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PROJECT SUMMARY

1. Introduction

This project was born from the need to improve the localization of an autonomous
wheelchair operating in indoor environments, where technologies such as GPS are not
viable. Until now, the system relied mainly on encoder-based odometry, which exhibited
limited accuracy and significant drift over time. The main objective of this work has been to
replace that system with a new, more accurate and robust visual odometry module capable

of reliably estimating the robot’s position and orientation.

In particular, the project explores and integrates different visual odometry approaches: stereo
odometry using a ZED X Mini [1] camera, classical monocular odometry (based on
geometric techniques), and learning-based monocular odometry (using models such as
TartanVO [2]), both implemented with a ZED X One [3] camera. Additionally, a sensor
fusion system based on an Extended Kalman Filter (EKF) is developed to combine multiple

sources of information and generate a more robust estimate of the robot’s motion.
g

2. Previous and New Architecture

The original system architecture was based on encoder odometry and LiDAR sensors within
a ROS2 [4] environment. The Nav2 navigation stack [5] was used for path planning, motion
control, and localization. However, this architecture exhibited notable limitations in
accuracy—especially during long maneuvers or tight turns—where accumulated drift

significantly impacted system reliability, due to the encoders effect.

The new architecture remains fully compatible with ROS2 and Nav2, but introduces major
improvements: a ZED X Mini camera is added as the main stereo visual odometry source, a
new learning-based monocular odometry node (using the ZED X One camera) is
implemented, and the TF transformation tree is restructured to resolve previous
inconsistencies. All components are integrated through an EKF node that fuses the available
odometry sources. This modular design allows the system to evaluate, compare, and switch

between different odometry sources while maintaining overall consistency.
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Figure 1: New architecture in odometry module

3. Odometry Modules
3.1 Stereo Visual Odometry

The stereo visual odometry solution was implemented using the Stereolabs ZED X Mini
camera, capable of providing 6DOF pose estimates by combining stereo images and inertial

measurements from its built-in IMU.

The zed-ros2-wrapper node publishes odometry data to the /zed/zed node/odom topic, but
issues arose due to the relative offset between the camera and the robot’s center of mass
when integrating the data into the EKF. To resolve this, a custom zed odom_transformer
node was implemented to re-reference the pose from the camera frame to the robot’s base

frame (base link).
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Figure 2: Trajectory test with stereo visual odometry



3.2 Classical Monocular Odometry

To explore lower-cost alternatives, a classical monocular visual odometry module was
developed using the ZED X One camera. This approach was based on geometric techniques
including ORB [6] feature detection, FLANN [7] matching, and motion estimation via the
essential matrix. A ROS2 node was created to process rectified images and estimate the

robot’s relative trajectory.

However, testing revealed instability: the lack of scale information caused cumulative errors,
and the system was highly sensitive to poor lighting or low-texture environments. Although
useful as a conceptual tool, this method was not included in the final system due to its lack

of robustness.
3.3 Learning-Based Monocular Odometry

As a third approach, deep learning was explored for monocular odometry estimation. Several
models were evaluated, with TartanVO selected for its lightweight design, pretrained
weights, and ROS compatibility. A ROS2 node named tartanvo node was implemented to
process monocular images from the ZED X One. A scale calibration module was developed
based on test trajectories, and an IMU-based motion filter was integrated to prevent

erroneous pose updates while the robot was stationary.
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Figure 3: Trajectory test with monocular visual odometry and learning based techniques

Although the system successfully tracked short trajectories, translation estimates were
unstable. Since the model was not retrained on real-world data, its pretrained weights showed

poor generalization and unreliable performance under the test conditions.



4. EKF Integration. Tests and Results

To combine the strengths of each sensor, an EKF-based fusion system was implemented
using the ekf filter node from the robot localization package [8]. The EKF was configured
to operate in 2D mode (planar motion), taking stereo visual odometry and encoder odometry
as inputs. Sensor covariances were tuned to reflect their relative reliability: encoders
provided accurate linear velocity but unreliable orientation data, whereas the ZED camera

delivered more precise position and orientation estimates.

Two test scenarios were defined: straight-line trajectories of 1.2 m and 3.6 m, and a closed-
loop path. In the straight-line tests, all sources produced acceptable results, with the largest

error being 4.2% from the stereo VO at the 1.2-meter mark:

Table 1: Straight line test results

Real distance Encoders (m) Visual Stereo (m) EKF (m)
(m)
3.6 3.594 3.500 3.586
1.2 1.173 1.250 1.223

In the closed-loop test, encoder-only odometry accumulated 1.45 m of drift, while the EKF
solution reduced the error to just 6.5 cm. This clearly demonstrated the encoder's main

weakness—poor angular displacement estimation—and the advantage of sensor fusion:

Table 2: Euclidean distance between inicial and final position in closed loop test

Method Accumulated drift (m)
Encoders 1.454
Visual Stereo 0.065

EKF 0.109
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Figure 4: Close loop test results for encoders, stereo visual odometry and EKF
5. Conclusions

The project achieved its primary goal: replacing an encoder-only odometry system with a
more accurate and robust solution. The ZED X Mini camera proved reliable for real-time

pose estimation, and its integration with the ROS2/Nav2 stack was successful.

Tests also confirmed that monocular solutions, though appealing for their lower cost, still
present major challenges, such as scale ambiguity and sensitivity to environmental
conditions. Both classical and learning-based monocular methods require extensive

calibration or retraining to match the performance of stereo systems. Without such

adjustments, they cannot yet be considered viable standalone alternatives.

Lastly, sensor fusion via EKF emerged as a robust and effective solution. By combining the
advantages of each input, the resulting system demonstrated low accumulated error,

resilience to partial sensor failure, and consistent navigation performance.

For future work, the project proposes extending this module into a full visual SLAM solution

that could eventually replace the current LIDAR-based system entirely opening the path to

more efficient, robust, and cost-effective autonomous navigation.
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RESUMEN DEL PROYECTO

1. Introduccion

Este proyecto nace de la necesidad de mejorar la localizacién de una silla de ruedas
auténoma en entornos interiores, donde tecnologias como el GPS no ofrecen una solucion
viable. Hasta ahora, el sistema se apoyaba principalmente en odometria basada en encoders,
lo que presentaba una precision limitada y una acumulacion significativa de error con el paso
del tiempo. El objetivo principal del trabajo ha sido sustituir ese sistema por un nuevo
modulo de odometria visual mas preciso y robusto, que permita estimar de manera fiable la

posicion y orientacion del robot.

En particular, el proyecto plantea integrar y evaluar diferentes enfoques de odometria visual:
estereoscopica (con camara ZED X Mini [1]), monocular clasica (basada en técnicas
geométricas) y monocular con aprendizaje profundo (empleando modelos como TartanVO
[2]), ambos haciendo uso de una cdmara ZED X One [3]. Ademas, se desarrolla un sistema
de fusion de sensores mediante un Filtro de Kalman Extendido (EKF) que combine multiples
fuentes de informacién para ofrecer una estimacion final mas robusta del movimiento del

robot.

2. Arquitectura previa y arquitectura nueva

La arquitectura original del sistema se basaba en el uso de odometria de encoders y sensores
LiDAR integrados en un entorno ROS2 [4]. El stack de navegacion Nav2 [5] se utiliza para
la planificacion de rutas, navegacion y control. Sin embargo, esta arquitectura presentaba
limitaciones en precision, especialmente durante maniobras prolongadas o giros cerrados,
donde el error acumulado comprometia la fiabilidad del sistema, debido al efecto de los

encoders.

La nueva arquitectura mantiene la compatibilidad con ROS2 y Nav2, pero introduce mejoras
significativas: se incorpora una camara ZED X Mini como fuente principal de odometria
visual estéreo, un nuevo nodo de odometria visual monocular basado en aprendizaje

profundo (con la cdmara ZED X One), y se reestructura el arbol de transformaciones TF para



resolver inconsistencias previas. Todo ello se integra a través de un nodo EKF que fusiona
los datos disponibles. Este disefio modular permite evaluar, comparar e intercambiar

distintas fuentes de odometria manteniendo la coherencia del sistema completo.

TRACER AGX

Heedback vel Jodometry_node Jencoders_odom

Jekd filter_node Jodom NAV2

ZEDXMINI

Izedfzed_node/odo
m

Figura 1: Nueva arquitectura en el modulo de odometria

3. Modulos de odometria

3.1 Odometria estéreo

La solucién de odometria estéreo se construyd utilizando la cdmara ZED X Mini de
StereoLabs, capaz de proporcionar estimaciones de pose en 6 grados de libertad a través de

la combinacion de imagenes estéreo y datos inerciales (IMU).

El nodo zed-ros2-wrapper publica informacion de odometria en el topic
/zed/zed_node/odom, pero se encontraron problemas en la referencia de la pose debido a la
posicion relativa entre la cdmara y el centro de masa del robot a la hora de su integracion en
el EKF. Para resolverlo, se implement6 un nodo adicional zed odom transformer que

transforma la odometria del marco de la caAmara al marco del robot base (base link).
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Figura 2: Ensayo de trayectoria con odometria visual estéreo



3.2 Odometria monocular. Métodos clasicos

Para comparar alternativas de menor coste, se desarrolld también un mdédulo de odometria
visual monocular clésica utilizando la camara ZED X One. El enfoque se baso6 en técnicas
geométricas como la deteccion de caracteristicas (ORB [6]), emparejamiento con FLANN
[7] y estimacidén de movimiento mediante la matriz esencial. Se desarrollé un nodo en ROS2

capaz de procesar imagenes rectificadas y estimar la trayectoria relativa del robot.

Sin embargo, las pruebas demostraron que esta solucion resultaba inestable: la ausencia de
informacion de escala provocaba errores acumulativos, y la sensibilidad a condiciones de
iluminacion o baja textura limitaba su robustez. Aunque til como herramienta conceptual,

este método no fue integrado en el sistema final.

3.3 Odometria monocular. Métodos con aprendizaje profundo

Como tercera via, se exploro el uso de redes neuronales profundas para estimar odometria a
partir de imagenes monoculares. Se evaluaron varios modelos existentes, siendo TartanVO
el seleccionado por su ligereza, disponibilidad de pesos preentrenados y soporte para ROS.
El nodo tartanvo node fue desarrollado en ROS2 y adaptado para recibir imagenes
monoculares de la camara ZED X One. Se implementd un sistema de calibracion de escala
mediante trayectorias de prueba y se incorpor6 un filtro basado en la aceleracion del IMU

para evitar estimaciones erroneas en reposo.

Aunque el sistema fue capaz de seguir trayectorias a corto plazo, los resultados mostraron
inestabilidad en la estimacion de la traslacién. Ademas, al no haber sido reentrenado
especificamente en datos del entorno real, los pesos del modelo resultaron poco

generalizables, y consecuentemente obteniendo unos resultados poco fiables y robustos.
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4. Integracion del EKF. Ensayos y resultados

Con el objetivo de aprovechar las fortalezas de cada sensor, se configuro6 un sistema de fusion
mediante el nodo ekf filter node del paquete robot localization [8]. El EKF se disefi6 para
operar en modo 2D (movimiento planar), utilizando como entradas la odometria visual
estéreo y la odometria de encoders. La covarianza asociada a cada sensor se ajustd para
reflejar su fiabilidad: los encoders contribuyen con la velocidad lineal, pero su informacion
de orientacion se considerdo menos fiable, mientras que la cdmara ZED aporta la estimacion

de posicion y orientacion con mayor precision.

Las pruebas se realizaron bajo dos escenarios: trayectorias rectas de 1.2 m y 3.6 m, y un

recorrido en bucle cerrado.

En las trayectorias rectas, todas las fuentes obtuvieron resultados aceptables, siendo el mayor

de los errores de un 4,2% en la estimacion a los 1,2 metros de la odometria visual estéreo.

Tabla 1: Resultados de ensayo de odometria en linea recta

Distancia real Encoders (m) Visual Stereo (m) EKF (m)
(m)
3.6 3.594 3.500 3.586
1.2 1.173 1.250 1.223

En el test de bucle cerrado, la odometria basada en encoders acumulo un error de 1.45 m,
mientras que la solucion EKF redujo la deriva a solo 6.5 cm, demostrando una mejora
significativa en precision y robustez. Este ensayo puso de manifiesto la principal debilidad

de los encoders: su imprecision en la estimacion del desplazamiento angular.

Tabla 2: Distancia euclidea entre el punto inicial y final tras ensayo de lazo cerrado

Método Drift acumulado (m)
Encoders 1.454
Visual Stereo 0.065

EKF 0.109
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Figura 4: Resultados de ensayo de lazo cerrado para encoders, odometria visual estéreo y EKF

5. Conclusiones

El proyecto logré uno de los objetivos principales: reemplazar un sistema de odometria
basado exclusivamente en encoders por uno mas preciso. La cdmara ZED X Mini demostrd
ser una herramienta fiable y precisa para la estimacion de pose en tiempo real, y su

integracion dentro del stack de navegacion ROS2/Nav2 resulto satisfactoria.

Las pruebas también evidenciaron que las soluciones monoculares, aunque atractivas por su
coste reducido, atin presentan desafios importantes, como la ambigiiedad en la escala y la
sensibilidad a las condiciones del entorno. Tanto los métodos clasicos como los basados en
aprendizaje requieren una calibracion o entrenamiento adicional para alcanzar niveles
similares de rendimiento. Por tanto, mientras no se realicen estos ajustes de manera

exhaustiva, no pueden ser considerados alternativas viables por si solas.

Por ultimo, la fusidon de sensores mediante EKF se consolid6 como una solucion robusta y
fiable. Combinando las ventajas de cada fuente, el sistema resultante mostré bajo error

acumulado, buena respuesta ante fallos parciales y coherencia en la navegacion.

Como trabajo futuro, se propone extender este mdédulo hacia una solucién completa de
SLAM visual, para eventualmente sustituir por completo el sistema LiDAR mediante

camaras, abriendo el camino a una navegacion mas eficiente, robusta y econémica.
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Chapter 1. INTRODUCTION

This project is part of the second edition of the UNIJES SocialTech Challenge. It is a robotics
competition that involves the collaboration among four Jesuits universities: Universidad de
Deusto, Universitat Ramon Llull, Universidad Pontificia Comillas, and Universidad Loyola,
all of which belong to UNIJES, the network of universities associated with the Society of
Jesus in Spain. The goal of this competition is to demonstrate the social impact of technology

while promoting innovation and creativity among participants.

This year, the competition took place in an indoor environment resembling a normal office,
unlike last year when the environment was a maze with flat and texture-less surfaces. The
goal of this project is to improve the solutions developed in the previous year, developing

further and adapting the existing models into the new conditions.

The existing platform uses a wheel encoder as odometry source, giving bad quality

information and performing poorly on slippery surfaces.

The objective of this master's thesis project is to develop a new odometry module based on
Visual Odometry (VO), making use of stereo and monocular cameras. This odometry system
1s integrated into a robotics platform, enabling more precise and efficient navigation in rich-

textured environments, and providing better performance than the existing wheel encoders.

1.1 STATE OF THE ART

1.1.1 LOCALIZATION IN AUTONOMOUS SYSTEMS

Accurate localization is fundamental to autonomous systems' navigation. A primary

challenge is the estimation of a robot's ego-motion, which involves determining its position
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and orientation over time. With this information, the system can track changes in position

and orientation after the robot has moved.

For tasks such as path planning, object tracking, and obstacle avoidance, effective
localization is crucial for the safe and efficient operation of autonomous systems. It ensures
that the system can precisely determine its position relative to its surroundings, allowing it
to make informed decisions about its movements, avoid obstacles, and follow planned

trajectories.

One of the most conventional and widely used techniques for localization in autonomous
systems is the Global Positioning System (GPS), a subset of the broader Global Navigation
Satellite System (GNSS). GPS is extensively used in outdoor environments due to its global
coverage and relatively low cost in applications like autonomous vehicles, drones, and
agricultural robots [4]. Despite advancements in GPS technology, which improves accuracy
to centimeter levels, several challenges remain inherent to this method of localization, as it
heavily relies on an external signal. Factors such as satellite signal blockage, multipath
effects, high noise levels, and low bandwidth can degrade its accuracy, reducing the

effectiveness of autonomous navigation, especially in high precision applications [2].

As a result, research focuses mainly on developing alternative localization techniques that
rely on onboard sensors to ensure more robust and reliable performance, particularly in
environments where GPS is not available, such as indoor conditions. Techniques that involve
the use of onboard sources of information allow robots to estimate their position and
orientation by tracking movement relative to their starting point without the dependence on

external signals.

1.1.2 THE LOCALIZATION PROBLEM

Localization refers to the process by which an autonomous mobile robot determines its
position and orientation within a given map. It aims to answer the key question: "Where am
17", allowing the robot to perform tasks efficiently in dynamic or static environments. When

it comes to the localization problem, the main challenges are [7]:
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e Global localization (First-location problem): The robot has a map of the
environment but starts without any prior knowledge of its pose (position and
orientation) and must determine where it is from scratch, considering all possible
locations.

e Pose tracking: The robot knows its initial pose and continuously updates its location
as it moves, correcting errors from sensors and movement.

e Kidnapped robot problem: After being localized, the robot is moved to an
unknown location and must acknowledge this situation and reinitiate the localization

process to find its new pose.

To estimate their pose, robots use sensors and internal data to make the most accurate
estimation possible. The system captures environmental data using sensors such as LiDAR
or cameras, which can be compared to a known map to help the robot determine its position.
However, this data is often subject to noise and can be influenced by specific environmental
conditions. For instance, LIDAR performance may degrade when operating on transparent

or reflective surfaces, while camera-based systems can struggle in textureless environments.

On the other hand, dead reckoning estimates the robot’s position by tracking its movement
from a known starting point using odometry and inertial sensors. While it provides
continuous position updates, dead reckoning suffers from error accumulation over time due

to wheel slippage or sensor noise [8].

When a known map is available, the robot can localize itself by comparing its sensor data to
this map, refining its pose as it moves. However, in unknown environments, the robot must
use Simultaneous Localization and Mapping (SLAM) to both estimate its location and build
a map of its surroundings simultaneously. It involves estimating both the robot's trajectory

and the location of landmarks without any prior knowledge of the environment [10].

All sensors, movements, and the map are subject to uncertainty. Therefore, the robot's pose
is modeled as a probability distribution over its possible locations using the gathered data.

To estimate its location, probabilistic methods are used to determine the likelihood of the
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robot being at different positions on the map. Some of these methods include Markov

localization, Kalman filters, particle filters, and topological localization [7].

Odometry

As mentioned before, one core method for tracking movement in the localization process is
dead reckoning, which estimates the robot's pose based on its movement from a known
starting point. This technique relies on odometry and inertial sensors to provide the system

with information about the robot's change in position and orientation.

Odometry can be defined as the use of the data of local sensors to estimate an agent's change
in pose over time, given a particular starting point [1]. The most common sensors and

techniques applied are the following.

Table 1: Comparative Analysis of Odometry Sensors and Techniques [4]

Odometry Technology used Advantages Disadvantages
Method
Wheel Uses encoders e Simple and cost- e Prone to cumulative

Odometry attached to the effective errors due to wheel
robot’s wheels to e Easy to implement drift. Incrementing
measure rotations, e Works well on inaccuracies over
converting them into smooth, even time
linear distance based surfaces e Problematic on
on wheel radius. slippery or uneven

surfaces.

e  Wheel slippage leads
to deviations from
actual movement

INS Utilizes an Inertial e Provides high- e Prone to drift
Odometry  Navigation System frequency updates accumulation due to
with accelerometers on position and SeNsor errors
and gyroscopes to orientation. e Errors compound
continuously e Crucial for real- over time leading to
calculate position time applications inaccuracies

and velocity.
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Requires high-cost
equipment for
accuracy
Often used alongside
other systems to
enhance accuracy

Laser Employs laser e High-resolution High cost
Odometry sensors (e.g., performance. Requires significant
LIDAR) to measure e Effective in computational
distance by obstacle detection, resources for data
transmitting laser mapping, and 3D analysis
beams and analyzing motion capture Ineffective with
reflected light; transparent materials
includes Time of like glass due to
Flight and phase- unreliable reflections
shift methods.
Visual Estimates motion by e Immune to wheel Highly dependent on
Odometry analyzing changes in slippage. lighting and visual
consecutive images e Provides accurate texture.
from onboard trajectory Struggles in low-light

cameras, tracking

visual features across

frames.

estimates (relative
errors as low as
0.1% to 2%)
Applicable to
wheeled, aerial, or
legged systems.

or featureless
environments
Sensitive to motion
blur and occlusions
Drift accumulates
over time without
correction

Requires substantial
computational
resources

Considering the comparative analysis of odometry methods presented in Table 1, Visual
Odometry (VO) has been selected as the focus of this project. VO aligns closely with the

specific requirements of the use case.
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1.1.3 VISUAL ODOMETRY

Visual Odometry consists in estimating a vehicle’s change in position and orientation over
time, relying on the acquisition of image frames. The challenge of recovering relative camera
poses and three-dimensional structures from a series of camera images is referred to as
structure from motion (SfM) in the computer vision field. Visual Odometry can be viewed

as a specific instance of SftM [5].

The problem lies in identifying the rigid body transformation matrix between two camera
frames. This matrix encodes both the rotation and translation of the camera, transforming a
point in the previous frame to its new position in the current frame. This can be expressed in
the following way:

k-1 k-1

T’,:_l — [R k tk ] (1)

0 1
Where Rﬁ_l is the rotation matrix (3x3) and tﬁ_l is the translation vector (3x1), representing
the transformation from frame k — 1 to frame k. Therefore, when there is a succession of

frames, relative transformations can be concatenated to obtain the relation between the initial

X, and final camera pose X}, [5].
X, =T X, (2)

VO methods can be classified in various ways. In this project, the classification will be based
on the way motion is estimated. The classification can be seen in:

Visual Odometry

T

Knowledge-based Learning-based
Methods Methods
Y
Appearance-based Feature-based Hybrid

Figure 5: Visual Odometry categorization based on motion estimation [1]
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Knowledge-based Methods

Knowledge-based methods, also called classical approaches, use camera geometry to
estimate motion by analyzing how features shift between frames. These methods are reliable
and well-understood, forming the basis of many traditional VO systems. However, their
accuracy depends on good feature detection and can be limited in environments with bad

illumination conditions or weak visual features.
Motion estimation

Motion estimation is a fundamental step in VO systems, as it calculates the camera's
movement between consecutive images obtaining the transformation matrix T’,:"1 between
two images, I,_; and I, using two sets of corresponding features f;_;, and f identified at
time instances k — 1 and k [5]. The complete trajectory of the camera (and the agent it is
attached to) can be reconstructed by concatenating all the transformation matrices through a
trajectory. Depending on whether the feature correspondences are expressed in two or three

dimensions, there are three main methods for motion estimation, 2D to 2D, 3D to 3D and

3D to 2D [12].
2D to 2D

In this method, both feature sets from consecutive images are represented in 2D coordinates.
It relies on the Essential Matrix, which encapsulates the camera motion parameters,
including rotation and translation, but with an unknown scale factor [5]. This method is
particularly beneficial due to the epipolar constraint, ensuring that corresponding feature
points in one image lie along a line in the other image. This constraint simplifies the
estimation process, and algorithms like the five-point algorithm or eight-point algorithm are

often employed [12].

The 2D-to-2D method is favored for its efficiency in motion estimation, avoiding the need
for triangulation, making it highly suitable for monocular VO setups where 3D points

cannot be directly measured.




UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAT)

COMILLAS MASTER UNIVERSITARIO EN INGENIER{A INDUSTRIAL
UNIVERSIDAD PONTIFICIA
L IcALIcADE ] INTRODUCTION
3D to 3D

In this method, both feature sets are represented in 3D, often through triangulation using
stereo camera systems. The camera motion is calculated by determining the optimal rigid-
body transformation that best aligns the two sets of 3D points. This optimization process
minimizes the sum of squared distances between corresponding 3D points in the two frames,
involving the use of algorithms such as Iterative Closest Point (ICP) or Singular Value

Decomposition (SVD) [5].

The ICP algorithm aligns 3D point clouds generated from consecutive frames. It iteratively
refines the transformation (rotation and translation) between two sets of 3D points by
minimizing the Euclidean distance between corresponding points in the point clouds. ICP is
especially effective in scenarios where accurate depth information is available. It can be used
to complement other motion estimation methods by refining the initial pose estimate

obtained from algorithms like RANSAC or model-based predictions [8].

On the other hand, the SVD algorithm works computing the rigid transformation (rotation
and translation) between two sets of 3D point, minimizing the distance between
corresponding points in the two datasets. It is often employed for initial pose estimation in
visual odometry systems, offering robust performance when complemented by techniques

like Sparse Bundle Adjustment for refinement [9].

While these methods provide absolute scale directly, they suffer from significant depth
uncertainty in 3D points, especially along the depth axis. This uncertainty can lead to less
accurate motion estimates, which is why it is less frequently used compared to the 3D-to-2D

approach. However, in environments with precise 3D data, this method can still be effective.
3D to 2D

This approach uses 3D points from the previous frame and matches them to their
corresponding 2D projections in the current frame. This method offers greater accuracy by
minimizing reprojection errors, making it advantageous over the 3D-to-3D method, which

minimizes pose errors [6].

10
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In stereo VO systems, 3D points can be triangulated directly from stereo image pairs, while
in monocular systems, 3D points need to be triangulated across multiple frames. The PnP
algorithm (Perspective-n-Point) is commonly used to calculate the camera pose [14]. This
method provides a balance between computational cost and accuracy and is commonly seen

in real-time VO applications.
Feature-based methods

Feature-based methods in Visual Odometry (VO) leverage prominent points or regions
within each frame to estimate camera movement. These key features, which include corners,
edges, lines, and blobs, are distinguishable based on intensity, color, or texture, making them

more likely to correspond across multiple images [19].

The primary advantage of feature-based VO lies in its robustness against geometric
distortions and illumination inconsistencies. However, by focusing on a limited set of points,
these methods may discard valuable information, making them highly dependent on accurate
correspondence and minimizing outliers. The typical pipeline for feature-based algorithms
includes a feature detection and matching stage, followed by motion estimation and

optimization [1].
The common pipeline for this method is as follows:
Image sequence

Feature selection /
outlier rejection

Feature detection
and matching
(or Tracking)

Motion Estimation

2D-2D || 3D-2D || 3D-3D

Y
Optimization

Pose ¢
Estimation Bundle Pose Graph
(XY Z¢0vy) Adjustment | | Optimization

Loop Closure

Figure 6: Common pipeline for feature-based techniques [1]

11
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Common algorithms applied in feature-based techniques are: SIFT [33], SURF [14], ORB
[15], BRISK [16] or the Harris Corner Detector [17], among others.

Appearance-based methods

Appearance-based Visual Odometry estimates the camera's pose by analyzing the intensity
of all image pixels and minimizing photometric error between consecutive frames. Unlike
feature-based VO, which focuses on detecting and matching distinct points, appearance-
based methods use the entire geometric information from the camera’s images. This holistic
approach reduces aliasing issues often encountered in scenes with similar patterns, leading
to more accurate and robust pose estimates. It is particularly effective in low-texture or low-
visibility environments, where feature-based methods tend to struggle [20]. They can be

categorized into:

e Regional based methods: The motion is estimated by concatenating camera poses
by performing an alignment process for two consecutive images. This technique has
extended its implementation by measuring the invariant similarities of local areas
and using global constraints.

e Optical flow-based methods: This method analyzes raw visual pixel data using an
optical flow (OF) algorithm to estimate camera motion by examining changes in
pixel intensity between two consecutive frames. As the illumination of a pixel
changes, the camera's motion is determined by computing the 2D displacement

vector of points projected in both frames [18].

Learning-based Methods

Learning-based methods in Visual Odometry leverage data-driven approaches to estimate
camera motion, allowing for a better understanding of the scene without the need for explicit
modeling. These methods require training on sufficiently large and representative datasets,
making them more robust against image noise and eliminating the necessity for a priori

knowledge of camera calibration parameters. As a result, there has been a significant shift

12
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toward learning-based techniques in VO in recent years [1]. A common pipeline in this

method is shown in Figure 7.

Image sequence

(a2

’ Traditional odometry pipeline X
f—  — ey
" Z
_,:"Features (keypoints, )

Deep Neural r---- depth, etc.), Pose estimations
Network > 6
End-to-end ¥

Figure 7: Common pipeline for machine learning techniques [1].

With this configuration, the neural network can either complement one of the traditional
algorithms for better performance, but it can also directly provide the position and rotation

estimation.

These methods provide more complex scene representations without the need for explicit
geometric modeling, making them capable of understanding a wide variety of environments.
They also enable end-to-end learning, as the pipeline for motion estimation can be simplified
into a single model. Additionally, they are camera agnostic, eliminating the necessity to

calibrate the sensors [3].

Despite their advantages, learning-based methods in Visual Odometry (VO) have notable
disadvantages stemming from their reliance on deep learning. They depend heavily on large,
representative datasets for training; thus, insufficient or biased data can lead to poor
generalization and inaccurate estimations [21]. These methods require significant
computational resources, making them less suitable for real-time applications. Furthermore,
they are also prone to overfitting which can reduce performance when encountering new
scenarios. Lastly, learning-based approaches may struggle in edge cases, such as low-texture

environments or highly dynamic scenes, where traditional methods often excel [3].

13
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1.2 MOTIVATION

The rapid advancements in robotics and autonomous systems have significantly contributed
to improving the quality of life for individuals with mobility challenges. As society continues
to embrace technology, there is a growing need to develop innovative solutions that enhance
accessibility and independence for people with disabilities. The integration of autonomous
navigation technologies, such as Visual Odometry (VO), plays a critical role in achieving

these objectives.

This project aims to address the limitations identified in last year's solution by developing a
new odometry module system using VO. The motivation stems from the recognition that
accurate and reliable localization is essential for autonomous systems. By enhancing
localization and mapping capabilities, the proposed VO module will provide more efficient

navigation for the wheelchair system.

Furthermore, the challenges presented by indoor environments, including variable lighting
conditions and dynamic obstacles, underscore the need for robust motion estimation
techniques. By focusing on improving the odometry system, this project seeks to contribute
to ongoing research in robotics and to develop practical applications that can positively

impact on the lives of users.

1.3 PROJECT OBJECTIVES

The primary goal of this master's thesis is to explore and develop a new odometry system
for the autonomous wheelchair, with the aim of replacing the existing wheel encoder-based
odometry. This project is divided into two main phases: stereo visual odometry integration

and monocular visual odometry exploration.

In the first phase, the objective is to integrate the Stereolabs ZED X Mini stereo odometry
system, which combines visual odometry with IMU data, into the existing robotic platform.
This involves obtaining better results than the existing odometry module by leveraging the

advantages of a stereo system.

14
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Once the stereo system is integrated, the project focuses on monocular visual odometry
solutions. This phase consists of two main objectives. First, knowledge-based techniques are
explored to evaluate traditional algorithms for motion estimation. Second, learning-based

techniques are investigated to further improve the performance of monocular odometry.

All solutions are compared, focusing on the key objective of this thesis, that is to conduct a
comprehensive comparison between the stereo visual odometry system and the developed
monocular visual odometry solutions, with the aim of establishing a cost-effective

monocular model that reduces hardware acquisition costs.

15
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Chapter 2. ARCHITECTURE

2.1 HARDWARE
AGILEX TRACER AGV

The autonomous navigation system is built upon the ROBOT TRACER AGV platform,
developed by AgileX Robotics [22]. This platform features a robust mechanical structure
designed for indoor and light outdoor use and is equipped with embedded wheel encoders
that can serve as a source of odometry data. The encoder system measures the angular
velocity of the wheels, from which the linear and angular velocities of the entire platform

are derived, enabling basic dead-reckoning capabilities for pose estimation.

Figure 8: Agilex Tracer AGV robotic platform [22]

While functional for general motion tracking, this encoder-based odometry system presents
several limitations. The most remarkable is the accumulation of drift over time, which is
particularly problematic in environments with slippery or uneven surfaces. Wheel slippage
and mechanical wear also contribute to inaccuracies in trajectory estimation, degrading the
quality of localization and mapping modules. Furthermore, one of its main limitations lies

in its poor precision when estimating angular velocities.
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NVIDIA Jetson AGX Orin

The computational core of the system is the NVIDIA Jetson AGX Orin [23], a high-
performance embedded processing unit optimized for real-time Al and robotics applications.
This module hosts all the critical software components responsible for planning, localization,

and control, leveraging the capabilities of the Nav2 stack within ROS2.

In the context of this project, focused on visual odometry using camera data, the Jetson AGX
Orin plays a central role, as it must process high-resolution image streams, extract visual

features, and estimate motion in real time.

This computer integrates a GPU based on the NVIDIA Ampere architecture, featuring 2048
CUDA cores and 64 Tensor cores, capable of delivering up to 275 TOPS (trillions of
operations per second). These characteristics make it well-suited for deep learning inference
and computer vision pipelines. Moreover, it includes a 12-core ARM Cortex-A78AE CPU
and 64 GB of LPDDRS5 RAM, which enable high-throughput parallel processing and low-
latency computation. These features are essential for maintaining accurate and responsive

odometry estimation during autonomous navigation [23].

The platform runs on Ubuntu 22.04 LTS and utilizes the NVIDIA JetPack SDK, providing

an integrated development environment with optimized libraries for Al, vision, and robotics.

StereoLabs ZED X Mini

The StereoLabs ZED X Mini [24] is a compact stereo camera specifically engineered for
robotics and autonomous systems. It features dual global shutter sensors capable of capturing
synchronized stereo image pairs with high resolution and low latency, making it well-suited
for visual odometry tasks in dynamic environments. The camera is designed to operate
reliably under challenging lighting conditions and is enclosed in a robust IP66-rated housing

for improved durability.
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For visual odometry applications, the ZED X Mini offers the advantage of real-time depth
perception, derived from stereo disparity. This allows direct metric-scale motion estimation,
an essential requirement for autonomous navigation in indoor and structured environments.
In addition to its stereo imaging capabilities, the ZED X Mini includes an integrated Inertial
Measurement Unit (IMU), which provides accelerometer and gyroscope data for motion-

aware computations and sensor fusion [24].

The camera connects to the embedded system via a GMSL2 interface, which ensures high-
bandwidth and low-latency data transfer. In the configuration with the NVIDIA Jetson AGX
Orin, a dedicated capture card is employed to receive and decode the high-speed video

stream [24].

Figure 9: StereoLabs ZED X Mini [24]

StereoLabs ZED X One

The StereoLabs ZED X One [25] is a monocular camera designed for embedded Al and
computer vision applications. It is equipped with a single global shutter sensor that captures
high-resolution images with minimal motion blur, which is critical for feature tracking in
visual odometry. Its compact form factor and industrial-grade build make it a suitable option
for real-world robotic deployments. The ZED X One supports both monochrome and color
imaging, offering flexibility in algorithm design depending on lighting conditions and

computational constraints.

Figure 10: StereoLabs ZED X One [25]
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2.2 PREVIOUS ARCHITECTURE

2.2.1 ROS2 AND NAV2

The system developed in this project is based on Robot Operating System 2 (ROS2) [61], a
modular and real-time oriented middleware designed to support the development of
distributed robotic systems. ROS2 provides a communication infrastructure based on the
DDS (Data Distribution Service) standard, enabling efficient and scalable data exchange
between components through publish/subscribe topics, services, and actions. It is an ideal

choice for modern robotic applications, particularly in industrial or embedded contexts.
The main components in ROS2 are:

e Nodes: In ROS2, nodes are the fundamental execution units that perform specific
tasks such as sensor data acquisition, actuator control, or running planning
algorithms. Each node operates as an independent process and communicates with
other nodes through message exchange.

e Messages: Nodes transmit data using messages, which are predefined data structures
that encapsulate various types of information—such as numerical values, strings, or
vectors. Messages enable structured and consistent communication across the
system.

e Topics: Topics serve as communication channels where nodes can publish or
subscribe to messages. For instance, a node collecting distance sensor data may
publish it to a topic, allowing other nodes to receive and process that information if
they subscribe to the same topic.

e Launch files: Launch files are scripts that automate the initialization of multiple
nodes and configure their parameters. They are essential for managing complex
robotic systems by facilitating synchronized execution and configuration.

e Workspaces: A ROS2 workspace is a structured development environment that

organizes source code, build artifacts, and installation outputs. It supports efficient
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code management and modular development, typically structured into src, build, and
install directories.

o Packages: Packages are the basic units of software organization in ROS2. Each
package includes nodes, libraries, configuration files, and other resources needed to
implement a specific functionality. This modular design supports code reuse and

collaborative development in ROS2.

Within this ecosystem, the Nav2 (Navigation 2) stack is the ROS2-native navigation
framework. It offers a comprehensive suite of tools for enabling autonomous navigation,
including global and local path planning, localization, obstacle avoidance, costmap
generation, and motion control. NAV2 is designed to operate in dynamic and real-world
environments, leveraging sensor inputs and map data to continuously compute safe and

efficient paths for mobile robots [2].
For proper functionality, NAV2 requires three essential inputs:

e Odometry data, used to estimate the robot’s current position and velocity in real
time.

e Laser scan data, essential for obstacle detection and costmap generation.

e Static map, used for global localization and path planning when operating in mapped
environments. This input is required when using AMCL but may be optional when

using real-time SLAM or pure odometry-based navigation.

The proposed module will directly publish to the /odom topic, allowing operation within the
NAV2 navigation pipeline. As such, the design and implementation of this module have
been tightly coupled with the structural and operational assumptions of the ROS2 and NAV2

systems.

Another essential element in the ROS 2 architecture is the use of TF (Transform). The TF
system plays a fundamental role in managing the spatial relationships between different
coordinate frames of a robot. Similar to many robotics’ applications, ROS 2 relies on a

dynamic transformation tree that keeps track of how these frames relate to one another over
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time. This transformation tree is time-buffered, meaning it stores the history of transforms,
enabling the system to compute the position of points, vectors, and other geometric entities
in any frame of reference at any specific timestamp. By maintaining this consistent spatial
context, TF allows different components of the robot such as perception, planning, and
control systems to interpret sensor data, issue movement commands, and localize the robot

within its environment in a synchronized and coherent way [26][27].

2.2.2 EXISTING WORKSPACE ARCHITECTURE

The robotic platform used in this project was developed within a ROS2 workspace named

ros2_tracer ws, integrating multiple subsystems essential for autonomous navigation [63].
This workspace includes the following packages:

e lidar_bringup: Contains launch  files (lidar_display.launch.xml,
lidar.launch.xml) to start and verify the LiDAR system, either for standalone
testing or full system deployment.

o livox_ros_driver2: The official device driver provided by the LIDAR manufacturer,

responsible for publishing raw point cloud data in PointCloud2 format.

e p2l remapper: Introduced to adapt the Quality of Service (QoS) settings of the
LiDAR output. This package ensures compatibility between the output of

pointcloud to laserscan and the NAV2 stack’s expectations,

e tracer_bringup: Central package for system orchestration, with launch files like
tracer_real.launch.xml for navigation mode and

tracer_real_scan.launch.xml for mapping or scan acquisition mode.

e tracer_description: Provides the robot’s structural model, including .urdf and .stl
files, defining frames, sensors, and physical dimensions used by TF and visualization

tools.
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o tracer_odometry: Generates odometry based on wheel encoder feedback. This

module publishes estimated robot pose and velocity on the /odom topic.

e tracer_tcp ros bridge: Establishes TCP/IP communication with a Raspberry Pi,

enabling bidirectional data exchange for robot feedback and waypoint tracking.

o waypoint_finder and waypoint_commander: These packages manage route
planning and control. The former identifies target and current poses, while the latter

sends ordered waypoint sequences to be executed by the robot.

The general execution of the system can be understood and is depicted in:

/odometry_node
/lidar

/feedback_vel

[target_pose

sl /target_pose

/control_cmd_vel

/tcp_ros_bridge
/data_logger

/current_pose
publisher /current_pose

Figure 11: ROS2 system graph [63]

2.2.3 ODOMETRY

The initial odometry system relied exclusively on the wheel encoders embedded in the
AgileX TRACER AGYV platform. As aforementioned, these encoders provide measurements

of linear and angular velocities.

The architecture is based on the ROS2 node /odometry node, contained in the

tracer_odometry package. This node subscribes to the velocity measurements transmitted
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via CAN bus and processes the incoming measurements to publish pose estimates (position

and orientation) and velocity (twist) data published to the /odom topic.

The published /odom topic has the following structure:

odom msg = Odometry ()

odom msg.header.stamp = self.get clock() .now().to msg()
odom msg = Odometry ()

odom msg.header.frame id = 'odom'

odom msg.child frame id = 'base footprint'
odom msg.pose.pose.position.x = self.x
odom msg.pose.pose.position.y = self.y
odom msg.pose.pose.position.z = 0.0

w, X, y, z = euler2quat(0, 0, self.theta )
odom msg.pose.pose.orientation.x = x

=Y

odom msg.pose.pose.orientation.y
odom msg.pose.pose.orientation.z = z
w

odom msg.pose.pose.orientation.w = w

odom msg.twist.twist.linear.x = self.vel x

odom msg.twist.twist.linear.y = self.vel y
odom msg.twist.twist.angular.z = self.vel theta

self.publisher .publish (odom msq)

Code 1: Jodom publisher

As it was seen before, the Nav2 stack subscribes to /odom to perform localization, path

planning, and motion control.

Extracting from the entire system only the odometry pipeline, the structure is depicted as in

Figure 12.

tracer_odometry

/feedback_vel /odometry_node

Figure 12: Odometry module in previous architecture

As it was remarked before, the TF system is also crucial is this type of system. In this

autonomous navigation project, the TF tree has the following hierarchy:
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e map — odom: This transformation is published by the localization module (Nav2).
It accounts for global corrections to the robot's estimated position, allowing the
system to correct drift in odometry and maintain long-term consistency relative to a
known map [26].

e odom — base footprint: Published by the odometry module, this dynamic
transformation represents the incremental pose changes of the robot calculated from
sensor data, providing continuous, real-time updates of the robot's pose relative to its

starting position.

In this case, this transformation is published by the /odometry node, and has the

following structure:

transform msg = TransformStamped ()

transform msg.header.stamp = self.get clock() .now().to msg()
transform msg.header.frame id = 'odom'

transform msg.child frame id = 'base footprint'

transform msg.transform.translation.x = self.x

transform msg.transform.translation.y = self.y

transform msg.transform.translation.z = 0.0

transform msg.transform.rotation.x = x

transform msg.transform.rotation.y =y

transform msg.transform.rotation.z = z

transform msg.transform.rotation.w = w

self.tf broadcaster .sendTransform(transform msg)

Code 2: Transform publisherin /odometry _node

o base_footprint — base_link: This is the first of the static transformations defined
in the robot’s URDF file (tracer vl1.xacro). Static transforms define fixed spatial
relationships between the robot’s structural components and its reference frames,
ensuring consistent alignment across all sensors and processing modules [25]. In this
case, base footprint serves as a 2D projection of the robot’s physical center.
Therefore, it is located at its base, at ground level with no vertical (Z-axis)
component. It simplifies the representation of the robot’s pose for 2D navigation
systems, such as those used in Nav2, which operate under the assumption that the

robot moves exclusively on a planar surface.
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o base_link — [fixed_links]: This set of static transformations connects the robot’s
base to fixed components such as lidar_link or the different wheel links. Defined in
the URDF file (tracer vl.xacro), these transforms specify the exact position of
sensors and mechanical parts relative to the robot’s body. They ensure consistent

spatial alignment for sensor data interpretation and control.

It authority
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48210746.749284
210741.748544

t authority
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a1
form: 1748210745.798728
rm: 1748210740.657822

ult authority
10000.0

nsform: 0.0
form: 0.0

Most r
Old

@n ial link

ult authority ult authority aul
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0000.0
0.0
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'm: 0.0

_wheel link

1l wheel link

Figure 13: Previous architecture TF tree generated with ros2 run tf2_tools view_frames

System shortcomings

While this initial setup provided basic autonomous navigation capability, it exhibited
shortcomings that significantly limited the system’s performance for autonomous

navigation.

One of the problematic issues was the accumulated drift, inherent to wheel encoder-based
odometry, caused by continuous integration of small measurement errors. This drift became
particularly severe when operating on slippery or uneven surfaces, which are common in
real-world operational environments. This led to a system performance very dependent on

the conditions where the autonomous wheelchair would be deployed.

Additionally, the system displayed a significant lack of accuracy in estimating angular

velocities, therefore exacerbating localization errors over time when calculating the
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orientation. Consequently, cumulative inaccuracies severely compromised trajectory

estimation.

These limitations highlighted the urgent need to design and implement a more precise and

robust odometry system.

2.3 INEW ODOMETRY ARCHITECTURE

The new architecture was developed taking into consideration all available data sources
within the scope of the project, with the explicit goal of enhancing robustness, accuracy, and
adaptability across diverse operational conditions. These sources, most of them already

mentioned in the hardware section, are:

Wheel encoders

Stereo camera

Monocular camera

Inertial data, obtained from embedded IMUs in the cameras.

The detailed methodology and algorithms applied to obtain, process and produce these data

streams into consistent odometry information will be discussed in subsequent chapters.

As discussed in the state-of-the-art section, accurate localization is crucial for autonomous
mobile robots, which must continually estimate their position and orientation (pose) within
their operating environment. Using data from a single sensor can lead to cumulative errors
and drift over time, particularly when dealing with noisy measurements or incomplete
information. For instance, relying solely on wheel encoders typically introduces inaccuracies
due to wheel slippage or uneven surfaces, while visual sensors alone might suffer from
lighting changes or featureless environments. Therefore, these processes typically require

integrating data from multiple sensors, each subject to noise, bias, or incompleteness.
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Extended Kalman Filter

The Extended Kalman Filter (EKF) is a widely adopted method in robotics to perform sensor
fusion, providing robust state estimation by probabilistically combining information from

diverse sensor sources, even under uncertain and noisy conditions.

The EKF is a recursive Bayesian estimator designed to handle nonlinear state estimation
problems. It extends the classical linear Kalman Filter by linearizing the nonlinear system
dynamics and sensor models at each estimation step, effectively approximating the system
as locally linear around the current state estimate [28] [29]. The state estimation consists of

the following two phases:

1. Prediction

This step uses a motion model to project the previous state estimate forward in time,
incorporating expected robot motion. The EKF computes a predicted mean state and
associated covariance, based on previous state information and assumed motion
noise. This covariance quantifies the filter's confidence in its prediction, allowing it

to gauge how much weight to give to subsequent sensor measurements.

2. Correction

When a new sensor measurement becomes available, the filter performs an update
step. The EKF compares the difference between the actual sensor measurement and
the measurement predicted by the current state estimate. A weighting term, known
as the Kalman gain, which is derived from the relative uncertainties between
prediction and observation, is used to adjust the state estimate accordingly. Sensors
with lower measurement uncertainty (noise) have a more significant impact on the

updated state.

This iterative prediction-correction cycle enables continuous refinement of the robot's pose

estimate, integrating noisy and partial sensor data into a single coherent and statistically
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optimal estimate. The linearization approach, however, requires the system dynamics to be
approximately linear within short intervals between updates, which is typically valid in

mobile robotics [29].

To implement this functionality within the ROS2 framework, the project relies on the
robot_localization package. This package provides a robust and flexible EKF
implementation through its main node, ekf localization node, which supports full 3D pose
estimation and multi-sensor fusion. It allows selective integration of specific state variables

per sensor input, making it highly adaptable to a wide range of robotic platforms.

With all the above in place, the resulting architecture replaces the previous encoder-only
approach. This solution offers a more modular design, allowing each sensor input to be
selectively integrated as needed. It integrates the different odometry inputs as ROS2 topics
and routes them to the EKF node, which fuses the data and publishes the refined state
estimate on the /odom topic. The EKF configuration is described in detail in subsequent

chapters. This new structure is illustrated in the diagram in Figure 14.

TRACER AGX

Jlencoders_odom

ZED X ONE

/zedized_node/rgb/rawfimage

Jodom_zed_corrected Jekf filter_node Jodom NAV2

J/zed_odom_transformer

/zed/zed_node/rgb/raw/t iera_info
[fzed/zed_node/im

ZED X MINI
fzed/zed node/odo
m

Figure 14: Odometry module in new architecture

It has to be noted that the node /zed odom_transformer is designed to work only with one

input, as both cameras will never be working at the same time.
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As discussed in the previous section, the system maintains a TF tree to represent the spatial

relationships between multiple coordinate frames over time. This structure remains largely

similar in the new architecture; however, certain key differences have been introduced to

accommodate the updated odometry modules:

map — odom: This transformation remains unchanged and continues to be
published by the localization module.

odom — base_footprint: This transformation reflects one of the most significant
changes. In the previous architecture, it was published by the sole odometry source—
namely, the encoder-based odometry. In the updated system, this transformation is
published by the Extended Kalman Filter (EKF) node (/ekf filter node), which also
generates the odometry message. This configuration is further detailed in the EKF
parameter section.

base footprint — base link: This static transformation remains unchanged and is
still defined within the URDF file, maintaining the same fixed spatial relationship.
base_link — [fixed_links]: These static transforms also remain the same, with the
addition of a new link corresponding to the camera. This is defined as

zed camera_link and is published as part of the ZED camera's TF tree.

Figure 15: New architecture TF tree
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Chapter 3. STEREO VISUAL ODOMETRY

3.1 STEREOLABS SOLUTIONS

The hardware and software used in this module are based on solutions provided by
StereoLabs. This company is specialized in stereo vision hardware and software solutions
that tries to provide robots with “human vision”, enabling advanced perception through
spatial analytics and depth sensing. Its ecosystem, centered around the ZED series of
cameras, integrates high-performance stereo and monocular cameras as hardware, with a
Software Development Kit (SDK) solution, creating a unified perception and processing

framework for autonomous systems [30].

StereoLabs pioneered depth-sensing camera technology, originally stemming from a
collaboration with the entertainment industry to stabilize 3D footage. Since then, the
company has evolved to serve different industrial sectors such as agriculture, construction,
or logistics, enabling robots to perform tasks like crop assessment, material handling, and
space monitoring in dynamic environments. The StereoLabs solution tries to address
limitations of traditional sensors (LiDAR or radar), offering an accurate and scalable

alternative for detailed spatial perception [30].

As mentioned in previous chapters, the hardware chosen for this solution is the ZED X Mini

stereo camera.

3.2 ZED SDK AND SYSTEM INTEGRATION

For robotics projects using ROS2, the ZED SDK is accessed with the zed-ros2-wrapper

package. This ROS2 interface provides comprehensive and high-level integration with the
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ZED camera system, allowing for both hardware configuration and real-time acquisition and

processing of visual and spatial data.
Among the main types of data published by the wrapper are:

e Rectified and unrectified left and right images
e Depth data

e 3D point cloud

e MU data

e Detected objects

¢ Visual Inertial Odometry (VIO).

VIO integration

The zed-ros2-wrapper package includes a modular ROS2 node that publishes real-time pose
estimation through the topic /zed/zed node/odom, representing the camera’s position and
orientation in space as computed from stereo visual data combined with inertial
measurements from the onboard IMU. The result offers a 6DOF robust pose tracking

solution.

This odometry output follows the standard nav_msgs/Odometry message format, which
includes both pose and twist information, along with their respective covariance matrices,

which are internally provided by the system.

However, by default, the system is configured to compute a full VSLAM solution, and

therefore, it publishes the whole transformation tree [32], as illustrated in Figure 16.
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Broadcaster: default_authority
Average rate: 20.197
Buffer length: 5.001
Most recent transform: 1748210746.749284
Oldest transform: 1748210741.748544

Broadcaster: default_authority
Average rate: 50.186
Buffer length: 5.141
Most recent transform: 1748210745.798728
Oldest transform: 1748210740.657822

zed_camera_link

Broadcaster: default_authority
Average rate: 10000.0
Buffer length: 0.0
Most recent transform: 0.0
Oldest transform: 0.0

zed_camera_center

Broadcaster: default_authority
Average rate: 10000.0
Buffer length: 0.0
Most recent transform: 0.0
Oldest transform: 0.0

zed_camera_frame

Broadcaster: default_authority
Average rate: 10000.0
Buffer length: 0.0
Most recent transform: 0.0
Oldest transform: 0.0

zed_camera_optical frame

Broadcaster: default_authority
Average rate: 197.483
Buffer length: 4.173
Most recent transform: 1748205293.872112
Oldest transform: 1748205289.699593

Figure 16: ZED full VSLAM TF tree

The first step to implement the ZED X Mini VIO odometry solution is to disable the internal
VSLAM computation, thereby stopping the publication of the map — odom transform. If
this is not deactivated, it may cause a conflict with the transform published by the Nav2

stack. This is controlled via the publish map _tf parameter.

Secondly, the publication of the odom — zed camera link transform by the ZED camera
must also be disabled. As described in the New Odometry Architecture section, this
transform will instead be published by the EKF fusion node to ensure consistency. To

prevent conflicting publishers, the publish_tf parameter should be set to false.

Additionally, the base frame is changed to base footprint to maintain consistency with the
rest of the system. This transformation will later be linked to its real physical position

through static transforms. This configuration is set via the odometry frame parameter.

Several other adjustments were made to improve system efficiency and alignment with the

robot's operating conditions:
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e two_d mode is enabled to constrain the system to 2D pose tracking, as the robot
operates on a planar surface with no motion along the Z-axis.
e pos_tracking enabled is activated to ensure that position tracking is properly

initialized and maintained.

All these parameters can be configured in the zed-ros2-wrapper package, in the following

relative path: zed_wrapper/config/common_stereo.yaml

Publishing transforms

During the integration of the stereo odometry system using the ZED X Mini camera, an
inconsistency was encountered in the TF tree. Despite having defined a static transformation
between the robot’s base frame (base link) and the camera frame (zed camera link) in the
URDF model, the system failed to interpret and apply this transform correctly when using
the visual-inertial odometry published by the ZED SDK on the topic /zed/zed node/odom.
This caused misalignment in the estimated poses, particularly in the rotational components.
Since the camera is physically offset from the robot's base, any rotation of the robot
introduces additional apparent motion at the camera’s position. If this offset is not properly
accounted for, the published odometry reflects a trajectory that deviates from the robot's
actual motion. In contrast, translational movement along a straight line is less affected by
the offset, which is why position estimates during linear motion remained more consistent.,

as can be seen in Figure 17.
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Figure 17: TF issue with zed_camera_link

This issue led to incorrect pose interpretation by downstream components such as the EKF
and the navigation stack, which expect odometry information to be expressed relative to the
robot’s physical base (base link). As a solution, a dedicated ROS2 node named
zed odom_transformer was developed. This module adjusts the original odometry data by
applying the inverse of the known static transformation between the camera and the base

frame, effectively re-referencing all poses to base link.

The node subscribes to the raw ZED odometry topic (/zed/zed node/odom) and publishes
the corrected output on a new topic (/odom_zed corrected). The transformation applied is

defined by:

e Translation: A static vector from base link to zed camera link, defined as [0.22,
0.25, 0.7] in meters.
o Rotation: A fixed identity rotation (no roll, pitch, or yaw) was assumed, based on the

known mechanical alignment of the camera.
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Chapter 4. MONOCULAR VISUAL ODOMETRY.

CLASSIC TECHNIQUES

As discussed in the state-of-the-art section, Visual Odometry (VO) can broadly be
categorized into two groups: knowledge-based methods and learning-based methods.
Knowledge-based (also called classic or geometric-based) approaches leverage traditional
geometric principles and explicit camera models to estimate motion from image sequences.
These approaches rely on accurately detecting and tracking visual features across
consecutive frames. In contrast, learning-based methods utilize data-driven approaches from

large datasets to “teach” models to estimate camera motion.

This chapter focuses on knowledge-based methods, exploring their fundamental components
and algorithms. The exploration and implementation of learning-based approaches are

reserved for subsequent chapters.

4.1 THEORETICAL BACKGROUND

A standard Visual Odometry system, as illustrated in Figure 18, consists of several sequential

processing steps:

| Image Sequence ‘

~~

| Feature Detection ‘

L

| Feature Matching (or Tracking) ‘

>

Motion Estimation
2.D-to-2-D ‘ 3.D-to-3-D ‘ 3.D-to-2-D

>

Local Optimization (Bundle Adjustment)

Figure 18: Main components of a VO system [5]
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In Visual Odometry, establishing point correspondences between successive images can be

approached in two principal ways: feature tracking and feature matching.

Feature tracking involves detecting features in one image and subsequently locating their
positions in the next frames using local search techniques such as optical flow, as it was seen
in the state of the art, or normalized cross-correlation. This approach is particularly effective
when the motion between frames is small, as it preserves temporal continuity and is

computationally efficient [5].

On the other hand, feature matching detects features independently in each frame and
associates them based on similar metrics between their descriptors. This method is more
robust to larger inter-frame motions and changes in viewpoint, as it does not rely on
proximity in pixel space but rather on descriptor distinctiveness. While tracking offers better
temporal consistency, matching is often more resilient in dynamic or visually complex

scenes [5].
Feature detection

Local features, which are also called keypoints or interest points, are distinct patterns in an
image that stand out from their neighborhood in intensity, color, or texture. The main types

are corners and blobs.

A corner is typically defined as the intersection of two or more edges, appearing as a sharp
change in intensity along at least two directions. Intuitively, one can recognize a corner by
observing that moving a small window in any direction over a corner yields a significant
change in intensity (unlike a flat region, which shows no change, or an edge, which shows
change in only one direction). Because they represent distinctive geometric junctions,
corners tend to be highly repeatable features, meaning that the same physical corner can be
reliably detected in multiple images under different conditions. In contrast, a blob is an
image region that is internally uniform or distinct from its surrounding neighborhood in
intensity, color, or texture. Therefore, blobs are neither edges nor corners. Instead of a sharp

junction, a blob is a cohesive region (for example, a spot or textured patch) that stands out
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against its background. Unlike a corner, which can be pinpointed by a single pixel coordinate
(the exact intersection points of edges), a blob is defined by an area and thus can only be
localized by its boundary. As a result, the spatial location of a blob is less precise than that
of a corner, but its scale and shape are much better defined by the size of its region.
Furthermore, while a corner’s appearance remains similar across slightly different scales
(making its inherent scale ambiguous), a blob’s extent immediately indicates its

characteristic scale [34].

When choosing a good feature detector in computer vision, it should exhibit several key

properties to reliably support tasks. The most relevant ones are [34]:

e Repeatability: Given two images of the same scene under different viewpoints,
scales (zoom levels), or illumination conditions, the detector should find a high
percentage of the same physical features in both images. High repeatability requires
the detector to be invariant to common geometric and photometric transformations,
so that true scene points are still detected despite rotations, scale changes, or lighting
differences.

o Distinctiveness: The features must be salient and unique in appearance so that they
can be correctly matched between images. The image patch around a detected point
should carry rich, distinguishing information. Consequently, a simple repetitive
pattern is not distinctive and would lead to ambiguous matches.

e Accurate feature localization: It must be ensured that each feature’s coordinates
and scale correspond closely to the true location and size of the pattern of interest.

e Quantity of features: The detector should also produce an appropriate quantity of
features for the task at hand. For example, tasks like object recognition, image
retrieval, or 3D mapping benefit from a large number of features to increase
robustness and coverage of the scene, whereas if features represent high-level
semantic landmarks, a smaller number might suffice.

e Invariance: The most useful features are those resilient to changes in viewpoint,

scale, and illumination, remaining stable under such transformations. Invariance
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greatly improves the chance that the same real-world point will be detected in
different images.

e Computational efficiency: A feature detector should ideally operate fast enough to
handle large image datasets or real-time video streams. Efficiency considerations are
crucial in practice. Increasing a detector’s invariance usually results in more complex
computations, so a balance must be reached to keep detection and matching time
reasonable for the given application.

¢ Robust to noise: It should tolerate reasonable levels of image noise, compression

artifacts, blur, and other imperfections without losing the true features.

No single detector perfectly optimizes all these criteria, and there are often trade-offs. For
example, as aforementioned, making a feature highly distinctive (or invariant to many

transformations) can increase computational cost.

Various feature detectors and descriptors have been developed through time to balance the
properties previously mentioned. Each algorithm adopts different strategies for identifying
and encoding salient image regions, and their performance varies depending on the specific
demands of visual odometry. Some of the most common detectors, well known in the

computer vision field are: SIFT, SURF, FAST, BRISK and ORB.
SIFT

SIFT (Scale-Invariant Feature Transform) is a feature detection and description algorithm
developed by David Lowe in 1999 [39]. Its main advantage lies in its invariance to scale and
rotation, which makes it ideal for tasks such as object recognition and image matching.
It detects scale-space extrema using a Difference-of-Gaussian (DoG) filter to locate blob-
like keypoints at multiple scales. Each keypoint is assigned a dominant orientation based on

local gradient directions, providing rotation invariance.

For description, SIFT uses a 128-dimensional vector of real-valued gradient orientation
histograms around the keypoint, with 8 orientations in 4x4 spatial regions, effectively

encoding the local image structure [36].
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One of the main advantages of SIFT is that its features are highly distinctive and remarkably
robust. According to [36], SIFT together with SURF is widely regarded as one of the most
accurate image feature descriptors. Its robustness extends to rotation and scale changes by
design, and the gradient-based descriptor offers some tolerance to illumination variations
through normalization. SIFT keypoints tend to exhibit high repeatability and consistently

match across varying viewpoints.

However, this robustness comes at a high computational cost. One of SIFT's major
drawbacks is its speed: extracting DoG keypoints and computing 128-dimensional
descriptors is slow and memory-intensive. Consequently, SIFT is often impractical for real-

time applications, particularly on resource-constrained hardware.
SURF

SURF is a feature detector and descriptor inspired by SIFT but designed with a focus on
speed improvements. It uses a blob detector based on the Hessian matrix, approximating the
determinant of the Hessian using Haar wavelet filters and integral images for efficient
convolution [40]. This approach enables multi-scale keypoint detection that is significantly

faster than SIFT’s Difference-of-Gaussian (DoG) method.

Like SIFT, SURF assigns an orientation to each keypoint by summing Haar wavelet
responses within a circular region, achieving rotation invariance. The SURF descriptor is a
64-dimensional real-valued vector, aggregating Haar wavelet intensities and their
magnitudes across 4x4 subregions aligned with the keypoint's orientation. This compact

representation captures the distribution of intensity variations around the keypoint [40].

SURF provides robustness comparable to SIFT in terms of repeatability and accuracy, while
offering substantial improvements in computational efficiency. It has also demonstrated
great performance in monocular visual odometry tasks, outperforming SIFT, ORB, and A-

KAZE by achieving the lowest drift error in monocular VO benchmarks, as reported by [36].

Despite its advantages, SURF still presents some limitations. Although it is lighter than

SIFT, it still requires a significant amount of computational resources, especially when
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applied in real-time contexts. Furthermore, as a patented algorithm, its use is restricted in
certain applications, limiting its accessibility to use in other purposes different that

educational or research [60].
ORB

ORB (Oriented FAST and Rotated BRIEF) is a high-performance feature detection and
description algorithm specifically designed to balance accuracy and computational
efficiency. It was developed by OpenCV Labs, and as an open-source algorithm, ORB is

freely available and suitable for commercial and academic applications [42].

It integrates two core components: a keypoint detector based on the FAST algorithm and a
binary descriptor derived from BRIEF, both modified to achieve rotation and partial scale

invariance.

Keypoints are detected using the FAST-9 corner detector across a multi-scale image
pyramid, enabling the extraction of features at different resolutions. To ensure quality and
suppress edge responses, keypoints are ranked using the Harris corner measure, and only the
top N are retained per pyramid level. Orientation invariance is introduced by computing the
intensity centroid within a circular patch around each keypoint, defining the dominant
direction as the angle between the keypoint center and its brightness-weighted centroid. This

orientation is then used to steer the descriptor [41].

For description, ORB employs a learned and decorrelated version of BRIEF, known as
rBRIEF, which consists of a compact 256-bit string constructed from a set of binary intensity
comparisons within the image patch. These tests are selected to maximize variance and
minimize correlation, improving discriminative power and matching efficiency. Overall,
ORB achieves a favorable trade-off between robustness, speed, and invariance, making it

particularly well-suited for real-time VO on resource-constrained platforms [41].

The primary advantage of ORB is its computational efficiency, ranking best among common
VO feature extractors according to [36], with the lowest processing time compared to SIFT,

SURF, and AKAZE. ORB’s use of FAST makes detection extremely fast, and the binary
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descriptors allow very rapid matching, due to their binary nature. Furthermore, despite its
speed, ORB maintains robustness through built-in invariances: it is rotation-invariant and
partially scale-invariant. ORB has also been shown to perform well under different
conditions, according to [43], noted to be especially effective on images with affine

distortions or changes in brightness, indicating strong robustness to lighting changes.

As efficiency is one of its greatest advantages, in the trade-off between computational needs
and performance, ORB’s descriptors, being binary and shorter, are less discriminative than
SIFT/SURF’s richer descriptors. Thus, ORB can have a slightly lower matching accuracy
and may produce more false matches, especially under extreme viewpoint or appearance

changes.

For a real-time monocular visual odometry system, ORB emerges as the most well-rounded
choice when comparing these feature algorithms. SIFT and SURF offer excellent accuracy
and robustness. SIFT in particular is often a gold standard for feature distinctiveness, but
their high computational cost makes them impractical for real-time use like this project
concerns. SURF, while faster than SIFT, may still fall slightly short in terms of
computational efficiency when looking for a real time solution. Furthermore, another of its

biggest drawbacks is the need of the license for its use.

The final choice for this project is ORB because it provides the best balance of accuracy and
efficiency for monocular VO. It is fast enough for real-time operations and yet robust enough
in feature tracking to maintain accuracy over a sequence, ORB’s feature tracking accuracy
being not far behind that of SURF/SIFT for VO purposes. Moreover, ORB’s free and widely
available implementation in OpenCV and its proven success in systems like ORB-SLAM

make it a reliable choice [44]. This comparison can be seen in Table 2.
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Table 2: Comparison between main features detectors

Algorithm  Descriptor Computational  Accuracy License Main Main
type cost advantages drawbacks
SIFT 128-dim High Very high Patent Highly Slow; memory-
float vector expired distinctive intensive; not
in 2020 and robust; suitable for
excellent real-time or

repeatability ~ embedded use

SUFT 64-dim Moderate High Patented  Faster than Still
float vector SIFT; very  computationally
robust for heavy; license-
VO; low restricted
drift
ORB 256-bit Moderate Moderate- Open Very fast; Less
binary high source real-time distinctive;
capable; slightly lower
robust under matching
lighting accuracy;
changes; sensitive to
free extreme
viewpoint
changes

Feature matching

ORB (Oriented FAST and Rotated BRIEF) produces binary descriptors (bit strings) instead
of floating-point feature vectors. Therefore, feature matching techniques must utilize
appropriate metrics suited for binary descriptors. In practice, the Hamming distance, which
counts the number of differing bits between two descriptors, is the suitable measure for
comparing ORB descriptors, unlike the Euclidean distance commonly used for continuous
descriptors such as SIFT or SURF. The two main features of matching methods used with

binary descriptors are:
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Brute-force matcher

In this method, each descriptor from the source image is exhaustively compared against all
descriptors from the target image by computing the Hamming distance for each pair and
selecting the match with the smallest distance. This is the most straightforward approach: a
brute-force matcher finds the nearest neighbor by comparing each descriptor individually

with all those in the opposing set [45].

Brute-force matching with Hamming distance is simple to implement and guarantees the
identification of the exact nearest match for each descriptor, as it exhaustively searches the
entire descriptor space of the other image. With short binary descriptors (e.g., 256 bits = 32
bytes in ORB), Hamming comparisons are fast, as they can be executed through efficient

bit-wise operations.

However, the exhaustive nature of brute-force matching comparing everything with
everything results in a computational complexity of NxM, where N and M are the number
of descriptors in each image. This approach can become slow when handling large feature
sets, as the computation time increases linearly with the total number of comparisons,
leading to a high latency [46]. Therefore, another drawback is that it does not leverage
redundancy or prior information: each matching operation is a full search from scratch. For
example, in a real-time video application, comparing 500 points from the current frame
against 500 from the previous frame would involve 500x500 = 250,000 comparisons per
cycle. Although feasible for small feature sets, this becomes inefficient at scale as the

computational cost scales rapidly with larger sets or real-time applications
FLANN based matcher

For large numbers of descriptors, it is common to use approximate nearest neighbor search
methods instead of exhaustively comparing every pair. FLANN (Fast Library for
Approximate Nearest Neighbors) is a library and algorithm that performs fast approximate
nearest neighbor searches using efficient data structures. In the case of float-based

descriptors (such as SIFT), FLANN typically uses KD-Tree indices. However, for binary
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descriptors like ORB, FLANN provides an index based on Locality-Sensitive Hashing
(LSH) to operate in Hamming space [47].

LSH is a widely used technique for solving the Approximate Nearest Neighbor (ANN)
problem in high-dimensional spaces. It maps data into multiple hash tables using random,
data-independent functions, so that similar points are likely to fall into the same “bucket”
with high probability. LSH offers sub-linear query times and theoretical accuracy
guarantees, which makes it highly suitable for dynamic or large-scale data applications with
evolving distributions [48]. In the case of ORB descriptors, FLANN+LSH applies this
approach by restricting comparisons to candidate buckets, to avoid exhaustive matching and

yielding approximate but significantly more efficient results at scale.

Therefore, the main advantage of FLANN+LSH lies in its speed when working with large
datasets. By using hashing structures, the number of effective comparisons is significantly
reduced compared to brute-force methods, especially when matching great amounts of

descriptors. This makes feature matching feasible within reasonable time frames.

However, this increased efficiency in large-scale also leads to approximation, meaning there
is a small probability of failing to find the optimal match if it falls into a different hash
bucket. It is still possible to obtain suboptimal matches or lose weak correspondence due to
the probabilistic nature of hashing. If the number of descriptors is not very high, the

advantage of using FLANN may become marginal.
Motion estimation

As discussed in the state of the art, motion estimation is a crucial component of visual
odometry, responsible for calculating the camera’s pose change between consecutive frames
[5]. Three main motion estimation paradigms were identified based on the dimensionality of

feature correspondences: 2D-to-2D, 3D-to-3D, and 3D-to-2D methods.

For the system developed in this project, which uses a monocular camera, the 2D-to-2D
motion estimation approach is the one chosen. This choice is motivated by the nature of a

monocular setup: since a single camera cannot directly measure depth from one frame,
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methods that rely on immediate 3D point correspondences (the 3D-to-3D or 3D-to-2D
approaches) are not possible without additional processing. Even though the 3D-to-2D
method is possible using point triangulation across multiple frames and is widely used in
practice according to [5], it requires maintaining a persistent 3D map of landmarks and
performing repeated triangulation and perspective-n-point (PnP) optimization steps. This
significantly increases computational requirements and challenges real-time performance.
In contrast, the 2D-to-2D approach offers a lightweight and robust alternative by relying on
image-space correspondences and computing the essential matrix, which encodes the
relative pose up to scale. This method avoids the complexity of 3D reconstruction while still
providing reliable motion estimates between consecutive frames, making it highly suitable

for monocular visual odometry in real-time robotics applications.

By matching 2D features between consecutive frames, the camera’s relative pose can be
estimated using only image-space information through the essential matrix. A major benefit
of this method is that it avoids the computational burden of continuously triangulating
features or performing heavy 3D point-cloud alignments, which significantly reduces

complexity and helps meet real-time performance requirements.

To compute the essential matrix, one of the most common methods used is RANSAC
(Random Sample Consensus) [64] to handle noisy feature correspondences. RANSAC
iteratively estimates a candidate transformation from randomly sampled minimal subsets of
feature matches and then selects the model that has the highest consensus among all
correspondences. This consensus approach effectively rejects outliers in the feature matches,

ensuring that the estimated transformation is not skewed by erroneous correspondences [55].

For monocular visual odometry with a calibrated camera, Nistér’s five-point algorithm
provides an efficient minimal solver for the essential matrix using only five point
correspondences [12]. This five-point algorithm is typically embedded in a RANSAC
framework to generate pose hypotheses from minimal samples, allowing robust estimation

of the camera’s motion from two views. By using the smallest necessary number of
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correspondences to determine the essential matrix, one can significantly reduce the number

of RANSAC iterations required compared to older 6-, 7-, or 8-point methods.

To improve match quality before running RANSAC, it is also common to apply Lowe’s ratio
test as a filtering strategy to reduce false correspondences. Lowe’s test compares the
descriptor distance of the best match to that of the second-best match for each feature and
rejects the match if this distance ratio is too high. Lowe demonstrated that discarding
matches with a distance ratio greater than 0.8 eliminates about 90% of false matches while

removing less than 5% of correct matches [33].

4.2 DEVELOPMENT AND IMPLEMENTATION

The monocular visual odometry system developed uses the ORB algorithm, implemented as
a ROS2 node named visual odometry node using Python and OpenCV. The complete
pipeline consists of several key stages: image acquisition and conversion, keypoint detection

and description, feature matching, motion estimation, and pose integration and publication.
Image Acquisition and Preprocessing

The node subscribes to /zed/zed node/left gray/image rect gray and its corresponding
/camera_info topic. The use of rectified grayscale images ensures that epipolar geometry
assumptions are valid, while reducing computational load compared to RGB data. The
intrinsic matrix, extracted once from the Cameralnfo message, is cached and reused to avoid

repeated computation and maintain consistency.
Feature Detection and Description

Keypoints are detected using OpenCV's ORB detector with a cap of nfeatures=1000. This
value was selected as standard, to provide enough features for stable tracking while

maintaining fast computation.
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Feature Matching and Filtering

Feature correspondences between consecutive frames are computed using a FLANN-based
matcher with LSH indexing. This method was preferred over brute-force matching due to
the real-time constraints of the system and the highly dynamic nature of the operating
environments. Although brute-force matching ensures exact nearest neighbors, its
computational cost becomes prohibitive as the number of features increases, particularly in

scenes with high visual variability.

This performance difference was evident during testing, where the frame processing rates

on the NVIDIA Jetson Orin AGX were:

e Brute force: ~ 4 fps
e FLANN + LSH: ~ 16 fps

FLANN INDEX LSH = 6
index params = dict(algorithm=FLANN INDEX LSH, table number=6,
key size=12, multi probe level=l)
search params = dict (checks=50)
self.flann = cv2.FlannBasedMatcher (index params, search params)

Code 3: FLANN matcher parameter configuration

The values were chosen to balance matching speed and accuracy for real-time performance.

To improve robustness, Lowe’s ratio test with a threshold of 0.8 is applied to filter out
ambiguous or poorly matched descriptors:
good matches = []
for m n in matches:
if len(m n) == 2:
m, Nn = mn

if m.distance < 0.8 * n.distance:
good matches.append (m)

Code 4: Lowe'’s ration test

Each item in the matches list is the result of a k-nearest neighbor search. This means that for

every descriptor in the previous frame, the two closest matches in the current frame are
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returned. These are stored in the tuple (m,n), containing m as the best match, and n as the

second-best match.

The condition if m.distance < 0.8 * n.distance compares the distance of the best
match to the second-best. If the best match is significantly better, meaning that it is less than
80% of the second best’s, then it is considered a reliable match and is added to the list of

good_matches.
Motion estimation

The relative pose is estimated using the essential matrix, computed with the OpenCV
function findEssentialMat using RANSAC to discard outliers. The 5 point algorithm from
Nister is embedded in the use of RANSAC. The function recoverPose then extracts the
relative rotation and translation up to an unknown scale. This approach was chosen for its

simplicity, robustness, and compatibility with monocular data.

After estimating the essential matrix E using the five-point algorithm within a RANSAC
framework, the system implements a post-validation check to ensure the reliability of the
motion estimate. Specifically, the solution is discarded if the essential matrix is not found, if
the inlier mask is missing, or if fewer than eight inlier correspondences are detected.
Although the five-point algorithm only requires five-point pairs to compute a minimal
solution, pose recovery through cv2.recoverPose is sensitive to degenerate configurations
and noisy correspondences. Imposing a higher inlier threshold increases the robustness of
the pose estimation by ensuring that the underlying geometry is sufficiently constrained.
E, mask = cv2.findEssentialMat (pts prev, pts curr, self.K, method=cv2.RANSAC,
threshold=1.0)
if E is None or mask is None or np.count nonzero(mask) < 8:
self.get logger () .warn("Essential matrix estimation failed or too few
inliers")

self.prev frame = frame

self.prev keypoints = keypoints

self.prev descriptors = descriptors

return
_, R rel, t rel, = cv2.recoverPose(E, pts prev, pts curr, self.K)

Code 5: Esential matrix and pose recovery
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Furthermore, the estimated motion is validated by checking the norm of the translation

vector. This filter is introduced to suppress static noise from the pose estimation. If the

displacement is too small or unrealistically large, it is also rejected.

t norm =

np.linalg.norm(t rel)

if £ norm < 0.001:
self.get logger () .info("Estimated motion is too small,

update™)
self.prev frame =
self.prev_keypoints = keypoints
self.prev descriptors =

frame

descriptors
return

if t norm > 1.0:
self.get logger () .warn("Motion too large,

self.prev frame = frame
self.prev_keypoints = keypoints
self.prev descriptors = descriptors

return

Code 6: Static noise suppression

Pose Integration and Publishing

skipping

skipping this frame")

The estimated relative motion is accumulated into a global pose estimate and transformed

into a quaternion for ROS2 publication.

quat = R.
self.prev_t global =
self.prev R global =

odom_msg

odom msg.
odom msg.
odom msg.

odom_msg
odom_msg
odom_msg
odom msg
odom msg
odom msg
odom msg

from matrix(self.R global).as quat ()
self.t global.copy ()
self.R global.copy ()

= Odometry ()
header.stamp = msg.header.stamp
header.frame id = "odom"

child frame id = "base link"

.pose.pose

.position.x = float(self.t global[0])

.pose.pose.position.y = float(self.t global[l])
.pose.pose.position.z = float(self.t global[2])
.pose.pose.orientation.x = float (quat[0])
.pose.pose.orientation.y = float(quat[1l])
.pose.pose.orientation.z = float (quat([2])
.pose.pose.orientation.w = float (quat[3])

Code 7: Transformation into quaternion and odometry publisher

49



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAT)

COMILLAS MASTER UNIVERSITARIO EN INGENIER{A INDUSTRIAL
UNIVERSIDAD PONTIFICIA
__ical_____iCADE ] MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

4.3 RESULTS AND CONCLUSION

Despite the comprehensive development of a classical monocular visual odometry system in
this chapter, initial tests revealed that this approach was not feasible for reliable deployment.
The implemented method was highly unstable, introducing significant noise that rendered it
unsuitable for real-world deployment. Consequently, it was decided not to integrate the
monocular VO solution into the final system. Nevertheless, the exploration and findings
presented here offered valuable technical insights and a foundational understanding, of
monocular visual odometry and informing the pursuit of more robust odometry techniques

in subsequent work.
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Chapter 5. MONOCULAR VISUAL ODOMETRY.

LEARNING-BASED TECHNIQUES

5.1 THEORETICAL BACKGROUND

Traditionally, VO has been covered with classical geometry-based methods that rely on
feature detection, matching, and geometric computations. These methods have matured
significantly and demonstrated notable accuracy in controlled environments, but their
robustness under real-world challenges such as dynamic scenes, lighting variations, or
textureless regions remains limited. In this context, learning-based techniques, particularly
those using deep learning, have emerged as a compelling alternative for improving visual

odometry performance under such constraints.

Deep learning offers a data-driven approach to VO that can automatically extract robust and
meaningful representations, such as depth, optical flow, and ego-motion, directly from raw
image sequences, without requiring explicit geometric computations. These models can
learn complex spatial and temporal patterns from large-scale datasets, allowing them to
generalize across scenes and handle noise, occlusion, or motion blur better than many

classical algorithms [49].

As was previously seen, the VO pipeline main core consists of three interrelated
components: feature detection, feature matching, and motion estimation. For all three stages,
deep neural networks can replace traditional operations with learned modules. This

substitution can be in the following illustration:
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* Geometry-based methods

Supervisory signal
Unsupervised learning

¢ Deep learning-based methods

Figure 19: Representation of a neural network replacing the classical VO pipeline stages [49]

Learning-based VO methods can be trained under different learning paradigms, that can be
supervised, unsupervised, or self-supervised frameworks, each with distinct requirements
and trade-offs. In supervised learning, the model is explicitly trained on datasets that provide
ground truth annotations such as 6-DoF camera poses or dense depth maps. These labels
allow the network to directly minimize the error between predicted and true motion
parameters during training. While this approach can yield highly accurate models, it is
constrained by the availability and quality of labeled data, as obtaining precise pose
information often requires expensive motion capture systems, LiDAR-based SLAM setups,

or high-precision GPS/IMU sensors, which limits scalability and generalization.

To address this, unsupervised and self-supervised strategies allow to eliminate the
dependency on external ground truth by designing loss functions that enforce geometric
consistency between frames. For instance, the network learns to predict depth and relative
pose by reconstructing one image from another using differentiable view synthesis. The
reconstruction error is used as an indirect supervisory signal. Other geometric cues, such as

epipolar constraints or temporal consistency, are also leveraged to guide learning [49].
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Despite the advantages in robustness and semantic awareness, learning-based VO still faces
several challenges. Computational efficiency is a major constraint, particularly in embedded
and real-time robotic systems, where deep models may demand more resources than are
practically available. Furthermore, generalization remains an open problem: models trained

on specific datasets can struggle in unfamiliar environments due to overfitting or domain

shift.

5.1.1 MODEL SELECTION

After reviewing the theoretical foundations and design paradigms of learning-based visual
odometry, the next step in this work involved identifying and selecting concrete models
suitable for implementation. While numerous deep VO systems have been proposed over the
last decade, their applicability to real-world robotics varies significantly depending on a

combination of architectural, practical, and deployment-related factors.

To narrow down the candidates, four primary selection criteria were established aligned with
the constraints and objectives of this project: the ability to run the model in real time,
availability of pretrained weights for the model, proven robustness in indoor scenarios, and
existence of a reliable and well-maintained implementation, preferably compatible with

ROSI1 or ROS2 environments.

Well known models like DeepVO [50], UnDeepVO [51], and GANVO [52], were
considered for this application. However, most of them lack official support or strong
generalization performance, especially for indoor conditions. Also, most of them required
significant adaptation to ROS and did not always include pretrained weights for immediate

deployment, making it necessary to undertake training tasks.

Based on this evaluation, two models stood out as the most promising for integration into
this system: TartanVO [53] and TSformer-VO [54]. TartanVO is a supervised model with a
lightweight CNN architecture, pretrained on synthetic data and with available weights, and
validated in real environments with official ROSI1 support and proven real-time

performance. In parallel, TSformer-VO represents a more recent model based on Vision
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Transformers, with state-of-the-art accuracy and temporal consistency. Although it is not
ROS-native, its robust codebase is officially supported, and availability of pretrained weights

makes it ideal for quick integration and testing.

5.1.2 TSFORMER-VO

TSformer-VO is a recent monocular visual odometry model that approaches the VO problem
from a video sequence understanding perspective. Instead of processing frames pairwise or
with a recurrent neural network, TSformer-VO employs a Transformer-based architecture to
handle a window of successive frames simultaneously. The goal of TSformer-VO is to
directly regress the camera’s 6-DoF motion using spatio-temporal and self-attention
mechanisms, effectively treating VO as a sequence regression problem rather than a frame-
to-frame estimation alone. By doing so, the model can learn to aggregate information across

multiple frames, potentially improving robustness [54].

It is an end-to-end learned VO system, that does not rely on explicit geometric modules or
feature matching. It takes raw RGB frames and outputs the camera’s trajectory. The authors
state to achieve competitive results on standard benchmarks, such as KITTI, outperforming
well known models such as DeepVO in terms of average trajectory error. TSformer-VO’s
purpose is to bring the power of video Transformers to VO, achieving high accuracy through
learning temporal features, and its scope is a future-proof VO approach that could be

extended to many settings in robotics.

The training strategy is based on a supervised regression task using the KITTI odometry
dataset [65]. KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute)
is one of the most widely used datasets in mobile robotics and autonomous driving research.
Its dataset comprises traffic scenarios recorded using a variety of sensors, such as RGB and
grayscale cameras and 3D LiDARs, providing both visual data and ground-truth trajectory
information. The training loss is a straightforward Mean Squared Error (MSE) over all

predicted pose components.
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5.1.3 TARTANVO

TartanVO [53] is a learning-based monocular visual odometry model designed with a
primary goal of cross-environment generalization. Unlike prior deep VO methods that tend
to overfit a single dataset or scenario, TartanVO was the first to demonstrate that a single
learned model can perform well on multiple datasets like the previously mentioned KITTI,
EuRoC drone or indoor scenes, without fine-tuning. The authors achieve this by leveraging
the large-scale TartanAir simulation dataset, which provides diverse training data like
indoor, outdoor, urban, natural, and even sci-fi scenes with ground-truth labels. This
diversity addresses a key issue that limited earlier learning-based VO, which was the lack of

variety in motion and scenery.

TartanVO adopts a two-stage neural architecture inspired by the traditional VO pipeline of
feature matching and pose estimation. As illustrated in Figure 20Figure 20, the model

consists of a matching network followed by a pose regression network.
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Figure 20: Diagram of two-stage neural architecture of TartanVO [53]

The Matching Network uses a pre-trained optical flow model (PWC-Net) to compute dense
correspondences between two consecutive frames. This optical flow is calculated at a lower
resolution to save computational resources but still provides accurate motion cues. By

freezing this module, the system can rely on stable inputs for training the next stage.

The Pose Network takes the optical flow and predicts the relative camera motion. It uses a
modified ResNet-50 that treats the flow as a two-channel input (horizontal and vertical
motion). The network has two separate output branches: one estimates the 3D translation

and the other the 3D rotation. These outputs are learned independently to improve accuracy.
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TartanVO does not predict the absolute scale of translation, only the direction and relative
amount. This two-part design allows the system to focus on learning motion from reliable

visual cues efficiently.

5.2 DEVELOPMENT AND IMPLEMENTATION

The system was developed to support both TSFormer and TartanVO. However, experimental
results showed that TSFormer was significantly slower, achieving approximately 4 frames
per second, whereas TartanVO reached up to 12 frames per second. Based on this
performance difference, the final implementation was built around the TartanVO module.
Nonetheless, the integration approach described here remains applicable to both models, as

both were fully implemented.

The integration of the TartanVO model into the ROS2 ecosystem was achieved through the
development of a custom node implemented in Python, named tartanvo node. This node
encapsulates the entire inference and pose accumulation process required for monocular

visual odometry using a pretrained deep learning model.

Although an official implementation of TartanVO is available [56], it is designed for ROSI,
requiring substantial modifications for compatibility with ROS2. During the adaptation
process, numerous challenges emerged, particularly related to dependency management and
version conflicts. These incompatibilities required an extensive effort to refactor and
reconfigure the system, resulting in a prolonged integration period to ensure functional

stability within the ROS2 environment.
Data subscription

The node subscribes to raw monocular images from the topic /zed/zed node/rgb/raw/image,
published by the ZED X One camera. It also takes camera calibration data from

/zed/zed node/rgb/raw/camera_info and IMU information from /zed/zed node/imu/data.
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The system has initial camera intrinsics values that are updated once, before starting to
compute the motion estimation between frames. This is done in the handle_caminfo()
function.
def handle_caminfo(self, msqg) :

w = msg.width

h = msg.height

fx = msg.k[0]

fy = msg.k[4]

ox = msg.k[2]

oy = msg.k[5]

new _intrinsics = [w, h, fx, fy, ox, oy]

if new intrinsics != self.cam intrinsics:

self.intrinsic = make intrinsics layer(w, h, fx, fy, ox, oy)

self.cam intrinsics = new_intrinsics
self.get logger().info('Camera intrinsics updated.')

Code 8: Definition of handle_caminfo() function
The image data is processed using a predefined transformation pipeline (CropCenter,
DownscaleFlow, ToTensor) to match the resolution and format expected by the model. This
preprocessing ensures consistency with the training configuration of TartanVO.
self.transform = Compose ([CropCenter ((448, 640)), DownscaleFlow(), ToTensor()])

Code 9: Definition of transformation pipeline

Pose acquisition

The core motion estimation is performed by the function test_batch() of the TartanVO
class, which outputs a relative pose between the two most recent frames. This is defined in
TartanVo.py file. The motion is represented as a 6-DoF vector (3 for translation, 3 for
rotation), which is then converted into a 4x4 transformation matrix using the se2SE function.
The accumulated pose is updated incrementally by chaining transformations over time,

resulting in a full trajectory estimation in the camera frame.
Calibration test

As it is a monocular system, the estimated pose is inherently relative, meaning it lacks an

absolute scale. To address this limitation, the node applies a scaling factor to the estimated
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translation vector. This scale can be fixed, manually calibrated, or dynamically adjusted via
an external topic. In this project, a specific test was conducted to calibrate the scale as

accurately as possible.

The procedure begins by storing the current pose as the initial reference when the system
starts or when calibration is triggered. The node then accumulates frames over a fixed
interval of 60 consecutive frames, which correspond to approximately 5 seconds at 12 FPS.
After this interval, the system computes the displacement vector between the initial and final

poses and calculates the norm of this translation as the estimated visual odometry distance.

To calibrate the scale, the real physical distance traveled during the test is manually
measured, in this case, 0.60 meters. The system then computes the scale factor as the ratio
between the real-world distance and the VO-estimated distance. If the estimated
displacement is sufficiently large, the computed scale is accepted and applied to subsequent

translation vectors. Otherwise, the system discards the result.

if not hasattr(self, 'pose start'):

self.pose start = self.pose.copy ()
self.frame count = 0
self.get logger().info (" [CALIBRATION] Initial pose saved. START")
else:
self.frame count += 1
if self.frame count == 60: # frames in test
self.pose end = self.pose.copy ()
delta = self.pose end[:3, 3] - self.pose start[:3, 3]
distance vo = np.linalg.norm(delta)
real distance = 0.60 # real distance in meters

if distance vo > le-6:
scale = real distance / distance vo
self.get logger () .info (f" [CALIBRATION] Estimated VO distance:
{distance vo:.4f} m")
self.get logger () .info (£" [CALIBRATION] Calibrated scale:
{scale:.4f}")
self.scale = scale
else:
self.get logger () .warn (" [CALIBRATION] Too small movement. No
scale calculation.")
# Reset calibration variables
del self.pose start
del self.pose end
del self.frame count

Code 10: Scale calibration test

58



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAT)

C O M | |_ |_ A S MASTER UNIVERSITARIO EN INGENIERIA INDUSTRIAL
UNIVERSIDAD PONTIFICIA
L__ical_ IRNICABERN MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

To assess the consistency and reliability of the scale calibration process, a total of 15
calibration trials were conducted. The following table summarizes the results obtained in

each trial.

Table 3: Results of Monocular VO Scale Calibration

Trial Relative VO Calibrated scale
distance (m)

1 15.9726 0.0376
2 15.9108 0.0377
3 15.465 0.0388
4 16.175 0.0371
5 17.843 0.0336
6 16.797 0.0357
7 17.188 0.0377
8 15.7795 0.038
9 16.7883 0.0357
10 16.2608 0.0369
11 16.0527 0.0374
12 16.0363 0.0374
13 15.5442 0.0386
14 15.6437 0.0384
15 15.3163 0.0392

From the data, the following descriptive statistics were derived:
e Mean calibrated scale: 0.0371
e Standard deviation: 0.00156
e  95% confidence interval: [0.0363, 0.0380]

These results indicate that the calibrated scale values are tightly clustered around the mean,
with low variability and a narrow confidence interval. This reflects a high degree of
repeatability in the calibration procedure. Consequently, the average scale factor of 0.0371
was considered a statistically robust estimate for rescaling the translation vector in the

TartanVO system under the tested conditions.

This parameter is set under the self.scale parameter.
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Static noise filtering

An important implementation detail is the integration of an IMU-based motion filter. Before
updating the pose, the system checks whether the linear acceleration magnitude is below a
threshold (0.05 m/s?). If so, the frame is considered stationary and the motion is discarded,
reducing drift in low-motion conditions. This was introduced as major issues with motion
induced in the pose message when the camera was fully static.
if self.last accel is not None:

norm = np.linalg.norm(self.last_accel)

if norm < 0.05: # m/s?

self.get_logger().info(f"[IMU} No movement detected (|lal| =

{norm:.3f} m/s?), no increment in pose.")

self.last img = image np.copy ()
return

Code 11: Static noise suppression filter with IMU
The final odometry output is published in the ROS2 topic /odom zed mono using the

nav_msgs/Odometry message type. For system-wide consistency, the published odometry

includes appropriate frame identifiers, odom and zed camera_link.
Publishing transforms

The same issue encountered with the stereo camera also affected the monocular system.
Consequently, the same zed odom_transformer node was implemented to address it. The
only modification lies in the subscription topic, which changes from /zed/zed node/odom to

/odom_zed mono.

As aresult, the two cameras are not operated at the same time.
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Chapter 6. RESULTS AND COMPARISON

To evaluate the performance of each odometry source integrated into the system, a common

testing protocol was defined as follows. The goal was to assess both the accuracy of distance

estimation and the accumulated drift over short trajectories.

Two distinct experimental trials were conducted under controlled conditions:

1.

Straight-Line Test (Absolute Distance Estimation):

The robot was instructed to move along a straight-line path covering a known
physical distance. Two different target distances (3.6 and 1.2 meters) were used to
verify consistency and evaluate how accurately the odometry estimated the
translation. The estimated trajectory produced by the system was then compared to
the ground truth distance. The objective of this test was to quantify the scale accuracy
of each odometry method, particularly relevant in monocular systems where scale

ambiguity is a known limitation.
Rectangular Loop Test (Drift Evaluation):

In this trial, the robot followed a closed-loop trajectory approximating a rectangle
and returned to its starting point. The Euclidean distance between the estimated
starting and ending positions was recorded as a measure of accumulated drift. This
test provides insight into each system's ability to maintain consistency over time and

to cope with compounded errors from successive motion estimations.

Each odometry method was tested independently following this same protocol. The

corresponding results are presented in the following sections, allowing for a direct and fair

comparison of their performance across both metrics: absolute distance estimation and drift

over closed trajectories.
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6.1 EKF CONFIGURATION

The robot localization EKF node is configured with specific parameters to fuse wheel
encoder odometry and stereo camera visual odometry for a planar (2D) mobile platform.
These parameters are defined in the ekf.yaml file, which specifies the frame conventions,

filter behavior, and sensor input settings used by the node.

The EKF node is launched through the ekf launch.py script, which invokes the ekf node

from the robot localization package and sets the path to the ekf.yaml configuration file.
EKF internal functioning

The robot localization package [66] implements an Extended Kalman Filter (EKF) that
estimates the robot’s state by combining information from various sensors. Internally, the
EKF maintains a 15-dimensional state vector representing the robot’s full 3D pose,

velocities, and accelerations. The full state vector is:
x =[x y z roll pitch yaw v, v, v, w, w, w, a, a, a]’ (3)

However, since the robotic platform operates on flat indoor surfaces, and the EKF is
configured to work in that condition, the filter ignores vertical motion and rotation along roll
and pitch. This mode is specifically designed for ground robots constrained to motion on a
flat surface, where variations in altitude or tilt (roll and pitch) are not relevant. As a
consequence, the Extended Kalman Filter (EKF) internally reduces the size of its state vector
by discarding dimensions that are not observable or necessary in a 2D context. Among the
variables removed are all linear and angular accelerations. Since no IMU data was fused in
this implementation, and the estimation of accelerations was not required by any subsystem
(such as the navigation stack), the filter automatically excludes them to simplify the model
and avoid incorporating noisy or unused information. This simplification reduces the

effective state vector to:

x=[X Y yaw vy v, Wy 4)
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As it was seen in the state-of-art, the EKF operation consist of two main stages: prediction

and correction.

In the prediction step, the filter applies a nearly constant-acceleration kinematic model to
estimate the robot’s next state based on its previous state. This estimation uses motion
equations, where the subscript k — 1 refers to the previous timestep. The state prediction is

performed as follows:

e Position update:

X = Xg—q + Uy, - At + % Ay, " At? (5)
e Velocity update:
Vg, = Uy, + Gy, AL (6)
e Yaw angle update
yawy = yawg_q + w,, _ - At (7)

During this phase, the filter also updates the state covariance matrix P to reflect the
uncertainty of the predicted state. This update is computed using the Jacobian of the system

model and the predefined process noise covariance matrix Q:
P = FyPy_1F + Qy ®)

Where F, is the Jacobian of the motion model with respect to the state variables and Py is

the corrected covariance.

In the correction step, the EKF incorporates new measurements from the sensors. Each
incoming message is treated as a measurement vector z of some subset of the state. The filter

uses the following standard EKF equations.
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e State update:
Xk = x;; + K(z, — Hxy) 9

In the update, x, is the prediction of the state, before measuring, and X, is after the correction. K is

the Kalman gain, which determines how much the filter trusts the measurement versus the prediction.
K= P,H"(HP,;H" + R)™! (10)
H is the measurement matrix, mapping state variables to the expected measurement.
The covariance P is also updated at this stage:
P= (I-KH)P (11)

This correction phase reduces uncertainty in the state estimate by weighting the prediction

against the incoming measurement, depending on their respective covariances.
General filter configuration
Frame definition

The EKF operates using standard ROS frame conventions. The global map frame is set to
“map”, the local odometry frame to “odom”, and the base frame to “base footprint”. As
shown in Figure 15 in Chapter 2, the new responsible for publishing the odom to

base footprint transformation is the EKF node.

The world frame is configured as “odom”, meaning the filter uses the odom frame as the
world reference. Since only continuous odometry data is used, and no global fixes like GPS
are fused, the EKF outputs the robot pose in the odom frame. With world frame = odom,
the filter will publish the transform from odom to base footprint directly, as it was discussed

in Chapter 2.
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Timing and Frequency

The filter update frequency is set to 30.0 Hz. This rate is chosen to balance timeliness against
computational load, and it aligns with the expected sensor update rates (the wheel and
camera odometry data are available roughly on the order of tens of Hz). The use_sim_time

parameter is false, indicating the node uses real system time.

Planar Motion Mode

The EKF is configured in two-dimensional mode (two_d_mode: true), appropriate for a
ground robot on flat terrain. In this mode, the filter constrains motion to the XY -plane and
ignores changes in Z, roll, and pitch. This prevents unobservable or irrelevant degrees of
freedom from causing state drift and simplifies the filter since the wheelchair operates on a

level floor.

Output and TF Settings

The system is set to broadcast the transform (publish_tf: true) so that the fused odometry
is available to the rest of the system via the TF tree. Because the world frame is odom, the
node will publish an odom — base footprint transform representing the filtered pose.
Accelerations are not published (publish acceleration: false), since acceleration data is not

needed by other modules in this setup.

Process noise covariance

Within the general configuration of the robot localization EKF node, the
process_noise_covariance matrix was set to relatively high values, with diagonal entries
set to 8.0 corresponding to state variables, in order to reflect limited confidence in the
prediction model and prioritize the contribution of sensor measurements in the correction
step. This decision was made after empirical observation showed that the sensor inputs
provided more consistent and accurate information than the motion prediction generated by

the internal EKF process model. By increasing the process noise, the filter becomes more
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responsive to incoming measurement updates, weighting them more heavily in accordance

with their specified covariances during the fusion process.

Wheel encoder odometry (odom0)

The first sensor input, odom0, corresponds to wheel encoder odometry coming from the

platform’s wheel sensors, coming from the /encoders odom topic. This source provides

incremental pose estimates based on wheel rotation and is treated as an odometry message.

The configuration for odom0 is as follows:

Fused Variables:

The odomO config array specifies which state variables from the wheel encoder
odometry are fused into the filter. In this configuration, only the linear velocity in the
X-axis and the angular velocity around the Z-axis are included. This choice avoids
redundant computation by allowing the EKF to directly incorporate the raw velocity
measurements provided by the encoders. All other components, including position,
orientation (roll, pitch, yaw), lateral and vertical velocities (Y, Z), and accelerations

are excluded from the fusion process.

By omitting lateral (Y-axis) and vertical (Z-axis) velocities, the configuration reflects
the kinematic constraints of the differential-drive platform, which cannot produce
motion in those directions. Any minor deviations caused by lateral slip are considered

noise and intentionally disregarded to preserve filter stability.

Additionally, careful attention was given to the definition of sensor covariances, as
discussed in the EKF theory section. These covariances are specified in the
odometry.py node and are configured to assign higher confidence to linear velocity
measurements while assigning lower confidence to angular velocities. This decision
was based on testing, which showed that angular velocity estimates from the

encoders were less reliable. This can be seen in Figure 21.
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Figure 21: Encoders’ drift in angular estimation

Therefore, the covariance values assigned to these measurements were set low for
the linear velocity along the X-axis, indicating that the EKF can place high

confidence in this input, while higher covariance was used for the angular velocity

around the Z-axis, reflecting its lower reliability.

odom msg.pose.covariance = |
0.0 0.0, 0.0, 0.0,
0.0

0 ’
0 3.0, 0,0, 0.0,

0, 0.0 99999.0, 0.0, ©
O, 0.0, 0.0, 99999.0, O,
0 0.0, 0.0, 0.0, 9
0 0.0 0.0, 0.0, 0.0,

’
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Code 12: Encoders measurement covariance matrix
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e Absolute vs. Relative Mode:

For odom0, both odom0 differential and odomO relative are set to false. This
indicates that the wheel encoder data is not interpreted as a velocity increment nor is
it adjusted relative to an initial offset. However, since only the linear velocity along
the X-axis and the angular velocity around the Z-axis are being fused, the odometry
is not used as a full absolute pose source. Instead, these velocity components are
treated as direct measurements in the odom frame, which is also the world frame

used by the EKF.

e Qutlier Rejection:

The encoder odometry input has defined thresholds to reject outlier measurements.
The pose rejection threshold is set to 5.0 meters and the twist rejection threshold is
set to 1.0 m/s. These thresholds mean that if a new wheel odometry pose deviates
from the EKF’s predicted pose by more than 5.0 meters, it will be considered an
outlier and ignored, and if a wheel odom velocity differs too greatly, above 1.0 m/s
difference, it will also be rejected. In practice, such large deviations are unlikely
during normal operation, as they would indicate a serious slip or sensor fault, so these

values serve as a safety net to discard any grossly erroneous data.

Stereo Camera VO (odoml1)

The second sensor input, odom1, is the odometry from a ZED stereo camera, received via
the topic /odom_zed corrected, coming from the zed odom_transformer. The ZED camera
provides a visual odometry estimate of the robot’s movement, including visual odometry
and information for the embeeded IMU, but both already fused before entering the EKF.

Key settings for odom1 are the following.
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e Fused Variables:

The odom1_config array specifies which state variables from the ZED stereo visual
odometry are fused into the EKF. In this configuration, only the position components
in the X and Y axes, as well as the orientation around the Z-axis (yaw), are included.
These variables provide global pose information derived from visual-inertial
odometry computed by the ZED SDK. The other state components are excluded from
the fusion process to maintain consistency with the planar motion assumptions of the

robot and to avoid redundancy with other sensors.

Unlike the encoder odometry, the ZED stereo system publishes its own covariance
matrices directly within the odometry messages. These covariances are dynamically
estimated by the ZED SDK and are generally low for the selected fused variables,
indicating high confidence in the accuracy of the position and orientation data. Its

good performance in linear and angular estimation was also seen in testing:

2D Stereo VO trajectory
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Figure 22: Stereo VIO close loop test performance
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e Differential vs. Relative:

For odom1, the parameters odom1_differential: false and odom1 relative: true are
set. This means that the visual odometry from the ZED stereo camera is fused as an
absolute pose, but only in relative terms to its initial reading. Activating relative=true
ensures that the first pose from the camera is treated as the origin, aligning it with
the EKF’s coordinate system. This avoids conflicts that could arise from fusing two
independent absolute pose sources (wheel and camera). As a result, the ZED

contributes to pose changes over time without enforcing its own absolute origin.

e Qutlier Rejection:

To ensure robustness, pose rejection_threshold: 3.0 and twist rejection_threshold:
1.0 are applied to the ZED odometry input. In this configuration, the pose rejection
threshold is set lower than that of the encoder odometry, since visual odometry is
generally more susceptible to noise spikes caused by factors such as illumination
changes or reflective surfaces. Therefore, a more restrictive threshold is applied to

increase resilience against occasional tracking errors.

e Pose Frame Handling:

This parameter is intended to handle cases where the input odometry originates from
a frame different from base footprint, automatically applying the corresponding
static transform. However, enabling this option (pose frame: true) and defining the
static transform in the URDF did not yield the expected behavior. As a result, the
transformation had to be applied manually through the zed odom transformer node,

and the parameter was set to false.

Mono Camera VO learning-based (odom1)

The third sensor input corresponds to the odometry from the ZED monocular camera. As

previously mentioned, the stereo and monocular systems are not intended to operate
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simultaneously; therefore, they share the same EKF input configuration, as only one will be

active at any given time.

The only notable difference is that the monocular system defines its own covariance matrix
within the tartanvo node.py implementation. During testing, the system exhibited
significant limitations, particularly instability in estimating linear displacement along the X
and Y axes. In contrast, the angular displacement estimates showed improved consistency.
As aresult, the EKF configuration assigns lower confidence to linear motion estimates while

giving relatively more weight to rotational information.

odom msg.pose.covariance = [
1.0, 0.0, 0.0, 0.0, 0.0, O

, 0.0, 0.0, 0.0 0
;  99999,0, 0,0, 0.0, 0,0,
; 0.0, 99999.0, 0.0, 0,0,
; 0.0, 0,0, 99999.,0, 0,0
; 0.0, 0.0, 0,0, 0.5

-0,
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Code 13: Monocular learning-based odometry covariance matrix

Despite all the calibration efforts and parameter tuning, the results provided by the
monocular solution were not sufficient to support a robust odometry system, as it exhibited
clear instabilities in its performance. Results can be observed in Figure 23.

2D Mono VO trajectory
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Figure 23: Monocular learning-based VO close loop test performance
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6.2 TESTRESULTS

Among all the initial odometry input candidates considered in this project:

e Encoders
e Stereo VIO
e Monocular VO (classic techniques)

e Monocular VO (learning-based techniques)

Only the encoder-based and stereo VIO systems demonstrated sufficient performance and
reliability to be considered as viable inputs for the EKF-based fusion framework. As a result,
the experimental results and quantitative evaluations presented in the following sections will

focus exclusively on these two approaches considered for the EKF.
Straight line test

In the straight-line trajectory test, the robot followed known distances of 3.6 m and 1.2 m,
enabling an evaluation of the scale accuracy of each odometry method. Table 4 summarizes

the distances estimated by each system in comparison with the actual ground truth values:

Table 4: Estimated distances by each method in straight line

Real distance Encoders (m) Visual Stereo (m) EKF (m)
(m)
3.6 3.594 3.500 3.586
1.2 1.173 1.250 1.223

As observed, all methods yielded distance estimates very close to the true values, with
deviations of only a few centimeters. For the 3.6 m path, both the wheel encoder odometry
and the EKF slightly over or underestimated the distance, each with less than 1% error. The
stereo visual odometry measured 3.500 m, which corresponds to an underestimation of

approximately 2.8%.

72



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAT)
MASTER UNIVERSITARIO EN INGENIERIA INDUSTRIAL

COMILLAS
RESULTS AND COMPARISON

UNIVERSIDAD PONTIFICIA

Similarly, for the 1.2 m test, estimates remained within a narrow margin: encoders reported
1.173 m (~2.2% below the actual distance), the EKF 1.223 m (~1.9% above), and the stereo

VO 1.250 m (~4.2% above). These small deviations indicate that each system estimated

motion scale with high accuracy.

Close loop test
The second experiment involved a closed-loop trajectory in the shape of a rectangle, where

the robot began at a known starting point, followed an approximately rectangular path, and

returned to its initial position. Ideally, the estimated final position should coincide with the

origin; any Euclidean deviation between the actual starting point and the estimated final
location represents the accumulated drift of the odometry method over the course of the

trajectory. In this loop test, notable differences emerged among the three systems evaluated.
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Figure 24: Close loop test results for all methods
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Table 5: Euclidean distance from starting and finishing point

Method Accumulated drift (m)
Encoders 1.454
Visual Stereo 0.065
EKF 0.109

The results of the loop test clearly illustrate the impact of long-term error accumulation.
Odometry based solely on wheel encoders exhibited the highest drift, with a final position
approximately 1.45 meters away from the starting point after completing the loop. This
considerable discrepancy is characteristic of dead-reckoning methods, where small errors in
distance or orientation estimation accumulate over time, leading to significant positional
deviation. In particular, orientation drift is widely recognized as a major contributor to final
positional error in encoder-based systems. Minor wheel slippage during turns, subtle
differences in wheel calibration or diameter, and both systematic and random noise further
exacerbate the error as the robot travels and rotates. While encoder odometry performed
accurately over straight segments, its drift increased dramatically over the extended loop

trajectory because of the orientation error.

In contrast, stereo visual odometry yielded a remarkably small final error of just ~0.065
meters, demonstrating superior consistency in trajectory estimation. The near closure of the
loop suggests minimal error in both orientation and scale throughout the motion. This
performance aligns with the known advantages of visual odometry over inertial or wheel-
based methods: it is more robust against slippage and accumulates substantially less error

over longer distances.

The EKF-based fusion system achieved intermediate performance, with a closing error of
0.109 meters, significantly better than encoders alone but slightly worse than the stereo

visual method. This indicates that sensor fusion played a critical role in suppressing drift,
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likely incorporating inputs from encoders, visual odometry, and inertial sensors (e.g.,
gyroscope) to improve robustness. Although it did not reach the visual system’s precision,
the EKF brought a great improvement over wheel odometry, confirming its value in reducing
accumulated pose error. This improvement was also supported by the covariance
configuration, as the system should highly depend on the most accurate system, being the
visual odometry, but also makes use of the source from the encoders when this other one

may fail, or as demonstrated, wheel encoders perform well during straight motion.
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Chapter 7. CONCLUSION AND FUTURE

DEVELOPMENTS

This master’s thesis has developed and evaluated a new visual odometry module for an
autonomous wheelchair, successfully replacing the prior wheel encoder-only odometry with
a vision-based system. The project involved the integration of a stereo VO solution, the
exploration of monocular VO techniques, and the configuration of a multi-sensor Extended
Kalman Filter (EKF) to fuse odometry data from multiple sources. Through these efforts,

several important results and insights were achieved:

Stereo Visual Odometry Integration: The StereoLabs ZED stereo camera (ZED X Mini)
was successfully incorporated into the platform, providing real-time depth perception and
inertial data. This stereo system proved to markedly improve motion estimation accuracy
compared to the original wheel encoder odometry. In quantitative tests, the stereo VO
achieved great scale estimation and minimal drift. These results demonstrate that stereo
vision effectively eliminates the scale ambiguity present in monocular methods and is far
less susceptible to the cumulative errors that are observed in wheel odometry. The motion
accuracy of the stereo system remained high throughout testing, and drift over short to

medium trajectories was negligible, indicating a high level of consistency in pose tracking.

Monocular VO (Classical Methods): In parallel, classical monocular visual odometry
techniques were implemented and tested using the ZED X One monocular camera. Feature-
based algorithms were explored as a baseline knowledge-driven approach. These methods
confirmed the expected challenges: scale estimation was a fundamental issue since a single
camera cannot infer absolute distance without additional references. Moreover, monocular
tracking exhibited drift accumulation over time and sometimes struggled with stability. In

summary, the classic monocular VO, while functional in short intervals, did not provide the
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robustness or precision required for dependable odometry in our application, primarily due

to its drifting scale and higher susceptibility to environmental conditions.

Monocular VO (Learning-Based Methods): To push the performance of monocular
odometry, state-of-the-art learning-based models were also integrated into the system. In
particular, the deep learning model named TartanVO was selected for its demonstrated
generalization across environments and real-time capability. TartanVO succeeded in
estimating the robot’s ego motion especially in the short range. However, in practice the
tests revealed notable limitations of the model as well. While the angular orientation
estimates from TartanVO were relatively consistent, the linear translation estimates were
unstable. Even with scale calibration, the monocular learning-based VO showed erratic
behavior in translational motion estimation and accumulated drift over longer runs. This may
also be partially attributed to the use of pre-trained models without specific retraining.
Although the model employed provided a functional baseline. However, the model weights
were trained under conditions that may not fully match the operational environment of this
project and proved insufficiently reliable on the wheelchair platform. These approaches were
prone to scale drift and occasional pose estimation jumps, meaning they could not serve as

the sole odometry source without risking navigation errors.

Sensor Fusion with EKF: The EKF operates in 2D mode, appropriate for a planar indoor
vehicle, and uses covariance-based weighting to balance the contributions of each sensor.
Visual odometry serves as the primary pose source due to its higher accuracy, while encoder
data provide reliable linear velocity estimates and act as a fallback when vision is temporarily
unavailable. Encoder yaw data, being more prone to drift, are given lower weight, whereas
linear velocity is trusted more. This fusion strategy significantly reduces drift and improves
pose consistency. In straight-line tests, EKF estimates closely match ground truth (within
~2%), and in closed-loop paths, EKF drift is limited to a few tens of centimeters, compared
to 1.5 m with encoders alone. Although slightly less accurate than stereo VO alone, the EKF
solution proved more resilient and robust, maintaining functionality during sensor
interruptions. Overall, sensor fusion effectively leveraged the strengths of both inputs,

offering a stable and accurate odometry solution suitable for real-time navigation.
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In summary, the project successfully enhanced the localization capabilities of the
autonomous wheelchair, replacing the encoder only system with a more accurate and drift-
resistant stereo visual odometry solution. The results confirmed that vision-based odometry,
particularly stereo configurations, offers superior long-term accuracy in indoor
environments, thanks to its ability to observe the environment on a true scale and reduce
cumulative errors. In contrast, monocular approaches, both classical and learning-based,
exhibited notable limitations. Their inherent lack of depth information led to scale ambiguity
and instability, making them less reliable for consistent pose estimation. Moreover, the
experiments demonstrated that methods operating with less information, such as monocular
setups, require significantly more effort in calibration and fine-tuning to approach the
performance levels of stereo systems. While these monocular methods hold potential for
low-cost alternatives, they are not yet robust enough to operate independently in real-world

deployments without a deeper fine-tuning effort.
Future Work

Building on the successful integration of visual odometry, the next logical step is to evolve
this system into a complete visual SLAM (Simultaneous Localization and Mapping) solution
that can fully replace or augment the existing LiDAR-based solution in the wheelchair
platform. The results of this thesis provide a strong foundation with a high-accuracy VO

module upon which advanced capabilities can be added.
The main directions for future work can be:

e Monocular Odometry Improvements: Although stereo vision remains the more
reliable option, improving monocular odometry is still valuable for cost-effective
systems. Future work should explore scale recovery through learned depth, scene
constraints, or training with stereo supervision. Achieving performance comparable
to stereo requires addressing scale ambiguity and drift and may also demand more
extensive fine-tuning in learning-based methods to close the gap.

e Integration into a Full Navigation System: Future efforts should integrate visual

SLAM into the full navigation pipeline, replacing LiDAR-based localization.
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ANNEX I: SUSTAINABLE DEVELOPMENT GOALS

The present project focuses on developing a visual odometry-based autonomous navigation
system for an autonomous wheelchair, contributes directly to several of the United Nations
Sustainable Development Goals (SDGs) outlined in the 2030 Agenda. The following

alignments have been identified:

SDG 3: Good Health and Well-Being

Enhancing autonomous mobility for individuals with motor disabilities has a direct impact
on their physical health and emotional well-being. By equipping the wheelchair with robust
and accurate autonomous navigation capabilities, the project promotes user independence,
reduces reliance on caregivers, and improves overall quality of life in both private and public
environments.

SDG 9: Industry, Innovation and Infrastructure

The development of an advanced sensor fusion and visual odometry system involves the
application of cutting-edge technologies in computer vision, mobile robotics, and machine
learning. This technological integration fosters innovation in assistive robotics and
contributes to the advancement of intelligent and accessible infrastructure for individuals
with limited mobility.

SDG 10: Reduced Inequalities

Access to advanced mobility technologies represents a key step toward social inclusion.
Through technically effective and potentially low-cost solutions such as deep learning-based
monocular odometry, this project opens the door to broader accessibility, helping to reduce

the gap between people with and without disabilities.
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ANNEX II: USER MANUAL

INTRODUCTION

This user manual provides detailed guidance on how to set up, configure, and operate the
visual odometry system developed for the autonomous wheelchair. This manual is intended
for users with basic ROS2 knowledge who want to deploy or test the system under different
configurations, and that has already checked how to system works as a whole in [63].

SYSTEM OVERVIEW

The system is divided into two main ROS2 workspaces:
A. zed_ros2_ws — Visual Odometry and EKF Modules
This workspace contains all visual odometry modules, including:
e  mMONO_Vvo:
o VisualOdometryNode.py: Classic monocular visual odometry
e tartanvo_ros2:

o tartanvo_node.py: Deep learning-based monocular odometry node using
the TartanVO model.

o zed_odom_transformer.py: Transforms raw visual odometry to align with
the robot’s base frame.

o EKEF configuration file ekf.yaml under config/.
o General files for visual odometry and sensor fusion.
e tsformer_vo node: Node for monocular odometry using TSformer-VO.

o zed-ros2-wrapper: Official Stereolabs ROS2 interface for the ZED cameras (ZED
X Mini and ZED X One).
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B. ros2_tracer_ws — Original Navigation System

This workspace originates from [63].

CONFIGURATION

EKF Setup (Fusion or Vision-Only)
The EKF configuration file is in the following location:

zed_ros2_ws/src/tartanvo_ros2/config/ekf.yaml

e Using VO + encoders:

Both inputs should be declared as the following, as both are used:

e Using visual odometry only
In this case, the best solution is to comment out the encoders input and make the

cameras input as main (odom0).
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Encoders odometry setup

The encoder data processing is implemented in:
ros2_tracer_ws/src/tracer_odometry/tracer_odometry/odometry.py
This script has two logic sections:

e The first section should be used when only encoders odometry wants to be used,

returning to the system used in [63].

e The second section reformats and publishes the encoder data to the EKF, so it should

be set when fusion want to be achieved.

Depending on the setup, comment or uncomment the appropriate section. The script

contains references to know which part corresponds to each configuration.
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Nav2 Stack Configuration
The Nav2 navigation system requires an odometry source. This is defined in:
ros2_tracer_ws/src/tracer_bringup/params/nav2_params_real.yaml
Set the odom_topic parameter to:

e /odom — for encoder-only mode.

e /odometry/filtered — for EKF fusion mode (visual + encoders or visual only).

LLAUNCHING THE SYSTEM

The system must be launched in the correct order to ensure sensor availability and topic

synchronization.

1. Launching the Camera (via SSH)

Before connecting via Remote desktop to the NVIDIA Jetson, the camera has to be launched
from local computer terminal (cmd in windows). This is caused by ports issues with the
graphics when trying to get the connection between the camera and the NVIDIA Jetson using
a remote desktop. The commands to execute are:

ssh socialtech@192.168.0.11

#Password: LabControl (not a command)

cd ~/zed ros2 ws

source install/setup.bash
[Alias]

Where [Alias] depends on the camera used:

e zedxmini

e zedxone
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2. Launching the Navigation and VO System

Once the camera is active, connect with the Jetson via remote desktop. Use multiple tabs

with Terminator terminal to keep each process organized (CTRL + E, CTRL+O)

For Stereo + Encoders mode, the recommended execution is:

For the Monocular (TartanVO) + Encoders mode, the recommended execution is
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DEBUGGING AND COMMON ISSUES

Proper system operation can be monitored using ROS2 diagnostic tools. To verify that topics

are being correctly published and nodes are active, the following command is useful:

ros2 topic echo /odometry/filtered
Replace the topic with any of interest (e.g., /scan, /zed/zed node/odom, /encoders_odom) to

validate its data flow.

Also plotting the whole TF tree might help to see if there is any topic or transformation

missing might help to identify the issue. The command is:

ros2 run tf2 tools view frames

It is very important to always ensure each terminal session has sourced the correct

workspace:

source install/setup.bash

To inspect all active topics:

ros2 topic list

To visualize the topic-node connections and identify missing links or inactive components:

rqt graph

Common issues

Below are some frequent problems that may arise during system operation, along with

recommended diagnostic steps:
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e Encoder Odometry Not Publishing (only when using Raspberry Pi configuration)

Symptom: No data appears on /encoders odom.

Possible Cause: The Raspberry Pi (which transmits encoder data) is not connected to

the network.

Solution: From the Jetson terminal run the following command, and check if the

Raspberry Pi IP appears (192.168.1.154). If it does not, reboot it.

sudo arp-scan —--localnet

e LiDAR data not publishing
Symptom: The topic /scan is not active or is not publishing expected data.
Possible Cause: The LIDAR IP address is no longer assigned.

Solution: Confirm that the Ethernet interface connected to the LIDAR has an IP in the
correct range (192.168.1.50). If this configuration is missing, use the provided command

to reconfigure the LIDAR:

lidar config

This tool resets the IP and communication parameters based on the standard procedure

defined in [63].

o Camera Not Working or Crashing When Launched from Windows Terminal

Symptom: Errors appear when launching zedxmini or zedxone from a Windows

terminal, or no image/odometry is received.

Possible Cause: The camera was connected affer powering on the NVIDIA Jetson.
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Solution: The camera must be physically connected before powering up the Jetson. If
the camera is plugged in after boot, it may not be recognized by the system and will not

function. Reboot the Jetson with the camera already connected to resolve the issue.
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