. This source provides 

incremental pose estimates based on wheel rotation and is treated as an odometry message. 

The configuration for odom0 is as follows: 

• Fused Variables:  

The odom0_config array specifies which state variables from the wheel encoder 

odometry are fused into the filter. In this configuration, only the linear velocity in the 

X-axis and the angular velocity around the Z-axis are included. This choice avoids 

redundant computation by allowing the EKF to directly incorporate the raw velocity 

measurements provided by the encoders. All other components, including position, 

orientation (roll, pitch, yaw), lateral and vertical velocities (Y, Z), and accelerations 

are excluded from the fusion process. 

By omitting lateral (Y-axis) and vertical (Z-axis) velocities, the configuration reflects 

the kinematic constraints of the differential-drive platform, which cannot produce 

motion in those directions. Any minor deviations caused by lateral slip are considered 

noise and intentionally disregarded to preserve filter stability. 

Additionally, careful attention was given to the definition of sensor covariances, as 

discussed in the EKF theory section. These covariances are specified in the 

odometry.py node and are configured to assign higher confidence to linear velocity 

measurements while assigning lower confidence to angular velocities. This decision 

was based on testing, which showed that angular velocity estimates from the 

encoders were less reliable. This can be seen in Figure 21. 
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Figure 21: Encoders’ drift in angular estimation 

Therefore, the covariance values assigned to these measurements were set low for 

the linear velocity along the X-axis, indicating that the EKF can place high 

confidence in this input, while higher covariance was used for the angular velocity 

around the Z-axis, reflecting its lower reliability.  

odom_msg.pose.covariance = [ 

3.0, 0.0,  0.0,  0.0,  0.0,  0.0, 

0.0,  3.0, 0.0,  0.0,  0.0,  0.0, 

0.0,  0.0,  99999.0, 0.0,  0.0,  0.0, 

0.0,  0.0,  0.0,  99999.0, 0.0,  0.0, 

0.0,  0.0,  0.0,  0.0,  99999.0, 0.0, 

0.0,  0.0,  0.0,  0.0,  0.0,  0.5 

] 

Code 12: Encoders measurement covariance matrix 
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• Absolute vs. Relative Mode:  

For odom0, both odom0_differential and odom0_relative are set to false. This 

indicates that the wheel encoder data is not interpreted as a velocity increment nor is 

it adjusted relative to an initial offset. However, since only the linear velocity along 

the X-axis and the angular velocity around the Z-axis are being fused, the odometry 

is not used as a full absolute pose source. Instead, these velocity components are 

treated as direct measurements in the odom frame, which is also the world frame 

used by the EKF.  

• Outlier Rejection:  

The encoder odometry input has defined thresholds to reject outlier measurements. 

The pose rejection threshold is set to 5.0 meters and the twist rejection threshold is 

set to 1.0 m/s. These thresholds mean that if a new wheel odometry pose deviates 

from the EKF’s predicted pose by more than 5.0 meters, it will be considered an 

outlier and ignored, and if a wheel odom velocity differs too greatly, above 1.0 m/s 

difference, it will also be rejected. In practice, such large deviations are unlikely 

during normal operation, as they would indicate a serious slip or sensor fault, so these 

values serve as a safety net to discard any grossly erroneous data. 

Stereo Camera VO (odom1) 

The second sensor input, odom1, is the odometry from a ZED stereo camera, received via 

the topic /odom_zed_corrected, coming from the zed_odom_transformer. The ZED camera 

provides a visual odometry estimate of the robot’s movement, including visual odometry 

and information for the embeeded IMU, but both already fused before entering the EKF. 

Key settings for odom1 are the following.  
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• Fused Variables:  

The odom1_config array specifies which state variables from the ZED stereo visual 

odometry are fused into the EKF. In this configuration, only the position components 

in the X and Y axes, as well as the orientation around the Z-axis (yaw), are included. 

These variables provide global pose information derived from visual-inertial 

odometry computed by the ZED SDK. The other state components are excluded from 

the fusion process to maintain consistency with the planar motion assumptions of the 

robot and to avoid redundancy with other sensors. 

Unlike the encoder odometry, the ZED stereo system publishes its own covariance 

matrices directly within the odometry messages. These covariances are dynamically 

estimated by the ZED SDK and are generally low for the selected fused variables, 

indicating high confidence in the accuracy of the position and orientation data. Its 

good performance in linear and angular estimation was also seen in testing:  

 

Figure 22: Stereo VIO close loop test performance 
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• Differential vs. Relative:  

For odom1, the parameters odom1_differential: false and odom1_relative: true are 

set. This means that the visual odometry from the ZED stereo camera is fused as an 

absolute pose, but only in relative terms to its initial reading. Activating relative=true 

ensures that the first pose from the camera is treated as the origin, aligning it with 

the EKF’s coordinate system. This avoids conflicts that could arise from fusing two 

independent absolute pose sources (wheel and camera). As a result, the ZED 

contributes to pose changes over time without enforcing its own absolute origin. 

• Outlier Rejection: 

To ensure robustness, pose_rejection_threshold: 3.0 and twist_rejection_threshold: 

1.0 are applied to the ZED odometry input. In this configuration, the pose rejection 

threshold is set lower than that of the encoder odometry, since visual odometry is 

generally more susceptible to noise spikes caused by factors such as illumination 

changes or reflective surfaces. Therefore, a more restrictive threshold is applied to 

increase resilience against occasional tracking errors. 

• Pose Frame Handling:  

This parameter is intended to handle cases where the input odometry originates from 

a frame different from base_footprint, automatically applying the corresponding 

static transform. However, enabling this option (pose_frame: true) and defining the 

static transform in the URDF did not yield the expected behavior. As a result, the 

transformation had to be applied manually through the zed_odom_transformer node, 

and the parameter was set to false. 

Mono Camera VO learning-based (odom1)  

The third sensor input corresponds to the odometry from the ZED monocular camera. As 

previously mentioned, the stereo and monocular systems are not intended to operate 
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simultaneously; therefore, they share the same EKF input configuration, as only one will be 

active at any given time.  

The only notable difference is that the monocular system defines its own covariance matrix 

within the tartanvo_node.py implementation. During testing, the system exhibited 

significant limitations, particularly instability in estimating linear displacement along the X 

and Y axes. In contrast, the angular displacement estimates showed improved consistency. 

As a result, the EKF configuration assigns lower confidence to linear motion estimates while 

giving relatively more weight to rotational information. 

odom_msg.pose.covariance = [ 

     1.0, 0.0,  0.0,  0.0,  0.0,  0.0, 

     0.0,  1.0, 0.0,  0.0,  0.0,  0.0, 

     0.0,  0.0,  99999.0, 0.0,  0.0,  0.0, 

     0.0,  0.0,  0.0,  99999.0, 0.0,  0.0, 

     0.0,  0.0,  0.0,  0.0,  99999.0, 0.0, 

     0.0,  0.0,  0.0,  0.0,  0.0,  0.5 

] 

Code 13: Monocular learning-based odometry covariance matrix 

Despite all the calibration efforts and parameter tuning, the results provided by the 

monocular solution were not sufficient to support a robust odometry system, as it exhibited 

clear instabilities in its performance. Results can be observed in Figure 23. 

 
Figure 23: Monocular learning-based VO close loop test performance 
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6.2 TEST RESULTS 

Among all the initial odometry input candidates considered in this project:  

• Encoders 

• Stereo VIO 

• Monocular VO (classic techniques) 

• Monocular VO (learning-based techniques) 

Only the encoder-based and stereo VIO systems demonstrated sufficient performance and 

reliability to be considered as viable inputs for the EKF-based fusion framework. As a result, 

the experimental results and quantitative evaluations presented in the following sections will 

focus exclusively on these two approaches considered for the EKF.  

 

Straight line test 

 

In the straight-line trajectory test, the robot followed known distances of 3.6 m and 1.2 m, 

enabling an evaluation of the scale accuracy of each odometry method. Table 4 summarizes 

the distances estimated by each system in comparison with the actual ground truth values: 

Table 4: Estimated distances by each method in straight line 

Real distance 

(m) 

Encoders (m) Visual Stereo (m) EKF (m) 

3.6 3.594 3.500 3.586 

1.2 1.173 1.250 1.223 

As observed, all methods yielded distance estimates very close to the true values, with 

deviations of only a few centimeters. For the 3.6 m path, both the wheel encoder odometry 

and the EKF slightly over or underestimated the distance, each with less than 1% error. The 

stereo visual odometry measured 3.500 m, which corresponds to an underestimation of 

approximately 2.8%.  
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Similarly, for the 1.2 m test, estimates remained within a narrow margin: encoders reported 

1.173 m (~2.2% below the actual distance), the EKF 1.223 m (~1.9% above), and the stereo 

VO 1.250 m (~4.2% above). These small deviations indicate that each system estimated 

motion scale with high accuracy.  

Close loop test 

The second experiment involved a closed-loop trajectory in the shape of a rectangle, where 

the robot began at a known starting point, followed an approximately rectangular path, and 

returned to its initial position. Ideally, the estimated final position should coincide with the 

origin; any Euclidean deviation between the actual starting point and the estimated final 

location represents the accumulated drift of the odometry method over the course of the 

trajectory. In this loop test, notable differences emerged among the three systems evaluated. 

 

Figure 24: Close loop test results for all methods 
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Table 5: Euclidean distance from starting and finishing point 

Method Accumulated drift (m) 

Encoders   1.454 

Visual Stereo 0.065 

EKF 0.109 

 

The results of the loop test clearly illustrate the impact of long-term error accumulation. 

Odometry based solely on wheel encoders exhibited the highest drift, with a final position 

approximately 1.45 meters away from the starting point after completing the loop. This 

considerable discrepancy is characteristic of dead-reckoning methods, where small errors in 

distance or orientation estimation accumulate over time, leading to significant positional 

deviation. In particular, orientation drift is widely recognized as a major contributor to final 

positional error in encoder-based systems. Minor wheel slippage during turns, subtle 

differences in wheel calibration or diameter, and both systematic and random noise further 

exacerbate the error as the robot travels and rotates. While encoder odometry performed 

accurately over straight segments, its drift increased dramatically over the extended loop 

trajectory because of the orientation error.  

In contrast, stereo visual odometry yielded a remarkably small final error of just ~0.065 

meters, demonstrating superior consistency in trajectory estimation. The near closure of the 

loop suggests minimal error in both orientation and scale throughout the motion. This 

performance aligns with the known advantages of visual odometry over inertial or wheel-

based methods: it is more robust against slippage and accumulates substantially less error 

over longer distances. 

The EKF-based fusion system achieved intermediate performance, with a closing error of 

0.109 meters, significantly better than encoders alone but slightly worse than the stereo 

visual method. This indicates that sensor fusion played a critical role in suppressing drift, 
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likely incorporating inputs from encoders, visual odometry, and inertial sensors (e.g., 

gyroscope) to improve robustness. Although it did not reach the visual system’s precision, 

the EKF brought a great improvement over wheel odometry, confirming its value in reducing 

accumulated pose error. This improvement was also supported by the covariance 

configuration, as the system should highly depend on the most accurate system, being the 

visual odometry, but also makes use of the source from the encoders when this other one 

may fail, or as demonstrated, wheel encoders perform well during straight motion.  
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Chapter 7.  CONCLUSION AND FUTURE 

DEVELOPMENTS 

 

This master’s thesis has developed and evaluated a new visual odometry module for an 

autonomous wheelchair, successfully replacing the prior wheel encoder-only odometry with 

a vision-based system. The project involved the integration of a stereo VO solution, the 

exploration of monocular VO techniques, and the configuration of a multi-sensor Extended 

Kalman Filter (EKF) to fuse odometry data from multiple sources. Through these efforts, 

several important results and insights were achieved: 

Stereo Visual Odometry Integration: The StereoLabs ZED stereo camera (ZED X Mini) 

was successfully incorporated into the platform, providing real-time depth perception and 

inertial data. This stereo system proved to markedly improve motion estimation accuracy 

compared to the original wheel encoder odometry. In quantitative tests, the stereo VO 

achieved great scale estimation and minimal drift. These results demonstrate that stereo 

vision effectively eliminates the scale ambiguity present in monocular methods and is far 

less susceptible to the cumulative errors that are observed in wheel odometry. The motion 

accuracy of the stereo system remained high throughout testing, and drift over short to 

medium trajectories was negligible, indicating a high level of consistency in pose tracking. 

Monocular VO (Classical Methods): In parallel, classical monocular visual odometry 

techniques were implemented and tested using the ZED X One monocular camera. Feature-

based algorithms were explored as a baseline knowledge-driven approach. These methods 

confirmed the expected challenges: scale estimation was a fundamental issue since a single 

camera cannot infer absolute distance without additional references. Moreover, monocular 

tracking exhibited drift accumulation over time and sometimes struggled with stability. In 

summary, the classic monocular VO, while functional in short intervals, did not provide the 
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robustness or precision required for dependable odometry in our application, primarily due 

to its drifting scale and higher susceptibility to environmental conditions.  

Monocular VO (Learning-Based Methods): To push the performance of monocular 

odometry, state-of-the-art learning-based models were also integrated into the system. In 

particular, the deep learning model named TartanVO was selected for its demonstrated 

generalization across environments and real-time capability. TartanVO succeeded in 

estimating the robot’s ego motion especially in the short range. However, in practice the 

tests revealed notable limitations of the model as well. While the angular orientation 

estimates from TartanVO were relatively consistent, the linear translation estimates were 

unstable. Even with scale calibration, the monocular learning-based VO showed erratic 

behavior in translational motion estimation and accumulated drift over longer runs. This may 

also be partially attributed to the use of pre-trained models without specific retraining. 

Although the model employed provided a functional baseline. However, the model weights 

were trained under conditions that may not fully match the operational environment of this 

project and proved insufficiently reliable on the wheelchair platform. These approaches were 

prone to scale drift and occasional pose estimation jumps, meaning they could not serve as 

the sole odometry source without risking navigation errors.  

Sensor Fusion with EKF: The EKF operates in 2D mode, appropriate for a planar indoor 

vehicle, and uses covariance-based weighting to balance the contributions of each sensor. 

Visual odometry serves as the primary pose source due to its higher accuracy, while encoder 

data provide reliable linear velocity estimates and act as a fallback when vision is temporarily 

unavailable. Encoder yaw data, being more prone to drift, are given lower weight, whereas 

linear velocity is trusted more. This fusion strategy significantly reduces drift and improves 

pose consistency. In straight-line tests, EKF estimates closely match ground truth (within 

~2%), and in closed-loop paths, EKF drift is limited to a few tens of centimeters, compared 

to 1.5 m with encoders alone. Although slightly less accurate than stereo VO alone, the EKF 

solution proved more resilient and robust, maintaining functionality during sensor 

interruptions. Overall, sensor fusion effectively leveraged the strengths of both inputs, 

offering a stable and accurate odometry solution suitable for real-time navigation. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL 

 

CONCLUSION AND FUTURE DEVELOPMENTS 

78 

In summary, the project successfully enhanced the localization capabilities of the 

autonomous wheelchair, replacing the encoder only system with a more accurate and drift-

resistant stereo visual odometry solution. The results confirmed that vision-based odometry, 

particularly stereo configurations, offers superior long-term accuracy in indoor 

environments, thanks to its ability to observe the environment on a true scale and reduce 

cumulative errors. In contrast, monocular approaches, both classical and learning-based, 

exhibited notable limitations. Their inherent lack of depth information led to scale ambiguity 

and instability, making them less reliable for consistent pose estimation. Moreover, the 

experiments demonstrated that methods operating with less information, such as monocular 

setups, require significantly more effort in calibration and fine-tuning to approach the 

performance levels of stereo systems. While these monocular methods hold potential for 

low-cost alternatives, they are not yet robust enough to operate independently in real-world 

deployments without a deeper fine-tuning effort.  

Future Work 

Building on the successful integration of visual odometry, the next logical step is to evolve 

this system into a complete visual SLAM (Simultaneous Localization and Mapping) solution 

that can fully replace or augment the existing LiDAR-based solution in the wheelchair 

platform. The results of this thesis provide a strong foundation with a high-accuracy VO 

module upon which advanced capabilities can be added.  

The main directions for future work can be: 

• Monocular Odometry Improvements: Although stereo vision remains the more 

reliable option, improving monocular odometry is still valuable for cost-effective 

systems. Future work should explore scale recovery through learned depth, scene 

constraints, or training with stereo supervision. Achieving performance comparable 

to stereo requires addressing scale ambiguity and drift and may also demand more 

extensive fine-tuning in learning-based methods to close the gap. 

• Integration into a Full Navigation System: Future efforts should integrate visual 

SLAM into the full navigation pipeline, replacing LiDAR-based localization.  
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ANNEX I: SUSTAINABLE DEVELOPMENT GOALS 

 

The present project focuses on developing a visual odometry-based autonomous navigation 

system for an autonomous wheelchair, contributes directly to several of the United Nations 

Sustainable Development Goals (SDGs) outlined in the 2030 Agenda. The following 

alignments have been identified: 

 

SDG 3: Good Health and Well-Being 

Enhancing autonomous mobility for individuals with motor disabilities has a direct impact 

on their physical health and emotional well-being. By equipping the wheelchair with robust 

and accurate autonomous navigation capabilities, the project promotes user independence, 

reduces reliance on caregivers, and improves overall quality of life in both private and public 

environments. 

SDG 9: Industry, Innovation and Infrastructure 

The development of an advanced sensor fusion and visual odometry system involves the 

application of cutting-edge technologies in computer vision, mobile robotics, and machine 

learning. This technological integration fosters innovation in assistive robotics and 

contributes to the advancement of intelligent and accessible infrastructure for individuals 

with limited mobility. 

SDG 10: Reduced Inequalities 

Access to advanced mobility technologies represents a key step toward social inclusion. 

Through technically effective and potentially low-cost solutions such as deep learning-based 

monocular odometry, this project opens the door to broader accessibility, helping to reduce 

the gap between people with and without disabilities. 
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ANNEX II: USER MANUAL 

INTRODUCTION 

This user manual provides detailed guidance on how to set up, configure, and operate the 

visual odometry system developed for the autonomous wheelchair. This manual is intended 

for users with basic ROS2 knowledge who want to deploy or test the system under different 

configurations, and that has already checked how to system works as a whole in [63].  

SYSTEM OVERVIEW 

The system is divided into two main ROS2 workspaces: 

A. zed_ros2_ws – Visual Odometry and EKF Modules 

This workspace contains all visual odometry modules, including: 

• mono_vo:  

o VisualOdometryNode.py: Classic monocular visual odometry  

• tartanvo_ros2: 

o tartanvo_node.py: Deep learning-based monocular odometry node using 

the TartanVO model. 

o zed_odom_transformer.py: Transforms raw visual odometry to align with 

the robot’s base frame. 

o EKF configuration file ekf.yaml under config/. 

o General files for visual odometry and sensor fusion. 

• tsformer_vo_node: Node for monocular odometry using TSformer-VO.  

• zed-ros2-wrapper: Official Stereolabs ROS2 interface for the ZED cameras (ZED 

X Mini and ZED X One). 
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B. ros2_tracer_ws – Original Navigation System 

This workspace originates from [63].  

CONFIGURATION  

EKF Setup (Fusion or Vision-Only) 

The EKF configuration file is in the following location: 

zed_ros2_ws/src/tartanvo_ros2/config/ekf.yaml 

• Using VO + encoders: 

Both inputs should be declared as the following, as both are used:  

 

• Using visual odometry only  

In this case, the best solution is to comment out the encoders input and make the 

cameras input as main (odom0).  
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Encoders odometry setup 

The encoder data processing is implemented in: 

ros2_tracer_ws/src/tracer_odometry/tracer_odometry/odometry.py 

This script has two logic sections: 

• The first section should be used when only encoders odometry wants to be used, 

returning to the system used in [63]. 

• The second section reformats and publishes the encoder data to the EKF, so it should 

be set when fusion want to be achieved.  

Depending on the setup, comment or uncomment the appropriate section. The script 

contains references to know which part corresponds to each configuration.  
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Nav2 Stack Configuration 

The Nav2 navigation system requires an odometry source. This is defined in: 

ros2_tracer_ws/src/tracer_bringup/params/nav2_params_real.yaml 

Set the odom_topic parameter to: 

• /odom → for encoder-only mode. 

• /odometry/filtered → for EKF fusion mode (visual + encoders or visual only). 

LAUNCHING THE SYSTEM 

The system must be launched in the correct order to ensure sensor availability and topic 

synchronization. 

1. Launching the Camera (via SSH) 

Before connecting via Remote desktop to the NVIDIA Jetson, the camera has to be launched 

from local computer terminal (cmd in windows). This is caused by ports issues with the 

graphics when trying to get the connection between the camera and the NVIDIA Jetson using 

a remote desktop. The commands to execute are:  

ssh socialtech@192.168.0.11  

#Password: LabControl (not a command) 

cd ~/zed_ros2_ws 

source install/setup.bash 

[Alias] 

 

Where [Alias] depends on the camera used:  

• zedxmini 

• zedxone 

 

mailto:socialtech@192.168.0.11
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2. Launching the Navigation and VO System 

Once the camera is active, connect with the Jetson via remote desktop. Use multiple tabs 

with Terminator terminal to keep each process organized (CTRL + E, CTRL+O) 

For Stereo + Encoders mode, the recommended execution is:   

 

For the Monocular (TartanVO) + Encoders mode, the recommended execution is 
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DEBUGGING AND COMMON ISSUES 

Proper system operation can be monitored using ROS2 diagnostic tools. To verify that topics 

are being correctly published and nodes are active, the following command is useful: 

ros2 topic echo /odometry/filtered 

Replace the topic with any of interest (e.g., /scan, /zed/zed_node/odom, /encoders_odom) to 

validate its data flow. 

Also plotting the whole TF tree might help to see if there is any topic or transformation 

missing might help to identify the issue. The command is:  

ros2 run tf2_tools view_frames 

 

It is very important to always ensure each terminal session has sourced the correct 

workspace: 

source install/setup.bash 

 

To inspect all active topics: 

ros2 topic list  

 

To visualize the topic-node connections and identify missing links or inactive components:  

rqt_graph 

 

Common issues 

Below are some frequent problems that may arise during system operation, along with 

recommended diagnostic steps: 
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• Encoder Odometry Not Publishing (only when using Raspberry Pi configuration) 

Symptom: No data appears on /encoders_odom. 

Possible Cause: The Raspberry Pi (which transmits encoder data) is not connected to 

the network. 

Solution: From the Jetson terminal run the following command, and check if the 

Raspberry Pi IP appears (192.168.1.154). If it does not, reboot it.  

sudo arp-scan --localnet 

 

• LiDAR data not publishing 

Symptom: The topic /scan is not active or is not publishing expected data. 

Possible Cause: The LIDAR IP address is no longer assigned.  

Solution: Confirm that the Ethernet interface connected to the LIDAR has an IP in the 

correct range (192.168.1.50). If this configuration is missing, use the provided command 

to reconfigure the LIDAR: 

lidar_config 

 

This tool resets the IP and communication parameters based on the standard procedure 

defined in [63]. 

• Camera Not Working or Crashing When Launched from Windows Terminal 

Symptom: Errors appear when launching zedxmini or zedxone from a Windows 

terminal, or no image/odometry is received. 

Possible Cause: The camera was connected after powering on the NVIDIA Jetson. 
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Solution: The camera must be physically connected before powering up the Jetson. If 

the camera is plugged in after boot, it may not be recognized by the system and will not 

function. Reboot the Jetson with the camera already connected to resolve the issue. 
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