

MÁSTER UNIVERSITARIO EN

INGENIERÍA INDUSTRIAL

TRABAJO FIN DE MÁSTER

DEVELOPMENT OF A VISUAL ODOMETRY MODULE

FOR AN AUTONOMOUS WHEELCHAIR

Author: Ernesto Pandelet Durán

Directors:

Jaime Boal Martín-Larrauri

Jesús Tordesillas Torres

Madrid July 2025

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Development of a visual odometry module for an autonomous wheelchair

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2024/25 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido

tomada de otros documentos está debidamente referenciada.

Fdo.: Ernesto Pandelet Durán Fecha: 20/07/2025

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Jaime Boal Martín-Larrauri Fecha:

Fdo.: Jesús Tordesillas Torres Fecha:

MÁSTER UNIVERSITARIO EN

INGENIERÍA INDUSTRIAL

TRABAJO FIN DE MÁSTER

DEVELOPMENT OF A VISUAL ODOMETRY MODULE

FOR AN AUTONOMOUS WHEELCHAIR

Author: Ernesto Pandelet Durán

Directors:

Jaime Boal Martín-Larrauri

Jesús Tordesillas Torres

Madrid July 2025

Development of a visual odometry module for an autonomous wheelchair

Author: Pandelet Durán, Ernesto.

Directors: Boal Martín-Larrauri, Jaime; Tordesillas Torres, Jesús

Collaborating Entity: ICAI – Universidad Pontificia Comillas

PROJECT SUMMARY

1. Introduction

This project was born from the need to improve the localization of an autonomous

wheelchair operating in indoor environments, where technologies such as GPS are not

viable. Until now, the system relied mainly on encoder-based odometry, which exhibited

limited accuracy and significant drift over time. The main objective of this work has been to

replace that system with a new, more accurate and robust visual odometry module capable

of reliably estimating the robot’s position and orientation.

In particular, the project explores and integrates different visual odometry approaches: stereo

odometry using a ZED X Mini [1] camera, classical monocular odometry (based on

geometric techniques), and learning-based monocular odometry (using models such as

TartanVO [2]), both implemented with a ZED X One [3] camera. Additionally, a sensor

fusion system based on an Extended Kalman Filter (EKF) is developed to combine multiple

sources of information and generate a more robust estimate of the robot’s motion.

2. Previous and New Architecture

The original system architecture was based on encoder odometry and LiDAR sensors within

a ROS2 [4] environment. The Nav2 navigation stack [5] was used for path planning, motion

control, and localization. However, this architecture exhibited notable limitations in

accuracy—especially during long maneuvers or tight turns—where accumulated drift

significantly impacted system reliability, due to the encoders effect.

The new architecture remains fully compatible with ROS2 and Nav2, but introduces major

improvements: a ZED X Mini camera is added as the main stereo visual odometry source, a

new learning-based monocular odometry node (using the ZED X One camera) is

implemented, and the TF transformation tree is restructured to resolve previous

inconsistencies. All components are integrated through an EKF node that fuses the available

odometry sources. This modular design allows the system to evaluate, compare, and switch

between different odometry sources while maintaining overall consistency.

Figure 1: New architecture in odometry module

3. Odometry Modules

3.1 Stereo Visual Odometry

The stereo visual odometry solution was implemented using the Stereolabs ZED X Mini

camera, capable of providing 6DOF pose estimates by combining stereo images and inertial

measurements from its built-in IMU.

The zed-ros2-wrapper node publishes odometry data to the /zed/zed_node/odom topic, but

issues arose due to the relative offset between the camera and the robot’s center of mass

when integrating the data into the EKF. To resolve this, a custom zed_odom_transformer

node was implemented to re-reference the pose from the camera frame to the robot’s base

frame (base_link).

Figure 2: Trajectory test with stereo visual odometry

3.2 Classical Monocular Odometry

To explore lower-cost alternatives, a classical monocular visual odometry module was

developed using the ZED X One camera. This approach was based on geometric techniques

including ORB [6] feature detection, FLANN [7] matching, and motion estimation via the

essential matrix. A ROS2 node was created to process rectified images and estimate the

robot’s relative trajectory.

However, testing revealed instability: the lack of scale information caused cumulative errors,

and the system was highly sensitive to poor lighting or low-texture environments. Although

useful as a conceptual tool, this method was not included in the final system due to its lack

of robustness.

3.3 Learning-Based Monocular Odometry

As a third approach, deep learning was explored for monocular odometry estimation. Several

models were evaluated, with TartanVO selected for its lightweight design, pretrained

weights, and ROS compatibility. A ROS2 node named tartanvo_node was implemented to

process monocular images from the ZED X One. A scale calibration module was developed

based on test trajectories, and an IMU-based motion filter was integrated to prevent

erroneous pose updates while the robot was stationary.

Figure 3: Trajectory test with monocular visual odometry and learning based techniques

Although the system successfully tracked short trajectories, translation estimates were

unstable. Since the model was not retrained on real-world data, its pretrained weights showed

poor generalization and unreliable performance under the test conditions.

4. EKF Integration. Tests and Results

To combine the strengths of each sensor, an EKF-based fusion system was implemented

using the ekf_filter_node from the robot_localization package [8]. The EKF was configured

to operate in 2D mode (planar motion), taking stereo visual odometry and encoder odometry

as inputs. Sensor covariances were tuned to reflect their relative reliability: encoders

provided accurate linear velocity but unreliable orientation data, whereas the ZED camera

delivered more precise position and orientation estimates.

Two test scenarios were defined: straight-line trajectories of 1.2 m and 3.6 m, and a closed-

loop path. In the straight-line tests, all sources produced acceptable results, with the largest

error being 4.2% from the stereo VO at the 1.2-meter mark:

Table 1: Straight line test results

Real distance

(m)

Encoders (m) Visual Stereo (m) EKF (m)

3.6 3.594 3.500 3.586

1.2 1.173 1.250 1.223

In the closed-loop test, encoder-only odometry accumulated 1.45 m of drift, while the EKF

solution reduced the error to just 6.5 cm. This clearly demonstrated the encoder's main

weakness—poor angular displacement estimation—and the advantage of sensor fusion:

Table 2: Euclidean distance between inicial and final position in closed loop test

Method Accumulated drift (m)

Encoders 1.454

Visual Stereo 0.065

EKF 0.109

Figure 4: Close loop test results for encoders, stereo visual odometry and EKF

5. Conclusions

The project achieved its primary goal: replacing an encoder-only odometry system with a

more accurate and robust solution. The ZED X Mini camera proved reliable for real-time

pose estimation, and its integration with the ROS2/Nav2 stack was successful.

Tests also confirmed that monocular solutions, though appealing for their lower cost, still

present major challenges, such as scale ambiguity and sensitivity to environmental

conditions. Both classical and learning-based monocular methods require extensive

calibration or retraining to match the performance of stereo systems. Without such

adjustments, they cannot yet be considered viable standalone alternatives.

Lastly, sensor fusion via EKF emerged as a robust and effective solution. By combining the

advantages of each input, the resulting system demonstrated low accumulated error,

resilience to partial sensor failure, and consistent navigation performance.

For future work, the project proposes extending this module into a full visual SLAM solution

that could eventually replace the current LiDAR-based system entirely opening the path to

more efficient, robust, and cost-effective autonomous navigation.

6. Bibliography

[1] Wang, W., Hu, Y., & Scherer, S. A. (2020). TartanVO: a generalizable Learning-based VO.

arXiv (Cornell University). https://doi.org/10.48550/arxiv.2011.00359

[2] ZED X One | StereoLabs. (n.d.-b). https://www.stereolabs.com/en-es/products/zed-x-one+

https://doi.org/10.48550/arxiv.2011.00359
https://www.stereolabs.com/en-es/products/zed-x-one

[3] ZED X Mini Stereo Camera | StereoLabs. (n.d.-b). https://www.stereolabs.com/en-

es/store/products/zed-x-mini-stereo-camera

[4] ROS 2 Documentation — ROS 2 Documentation: Humble documentation. (n.d.).

https://docs.ros.org/en/humble/index.html

[5] Nav2 — Nav2 1.0.0 documentation. (n.d.). https://docs.nav2.org/

[6] OpenCV: ORB (Oriented FAST and Rotated BRIEF). (n.d.).

https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html

[7] OpenCV: Feature Matching with FLANN. (n.d.).

https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html

[8] robot_localization wiki — robot_localization 2.6.12 documentation. (n.d.).

https://docs.ros.org/en/melodic/api/robot_localization/html/index.html

https://www.stereolabs.com/en-es/store/products/zed-x-mini-stereo-camera
https://www.stereolabs.com/en-es/store/products/zed-x-mini-stereo-camera
https://docs.ros.org/en/humble/index.html
https://docs.nav2.org/
https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://docs.ros.org/en/melodic/api/robot_localization/html/index.html

Desarrollo de un módulo de odometría visual para una silla de ruedas

autónoma

Autor: Pandelet Durán, Ernesto.

Directores: Jaime Boal Martín-Larrauri y Jesús Tordesillas Torres

Entidad Colaboradora: ICAI – Universidad Pontificia Comillas

RESUMEN DEL PROYECTO

1. Introducción

Este proyecto nace de la necesidad de mejorar la localización de una silla de ruedas

autónoma en entornos interiores, donde tecnologías como el GPS no ofrecen una solución

viable. Hasta ahora, el sistema se apoyaba principalmente en odometría basada en encoders,

lo que presentaba una precisión limitada y una acumulación significativa de error con el paso

del tiempo. El objetivo principal del trabajo ha sido sustituir ese sistema por un nuevo

módulo de odometría visual más preciso y robusto, que permita estimar de manera fiable la

posición y orientación del robot.

En particular, el proyecto plantea integrar y evaluar diferentes enfoques de odometría visual:

estereoscópica (con cámara ZED X Mini [1]), monocular clásica (basada en técnicas

geométricas) y monocular con aprendizaje profundo (empleando modelos como TartanVO

[2]), ambos haciendo uso de una cámara ZED X One [3]. Además, se desarrolla un sistema

de fusión de sensores mediante un Filtro de Kalman Extendido (EKF) que combine múltiples

fuentes de información para ofrecer una estimación final más robusta del movimiento del

robot.

2. Arquitectura previa y arquitectura nueva

La arquitectura original del sistema se basaba en el uso de odometría de encoders y sensores

LiDAR integrados en un entorno ROS2 [4]. El stack de navegación Nav2 [5] se utiliza para

la planificación de rutas, navegación y control. Sin embargo, esta arquitectura presentaba

limitaciones en precisión, especialmente durante maniobras prolongadas o giros cerrados,

donde el error acumulado comprometía la fiabilidad del sistema, debido al efecto de los

encoders.

La nueva arquitectura mantiene la compatibilidad con ROS2 y Nav2, pero introduce mejoras

significativas: se incorpora una cámara ZED X Mini como fuente principal de odometría

visual estéreo, un nuevo nodo de odometría visual monocular basado en aprendizaje

profundo (con la cámara ZED X One), y se reestructura el árbol de transformaciones TF para

resolver inconsistencias previas. Todo ello se integra a través de un nodo EKF que fusiona

los datos disponibles. Este diseño modular permite evaluar, comparar e intercambiar

distintas fuentes de odometría manteniendo la coherencia del sistema completo.

Figura 1: Nueva arquitectura en el módulo de odometría

3. Módulos de odometría

3.1 Odometría estéreo

La solución de odometría estéreo se construyó utilizando la cámara ZED X Mini de

StereoLabs, capaz de proporcionar estimaciones de pose en 6 grados de libertad a través de

la combinación de imágenes estéreo y datos inerciales (IMU).

El nodo zed-ros2-wrapper publica información de odometría en el topic

/zed/zed_node/odom, pero se encontraron problemas en la referencia de la pose debido a la

posición relativa entre la cámara y el centro de masa del robot a la hora de su integración en

el EKF. Para resolverlo, se implementó un nodo adicional zed_odom_transformer que

transforma la odometría del marco de la cámara al marco del robot base (base_link).

Figura 2: Ensayo de trayectoria con odometría visual estéreo

3.2 Odometría monocular. Métodos clásicos

Para comparar alternativas de menor coste, se desarrolló también un módulo de odometría

visual monocular clásica utilizando la cámara ZED X One. El enfoque se basó en técnicas

geométricas como la detección de características (ORB [6]), emparejamiento con FLANN

[7] y estimación de movimiento mediante la matriz esencial. Se desarrolló un nodo en ROS2

capaz de procesar imágenes rectificadas y estimar la trayectoria relativa del robot.

Sin embargo, las pruebas demostraron que esta solución resultaba inestable: la ausencia de

información de escala provocaba errores acumulativos, y la sensibilidad a condiciones de

iluminación o baja textura limitaba su robustez. Aunque útil como herramienta conceptual,

este método no fue integrado en el sistema final.

3.3 Odometría monocular. Métodos con aprendizaje profundo

Como tercera vía, se exploró el uso de redes neuronales profundas para estimar odometría a

partir de imágenes monoculares. Se evaluaron varios modelos existentes, siendo TartanVO

el seleccionado por su ligereza, disponibilidad de pesos preentrenados y soporte para ROS.

El nodo tartanvo_node fue desarrollado en ROS2 y adaptado para recibir imágenes

monoculares de la cámara ZED X One. Se implementó un sistema de calibración de escala

mediante trayectorias de prueba y se incorporó un filtro basado en la aceleración del IMU

para evitar estimaciones erróneas en reposo.

Aunque el sistema fue capaz de seguir trayectorias a corto plazo, los resultados mostraron

inestabilidad en la estimación de la traslación. Además, al no haber sido reentrenado

específicamente en datos del entorno real, los pesos del modelo resultaron poco

generalizables, y consecuentemente obteniendo unos resultados poco fiables y robustos.

Figura 3: Ensayo de trayectoria con odometría visual monocular y aprendizaje profundo

4. Integración del EKF. Ensayos y resultados

Con el objetivo de aprovechar las fortalezas de cada sensor, se configuró un sistema de fusión

mediante el nodo ekf_filter_node del paquete robot_localization [8]. El EKF se diseñó para

operar en modo 2D (movimiento planar), utilizando como entradas la odometría visual

estéreo y la odometría de encoders. La covarianza asociada a cada sensor se ajustó para

reflejar su fiabilidad: los encoders contribuyen con la velocidad lineal, pero su información

de orientación se consideró menos fiable, mientras que la cámara ZED aporta la estimación

de posición y orientación con mayor precisión.

Las pruebas se realizaron bajo dos escenarios: trayectorias rectas de 1.2 m y 3.6 m, y un

recorrido en bucle cerrado.

En las trayectorias rectas, todas las fuentes obtuvieron resultados aceptables, siendo el mayor

de los errores de un 4,2% en la estimación a los 1,2 metros de la odometría visual estéreo.

Tabla 1: Resultados de ensayo de odometría en línea recta

Distancia real

(m)

Encoders (m) Visual Stereo (m) EKF (m)

3.6 3.594 3.500 3.586

1.2 1.173 1.250 1.223

En el test de bucle cerrado, la odometría basada en encoders acumuló un error de 1.45 m,

mientras que la solución EKF redujo la deriva a solo 6.5 cm, demostrando una mejora

significativa en precisión y robustez. Este ensayo puso de manifiesto la principal debilidad

de los encoders: su imprecisión en la estimación del desplazamiento angular.

Tabla 2: Distancia euclídea entre el punto inicial y final tras ensayo de lazo cerrado

Método Drift acumulado (m)

Encoders 1.454

Visual Stereo 0.065

EKF 0.109

Figura 4: Resultados de ensayo de lazo cerrado para encoders, odometría visual estéreo y EKF

5. Conclusiones

El proyecto logró uno de los objetivos principales: reemplazar un sistema de odometría

basado exclusivamente en encoders por uno más preciso. La cámara ZED X Mini demostró

ser una herramienta fiable y precisa para la estimación de pose en tiempo real, y su

integración dentro del stack de navegación ROS2/Nav2 resultó satisfactoria.

Las pruebas también evidenciaron que las soluciones monoculares, aunque atractivas por su

coste reducido, aún presentan desafíos importantes, como la ambigüedad en la escala y la

sensibilidad a las condiciones del entorno. Tanto los métodos clásicos como los basados en

aprendizaje requieren una calibración o entrenamiento adicional para alcanzar niveles

similares de rendimiento. Por tanto, mientras no se realicen estos ajustes de manera

exhaustiva, no pueden ser considerados alternativas viables por sí solas.

Por último, la fusión de sensores mediante EKF se consolidó como una solución robusta y

fiable. Combinando las ventajas de cada fuente, el sistema resultante mostró bajo error

acumulado, buena respuesta ante fallos parciales y coherencia en la navegación.

Como trabajo futuro, se propone extender este módulo hacia una solución completa de

SLAM visual, para eventualmente sustituir por completo el sistema LiDAR mediante

cámaras, abriendo el camino a una navegación más eficiente, robusta y económica.

6. Bibliografía

[1] Wang, W., Hu, Y., & Scherer, S. A. (2020). TartanVO: a generalizable Learning-based VO.

arXiv (Cornell University). https://doi.org/10.48550/arxiv.2011.00359

[2] ZED X One | StereoLabs. (n.d.-b). https://www.stereolabs.com/en-es/products/zed-x-one+

[3] ZED X Mini Stereo Camera | StereoLabs. (n.d.-b). https://www.stereolabs.com/en-

es/store/products/zed-x-mini-stereo-camera

[4] ROS 2 Documentation — ROS 2 Documentation: Humble documentation. (n.d.).

https://docs.ros.org/en/humble/index.html

[5] Nav2 — Nav2 1.0.0 documentation. (n.d.). https://docs.nav2.org/

[6] OpenCV: ORB (Oriented FAST and Rotated BRIEF). (n.d.).

https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html

[7] OpenCV: Feature Matching with FLANN. (n.d.).

https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html

[8] robot_localization wiki — robot_localization 2.6.12 documentation. (n.d.).

https://docs.ros.org/en/melodic/api/robot_localization/html/index.html

https://doi.org/10.48550/arxiv.2011.00359
https://www.stereolabs.com/en-es/products/zed-x-one
https://www.stereolabs.com/en-es/store/products/zed-x-mini-stereo-camera
https://www.stereolabs.com/en-es/store/products/zed-x-mini-stereo-camera
https://docs.ros.org/en/humble/index.html
https://docs.nav2.org/
https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://docs.ros.org/en/melodic/api/robot_localization/html/index.html

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INDEX

I

Index

Chapter 1. Introduction ... 3

1.1 State of the art.. 3

1.1.1 Localization in autonomous systems .. 3

1.1.2 The localization problem .. 4

1.1.3 Visual odometry .. 8

1.2 Motivation ... 14

1.3 Project objectives .. 14

Chapter 2. Architecture ... 16

2.1 Hardware ... 16

2.2 Previous architecture ... 19

2.2.1 ROS2 and NAV2 ... 19

2.2.2 Existing workspace architecture .. 21

2.2.3 Odometry .. 22

2.3 New odometry architecture ... 26

Chapter 3. Stereo visual odometry .. 30

3.1 Stereolabs solutions ... 30

3.2 Zed SDK and system integration ... 30

Chapter 4. Monocular visual odometry. Classic techniques .. 35

4.1 Theoretical Background .. 35

4.2 Development and implementation ... 46

4.3 Results and conclusion .. 50

Chapter 5. Monocular visual odometry. Learning-based techniques............................ 51

5.1 Theoretical Background .. 51

5.1.1 Model selection ... 53

5.1.2 TSformer-VO .. 54

5.1.3 TartanVO .. 55

5.2 Development and implementation ... 56

Chapter 6. Results and comparison .. 61

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INDEX

II

6.1 EKF configuration ... 62

6.2 Test results ... 72

Chapter 7. Conclusion and future developments ... 76

Chapter 8. Bibliography .. 79

ANNEX I: Sustainable Development Goals .. 83

ANNEX II: USER MANUAL .. 84

Introduction .. 84

System Overview ... 84

Configuration ... 85

Launching the system .. 87

Debugging and common issues ... 89

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

3

Chapter 1. INTRODUCTION

This project is part of the second edition of the UNIJES SocialTech Challenge. It is a robotics

competition that involves the collaboration among four Jesuits universities: Universidad de

Deusto, Universitat Ramon Llull, Universidad Pontificia Comillas, and Universidad Loyola,

all of which belong to UNIJES, the network of universities associated with the Society of

Jesus in Spain. The goal of this competition is to demonstrate the social impact of technology

while promoting innovation and creativity among participants.

This year, the competition took place in an indoor environment resembling a normal office,

unlike last year when the environment was a maze with flat and texture-less surfaces. The

goal of this project is to improve the solutions developed in the previous year, developing

further and adapting the existing models into the new conditions.

The existing platform uses a wheel encoder as odometry source, giving bad quality

information and performing poorly on slippery surfaces.

The objective of this master's thesis project is to develop a new odometry module based on

Visual Odometry (VO), making use of stereo and monocular cameras. This odometry system

is integrated into a robotics platform, enabling more precise and efficient navigation in rich-

textured environments, and providing better performance than the existing wheel encoders.

1.1 STATE OF THE ART

1.1.1 LOCALIZATION IN AUTONOMOUS SYSTEMS

Accurate localization is fundamental to autonomous systems' navigation. A primary

challenge is the estimation of a robot's ego-motion, which involves determining its position

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

4

and orientation over time. With this information, the system can track changes in position

and orientation after the robot has moved.

For tasks such as path planning, object tracking, and obstacle avoidance, effective

localization is crucial for the safe and efficient operation of autonomous systems. It ensures

that the system can precisely determine its position relative to its surroundings, allowing it

to make informed decisions about its movements, avoid obstacles, and follow planned

trajectories.

One of the most conventional and widely used techniques for localization in autonomous

systems is the Global Positioning System (GPS), a subset of the broader Global Navigation

Satellite System (GNSS). GPS is extensively used in outdoor environments due to its global

coverage and relatively low cost in applications like autonomous vehicles, drones, and

agricultural robots [4]. Despite advancements in GPS technology, which improves accuracy

to centimeter levels, several challenges remain inherent to this method of localization, as it

heavily relies on an external signal. Factors such as satellite signal blockage, multipath

effects, high noise levels, and low bandwidth can degrade its accuracy, reducing the

effectiveness of autonomous navigation, especially in high precision applications [2].

As a result, research focuses mainly on developing alternative localization techniques that

rely on onboard sensors to ensure more robust and reliable performance, particularly in

environments where GPS is not available, such as indoor conditions. Techniques that involve

the use of onboard sources of information allow robots to estimate their position and

orientation by tracking movement relative to their starting point without the dependence on

external signals.

1.1.2 THE LOCALIZATION PROBLEM

Localization refers to the process by which an autonomous mobile robot determines its

position and orientation within a given map. It aims to answer the key question: "Where am

I?", allowing the robot to perform tasks efficiently in dynamic or static environments. When

it comes to the localization problem, the main challenges are [7]:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

5

• Global localization (First-location problem): The robot has a map of the

environment but starts without any prior knowledge of its pose (position and

orientation) and must determine where it is from scratch, considering all possible

locations.

• Pose tracking: The robot knows its initial pose and continuously updates its location

as it moves, correcting errors from sensors and movement.

• Kidnapped robot problem: After being localized, the robot is moved to an

unknown location and must acknowledge this situation and reinitiate the localization

process to find its new pose.

To estimate their pose, robots use sensors and internal data to make the most accurate

estimation possible. The system captures environmental data using sensors such as LiDAR

or cameras, which can be compared to a known map to help the robot determine its position.

However, this data is often subject to noise and can be influenced by specific environmental

conditions. For instance, LiDAR performance may degrade when operating on transparent

or reflective surfaces, while camera-based systems can struggle in textureless environments.

On the other hand, dead reckoning estimates the robot’s position by tracking its movement

from a known starting point using odometry and inertial sensors. While it provides

continuous position updates, dead reckoning suffers from error accumulation over time due

to wheel slippage or sensor noise [8].

When a known map is available, the robot can localize itself by comparing its sensor data to

this map, refining its pose as it moves. However, in unknown environments, the robot must

use Simultaneous Localization and Mapping (SLAM) to both estimate its location and build

a map of its surroundings simultaneously. It involves estimating both the robot's trajectory

and the location of landmarks without any prior knowledge of the environment [10].

All sensors, movements, and the map are subject to uncertainty. Therefore, the robot's pose

is modeled as a probability distribution over its possible locations using the gathered data.

To estimate its location, probabilistic methods are used to determine the likelihood of the

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

6

robot being at different positions on the map. Some of these methods include Markov

localization, Kalman filters, particle filters, and topological localization [7].

Odometry

As mentioned before, one core method for tracking movement in the localization process is

dead reckoning, which estimates the robot's pose based on its movement from a known

starting point. This technique relies on odometry and inertial sensors to provide the system

with information about the robot's change in position and orientation.

Odometry can be defined as the use of the data of local sensors to estimate an agent's change

in pose over time, given a particular starting point [1]. The most common sensors and

techniques applied are the following.

Table 1: Comparative Analysis of Odometry Sensors and Techniques [4]

Odometry

Method

Technology used Advantages Disadvantages

Wheel

Odometry

Uses encoders

attached to the

robot’s wheels to

measure rotations,

converting them into

linear distance based

on wheel radius.

• Simple and cost-

effective

• Easy to implement

• Works well on

smooth, even

surfaces

• Prone to cumulative

errors due to wheel

drift. Incrementing

inaccuracies over

time

• Problematic on

slippery or uneven

surfaces.

• Wheel slippage leads

to deviations from

actual movement

INS

Odometry

Utilizes an Inertial

Navigation System

with accelerometers

and gyroscopes to

continuously

calculate position

and velocity.

• Provides high-

frequency updates

on position and

orientation.

• Crucial for real-

time applications

• Prone to drift

accumulation due to

sensor errors

• Errors compound

over time leading to

inaccuracies

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

7

• Requires high-cost

equipment for

accuracy

• Often used alongside

other systems to

enhance accuracy

Laser

Odometry

Employs laser

sensors (e.g.,

LIDAR) to measure

distance by

transmitting laser

beams and analyzing

reflected light;

includes Time of

Flight and phase-

shift methods.

• High-resolution

performance.

• Effective in

obstacle detection,

mapping, and 3D

motion capture

• High cost

• Requires significant

computational

resources for data

analysis

• Ineffective with

transparent materials

like glass due to

unreliable reflections

Visual

Odometry

Estimates motion by

analyzing changes in

consecutive images

from onboard

cameras, tracking

visual features across

frames.

• Immune to wheel

slippage.

• Provides accurate

trajectory

estimates (relative

errors as low as

0.1% to 2%)

• Applicable to

wheeled, aerial, or

legged systems.

• Highly dependent on

lighting and visual

texture.

• Struggles in low-light

or featureless

environments

• Sensitive to motion

blur and occlusions

• Drift accumulates

over time without

correction

• Requires substantial

computational

resources

Considering the comparative analysis of odometry methods presented in Table 1, Visual

Odometry (VO) has been selected as the focus of this project. VO aligns closely with the

specific requirements of the use case.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

8

1.1.3 VISUAL ODOMETRY

Visual Odometry consists in estimating a vehicle’s change in position and orientation over

time, relying on the acquisition of image frames. The challenge of recovering relative camera

poses and three-dimensional structures from a series of camera images is referred to as

structure from motion (SfM) in the computer vision field. Visual Odometry can be viewed

as a specific instance of SfM [5].

The problem lies in identifying the rigid body transformation matrix between two camera

frames. This matrix encodes both the rotation and translation of the camera, transforming a

point in the previous frame to its new position in the current frame. This can be expressed in

the following way:

𝑻𝒌
𝒌−𝟏 = [𝑹𝒌

𝒌−𝟏 𝒕𝒌
𝒌−𝟏

𝟎 1
] (1)

Where 𝑹𝒌
𝒌−𝟏 is the rotation matrix (3x3) and 𝒕𝒌

𝒌−𝟏 is the translation vector (3x1), representing

the transformation from frame 𝒌 − 𝟏 to frame 𝒌. Therefore, when there is a succession of

frames, relative transformations can be concatenated to obtain the relation between the initial

 𝑿𝟎 and final camera pose 𝑿𝒌 [5].

𝑿𝒌 = 𝑻𝒌
𝟎 𝑿𝟎 (2)

VO methods can be classified in various ways. In this project, the classification will be based

on the way motion is estimated. The classification can be seen in:

Figure 5: Visual Odometry categorization based on motion estimation [1]

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

9

Knowledge-based Methods

Knowledge-based methods, also called classical approaches, use camera geometry to

estimate motion by analyzing how features shift between frames. These methods are reliable

and well-understood, forming the basis of many traditional VO systems. However, their

accuracy depends on good feature detection and can be limited in environments with bad

illumination conditions or weak visual features.

Motion estimation

Motion estimation is a fundamental step in VO systems, as it calculates the camera's

movement between consecutive images obtaining the transformation matrix 𝑻𝒌
𝒌−𝟏 between

two images, 𝐼𝑘−1 and 𝐼𝑘, using two sets of corresponding features 𝑓𝑘−1, and 𝑓𝑘 identified at

time instances 𝑘 − 1 and 𝑘 [5]. The complete trajectory of the camera (and the agent it is

attached to) can be reconstructed by concatenating all the transformation matrices through a

trajectory. Depending on whether the feature correspondences are expressed in two or three

dimensions, there are three main methods for motion estimation, 2D to 2D, 3D to 3D and

3D to 2D [12].

2D to 2D

In this method, both feature sets from consecutive images are represented in 2D coordinates.

It relies on the Essential Matrix, which encapsulates the camera motion parameters,

including rotation and translation, but with an unknown scale factor [5]. This method is

particularly beneficial due to the epipolar constraint, ensuring that corresponding feature

points in one image lie along a line in the other image. This constraint simplifies the

estimation process, and algorithms like the five-point algorithm or eight-point algorithm are

often employed [12].

The 2D-to-2D method is favored for its efficiency in motion estimation, avoiding the need

for triangulation, making it highly suitable for monocular VO setups where 3D points

cannot be directly measured.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

10

3D to 3D

In this method, both feature sets are represented in 3D, often through triangulation using

stereo camera systems. The camera motion is calculated by determining the optimal rigid-

body transformation that best aligns the two sets of 3D points. This optimization process

minimizes the sum of squared distances between corresponding 3D points in the two frames,

involving the use of algorithms such as Iterative Closest Point (ICP) or Singular Value

Decomposition (SVD) [5].

The ICP algorithm aligns 3D point clouds generated from consecutive frames. It iteratively

refines the transformation (rotation and translation) between two sets of 3D points by

minimizing the Euclidean distance between corresponding points in the point clouds. ICP is

especially effective in scenarios where accurate depth information is available. It can be used

to complement other motion estimation methods by refining the initial pose estimate

obtained from algorithms like RANSAC or model-based predictions [8].

On the other hand, the SVD algorithm works computing the rigid transformation (rotation

and translation) between two sets of 3D point, minimizing the distance between

corresponding points in the two datasets. It is often employed for initial pose estimation in

visual odometry systems, offering robust performance when complemented by techniques

like Sparse Bundle Adjustment for refinement [9].

While these methods provide absolute scale directly, they suffer from significant depth

uncertainty in 3D points, especially along the depth axis. This uncertainty can lead to less

accurate motion estimates, which is why it is less frequently used compared to the 3D-to-2D

approach. However, in environments with precise 3D data, this method can still be effective.

3D to 2D

This approach uses 3D points from the previous frame and matches them to their

corresponding 2D projections in the current frame. This method offers greater accuracy by

minimizing reprojection errors, making it advantageous over the 3D-to-3D method, which

minimizes pose errors [6].

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

11

In stereo VO systems, 3D points can be triangulated directly from stereo image pairs, while

in monocular systems, 3D points need to be triangulated across multiple frames. The PnP

algorithm (Perspective-n-Point) is commonly used to calculate the camera pose [14]. This

method provides a balance between computational cost and accuracy and is commonly seen

in real-time VO applications.

Feature-based methods

Feature-based methods in Visual Odometry (VO) leverage prominent points or regions

within each frame to estimate camera movement. These key features, which include corners,

edges, lines, and blobs, are distinguishable based on intensity, color, or texture, making them

more likely to correspond across multiple images [19].

The primary advantage of feature-based VO lies in its robustness against geometric

distortions and illumination inconsistencies. However, by focusing on a limited set of points,

these methods may discard valuable information, making them highly dependent on accurate

correspondence and minimizing outliers. The typical pipeline for feature-based algorithms

includes a feature detection and matching stage, followed by motion estimation and

optimization [1].

The common pipeline for this method is as follows:

Figure 6: Common pipeline for feature-based techniques [1]

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

12

Common algorithms applied in feature-based techniques are: SIFT [33], SURF [14], ORB

[15], BRISK [16] or the Harris Corner Detector [17], among others.

Appearance-based methods

Appearance-based Visual Odometry estimates the camera's pose by analyzing the intensity

of all image pixels and minimizing photometric error between consecutive frames. Unlike

feature-based VO, which focuses on detecting and matching distinct points, appearance-

based methods use the entire geometric information from the camera’s images. This holistic

approach reduces aliasing issues often encountered in scenes with similar patterns, leading

to more accurate and robust pose estimates. It is particularly effective in low-texture or low-

visibility environments, where feature-based methods tend to struggle [20]. They can be

categorized into:

• Regional based methods: The motion is estimated by concatenating camera poses

by performing an alignment process for two consecutive images. This technique has

extended its implementation by measuring the invariant similarities of local areas

and using global constraints.

• Optical flow-based methods: This method analyzes raw visual pixel data using an

optical flow (OF) algorithm to estimate camera motion by examining changes in

pixel intensity between two consecutive frames. As the illumination of a pixel

changes, the camera's motion is determined by computing the 2D displacement

vector of points projected in both frames [18].

Learning-based Methods

Learning-based methods in Visual Odometry leverage data-driven approaches to estimate

camera motion, allowing for a better understanding of the scene without the need for explicit

modeling. These methods require training on sufficiently large and representative datasets,

making them more robust against image noise and eliminating the necessity for a priori

knowledge of camera calibration parameters. As a result, there has been a significant shift

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

13

toward learning-based techniques in VO in recent years [1]. A common pipeline in this

method is shown in Figure 7.

Figure 7: Common pipeline for machine learning techniques [1].

With this configuration, the neural network can either complement one of the traditional

algorithms for better performance, but it can also directly provide the position and rotation

estimation.

These methods provide more complex scene representations without the need for explicit

geometric modeling, making them capable of understanding a wide variety of environments.

They also enable end-to-end learning, as the pipeline for motion estimation can be simplified

into a single model. Additionally, they are camera agnostic, eliminating the necessity to

calibrate the sensors [3].

Despite their advantages, learning-based methods in Visual Odometry (VO) have notable

disadvantages stemming from their reliance on deep learning. They depend heavily on large,

representative datasets for training; thus, insufficient or biased data can lead to poor

generalization and inaccurate estimations [21]. These methods require significant

computational resources, making them less suitable for real-time applications. Furthermore,

they are also prone to overfitting which can reduce performance when encountering new

scenarios. Lastly, learning-based approaches may struggle in edge cases, such as low-texture

environments or highly dynamic scenes, where traditional methods often excel [3].

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

14

1.2 MOTIVATION

The rapid advancements in robotics and autonomous systems have significantly contributed

to improving the quality of life for individuals with mobility challenges. As society continues

to embrace technology, there is a growing need to develop innovative solutions that enhance

accessibility and independence for people with disabilities. The integration of autonomous

navigation technologies, such as Visual Odometry (VO), plays a critical role in achieving

these objectives.

This project aims to address the limitations identified in last year's solution by developing a

new odometry module system using VO. The motivation stems from the recognition that

accurate and reliable localization is essential for autonomous systems. By enhancing

localization and mapping capabilities, the proposed VO module will provide more efficient

navigation for the wheelchair system.

Furthermore, the challenges presented by indoor environments, including variable lighting

conditions and dynamic obstacles, underscore the need for robust motion estimation

techniques. By focusing on improving the odometry system, this project seeks to contribute

to ongoing research in robotics and to develop practical applications that can positively

impact on the lives of users.

1.3 PROJECT OBJECTIVES

The primary goal of this master's thesis is to explore and develop a new odometry system

for the autonomous wheelchair, with the aim of replacing the existing wheel encoder-based

odometry. This project is divided into two main phases: stereo visual odometry integration

and monocular visual odometry exploration.

In the first phase, the objective is to integrate the Stereolabs ZED X Mini stereo odometry

system, which combines visual odometry with IMU data, into the existing robotic platform.

This involves obtaining better results than the existing odometry module by leveraging the

advantages of a stereo system.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

INTRODUCTION

15

Once the stereo system is integrated, the project focuses on monocular visual odometry

solutions. This phase consists of two main objectives. First, knowledge-based techniques are

explored to evaluate traditional algorithms for motion estimation. Second, learning-based

techniques are investigated to further improve the performance of monocular odometry.

All solutions are compared, focusing on the key objective of this thesis, that is to conduct a

comprehensive comparison between the stereo visual odometry system and the developed

monocular visual odometry solutions, with the aim of establishing a cost-effective

monocular model that reduces hardware acquisition costs.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

16

Chapter 2. ARCHITECTURE

2.1 HARDWARE

AGILEX TRACER AGV

The autonomous navigation system is built upon the ROBOT TRACER AGV platform,

developed by AgileX Robotics [22]. This platform features a robust mechanical structure

designed for indoor and light outdoor use and is equipped with embedded wheel encoders

that can serve as a source of odometry data. The encoder system measures the angular

velocity of the wheels, from which the linear and angular velocities of the entire platform

are derived, enabling basic dead-reckoning capabilities for pose estimation.

Figure 8: Agilex Tracer AGV robotic platform [22]

While functional for general motion tracking, this encoder-based odometry system presents

several limitations. The most remarkable is the accumulation of drift over time, which is

particularly problematic in environments with slippery or uneven surfaces. Wheel slippage

and mechanical wear also contribute to inaccuracies in trajectory estimation, degrading the

quality of localization and mapping modules. Furthermore, one of its main limitations lies

in its poor precision when estimating angular velocities.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

17

NVIDIA Jetson AGX Orin

The computational core of the system is the NVIDIA Jetson AGX Orin [23], a high-

performance embedded processing unit optimized for real-time AI and robotics applications.

This module hosts all the critical software components responsible for planning, localization,

and control, leveraging the capabilities of the Nav2 stack within ROS2.

In the context of this project, focused on visual odometry using camera data, the Jetson AGX

Orin plays a central role, as it must process high-resolution image streams, extract visual

features, and estimate motion in real time.

This computer integrates a GPU based on the NVIDIA Ampere architecture, featuring 2048

CUDA cores and 64 Tensor cores, capable of delivering up to 275 TOPS (trillions of

operations per second). These characteristics make it well-suited for deep learning inference

and computer vision pipelines. Moreover, it includes a 12-core ARM Cortex-A78AE CPU

and 64 GB of LPDDR5 RAM, which enable high-throughput parallel processing and low-

latency computation. These features are essential for maintaining accurate and responsive

odometry estimation during autonomous navigation [23].

The platform runs on Ubuntu 22.04 LTS and utilizes the NVIDIA JetPack SDK, providing

an integrated development environment with optimized libraries for AI, vision, and robotics.

StereoLabs ZED X Mini

The StereoLabs ZED X Mini [24] is a compact stereo camera specifically engineered for

robotics and autonomous systems. It features dual global shutter sensors capable of capturing

synchronized stereo image pairs with high resolution and low latency, making it well-suited

for visual odometry tasks in dynamic environments. The camera is designed to operate

reliably under challenging lighting conditions and is enclosed in a robust IP66-rated housing

for improved durability.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

18

For visual odometry applications, the ZED X Mini offers the advantage of real-time depth

perception, derived from stereo disparity. This allows direct metric-scale motion estimation,

an essential requirement for autonomous navigation in indoor and structured environments.

In addition to its stereo imaging capabilities, the ZED X Mini includes an integrated Inertial

Measurement Unit (IMU), which provides accelerometer and gyroscope data for motion-

aware computations and sensor fusion [24].

The camera connects to the embedded system via a GMSL2 interface, which ensures high-

bandwidth and low-latency data transfer. In the configuration with the NVIDIA Jetson AGX

Orin, a dedicated capture card is employed to receive and decode the high-speed video

stream [24].

Figure 9: StereoLabs ZED X Mini [24]

StereoLabs ZED X One

The StereoLabs ZED X One [25] is a monocular camera designed for embedded AI and

computer vision applications. It is equipped with a single global shutter sensor that captures

high-resolution images with minimal motion blur, which is critical for feature tracking in

visual odometry. Its compact form factor and industrial-grade build make it a suitable option

for real-world robotic deployments. The ZED X One supports both monochrome and color

imaging, offering flexibility in algorithm design depending on lighting conditions and

computational constraints.

Figure 10: StereoLabs ZED X One [25]

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

19

2.2 PREVIOUS ARCHITECTURE

2.2.1 ROS2 AND NAV2

The system developed in this project is based on Robot Operating System 2 (ROS2) [61], a

modular and real-time oriented middleware designed to support the development of

distributed robotic systems. ROS2 provides a communication infrastructure based on the

DDS (Data Distribution Service) standard, enabling efficient and scalable data exchange

between components through publish/subscribe topics, services, and actions. It is an ideal

choice for modern robotic applications, particularly in industrial or embedded contexts.

The main components in ROS2 are:

• Nodes: In ROS2, nodes are the fundamental execution units that perform specific

tasks such as sensor data acquisition, actuator control, or running planning

algorithms. Each node operates as an independent process and communicates with

other nodes through message exchange.

• Messages: Nodes transmit data using messages, which are predefined data structures

that encapsulate various types of information—such as numerical values, strings, or

vectors. Messages enable structured and consistent communication across the

system.

• Topics: Topics serve as communication channels where nodes can publish or

subscribe to messages. For instance, a node collecting distance sensor data may

publish it to a topic, allowing other nodes to receive and process that information if

they subscribe to the same topic.

• Launch files: Launch files are scripts that automate the initialization of multiple

nodes and configure their parameters. They are essential for managing complex

robotic systems by facilitating synchronized execution and configuration.

• Workspaces: A ROS2 workspace is a structured development environment that

organizes source code, build artifacts, and installation outputs. It supports efficient

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

20

code management and modular development, typically structured into src, build, and

install directories.

• Packages: Packages are the basic units of software organization in ROS2. Each

package includes nodes, libraries, configuration files, and other resources needed to

implement a specific functionality. This modular design supports code reuse and

collaborative development in ROS2.

Within this ecosystem, the Nav2 (Navigation 2) stack is the ROS2-native navigation

framework. It offers a comprehensive suite of tools for enabling autonomous navigation,

including global and local path planning, localization, obstacle avoidance, costmap

generation, and motion control. NAV2 is designed to operate in dynamic and real-world

environments, leveraging sensor inputs and map data to continuously compute safe and

efficient paths for mobile robots [2].

For proper functionality, NAV2 requires three essential inputs:

• Odometry data, used to estimate the robot’s current position and velocity in real

time.

• Laser scan data, essential for obstacle detection and costmap generation.

• Static map, used for global localization and path planning when operating in mapped

environments. This input is required when using AMCL but may be optional when

using real-time SLAM or pure odometry-based navigation.

The proposed module will directly publish to the /odom topic, allowing operation within the

NAV2 navigation pipeline. As such, the design and implementation of this module have

been tightly coupled with the structural and operational assumptions of the ROS2 and NAV2

systems.

Another essential element in the ROS 2 architecture is the use of TF (Transform). The TF

system plays a fundamental role in managing the spatial relationships between different

coordinate frames of a robot. Similar to many robotics’ applications, ROS 2 relies on a

dynamic transformation tree that keeps track of how these frames relate to one another over

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

21

time. This transformation tree is time-buffered, meaning it stores the history of transforms,

enabling the system to compute the position of points, vectors, and other geometric entities

in any frame of reference at any specific timestamp. By maintaining this consistent spatial

context, TF allows different components of the robot such as perception, planning, and

control systems to interpret sensor data, issue movement commands, and localize the robot

within its environment in a synchronized and coherent way [26][27].

2.2.2 EXISTING WORKSPACE ARCHITECTURE

The robotic platform used in this project was developed within a ROS2 workspace named

ros2_tracer_ws, integrating multiple subsystems essential for autonomous navigation [63].

This workspace includes the following packages:

• lidar_bringup: Contains launch files (lidar_display.launch.xml,

lidar.launch.xml) to start and verify the LiDAR system, either for standalone

testing or full system deployment.

• livox_ros_driver2: The official device driver provided by the LiDAR manufacturer,

responsible for publishing raw point cloud data in PointCloud2 format.

• p2l_remapper: Introduced to adapt the Quality of Service (QoS) settings of the

LiDAR output. This package ensures compatibility between the output of

pointcloud_to_laserscan and the NAV2 stack’s expectations,

• tracer_bringup: Central package for system orchestration, with launch files like

tracer_real.launch.xml for navigation mode and

tracer_real_scan.launch.xml for mapping or scan acquisition mode.

• tracer_description: Provides the robot’s structural model, including .urdf and .stl

files, defining frames, sensors, and physical dimensions used by TF and visualization

tools.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

22

• tracer_odometry: Generates odometry based on wheel encoder feedback. This

module publishes estimated robot pose and velocity on the /odom topic.

• tracer_tcp_ros_bridge: Establishes TCP/IP communication with a Raspberry Pi,

enabling bidirectional data exchange for robot feedback and waypoint tracking.

• waypoint_finder and waypoint_commander: These packages manage route

planning and control. The former identifies target and current poses, while the latter

sends ordered waypoint sequences to be executed by the robot.

The general execution of the system can be understood and is depicted in:

Figure 11: ROS2 system graph [63]

2.2.3 ODOMETRY

The initial odometry system relied exclusively on the wheel encoders embedded in the

AgileX TRACER AGV platform. As aforementioned, these encoders provide measurements

of linear and angular velocities.

The architecture is based on the ROS2 node /odometry_node, contained in the

tracer_odometry package. This node subscribes to the velocity measurements transmitted

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

23

via CAN bus and processes the incoming measurements to publish pose estimates (position

and orientation) and velocity (twist) data published to the /odom topic.

The published /odom topic has the following structure:

odom_msg = Odometry()

odom_msg.header.stamp = self.get_clock().now().to_msg()

odom_msg = Odometry()

odom_msg.header.frame_id = 'odom'

odom_msg.child_frame_id = 'base_footprint'

odom_msg.pose.pose.position.x = self.x_

odom_msg.pose.pose.position.y = self.y_

odom_msg.pose.pose.position.z = 0.0

w, x, y, z = euler2quat(0, 0, self.theta_)

odom_msg.pose.pose.orientation.x = x

odom_msg.pose.pose.orientation.y = y

odom_msg.pose.pose.orientation.z = z

odom_msg.pose.pose.orientation.w = w

odom_msg.twist.twist.linear.x = self.vel_x

odom_msg.twist.twist.linear.y = self.vel_y

odom_msg.twist.twist.angular.z = self.vel_theta

self.publisher_.publish(odom_msg)

Code 1: /odom publisher

As it was seen before, the Nav2 stack subscribes to /odom to perform localization, path

planning, and motion control.

Extracting from the entire system only the odometry pipeline, the structure is depicted as in

Figure 12.

Figure 12: Odometry module in previous architecture

As it was remarked before, the TF system is also crucial is this type of system. In this

autonomous navigation project, the TF tree has the following hierarchy:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

24

• map → odom: This transformation is published by the localization module (Nav2).

It accounts for global corrections to the robot's estimated position, allowing the

system to correct drift in odometry and maintain long-term consistency relative to a

known map [26].

• odom → base_footprint: Published by the odometry module, this dynamic

transformation represents the incremental pose changes of the robot calculated from

sensor data, providing continuous, real-time updates of the robot's pose relative to its

starting position.

In this case, this transformation is published by the /odometry_node, and has the

following structure:

transform_msg = TransformStamped()

transform_msg.header.stamp = self.get_clock().now().to_msg()

transform_msg.header.frame_id = 'odom'

transform_msg.child_frame_id = 'base_footprint'

transform_msg.transform.translation.x = self.x_

transform_msg.transform.translation.y = self.y_

transform_msg.transform.translation.z = 0.0

transform_msg.transform.rotation.x = x

transform_msg.transform.rotation.y = y

transform_msg.transform.rotation.z = z

transform_msg.transform.rotation.w = w

self.tf_broadcaster_.sendTransform(transform_msg)

Code 2: Transform publisherin /odometry_node

• base_footprint → base_link: This is the first of the static transformations defined

in the robot’s URDF file (tracer_v1.xacro). Static transforms define fixed spatial

relationships between the robot’s structural components and its reference frames,

ensuring consistent alignment across all sensors and processing modules [25]. In this

case, base_footprint serves as a 2D projection of the robot’s physical center.

Therefore, it is located at its base, at ground level with no vertical (Z-axis)

component. It simplifies the representation of the robot’s pose for 2D navigation

systems, such as those used in Nav2, which operate under the assumption that the

robot moves exclusively on a planar surface.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

25

• base_link → [fixed_links]: This set of static transformations connects the robot’s

base to fixed components such as lidar_link or the different wheel_links. Defined in

the URDF file (tracer_v1.xacro), these transforms specify the exact position of

sensors and mechanical parts relative to the robot’s body. They ensure consistent

spatial alignment for sensor data interpretation and control.

Figure 13: Previous architecture TF tree generated with ros2 run tf2_tools view_frames

System shortcomings

While this initial setup provided basic autonomous navigation capability, it exhibited

shortcomings that significantly limited the system’s performance for autonomous

navigation.

One of the problematic issues was the accumulated drift, inherent to wheel encoder-based

odometry, caused by continuous integration of small measurement errors. This drift became

particularly severe when operating on slippery or uneven surfaces, which are common in

real-world operational environments. This led to a system performance very dependent on

the conditions where the autonomous wheelchair would be deployed.

Additionally, the system displayed a significant lack of accuracy in estimating angular

velocities, therefore exacerbating localization errors over time when calculating the

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

26

orientation. Consequently, cumulative inaccuracies severely compromised trajectory

estimation.

These limitations highlighted the urgent need to design and implement a more precise and

robust odometry system.

2.3 NEW ODOMETRY ARCHITECTURE

The new architecture was developed taking into consideration all available data sources

within the scope of the project, with the explicit goal of enhancing robustness, accuracy, and

adaptability across diverse operational conditions. These sources, most of them already

mentioned in the hardware section, are:

• Wheel encoders

• Stereo camera

• Monocular camera

• Inertial data, obtained from embedded IMUs in the cameras.

The detailed methodology and algorithms applied to obtain, process and produce these data

streams into consistent odometry information will be discussed in subsequent chapters.

As discussed in the state-of-the-art section, accurate localization is crucial for autonomous

mobile robots, which must continually estimate their position and orientation (pose) within

their operating environment. Using data from a single sensor can lead to cumulative errors

and drift over time, particularly when dealing with noisy measurements or incomplete

information. For instance, relying solely on wheel encoders typically introduces inaccuracies

due to wheel slippage or uneven surfaces, while visual sensors alone might suffer from

lighting changes or featureless environments. Therefore, these processes typically require

integrating data from multiple sensors, each subject to noise, bias, or incompleteness.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

27

Extended Kalman Filter

The Extended Kalman Filter (EKF) is a widely adopted method in robotics to perform sensor

fusion, providing robust state estimation by probabilistically combining information from

diverse sensor sources, even under uncertain and noisy conditions.

The EKF is a recursive Bayesian estimator designed to handle nonlinear state estimation

problems. It extends the classical linear Kalman Filter by linearizing the nonlinear system

dynamics and sensor models at each estimation step, effectively approximating the system

as locally linear around the current state estimate [28] [29]. The state estimation consists of

the following two phases:

1. Prediction

This step uses a motion model to project the previous state estimate forward in time,

incorporating expected robot motion. The EKF computes a predicted mean state and

associated covariance, based on previous state information and assumed motion

noise. This covariance quantifies the filter's confidence in its prediction, allowing it

to gauge how much weight to give to subsequent sensor measurements.

2. Correction

When a new sensor measurement becomes available, the filter performs an update

step. The EKF compares the difference between the actual sensor measurement and

the measurement predicted by the current state estimate. A weighting term, known

as the Kalman gain, which is derived from the relative uncertainties between

prediction and observation, is used to adjust the state estimate accordingly. Sensors

with lower measurement uncertainty (noise) have a more significant impact on the

updated state.

This iterative prediction-correction cycle enables continuous refinement of the robot's pose

estimate, integrating noisy and partial sensor data into a single coherent and statistically

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

28

optimal estimate. The linearization approach, however, requires the system dynamics to be

approximately linear within short intervals between updates, which is typically valid in

mobile robotics [29].

To implement this functionality within the ROS2 framework, the project relies on the

robot_localization package. This package provides a robust and flexible EKF

implementation through its main node, ekf_localization_node, which supports full 3D pose

estimation and multi-sensor fusion. It allows selective integration of specific state variables

per sensor input, making it highly adaptable to a wide range of robotic platforms.

With all the above in place, the resulting architecture replaces the previous encoder-only

approach. This solution offers a more modular design, allowing each sensor input to be

selectively integrated as needed. It integrates the different odometry inputs as ROS2 topics

and routes them to the EKF node, which fuses the data and publishes the refined state

estimate on the /odom topic. The EKF configuration is described in detail in subsequent

chapters. This new structure is illustrated in the diagram in Figure 14.

Figure 14: Odometry module in new architecture

It has to be noted that the node /zed_odom_transformer is designed to work only with one

input, as both cameras will never be working at the same time.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ARCHITECTURE

29

As discussed in the previous section, the system maintains a TF tree to represent the spatial

relationships between multiple coordinate frames over time. This structure remains largely

similar in the new architecture; however, certain key differences have been introduced to

accommodate the updated odometry modules:

• map → odom: This transformation remains unchanged and continues to be

published by the localization module.

• odom → base_footprint: This transformation reflects one of the most significant

changes. In the previous architecture, it was published by the sole odometry source—

namely, the encoder-based odometry. In the updated system, this transformation is

published by the Extended Kalman Filter (EKF) node (/ekf_filter_node), which also

generates the odometry message. This configuration is further detailed in the EKF

parameter section.

• base_footprint → base_link: This static transformation remains unchanged and is

still defined within the URDF file, maintaining the same fixed spatial relationship.

• base_link → [fixed_links]: These static transforms also remain the same, with the

addition of a new link corresponding to the camera. This is defined as

zed_camera_link and is published as part of the ZED camera's TF tree.

Figure 15: New architecture TF tree

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

STEREO VISUAL ODOMETRY

30

Chapter 3. STEREO VISUAL ODOMETRY

3.1 STEREOLABS SOLUTIONS

The hardware and software used in this module are based on solutions provided by

StereoLabs. This company is specialized in stereo vision hardware and software solutions

that tries to provide robots with “human vision”, enabling advanced perception through

spatial analytics and depth sensing. Its ecosystem, centered around the ZED series of

cameras, integrates high-performance stereo and monocular cameras as hardware, with a

Software Development Kit (SDK) solution, creating a unified perception and processing

framework for autonomous systems [30].

StereoLabs pioneered depth-sensing camera technology, originally stemming from a

collaboration with the entertainment industry to stabilize 3D footage. Since then, the

company has evolved to serve different industrial sectors such as agriculture, construction,

or logistics, enabling robots to perform tasks like crop assessment, material handling, and

space monitoring in dynamic environments. The StereoLabs solution tries to address

limitations of traditional sensors (LiDAR or radar), offering an accurate and scalable

alternative for detailed spatial perception [30].

As mentioned in previous chapters, the hardware chosen for this solution is the ZED X Mini

stereo camera.

3.2 ZED SDK AND SYSTEM INTEGRATION

For robotics projects using ROS2, the ZED SDK is accessed with the zed-ros2-wrapper

package. This ROS2 interface provides comprehensive and high-level integration with the

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

STEREO VISUAL ODOMETRY

31

ZED camera system, allowing for both hardware configuration and real-time acquisition and

processing of visual and spatial data.

Among the main types of data published by the wrapper are:

• Rectified and unrectified left and right images

• Depth data

• 3D point cloud

• IMU data

• Detected objects

• Visual Inertial Odometry (VIO).

VIO integration

The zed-ros2-wrapper package includes a modular ROS2 node that publishes real-time pose

estimation through the topic /zed/zed_node/odom, representing the camera’s position and

orientation in space as computed from stereo visual data combined with inertial

measurements from the onboard IMU. The result offers a 6DOF robust pose tracking

solution.

This odometry output follows the standard nav_msgs/Odometry message format, which

includes both pose and twist information, along with their respective covariance matrices,

which are internally provided by the system.

However, by default, the system is configured to compute a full VSLAM solution, and

therefore, it publishes the whole transformation tree [32], as illustrated in Figure 16.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

STEREO VISUAL ODOMETRY

32

Figure 16: ZED full VSLAM TF tree

The first step to implement the ZED X Mini VIO odometry solution is to disable the internal

VSLAM computation, thereby stopping the publication of the map → odom transform. If

this is not deactivated, it may cause a conflict with the transform published by the Nav2

stack. This is controlled via the publish_map_tf parameter.

Secondly, the publication of the odom → zed_camera_link transform by the ZED camera

must also be disabled. As described in the New Odometry Architecture section, this

transform will instead be published by the EKF fusion node to ensure consistency. To

prevent conflicting publishers, the publish_tf parameter should be set to false.

Additionally, the base frame is changed to base_footprint to maintain consistency with the

rest of the system. This transformation will later be linked to its real physical position

through static transforms. This configuration is set via the odometry_frame parameter.

Several other adjustments were made to improve system efficiency and alignment with the

robot's operating conditions:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

STEREO VISUAL ODOMETRY

33

• two_d_mode is enabled to constrain the system to 2D pose tracking, as the robot

operates on a planar surface with no motion along the Z-axis.

• pos_tracking_enabled is activated to ensure that position tracking is properly

initialized and maintained.

All these parameters can be configured in the zed-ros2-wrapper package, in the following

relative path: zed_wrapper/config/common_stereo.yaml

Publishing transforms

During the integration of the stereo odometry system using the ZED X Mini camera, an

inconsistency was encountered in the TF tree. Despite having defined a static transformation

between the robot’s base frame (base_link) and the camera frame (zed_camera_link) in the

URDF model, the system failed to interpret and apply this transform correctly when using

the visual-inertial odometry published by the ZED SDK on the topic /zed/zed_node/odom.

This caused misalignment in the estimated poses, particularly in the rotational components.

Since the camera is physically offset from the robot's base, any rotation of the robot

introduces additional apparent motion at the camera’s position. If this offset is not properly

accounted for, the published odometry reflects a trajectory that deviates from the robot's

actual motion. In contrast, translational movement along a straight line is less affected by

the offset, which is why position estimates during linear motion remained more consistent.,

as can be seen in Figure 17.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

STEREO VISUAL ODOMETRY

34

Figure 17: TF issue with zed_camera_link

This issue led to incorrect pose interpretation by downstream components such as the EKF

and the navigation stack, which expect odometry information to be expressed relative to the

robot’s physical base (base_link). As a solution, a dedicated ROS2 node named

zed_odom_transformer was developed. This module adjusts the original odometry data by

applying the inverse of the known static transformation between the camera and the base

frame, effectively re-referencing all poses to base_link.

The node subscribes to the raw ZED odometry topic (/zed/zed_node/odom) and publishes

the corrected output on a new topic (/odom_zed_corrected). The transformation applied is

defined by:

• Translation: A static vector from base_link to zed_camera_link, defined as [0.22,

0.25, 0.7] in meters.

• Rotation: A fixed identity rotation (no roll, pitch, or yaw) was assumed, based on the

known mechanical alignment of the camera.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

35

Chapter 4. MONOCULAR VISUAL ODOMETRY.

CLASSIC TECHNIQUES

As discussed in the state-of-the-art section, Visual Odometry (VO) can broadly be

categorized into two groups: knowledge-based methods and learning-based methods.

Knowledge-based (also called classic or geometric-based) approaches leverage traditional

geometric principles and explicit camera models to estimate motion from image sequences.

These approaches rely on accurately detecting and tracking visual features across

consecutive frames. In contrast, learning-based methods utilize data-driven approaches from

large datasets to “teach” models to estimate camera motion.

This chapter focuses on knowledge-based methods, exploring their fundamental components

and algorithms. The exploration and implementation of learning-based approaches are

reserved for subsequent chapters.

4.1 THEORETICAL BACKGROUND

A standard Visual Odometry system, as illustrated in Figure 18, consists of several sequential

processing steps:

Figure 18: Main components of a VO system [5]

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

36

In Visual Odometry, establishing point correspondences between successive images can be

approached in two principal ways: feature tracking and feature matching.

Feature tracking involves detecting features in one image and subsequently locating their

positions in the next frames using local search techniques such as optical flow, as it was seen

in the state of the art, or normalized cross-correlation. This approach is particularly effective

when the motion between frames is small, as it preserves temporal continuity and is

computationally efficient [5].

On the other hand, feature matching detects features independently in each frame and

associates them based on similar metrics between their descriptors. This method is more

robust to larger inter-frame motions and changes in viewpoint, as it does not rely on

proximity in pixel space but rather on descriptor distinctiveness. While tracking offers better

temporal consistency, matching is often more resilient in dynamic or visually complex

scenes [5].

Feature detection

Local features, which are also called keypoints or interest points, are distinct patterns in an

image that stand out from their neighborhood in intensity, color, or texture. The main types

are corners and blobs.

A corner is typically defined as the intersection of two or more edges, appearing as a sharp

change in intensity along at least two directions. Intuitively, one can recognize a corner by

observing that moving a small window in any direction over a corner yields a significant

change in intensity (unlike a flat region, which shows no change, or an edge, which shows

change in only one direction). Because they represent distinctive geometric junctions,

corners tend to be highly repeatable features, meaning that the same physical corner can be

reliably detected in multiple images under different conditions. In contrast, a blob is an

image region that is internally uniform or distinct from its surrounding neighborhood in

intensity, color, or texture. Therefore, blobs are neither edges nor corners. Instead of a sharp

junction, a blob is a cohesive region (for example, a spot or textured patch) that stands out

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

37

against its background. Unlike a corner, which can be pinpointed by a single pixel coordinate

(the exact intersection points of edges), a blob is defined by an area and thus can only be

localized by its boundary. As a result, the spatial location of a blob is less precise than that

of a corner, but its scale and shape are much better defined by the size of its region.

Furthermore, while a corner’s appearance remains similar across slightly different scales

(making its inherent scale ambiguous), a blob’s extent immediately indicates its

characteristic scale [34].

When choosing a good feature detector in computer vision, it should exhibit several key

properties to reliably support tasks. The most relevant ones are [34]:

• Repeatability: Given two images of the same scene under different viewpoints,

scales (zoom levels), or illumination conditions, the detector should find a high

percentage of the same physical features in both images. High repeatability requires

the detector to be invariant to common geometric and photometric transformations,

so that true scene points are still detected despite rotations, scale changes, or lighting

differences.

• Distinctiveness: The features must be salient and unique in appearance so that they

can be correctly matched between images. The image patch around a detected point

should carry rich, distinguishing information. Consequently, a simple repetitive

pattern is not distinctive and would lead to ambiguous matches.

• Accurate feature localization: It must be ensured that each feature’s coordinates

and scale correspond closely to the true location and size of the pattern of interest.

• Quantity of features: The detector should also produce an appropriate quantity of

features for the task at hand. For example, tasks like object recognition, image

retrieval, or 3D mapping benefit from a large number of features to increase

robustness and coverage of the scene, whereas if features represent high-level

semantic landmarks, a smaller number might suffice.

• Invariance: The most useful features are those resilient to changes in viewpoint,

scale, and illumination, remaining stable under such transformations. Invariance

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

38

greatly improves the chance that the same real-world point will be detected in

different images.

• Computational efficiency: A feature detector should ideally operate fast enough to

handle large image datasets or real-time video streams. Efficiency considerations are

crucial in practice. Increasing a detector’s invariance usually results in more complex

computations, so a balance must be reached to keep detection and matching time

reasonable for the given application.

• Robust to noise: It should tolerate reasonable levels of image noise, compression

artifacts, blur, and other imperfections without losing the true features.

No single detector perfectly optimizes all these criteria, and there are often trade-offs. For

example, as aforementioned, making a feature highly distinctive (or invariant to many

transformations) can increase computational cost.

Various feature detectors and descriptors have been developed through time to balance the

properties previously mentioned. Each algorithm adopts different strategies for identifying

and encoding salient image regions, and their performance varies depending on the specific

demands of visual odometry. Some of the most common detectors, well known in the

computer vision field are: SIFT, SURF, FAST, BRISK and ORB.

SIFT

SIFT (Scale-Invariant Feature Transform) is a feature detection and description algorithm

developed by David Lowe in 1999 [39]. Its main advantage lies in its invariance to scale and

rotation, which makes it ideal for tasks such as object recognition and image matching.

It detects scale-space extrema using a Difference-of-Gaussian (DoG) filter to locate blob-

like keypoints at multiple scales. Each keypoint is assigned a dominant orientation based on

local gradient directions, providing rotation invariance.

For description, SIFT uses a 128-dimensional vector of real-valued gradient orientation

histograms around the keypoint, with 8 orientations in 4×4 spatial regions, effectively

encoding the local image structure [36].

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

39

One of the main advantages of SIFT is that its features are highly distinctive and remarkably

robust. According to [36], SIFT together with SURF is widely regarded as one of the most

accurate image feature descriptors. Its robustness extends to rotation and scale changes by

design, and the gradient-based descriptor offers some tolerance to illumination variations

through normalization. SIFT keypoints tend to exhibit high repeatability and consistently

match across varying viewpoints.

However, this robustness comes at a high computational cost. One of SIFT's major

drawbacks is its speed: extracting DoG keypoints and computing 128-dimensional

descriptors is slow and memory-intensive. Consequently, SIFT is often impractical for real-

time applications, particularly on resource-constrained hardware.

SURF

SURF is a feature detector and descriptor inspired by SIFT but designed with a focus on

speed improvements. It uses a blob detector based on the Hessian matrix, approximating the

determinant of the Hessian using Haar wavelet filters and integral images for efficient

convolution [40]. This approach enables multi-scale keypoint detection that is significantly

faster than SIFT’s Difference-of-Gaussian (DoG) method.

Like SIFT, SURF assigns an orientation to each keypoint by summing Haar wavelet

responses within a circular region, achieving rotation invariance. The SURF descriptor is a

64-dimensional real-valued vector, aggregating Haar wavelet intensities and their

magnitudes across 4×4 subregions aligned with the keypoint's orientation. This compact

representation captures the distribution of intensity variations around the keypoint [40].

SURF provides robustness comparable to SIFT in terms of repeatability and accuracy, while

offering substantial improvements in computational efficiency. It has also demonstrated

great performance in monocular visual odometry tasks, outperforming SIFT, ORB, and A-

KAZE by achieving the lowest drift error in monocular VO benchmarks, as reported by [36].

Despite its advantages, SURF still presents some limitations. Although it is lighter than

SIFT, it still requires a significant amount of computational resources, especially when

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

40

applied in real-time contexts. Furthermore, as a patented algorithm, its use is restricted in

certain applications, limiting its accessibility to use in other purposes different that

educational or research [60].

ORB

ORB (Oriented FAST and Rotated BRIEF) is a high-performance feature detection and

description algorithm specifically designed to balance accuracy and computational

efficiency. It was developed by OpenCV Labs, and as an open-source algorithm, ORB is

freely available and suitable for commercial and academic applications [42].

It integrates two core components: a keypoint detector based on the FAST algorithm and a

binary descriptor derived from BRIEF, both modified to achieve rotation and partial scale

invariance.

Keypoints are detected using the FAST-9 corner detector across a multi-scale image

pyramid, enabling the extraction of features at different resolutions. To ensure quality and

suppress edge responses, keypoints are ranked using the Harris corner measure, and only the

top N are retained per pyramid level. Orientation invariance is introduced by computing the

intensity centroid within a circular patch around each keypoint, defining the dominant

direction as the angle between the keypoint center and its brightness-weighted centroid. This

orientation is then used to steer the descriptor [41].

For description, ORB employs a learned and decorrelated version of BRIEF, known as

rBRIEF, which consists of a compact 256-bit string constructed from a set of binary intensity

comparisons within the image patch. These tests are selected to maximize variance and

minimize correlation, improving discriminative power and matching efficiency. Overall,

ORB achieves a favorable trade-off between robustness, speed, and invariance, making it

particularly well-suited for real-time VO on resource-constrained platforms [41].

The primary advantage of ORB is its computational efficiency, ranking best among common

VO feature extractors according to [36], with the lowest processing time compared to SIFT,

SURF, and AKAZE. ORB’s use of FAST makes detection extremely fast, and the binary

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

41

descriptors allow very rapid matching, due to their binary nature. Furthermore, despite its

speed, ORB maintains robustness through built-in invariances: it is rotation-invariant and

partially scale-invariant. ORB has also been shown to perform well under different

conditions, according to [43], noted to be especially effective on images with affine

distortions or changes in brightness, indicating strong robustness to lighting changes.

As efficiency is one of its greatest advantages, in the trade-off between computational needs

and performance, ORB’s descriptors, being binary and shorter, are less discriminative than

SIFT/SURF’s richer descriptors. Thus, ORB can have a slightly lower matching accuracy

and may produce more false matches, especially under extreme viewpoint or appearance

changes.

For a real-time monocular visual odometry system, ORB emerges as the most well-rounded

choice when comparing these feature algorithms. SIFT and SURF offer excellent accuracy

and robustness. SIFT in particular is often a gold standard for feature distinctiveness, but

their high computational cost makes them impractical for real-time use like this project

concerns. SURF, while faster than SIFT, may still fall slightly short in terms of

computational efficiency when looking for a real time solution. Furthermore, another of its

biggest drawbacks is the need of the license for its use.

The final choice for this project is ORB because it provides the best balance of accuracy and

efficiency for monocular VO. It is fast enough for real-time operations and yet robust enough

in feature tracking to maintain accuracy over a sequence, ORB’s feature tracking accuracy

being not far behind that of SURF/SIFT for VO purposes. Moreover, ORB’s free and widely

available implementation in OpenCV and its proven success in systems like ORB-SLAM

make it a reliable choice [44]. This comparison can be seen in Table 2.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

42

Table 2: Comparison between main features detectors

Algorithm Descriptor

type

Computational

cost

Accuracy License Main

advantages

Main

drawbacks

SIFT
128-dim

float vector

High Very high Patent

expired

in 2020

Highly

distinctive

and robust;

excellent

repeatability

Slow; memory-

intensive; not

suitable for

real-time or

embedded use

SUFT 64-dim

float vector

Moderate High Patented Faster than

SIFT; very

robust for

VO; low

drift

Still

computationally

heavy; license-

restricted

ORB 256-bit

binary

Moderate Moderate-

high

Open

source

Very fast;

real-time

capable;

robust under

lighting

changes;

free

Less

distinctive;

slightly lower

matching

accuracy;

sensitive to

extreme

viewpoint

changes

Feature matching

ORB (Oriented FAST and Rotated BRIEF) produces binary descriptors (bit strings) instead

of floating-point feature vectors. Therefore, feature matching techniques must utilize

appropriate metrics suited for binary descriptors. In practice, the Hamming distance, which

counts the number of differing bits between two descriptors, is the suitable measure for

comparing ORB descriptors, unlike the Euclidean distance commonly used for continuous

descriptors such as SIFT or SURF. The two main features of matching methods used with

binary descriptors are:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

43

Brute-force matcher

In this method, each descriptor from the source image is exhaustively compared against all

descriptors from the target image by computing the Hamming distance for each pair and

selecting the match with the smallest distance. This is the most straightforward approach: a

brute-force matcher finds the nearest neighbor by comparing each descriptor individually

with all those in the opposing set [45].

Brute-force matching with Hamming distance is simple to implement and guarantees the

identification of the exact nearest match for each descriptor, as it exhaustively searches the

entire descriptor space of the other image. With short binary descriptors (e.g., 256 bits = 32

bytes in ORB), Hamming comparisons are fast, as they can be executed through efficient

bit-wise operations.

However, the exhaustive nature of brute-force matching comparing everything with

everything results in a computational complexity of N×M, where N and M are the number

of descriptors in each image. This approach can become slow when handling large feature

sets, as the computation time increases linearly with the total number of comparisons,

leading to a high latency [46]. Therefore, another drawback is that it does not leverage

redundancy or prior information: each matching operation is a full search from scratch. For

example, in a real-time video application, comparing 500 points from the current frame

against 500 from the previous frame would involve 500×500 = 250,000 comparisons per

cycle. Although feasible for small feature sets, this becomes inefficient at scale as the

computational cost scales rapidly with larger sets or real-time applications

FLANN based matcher

For large numbers of descriptors, it is common to use approximate nearest neighbor search

methods instead of exhaustively comparing every pair. FLANN (Fast Library for

Approximate Nearest Neighbors) is a library and algorithm that performs fast approximate

nearest neighbor searches using efficient data structures. In the case of float-based

descriptors (such as SIFT), FLANN typically uses KD-Tree indices. However, for binary

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

44

descriptors like ORB, FLANN provides an index based on Locality-Sensitive Hashing

(LSH) to operate in Hamming space [47].

LSH is a widely used technique for solving the Approximate Nearest Neighbor (ANN)

problem in high-dimensional spaces. It maps data into multiple hash tables using random,

data-independent functions, so that similar points are likely to fall into the same “bucket”

with high probability. LSH offers sub-linear query times and theoretical accuracy

guarantees, which makes it highly suitable for dynamic or large-scale data applications with

evolving distributions [48]. In the case of ORB descriptors, FLANN+LSH applies this

approach by restricting comparisons to candidate buckets, to avoid exhaustive matching and

yielding approximate but significantly more efficient results at scale.

Therefore, the main advantage of FLANN+LSH lies in its speed when working with large

datasets. By using hashing structures, the number of effective comparisons is significantly

reduced compared to brute-force methods, especially when matching great amounts of

descriptors. This makes feature matching feasible within reasonable time frames.

However, this increased efficiency in large-scale also leads to approximation, meaning there

is a small probability of failing to find the optimal match if it falls into a different hash

bucket. It is still possible to obtain suboptimal matches or lose weak correspondence due to

the probabilistic nature of hashing. If the number of descriptors is not very high, the

advantage of using FLANN may become marginal.

Motion estimation

As discussed in the state of the art, motion estimation is a crucial component of visual

odometry, responsible for calculating the camera’s pose change between consecutive frames

[5]. Three main motion estimation paradigms were identified based on the dimensionality of

feature correspondences: 2D-to-2D, 3D-to-3D, and 3D-to-2D methods.

For the system developed in this project, which uses a monocular camera, the 2D-to-2D

motion estimation approach is the one chosen. This choice is motivated by the nature of a

monocular setup: since a single camera cannot directly measure depth from one frame,

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

45

methods that rely on immediate 3D point correspondences (the 3D-to-3D or 3D-to-2D

approaches) are not possible without additional processing. Even though the 3D-to-2D

method is possible using point triangulation across multiple frames and is widely used in

practice according to [5], it requires maintaining a persistent 3D map of landmarks and

performing repeated triangulation and perspective-n-point (PnP) optimization steps. This

significantly increases computational requirements and challenges real-time performance.

In contrast, the 2D-to-2D approach offers a lightweight and robust alternative by relying on

image-space correspondences and computing the essential matrix, which encodes the

relative pose up to scale. This method avoids the complexity of 3D reconstruction while still

providing reliable motion estimates between consecutive frames, making it highly suitable

for monocular visual odometry in real-time robotics applications.

By matching 2D features between consecutive frames, the camera’s relative pose can be

estimated using only image-space information through the essential matrix. A major benefit

of this method is that it avoids the computational burden of continuously triangulating

features or performing heavy 3D point-cloud alignments, which significantly reduces

complexity and helps meet real-time performance requirements.

To compute the essential matrix, one of the most common methods used is RANSAC

(Random Sample Consensus) [64] to handle noisy feature correspondences. RANSAC

iteratively estimates a candidate transformation from randomly sampled minimal subsets of

feature matches and then selects the model that has the highest consensus among all

correspondences. This consensus approach effectively rejects outliers in the feature matches,

ensuring that the estimated transformation is not skewed by erroneous correspondences [55].

For monocular visual odometry with a calibrated camera, Nistér’s five-point algorithm

provides an efficient minimal solver for the essential matrix using only five point

correspondences [12]. This five-point algorithm is typically embedded in a RANSAC

framework to generate pose hypotheses from minimal samples, allowing robust estimation

of the camera’s motion from two views. By using the smallest necessary number of

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

46

correspondences to determine the essential matrix, one can significantly reduce the number

of RANSAC iterations required compared to older 6-, 7-, or 8-point methods.

To improve match quality before running RANSAC, it is also common to apply Lowe’s ratio

test as a filtering strategy to reduce false correspondences. Lowe’s test compares the

descriptor distance of the best match to that of the second-best match for each feature and

rejects the match if this distance ratio is too high. Lowe demonstrated that discarding

matches with a distance ratio greater than 0.8 eliminates about 90% of false matches while

removing less than 5% of correct matches [33].

4.2 DEVELOPMENT AND IMPLEMENTATION

The monocular visual odometry system developed uses the ORB algorithm, implemented as

a ROS2 node named visual_odometry_node using Python and OpenCV. The complete

pipeline consists of several key stages: image acquisition and conversion, keypoint detection

and description, feature matching, motion estimation, and pose integration and publication.

Image Acquisition and Preprocessing

The node subscribes to /zed/zed_node/left_gray/image_rect_gray and its corresponding

/camera_info topic. The use of rectified grayscale images ensures that epipolar geometry

assumptions are valid, while reducing computational load compared to RGB data. The

intrinsic matrix, extracted once from the CameraInfo message, is cached and reused to avoid

repeated computation and maintain consistency.

Feature Detection and Description

Keypoints are detected using OpenCV's ORB detector with a cap of nfeatures=1000. This

value was selected as standard, to provide enough features for stable tracking while

maintaining fast computation.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

47

Feature Matching and Filtering

Feature correspondences between consecutive frames are computed using a FLANN-based

matcher with LSH indexing. This method was preferred over brute-force matching due to

the real-time constraints of the system and the highly dynamic nature of the operating

environments. Although brute-force matching ensures exact nearest neighbors, its

computational cost becomes prohibitive as the number of features increases, particularly in

scenes with high visual variability.

This performance difference was evident during testing, where the frame processing rates

on the NVIDIA Jetson Orin AGX were:

• Brute force: ~ 4 fps

• FLANN + LSH: ~ 16 fps

FLANN_INDEX_LSH = 6

 index_params = dict(algorithm=FLANN_INDEX_LSH, table_number=6,

key_size=12, multi_probe_level=1)

 search_params = dict(checks=50)

 self.flann = cv2.FlannBasedMatcher(index_params, search_params)

Code 3: FLANN matcher parameter configuration

The values were chosen to balance matching speed and accuracy for real-time performance.

To improve robustness, Lowe’s ratio test with a threshold of 0.8 is applied to filter out

ambiguous or poorly matched descriptors:

good_matches = []

 for m_n in matches:

 if len(m_n) == 2:

 m, n = m_n

 if m.distance < 0.8 * n.distance:

 good_matches.append(m)

Code 4: Lowe’s ration test

Each item in the matches list is the result of a k-nearest neighbor search. This means that for

every descriptor in the previous frame, the two closest matches in the current frame are

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

48

returned. These are stored in the tuple (m,n), containing m as the best match, and n as the

second-best match.

The condition if m.distance < 0.8 * n.distance compares the distance of the best

match to the second-best. If the best match is significantly better, meaning that it is less than

80% of the second best’s, then it is considered a reliable match and is added to the list of

good_matches.

Motion estimation

The relative pose is estimated using the essential matrix, computed with the OpenCV

function findEssentialMat using RANSAC to discard outliers. The 5 point algorithm from

Níster is embedded in the use of RANSAC. The function recoverPose then extracts the

relative rotation and translation up to an unknown scale. This approach was chosen for its

simplicity, robustness, and compatibility with monocular data.

After estimating the essential matrix E using the five-point algorithm within a RANSAC

framework, the system implements a post-validation check to ensure the reliability of the

motion estimate. Specifically, the solution is discarded if the essential matrix is not found, if

the inlier mask is missing, or if fewer than eight inlier correspondences are detected.

Although the five-point algorithm only requires five-point pairs to compute a minimal

solution, pose recovery through cv2.recoverPose is sensitive to degenerate configurations

and noisy correspondences. Imposing a higher inlier threshold increases the robustness of

the pose estimation by ensuring that the underlying geometry is sufficiently constrained.

 E, mask = cv2.findEssentialMat(pts_prev, pts_curr, self.K, method=cv2.RANSAC,

threshold=1.0)

 if E is None or mask is None or np.count_nonzero(mask) < 8:

 self.get_logger().warn("Essential matrix estimation failed or too few

0

 inliers")

 self.prev_frame = frame

 self.prev_keypoints = keypoints

 self.prev_descriptors = descriptors

 return

_, R_rel, t_rel, _ = cv2.recoverPose(E, pts_prev, pts_curr, self.K)

Code 5: Esential matrix and pose recovery

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

49

Furthermore, the estimated motion is validated by checking the norm of the translation

vector. This filter is introduced to suppress static noise from the pose estimation. If the

displacement is too small or unrealistically large, it is also rejected.

t_norm = np.linalg.norm(t_rel)

 if t_norm < 0.001:

 self.get_logger().info("Estimated motion is too small, skipping

0

0

 update")

 self.prev_frame = frame

 self.prev_keypoints = keypoints

 self.prev_descriptors = descriptors

 return

 if t_norm > 1.0:

 self.get_logger().warn("Motion too large, skipping this frame")

 self.prev_frame = frame

 self.prev_keypoints = keypoints

 self.prev_descriptors = descriptors

 return

Code 6: Static noise suppression

Pose Integration and Publishing

The estimated relative motion is accumulated into a global pose estimate and transformed

into a quaternion for ROS2 publication.

quat = R.from_matrix(self.R_global).as_quat()

self.prev_t_global = self.t_global.copy()

self.prev_R_global = self.R_global.copy()

odom_msg = Odometry()

odom_msg.header.stamp = msg.header.stamp

odom_msg.header.frame_id = "odom"

odom_msg.child_frame_id = "base_link"

odom_msg.pose.pose.position.x = float(self.t_global[0])

odom_msg.pose.pose.position.y = float(self.t_global[1])

odom_msg.pose.pose.position.z = float(self.t_global[2])

odom_msg.pose.pose.orientation.x = float(quat[0])

odom_msg.pose.pose.orientation.y = float(quat[1])

odom_msg.pose.pose.orientation.z = float(quat[2])

odom_msg.pose.pose.orientation.w = float(quat[3])

Code 7: Transformation into quaternion and odometry publisher

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. CLASSIC TECHNIQUES

50

4.3 RESULTS AND CONCLUSION

Despite the comprehensive development of a classical monocular visual odometry system in

this chapter, initial tests revealed that this approach was not feasible for reliable deployment.

The implemented method was highly unstable, introducing significant noise that rendered it

unsuitable for real-world deployment. Consequently, it was decided not to integrate the

monocular VO solution into the final system. Nevertheless, the exploration and findings

presented here offered valuable technical insights and a foundational understanding, of

monocular visual odometry and informing the pursuit of more robust odometry techniques

in subsequent work.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

51

Chapter 5. MONOCULAR VISUAL ODOMETRY.

LEARNING-BASED TECHNIQUES

5.1 THEORETICAL BACKGROUND

Traditionally, VO has been covered with classical geometry-based methods that rely on

feature detection, matching, and geometric computations. These methods have matured

significantly and demonstrated notable accuracy in controlled environments, but their

robustness under real-world challenges such as dynamic scenes, lighting variations, or

textureless regions remains limited. In this context, learning-based techniques, particularly

those using deep learning, have emerged as a compelling alternative for improving visual

odometry performance under such constraints.

Deep learning offers a data-driven approach to VO that can automatically extract robust and

meaningful representations, such as depth, optical flow, and ego-motion, directly from raw

image sequences, without requiring explicit geometric computations. These models can

learn complex spatial and temporal patterns from large-scale datasets, allowing them to

generalize across scenes and handle noise, occlusion, or motion blur better than many

classical algorithms [49].

As was previously seen, the VO pipeline main core consists of three interrelated

components: feature detection, feature matching, and motion estimation. For all three stages,

deep neural networks can replace traditional operations with learned modules. This

substitution can be in the following illustration:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

52

Figure 19: Representation of a neural network replacing the classical VO pipeline stages [49]

Learning-based VO methods can be trained under different learning paradigms, that can be

supervised, unsupervised, or self-supervised frameworks, each with distinct requirements

and trade-offs. In supervised learning, the model is explicitly trained on datasets that provide

ground truth annotations such as 6-DoF camera poses or dense depth maps. These labels

allow the network to directly minimize the error between predicted and true motion

parameters during training. While this approach can yield highly accurate models, it is

constrained by the availability and quality of labeled data, as obtaining precise pose

information often requires expensive motion capture systems, LiDAR-based SLAM setups,

or high-precision GPS/IMU sensors, which limits scalability and generalization.

To address this, unsupervised and self-supervised strategies allow to eliminate the

dependency on external ground truth by designing loss functions that enforce geometric

consistency between frames. For instance, the network learns to predict depth and relative

pose by reconstructing one image from another using differentiable view synthesis. The

reconstruction error is used as an indirect supervisory signal. Other geometric cues, such as

epipolar constraints or temporal consistency, are also leveraged to guide learning [49].

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

53

Despite the advantages in robustness and semantic awareness, learning-based VO still faces

several challenges. Computational efficiency is a major constraint, particularly in embedded

and real-time robotic systems, where deep models may demand more resources than are

practically available. Furthermore, generalization remains an open problem: models trained

on specific datasets can struggle in unfamiliar environments due to overfitting or domain

shift.

5.1.1 MODEL SELECTION

After reviewing the theoretical foundations and design paradigms of learning-based visual

odometry, the next step in this work involved identifying and selecting concrete models

suitable for implementation. While numerous deep VO systems have been proposed over the

last decade, their applicability to real-world robotics varies significantly depending on a

combination of architectural, practical, and deployment-related factors.

To narrow down the candidates, four primary selection criteria were established aligned with

the constraints and objectives of this project: the ability to run the model in real time,

availability of pretrained weights for the model, proven robustness in indoor scenarios, and

existence of a reliable and well-maintained implementation, preferably compatible with

ROS1 or ROS2 environments.

Well known models like DeepVO [50], UnDeepVO [51], and GANVO [52], were

considered for this application. However, most of them lack official support or strong

generalization performance, especially for indoor conditions. Also, most of them required

significant adaptation to ROS and did not always include pretrained weights for immediate

deployment, making it necessary to undertake training tasks.

Based on this evaluation, two models stood out as the most promising for integration into

this system: TartanVO [53] and TSformer-VO [54]. TartanVO is a supervised model with a

lightweight CNN architecture, pretrained on synthetic data and with available weights, and

validated in real environments with official ROS1 support and proven real-time

performance. In parallel, TSformer-VO represents a more recent model based on Vision

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

54

Transformers, with state-of-the-art accuracy and temporal consistency. Although it is not

ROS-native, its robust codebase is officially supported, and availability of pretrained weights

makes it ideal for quick integration and testing.

5.1.2 TSFORMER-VO

TSformer-VO is a recent monocular visual odometry model that approaches the VO problem

from a video sequence understanding perspective. Instead of processing frames pairwise or

with a recurrent neural network, TSformer-VO employs a Transformer-based architecture to

handle a window of successive frames simultaneously. The goal of TSformer-VO is to

directly regress the camera’s 6-DoF motion using spatio-temporal and self-attention

mechanisms, effectively treating VO as a sequence regression problem rather than a frame-

to-frame estimation alone. By doing so, the model can learn to aggregate information across

multiple frames, potentially improving robustness [54].

It is an end-to-end learned VO system, that does not rely on explicit geometric modules or

feature matching. It takes raw RGB frames and outputs the camera’s trajectory. The authors

state to achieve competitive results on standard benchmarks, such as KITTI, outperforming

well known models such as DeepVO in terms of average trajectory error. TSformer-VO’s

purpose is to bring the power of video Transformers to VO, achieving high accuracy through

learning temporal features, and its scope is a future-proof VO approach that could be

extended to many settings in robotics.

The training strategy is based on a supervised regression task using the KITTI odometry

dataset [65]. KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute)

is one of the most widely used datasets in mobile robotics and autonomous driving research.

Its dataset comprises traffic scenarios recorded using a variety of sensors, such as RGB and

grayscale cameras and 3D LiDARs, providing both visual data and ground-truth trajectory

information. The training loss is a straightforward Mean Squared Error (MSE) over all

predicted pose components.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

55

5.1.3 TARTANVO

TartanVO [53] is a learning-based monocular visual odometry model designed with a

primary goal of cross-environment generalization. Unlike prior deep VO methods that tend

to overfit a single dataset or scenario, TartanVO was the first to demonstrate that a single

learned model can perform well on multiple datasets like the previously mentioned KITTI,

EuRoC drone or indoor scenes, without fine-tuning. The authors achieve this by leveraging

the large-scale TartanAir simulation dataset, which provides diverse training data like

indoor, outdoor, urban, natural, and even sci-fi scenes with ground-truth labels. This

diversity addresses a key issue that limited earlier learning-based VO, which was the lack of

variety in motion and scenery.

TartanVO adopts a two-stage neural architecture inspired by the traditional VO pipeline of

feature matching and pose estimation. As illustrated in Figure 20Figure 20, the model

consists of a matching network followed by a pose regression network.

Figure 20: Diagram of two-stage neural architecture of TartanVO [53]

The Matching Network uses a pre-trained optical flow model (PWC-Net) to compute dense

correspondences between two consecutive frames. This optical flow is calculated at a lower

resolution to save computational resources but still provides accurate motion cues. By

freezing this module, the system can rely on stable inputs for training the next stage.

The Pose Network takes the optical flow and predicts the relative camera motion. It uses a

modified ResNet-50 that treats the flow as a two-channel input (horizontal and vertical

motion). The network has two separate output branches: one estimates the 3D translation

and the other the 3D rotation. These outputs are learned independently to improve accuracy.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

56

TartanVO does not predict the absolute scale of translation, only the direction and relative

amount. This two-part design allows the system to focus on learning motion from reliable

visual cues efficiently.

5.2 DEVELOPMENT AND IMPLEMENTATION

The system was developed to support both TSFormer and TartanVO. However, experimental

results showed that TSFormer was significantly slower, achieving approximately 4 frames

per second, whereas TartanVO reached up to 12 frames per second. Based on this

performance difference, the final implementation was built around the TartanVO module.

Nonetheless, the integration approach described here remains applicable to both models, as

both were fully implemented.

The integration of the TartanVO model into the ROS2 ecosystem was achieved through the

development of a custom node implemented in Python, named tartanvo_node. This node

encapsulates the entire inference and pose accumulation process required for monocular

visual odometry using a pretrained deep learning model.

Although an official implementation of TartanVO is available [56], it is designed for ROS1,

requiring substantial modifications for compatibility with ROS2. During the adaptation

process, numerous challenges emerged, particularly related to dependency management and

version conflicts. These incompatibilities required an extensive effort to refactor and

reconfigure the system, resulting in a prolonged integration period to ensure functional

stability within the ROS2 environment.

Data subscription

The node subscribes to raw monocular images from the topic /zed/zed_node/rgb/raw/image,

published by the ZED X One camera. It also takes camera calibration data from

/zed/zed_node/rgb/raw/camera_info and IMU information from /zed/zed_node/imu/data.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

57

The system has initial camera intrinsics values that are updated once, before starting to

compute the motion estimation between frames. This is done in the handle_caminfo()

function.

def handle_caminfo(self, msg):

 w = msg.width

 h = msg.height

 fx = msg.k[0]

 fy = msg.k[4]

 ox = msg.k[2]

 oy = msg.k[5]

 new_intrinsics = [w, h, fx, fy, ox, oy]

 if new_intrinsics != self.cam_intrinsics:

 self.intrinsic = make_intrinsics_layer(w, h, fx, fy, ox, oy)

 self.cam_intrinsics = new_intrinsics

 self.get_logger().info('Camera intrinsics updated.')

Code 8: Definition of handle_caminfo() function

The image data is processed using a predefined transformation pipeline (CropCenter,

DownscaleFlow, ToTensor) to match the resolution and format expected by the model. This

preprocessing ensures consistency with the training configuration of TartanVO.

self.transform = Compose([CropCenter((448, 640)), DownscaleFlow(), ToTensor()])

Code 9: Definition of transformation pipeline

Pose acquisition

The core motion estimation is performed by the function test_batch() of the TartanVO

class, which outputs a relative pose between the two most recent frames. This is defined in

TartanVO.py file. The motion is represented as a 6-DoF vector (3 for translation, 3 for

rotation), which is then converted into a 4x4 transformation matrix using the se2SE function.

The accumulated pose is updated incrementally by chaining transformations over time,

resulting in a full trajectory estimation in the camera frame.

Calibration test

As it is a monocular system, the estimated pose is inherently relative, meaning it lacks an

absolute scale. To address this limitation, the node applies a scaling factor to the estimated

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

58

translation vector. This scale can be fixed, manually calibrated, or dynamically adjusted via

an external topic. In this project, a specific test was conducted to calibrate the scale as

accurately as possible.

The procedure begins by storing the current pose as the initial reference when the system

starts or when calibration is triggered. The node then accumulates frames over a fixed

interval of 60 consecutive frames, which correspond to approximately 5 seconds at 12 FPS.

After this interval, the system computes the displacement vector between the initial and final

poses and calculates the norm of this translation as the estimated visual odometry distance.

To calibrate the scale, the real physical distance traveled during the test is manually

measured, in this case, 0.60 meters. The system then computes the scale factor as the ratio

between the real-world distance and the VO-estimated distance. If the estimated

displacement is sufficiently large, the computed scale is accepted and applied to subsequent

translation vectors. Otherwise, the system discards the result.

 if not hasattr(self, 'pose_start'):

 self.pose_start = self.pose.copy()

 self.frame_count = 0

 self.get_logger().info("[CALIBRATION] Initial pose saved. START")

 else:

 self.frame_count += 1

 if self.frame_count == 60: # frames in test

 self.pose_end = self.pose.copy()

 delta = self.pose_end[:3, 3] - self.pose_start[:3, 3]

 distance_vo = np.linalg.norm(delta)

 real_distance = 0.60 # real distance in meters

 if distance_vo > 1e-6:

 scale = real_distance / distance_vo

 self.get_logger().info(f"[CALIBRATION] Estimated VO distance:

0

 {distance_vo:.4f} m")

 self.get_logger().info(f"[CALIBRATION] Calibrated scale:

00

0

 {scale:.4f}")

 self.scale = scale

 else:

 self.get_logger().warn("[CALIBRATION] Too small movement. No

0

 scale calculation.")

 # Reset calibration variables

 del self.pose_start

 del self.pose_end

 del self.frame_count

Code 10: Scale calibration test

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

59

To assess the consistency and reliability of the scale calibration process, a total of 15

calibration trials were conducted. The following table summarizes the results obtained in

each trial.

Table 3: Results of Monocular VO Scale Calibration

Trial Relative VO

distance (m)

Calibrated scale

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

15.9726

15.9108

15.465

16.175

17.843

16.797

17.188

15.7795

16.7883

16.2608

16.0527

16.0363

15.5442

15.6437

15.3163

0.0376

0.0377

0.0388

0.0371

0.0336

0.0357

0.0377

0.038

0.0357

0.0369

0.0374

0.0374

0.0386

0.0384

0.0392

From the data, the following descriptive statistics were derived:

• Mean calibrated scale: 0.0371

• Standard deviation: 0.00156

• 95% confidence interval: [0.0363, 0.0380]

These results indicate that the calibrated scale values are tightly clustered around the mean,

with low variability and a narrow confidence interval. This reflects a high degree of

repeatability in the calibration procedure. Consequently, the average scale factor of 0.0371

was considered a statistically robust estimate for rescaling the translation vector in the

TartanVO system under the tested conditions.

This parameter is set under the self.scale parameter.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

MONOCULAR VISUAL ODOMETRY. LEARNING-BASED TECHNIQUES

60

Static noise filtering

An important implementation detail is the integration of an IMU-based motion filter. Before

updating the pose, the system checks whether the linear acceleration magnitude is below a

threshold (0.05 m/s²). If so, the frame is considered stationary and the motion is discarded,

reducing drift in low-motion conditions. This was introduced as major issues with motion

induced in the pose message when the camera was fully static.

if self.last_accel is not None:

 norm = np.linalg.norm(self.last_accel)

 if norm < 0.05: # m/s²

 self.get_logger().info(f"[IMU] No movement detected (|a| =

{norm:.3f} m/s²), no increment in pose.")

 self.last_img = image_np.copy()

 return

Code 11: Static noise suppression filter with IMU

The final odometry output is published in the ROS2 topic /odom_zed_mono using the

nav_msgs/Odometry message type. For system-wide consistency, the published odometry

includes appropriate frame identifiers, odom and zed_camera_link.

Publishing transforms

The same issue encountered with the stereo camera also affected the monocular system.

Consequently, the same zed_odom_transformer node was implemented to address it. The

only modification lies in the subscription topic, which changes from /zed/zed_node/odom to

/odom_zed_mono.

As a result, the two cameras are not operated at the same time.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

61

Chapter 6. RESULTS AND COMPARISON

To evaluate the performance of each odometry source integrated into the system, a common

testing protocol was defined as follows. The goal was to assess both the accuracy of distance

estimation and the accumulated drift over short trajectories.

Two distinct experimental trials were conducted under controlled conditions:

1. Straight-Line Test (Absolute Distance Estimation):

The robot was instructed to move along a straight-line path covering a known

physical distance. Two different target distances (3.6 and 1.2 meters) were used to

verify consistency and evaluate how accurately the odometry estimated the

translation. The estimated trajectory produced by the system was then compared to

the ground truth distance. The objective of this test was to quantify the scale accuracy

of each odometry method, particularly relevant in monocular systems where scale

ambiguity is a known limitation.

2. Rectangular Loop Test (Drift Evaluation):

In this trial, the robot followed a closed-loop trajectory approximating a rectangle

and returned to its starting point. The Euclidean distance between the estimated

starting and ending positions was recorded as a measure of accumulated drift. This

test provides insight into each system's ability to maintain consistency over time and

to cope with compounded errors from successive motion estimations.

Each odometry method was tested independently following this same protocol. The

corresponding results are presented in the following sections, allowing for a direct and fair

comparison of their performance across both metrics: absolute distance estimation and drift

over closed trajectories.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

62

6.1 EKF CONFIGURATION

The robot_localization EKF node is configured with specific parameters to fuse wheel

encoder odometry and stereo camera visual odometry for a planar (2D) mobile platform.

These parameters are defined in the ekf.yaml file, which specifies the frame conventions,

filter behavior, and sensor input settings used by the node.

The EKF node is launched through the ekf_launch.py script, which invokes the ekf_node

from the robot_localization package and sets the path to the ekf.yaml configuration file.

EKF internal functioning

The robot_localization package [66] implements an Extended Kalman Filter (EKF) that

estimates the robot’s state by combining information from various sensors. Internally, the

EKF maintains a 15-dimensional state vector representing the robot’s full 3D pose,

velocities, and accelerations. The full state vector is:

𝒙 = [𝒙 𝒚 𝒛 𝒓𝒐𝒍𝒍 𝒑𝒊𝒕𝒄𝒉 𝒚𝒂𝒘 𝒗𝒙 𝒗𝒚 𝒗𝒛 𝒘𝒙 𝒘𝒚 𝒘𝒛 𝒂𝒙 𝒂𝒚 𝒂𝒛]𝑇 (3)

However, since the robotic platform operates on flat indoor surfaces, and the EKF is

configured to work in that condition, the filter ignores vertical motion and rotation along roll

and pitch. This mode is specifically designed for ground robots constrained to motion on a

flat surface, where variations in altitude or tilt (roll and pitch) are not relevant. As a

consequence, the Extended Kalman Filter (EKF) internally reduces the size of its state vector

by discarding dimensions that are not observable or necessary in a 2D context. Among the

variables removed are all linear and angular accelerations. Since no IMU data was fused in

this implementation, and the estimation of accelerations was not required by any subsystem

(such as the navigation stack), the filter automatically excludes them to simplify the model

and avoid incorporating noisy or unused information. This simplification reduces the

effective state vector to:

𝒙 = [𝒙 𝒚 𝒚𝒂𝒘 𝒗𝒙 𝒗𝒚 𝒘𝒛] (4)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

63

As it was seen in the state-of-art, the EKF operation consist of two main stages: prediction

and correction.

In the prediction step, the filter applies a nearly constant-acceleration kinematic model to

estimate the robot’s next state based on its previous state. This estimation uses motion

equations, where the subscript 𝑘 − 1 refers to the previous timestep. The state prediction is

performed as follows:

• Position update:

𝑥𝑘 = 𝑥𝑘−1 + 𝑣𝑥𝑘−1
∙ ∆𝑡 +

1

2
 𝑎𝑥𝑘−1

∙ ∆𝑡2 (5)

• Velocity update:

𝑣𝑥𝑘
= 𝑣𝑥𝑘−1

+ 𝑎𝑥𝑘−1
∙ ∆𝑡 (6)

• Yaw angle update

𝑦𝑎𝑤𝑘 = 𝑦𝑎𝑤𝑘−1 + 𝑤𝑧𝑘−1
∙ ∆𝑡 (7)

During this phase, the filter also updates the state covariance matrix 𝑷 to reflect the

uncertainty of the predicted state. This update is computed using the Jacobian of the system

model and the predefined process noise covariance matrix 𝑸:

𝑷𝒌
− = 𝑭𝒌𝑷𝒌−𝟏𝑭𝒌

𝑻 + 𝑸𝒌 (8)

Where 𝐹𝑘 is the Jacobian of the motion model with respect to the state variables and 𝑃𝑘
− is

the corrected covariance.

In the correction step, the EKF incorporates new measurements from the sensors. Each

incoming message is treated as a measurement vector 𝒛 of some subset of the state. The filter

uses the following standard EKF equations.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

64

• State update:

𝑥𝑘 = 𝑥𝑘
− + 𝑲(𝑧𝑘 − 𝑯𝑥𝑘

−) (9)

In the update, 𝑥𝑘
− is the prediction of the state, before measuring, and 𝑥𝑘 is after the correction. 𝑲 is

the Kalman gain, which determines how much the filter trusts the measurement versus the prediction.

𝑲 = 𝑷𝒌
−𝑯𝑻(𝑯𝑷𝒌

−𝑯𝑻 + 𝑹)−1 (10)

𝑯 is the measurement matrix, mapping state variables to the expected measurement.

The covariance 𝑷 is also updated at this stage:

𝑷 = (𝑰 − 𝑲𝑯)𝑷 (11)

This correction phase reduces uncertainty in the state estimate by weighting the prediction

against the incoming measurement, depending on their respective covariances.

General filter configuration

Frame definition

The EKF operates using standard ROS frame conventions. The global map frame is set to

“map”, the local odometry frame to “odom”, and the base frame to “base_footprint”. As

shown in Figure 15 in Chapter 2, the new responsible for publishing the odom to

base_footprint transformation is the EKF node.

The world_frame is configured as “odom”, meaning the filter uses the odom frame as the

world reference. Since only continuous odometry data is used, and no global fixes like GPS

are fused, the EKF outputs the robot pose in the odom frame. With world_frame = odom,

the filter will publish the transform from odom to base_footprint directly, as it was discussed

in Chapter 2.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

65

Timing and Frequency

The filter update frequency is set to 30.0 Hz. This rate is chosen to balance timeliness against

computational load, and it aligns with the expected sensor update rates (the wheel and

camera odometry data are available roughly on the order of tens of Hz). The use_sim_time

parameter is false, indicating the node uses real system time.

Planar Motion Mode

The EKF is configured in two-dimensional mode (two_d_mode: true), appropriate for a

ground robot on flat terrain. In this mode, the filter constrains motion to the XY-plane and

ignores changes in Z, roll, and pitch. This prevents unobservable or irrelevant degrees of

freedom from causing state drift and simplifies the filter since the wheelchair operates on a

level floor.

Output and TF Settings

The system is set to broadcast the transform (publish_tf: true) so that the fused odometry

is available to the rest of the system via the TF tree. Because the world frame is odom, the

node will publish an odom → base_footprint transform representing the filtered pose.

Accelerations are not published (publish_acceleration: false), since acceleration data is not

needed by other modules in this setup.

Process noise covariance

Within the general configuration of the robot_localization EKF node, the

process_noise_covariance matrix was set to relatively high values, with diagonal entries

set to 8.0 corresponding to state variables, in order to reflect limited confidence in the

prediction model and prioritize the contribution of sensor measurements in the correction

step. This decision was made after empirical observation showed that the sensor inputs

provided more consistent and accurate information than the motion prediction generated by

the internal EKF process model. By increasing the process noise, the filter becomes more

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

66

responsive to incoming measurement updates, weighting them more heavily in accordance

with their specified covariances during the fusion process.

Wheel encoder odometry (odom0)

The first sensor input, odom0, corresponds to wheel encoder odometry coming from the

platform’s wheel sensors, coming from the /encoders_odom topic. This source provides

incremental pose estimates based on wheel rotation and is treated as an odometry message.

The configuration for odom0 is as follows:

• Fused Variables:

The odom0_config array specifies which state variables from the wheel encoder

odometry are fused into the filter. In this configuration, only the linear velocity in the

X-axis and the angular velocity around the Z-axis are included. This choice avoids

redundant computation by allowing the EKF to directly incorporate the raw velocity

measurements provided by the encoders. All other components, including position,

orientation (roll, pitch, yaw), lateral and vertical velocities (Y, Z), and accelerations

are excluded from the fusion process.

By omitting lateral (Y-axis) and vertical (Z-axis) velocities, the configuration reflects

the kinematic constraints of the differential-drive platform, which cannot produce

motion in those directions. Any minor deviations caused by lateral slip are considered

noise and intentionally disregarded to preserve filter stability.

Additionally, careful attention was given to the definition of sensor covariances, as

discussed in the EKF theory section. These covariances are specified in the

odometry.py node and are configured to assign higher confidence to linear velocity

measurements while assigning lower confidence to angular velocities. This decision

was based on testing, which showed that angular velocity estimates from the

encoders were less reliable. This can be seen in Figure 21.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

67

Figure 21: Encoders’ drift in angular estimation

Therefore, the covariance values assigned to these measurements were set low for

the linear velocity along the X-axis, indicating that the EKF can place high

confidence in this input, while higher covariance was used for the angular velocity

around the Z-axis, reflecting its lower reliability.

odom_msg.pose.covariance = [

3.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 3.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 99999.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 99999.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 99999.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.5

]

Code 12: Encoders measurement covariance matrix

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

68

• Absolute vs. Relative Mode:

For odom0, both odom0_differential and odom0_relative are set to false. This

indicates that the wheel encoder data is not interpreted as a velocity increment nor is

it adjusted relative to an initial offset. However, since only the linear velocity along

the X-axis and the angular velocity around the Z-axis are being fused, the odometry

is not used as a full absolute pose source. Instead, these velocity components are

treated as direct measurements in the odom frame, which is also the world frame

used by the EKF.

• Outlier Rejection:

The encoder odometry input has defined thresholds to reject outlier measurements.

The pose rejection threshold is set to 5.0 meters and the twist rejection threshold is

set to 1.0 m/s. These thresholds mean that if a new wheel odometry pose deviates

from the EKF’s predicted pose by more than 5.0 meters, it will be considered an

outlier and ignored, and if a wheel odom velocity differs too greatly, above 1.0 m/s

difference, it will also be rejected. In practice, such large deviations are unlikely

during normal operation, as they would indicate a serious slip or sensor fault, so these

values serve as a safety net to discard any grossly erroneous data.

Stereo Camera VO (odom1)

The second sensor input, odom1, is the odometry from a ZED stereo camera, received via

the topic /odom_zed_corrected, coming from the zed_odom_transformer. The ZED camera

provides a visual odometry estimate of the robot’s movement, including visual odometry

and information for the embeeded IMU, but both already fused before entering the EKF.

Key settings for odom1 are the following.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

69

• Fused Variables:

The odom1_config array specifies which state variables from the ZED stereo visual

odometry are fused into the EKF. In this configuration, only the position components

in the X and Y axes, as well as the orientation around the Z-axis (yaw), are included.

These variables provide global pose information derived from visual-inertial

odometry computed by the ZED SDK. The other state components are excluded from

the fusion process to maintain consistency with the planar motion assumptions of the

robot and to avoid redundancy with other sensors.

Unlike the encoder odometry, the ZED stereo system publishes its own covariance

matrices directly within the odometry messages. These covariances are dynamically

estimated by the ZED SDK and are generally low for the selected fused variables,

indicating high confidence in the accuracy of the position and orientation data. Its

good performance in linear and angular estimation was also seen in testing:

Figure 22: Stereo VIO close loop test performance

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

70

• Differential vs. Relative:

For odom1, the parameters odom1_differential: false and odom1_relative: true are

set. This means that the visual odometry from the ZED stereo camera is fused as an

absolute pose, but only in relative terms to its initial reading. Activating relative=true

ensures that the first pose from the camera is treated as the origin, aligning it with

the EKF’s coordinate system. This avoids conflicts that could arise from fusing two

independent absolute pose sources (wheel and camera). As a result, the ZED

contributes to pose changes over time without enforcing its own absolute origin.

• Outlier Rejection:

To ensure robustness, pose_rejection_threshold: 3.0 and twist_rejection_threshold:

1.0 are applied to the ZED odometry input. In this configuration, the pose rejection

threshold is set lower than that of the encoder odometry, since visual odometry is

generally more susceptible to noise spikes caused by factors such as illumination

changes or reflective surfaces. Therefore, a more restrictive threshold is applied to

increase resilience against occasional tracking errors.

• Pose Frame Handling:

This parameter is intended to handle cases where the input odometry originates from

a frame different from base_footprint, automatically applying the corresponding

static transform. However, enabling this option (pose_frame: true) and defining the

static transform in the URDF did not yield the expected behavior. As a result, the

transformation had to be applied manually through the zed_odom_transformer node,

and the parameter was set to false.

Mono Camera VO learning-based (odom1)

The third sensor input corresponds to the odometry from the ZED monocular camera. As

previously mentioned, the stereo and monocular systems are not intended to operate

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

71

simultaneously; therefore, they share the same EKF input configuration, as only one will be

active at any given time.

The only notable difference is that the monocular system defines its own covariance matrix

within the tartanvo_node.py implementation. During testing, the system exhibited

significant limitations, particularly instability in estimating linear displacement along the X

and Y axes. In contrast, the angular displacement estimates showed improved consistency.

As a result, the EKF configuration assigns lower confidence to linear motion estimates while

giving relatively more weight to rotational information.

odom_msg.pose.covariance = [

 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,

 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,

 0.0, 0.0, 99999.0, 0.0, 0.0, 0.0,

 0.0, 0.0, 0.0, 99999.0, 0.0, 0.0,

 0.0, 0.0, 0.0, 0.0, 99999.0, 0.0,

 0.0, 0.0, 0.0, 0.0, 0.0, 0.5

]

Code 13: Monocular learning-based odometry covariance matrix

Despite all the calibration efforts and parameter tuning, the results provided by the

monocular solution were not sufficient to support a robust odometry system, as it exhibited

clear instabilities in its performance. Results can be observed in Figure 23.

Figure 23: Monocular learning-based VO close loop test performance

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

72

6.2 TEST RESULTS

Among all the initial odometry input candidates considered in this project:

• Encoders

• Stereo VIO

• Monocular VO (classic techniques)

• Monocular VO (learning-based techniques)

Only the encoder-based and stereo VIO systems demonstrated sufficient performance and

reliability to be considered as viable inputs for the EKF-based fusion framework. As a result,

the experimental results and quantitative evaluations presented in the following sections will

focus exclusively on these two approaches considered for the EKF.

Straight line test

In the straight-line trajectory test, the robot followed known distances of 3.6 m and 1.2 m,

enabling an evaluation of the scale accuracy of each odometry method. Table 4 summarizes

the distances estimated by each system in comparison with the actual ground truth values:

Table 4: Estimated distances by each method in straight line

Real distance

(m)

Encoders (m) Visual Stereo (m) EKF (m)

3.6 3.594 3.500 3.586

1.2 1.173 1.250 1.223

As observed, all methods yielded distance estimates very close to the true values, with

deviations of only a few centimeters. For the 3.6 m path, both the wheel encoder odometry

and the EKF slightly over or underestimated the distance, each with less than 1% error. The

stereo visual odometry measured 3.500 m, which corresponds to an underestimation of

approximately 2.8%.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

73

Similarly, for the 1.2 m test, estimates remained within a narrow margin: encoders reported

1.173 m (~2.2% below the actual distance), the EKF 1.223 m (~1.9% above), and the stereo

VO 1.250 m (~4.2% above). These small deviations indicate that each system estimated

motion scale with high accuracy.

Close loop test

The second experiment involved a closed-loop trajectory in the shape of a rectangle, where

the robot began at a known starting point, followed an approximately rectangular path, and

returned to its initial position. Ideally, the estimated final position should coincide with the

origin; any Euclidean deviation between the actual starting point and the estimated final

location represents the accumulated drift of the odometry method over the course of the

trajectory. In this loop test, notable differences emerged among the three systems evaluated.

Figure 24: Close loop test results for all methods

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

74

Table 5: Euclidean distance from starting and finishing point

Method Accumulated drift (m)

Encoders 1.454

Visual Stereo 0.065

EKF 0.109

The results of the loop test clearly illustrate the impact of long-term error accumulation.

Odometry based solely on wheel encoders exhibited the highest drift, with a final position

approximately 1.45 meters away from the starting point after completing the loop. This

considerable discrepancy is characteristic of dead-reckoning methods, where small errors in

distance or orientation estimation accumulate over time, leading to significant positional

deviation. In particular, orientation drift is widely recognized as a major contributor to final

positional error in encoder-based systems. Minor wheel slippage during turns, subtle

differences in wheel calibration or diameter, and both systematic and random noise further

exacerbate the error as the robot travels and rotates. While encoder odometry performed

accurately over straight segments, its drift increased dramatically over the extended loop

trajectory because of the orientation error.

In contrast, stereo visual odometry yielded a remarkably small final error of just ~0.065

meters, demonstrating superior consistency in trajectory estimation. The near closure of the

loop suggests minimal error in both orientation and scale throughout the motion. This

performance aligns with the known advantages of visual odometry over inertial or wheel-

based methods: it is more robust against slippage and accumulates substantially less error

over longer distances.

The EKF-based fusion system achieved intermediate performance, with a closing error of

0.109 meters, significantly better than encoders alone but slightly worse than the stereo

visual method. This indicates that sensor fusion played a critical role in suppressing drift,

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

RESULTS AND COMPARISON

75

likely incorporating inputs from encoders, visual odometry, and inertial sensors (e.g.,

gyroscope) to improve robustness. Although it did not reach the visual system’s precision,

the EKF brought a great improvement over wheel odometry, confirming its value in reducing

accumulated pose error. This improvement was also supported by the covariance

configuration, as the system should highly depend on the most accurate system, being the

visual odometry, but also makes use of the source from the encoders when this other one

may fail, or as demonstrated, wheel encoders perform well during straight motion.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

CONCLUSION AND FUTURE DEVELOPMENTS

76

Chapter 7. CONCLUSION AND FUTURE

DEVELOPMENTS

This master’s thesis has developed and evaluated a new visual odometry module for an

autonomous wheelchair, successfully replacing the prior wheel encoder-only odometry with

a vision-based system. The project involved the integration of a stereo VO solution, the

exploration of monocular VO techniques, and the configuration of a multi-sensor Extended

Kalman Filter (EKF) to fuse odometry data from multiple sources. Through these efforts,

several important results and insights were achieved:

Stereo Visual Odometry Integration: The StereoLabs ZED stereo camera (ZED X Mini)

was successfully incorporated into the platform, providing real-time depth perception and

inertial data. This stereo system proved to markedly improve motion estimation accuracy

compared to the original wheel encoder odometry. In quantitative tests, the stereo VO

achieved great scale estimation and minimal drift. These results demonstrate that stereo

vision effectively eliminates the scale ambiguity present in monocular methods and is far

less susceptible to the cumulative errors that are observed in wheel odometry. The motion

accuracy of the stereo system remained high throughout testing, and drift over short to

medium trajectories was negligible, indicating a high level of consistency in pose tracking.

Monocular VO (Classical Methods): In parallel, classical monocular visual odometry

techniques were implemented and tested using the ZED X One monocular camera. Feature-

based algorithms were explored as a baseline knowledge-driven approach. These methods

confirmed the expected challenges: scale estimation was a fundamental issue since a single

camera cannot infer absolute distance without additional references. Moreover, monocular

tracking exhibited drift accumulation over time and sometimes struggled with stability. In

summary, the classic monocular VO, while functional in short intervals, did not provide the

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

CONCLUSION AND FUTURE DEVELOPMENTS

77

robustness or precision required for dependable odometry in our application, primarily due

to its drifting scale and higher susceptibility to environmental conditions.

Monocular VO (Learning-Based Methods): To push the performance of monocular

odometry, state-of-the-art learning-based models were also integrated into the system. In

particular, the deep learning model named TartanVO was selected for its demonstrated

generalization across environments and real-time capability. TartanVO succeeded in

estimating the robot’s ego motion especially in the short range. However, in practice the

tests revealed notable limitations of the model as well. While the angular orientation

estimates from TartanVO were relatively consistent, the linear translation estimates were

unstable. Even with scale calibration, the monocular learning-based VO showed erratic

behavior in translational motion estimation and accumulated drift over longer runs. This may

also be partially attributed to the use of pre-trained models without specific retraining.

Although the model employed provided a functional baseline. However, the model weights

were trained under conditions that may not fully match the operational environment of this

project and proved insufficiently reliable on the wheelchair platform. These approaches were

prone to scale drift and occasional pose estimation jumps, meaning they could not serve as

the sole odometry source without risking navigation errors.

Sensor Fusion with EKF: The EKF operates in 2D mode, appropriate for a planar indoor

vehicle, and uses covariance-based weighting to balance the contributions of each sensor.

Visual odometry serves as the primary pose source due to its higher accuracy, while encoder

data provide reliable linear velocity estimates and act as a fallback when vision is temporarily

unavailable. Encoder yaw data, being more prone to drift, are given lower weight, whereas

linear velocity is trusted more. This fusion strategy significantly reduces drift and improves

pose consistency. In straight-line tests, EKF estimates closely match ground truth (within

~2%), and in closed-loop paths, EKF drift is limited to a few tens of centimeters, compared

to 1.5 m with encoders alone. Although slightly less accurate than stereo VO alone, the EKF

solution proved more resilient and robust, maintaining functionality during sensor

interruptions. Overall, sensor fusion effectively leveraged the strengths of both inputs,

offering a stable and accurate odometry solution suitable for real-time navigation.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

CONCLUSION AND FUTURE DEVELOPMENTS

78

In summary, the project successfully enhanced the localization capabilities of the

autonomous wheelchair, replacing the encoder only system with a more accurate and drift-

resistant stereo visual odometry solution. The results confirmed that vision-based odometry,

particularly stereo configurations, offers superior long-term accuracy in indoor

environments, thanks to its ability to observe the environment on a true scale and reduce

cumulative errors. In contrast, monocular approaches, both classical and learning-based,

exhibited notable limitations. Their inherent lack of depth information led to scale ambiguity

and instability, making them less reliable for consistent pose estimation. Moreover, the

experiments demonstrated that methods operating with less information, such as monocular

setups, require significantly more effort in calibration and fine-tuning to approach the

performance levels of stereo systems. While these monocular methods hold potential for

low-cost alternatives, they are not yet robust enough to operate independently in real-world

deployments without a deeper fine-tuning effort.

Future Work

Building on the successful integration of visual odometry, the next logical step is to evolve

this system into a complete visual SLAM (Simultaneous Localization and Mapping) solution

that can fully replace or augment the existing LiDAR-based solution in the wheelchair

platform. The results of this thesis provide a strong foundation with a high-accuracy VO

module upon which advanced capabilities can be added.

The main directions for future work can be:

• Monocular Odometry Improvements: Although stereo vision remains the more

reliable option, improving monocular odometry is still valuable for cost-effective

systems. Future work should explore scale recovery through learned depth, scene

constraints, or training with stereo supervision. Achieving performance comparable

to stereo requires addressing scale ambiguity and drift and may also demand more

extensive fine-tuning in learning-based methods to close the gap.

• Integration into a Full Navigation System: Future efforts should integrate visual

SLAM into the full navigation pipeline, replacing LiDAR-based localization.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

BIBLIOGRAPHY

79

Chapter 8. BIBLIOGRAPHY

[1] Agostinho, L. R., Ricardo, N. M., Pereira, M. I., Hiolle, A., & Pinto, A. M. (2022). A Practical

survey on visual odometry for autonomous driving in challenging scenarios and conditions.

IEEE Access, 10. https://doi.org/10.1109/access.2022.3188990

[2] Gonzalez, R., Rodriguez, F., Guzman, J. L., Pradalier, C., & Siegwart, R. (2011). Combined

visual odometry and visual compass for off-road mobile robots localization. Robotica, 30(6),

865–878. https://doi.org/10.1017/s026357471100110x

[3] Alkendi, Y., Seneviratne, L., & Zweiri, Y. (2021). State of the Art in Vision-Based Localization

Techniques for Autonomous Navigation Systems. IEEE Access, 9, 6–9.

https://doi.org/10.1109/access.2021.3082778

[4] Aqel, M. O. A., Marhaban, M. H., Saripan, M. I., & Ismail, N. B. (2016). Review of visual

odometry: types, approaches, challenges, and applications. SpringerPlus, 5(1).

https://doi.org/10.1186/s40064-016-3573-7

[5] Scaramuzza, D., & Fraundorfer, F. (2011b). Visual Odometry [Tutorial]. IEEE Robotics &

Automation Magazine, 18(4), 80–92. https://doi.org/10.1109/mra.2011.943233

[6] Nister, D., Naroditsky, O., & Bergen, J. (2004). Visual odometry. IEEE Xplore.

https://doi.org/10.1109/cvpr.2004.1315094

[7] Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT Press.

[8] Fraundorfer, F., & Scaramuzza, D. (2012). Visual Odometry : Part II: Matching, Robustness,

Optimization, and Applications. IEEE Robotics & Automation Magazine, 19(2), 78–90.

https://doi.org/10.1109/mra.2012.2182810

[9] Kwolek, B. (2007). Visual odometry based on GaBor filters and sparse bundle adjustment.

Proceedings - IEEE International Conference on Robotics and Automation/Proceedings, B244,

3573–3578. https://doi.org/10.1109/robot.2007.364025

[10] Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part I. IEEE

Robotics & Automation Magazine, 13(2), 99–110. https://doi.org/10.1109/mra.2006.1638022

[11] Huang, T., & Netravali, A. (1994). Motion and structure from feature correspondences: a

review. Proceedings of the IEEE, 82(2), 252–268. https://doi.org/10.1109/5.265351

[12] Nistér, M. (2004, June 1). An efficient solution to the five-point relative pose problem. IEEE

Journals & Magazine | IEEE Xplore.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1288525

[13] Moreno-Noguer, F., Lepetit, V., & Fua, P. (2007). Accurate Non-Iterative O(n) Solution to the

PnP Problem. IEEE Int. Conf. Computer Vision, 1–8.

https://doi.org/10.1109/iccv.2007.4409116

[14] Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-Up Robust Features (SURF).

Computer Vision and Image Understanding, 110(3), 346–359.

https://doi.org/10.1016/j.cviu.2007.09.014

[15] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to

SIFT or SURF. International Conference on Computer Vision.

https://doi.org/10.1109/iccv.2011.6126544

[16] Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011). BRISK: Binary Robust invariant scalable

keypoints. International Conference on Computer Vision, 2548–2555.

https://doi.org/10.1109/iccv.2011.6126542

https://doi.org/10.1109/access.2022.3188990
https://doi.org/10.1017/s026357471100110x
https://doi.org/10.1109/access.2021.3082778
https://doi.org/10.1186/s40064-016-3573-7
https://doi.org/10.1109/mra.2011.943233
https://doi.org/10.1109/cvpr.2004.1315094
https://doi.org/10.1109/mra.2012.2182810
https://doi.org/10.1109/mra.2006.1638022
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1288525
https://doi.org/10.1109/iccv.2007.4409116
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1109/iccv.2011.6126544
https://doi.org/10.1109/iccv.2011.6126542

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

BIBLIOGRAPHY

80

[17] Harris, C., & Pike, J. (1988). 3D positional integration from image sequences. Image and Vision

Computing, 6(2), 87–90. https://doi.org/10.1016/0262-8856(88)90003-0

[18] García, D. V., Rojo, L. F., Aparicio, A. G., Castelló, L. P., & García, O. R. (2012). Visual

Odometry through Appearance- and Feature-Based Method with Omnidirectional Images.

Journal of Robotics, 2012, 1–13. https://doi.org/10.1155/2012/797063

[19] De La Escalera, A., Izquierdo, E., Martín, D., Musleh, B., García, F., & Armingol, J. M. (2016).

Stereo visual odometry in urban environments based on detecting ground features. Robotics

and Autonomous Systems, 80, 1–10. https://doi.org/10.1016/j.robot.2016.03.004

[20] Labrosse, F. (2006). The visual compass: Performance and limitations of an appearance‐based

method. Journal of Field Robotics, 23(10), 913–941. https://doi.org/10.1002/rob.20159

[21] Wang, K., Ma, S., Chen, J., Ren, F., & Lu, J. (2020). Approaches, challenges, and applications

for Deep Visual odometry: toward complicated and emerging areas. IEEE Transactions on

Cognitive and Developmental Systems, 14(1), 35–49.

https://doi.org/10.1109/tcds.2020.3038898

[22] Agilex Robotics. (n.d.). TRACER. https://global.agilex.ai/products/tracer

[23] NVIDIA Jetson AGX Orin. (n.d.). NVIDIA. https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-orin/

[24] ZED X Mini Stereo Camera | StereoLabs. (n.d.). https://www.stereolabs.com/en-

es/store/products/zed-x-mini-stereo-camera

[25] ZED X One | StereoLabs. (n.d.). https://www.stereolabs.com/en-es/products/zed-x-one

[26] Setting Up Transformations — Nav2 1.0.0 documentation. (n.d.).

https://docs.nav2.org/setup_guides/transformation/setup_transforms.html

[27] tf - ROS Wiki. (n.d.). http://wiki.ros.org/tf

[28] Moore, T., & Stouch, D. (2015). A generalized extended Kalman filter implementation for the

robot operating system. In Advances in intelligent systems and computing (pp. 335–348).

https://doi.org/10.1007/978-3-319-08338-4_25

[29] G. Welch and G. Bishop, "An introduction to the Kalman filter," 1995.

[30] Pentagram. (n.d.). Stereolabs. https://www.pentagram.com/work/stereolabs

[31] Getting Started with ROS 2 and ZED - Stereolabs. (s. f.).

https://www.stereolabs.com/docs/ros2

[32] Using VIO to Augment Robot Odometry — Nav2 1.0.0 documentation. (s. f.).

https://docs.nav2.org/tutorials/docs/integrating_vio.html

[33] Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International

Journal of Computer Vision, 60(2), 91–110.

https://doi.org/10.1023/b:visi.0000029664.99615.94

[34] University of Zurich. (n.d.). Introduction to Autonomous Mobile Robots. In Robotics and

Perception Group, pp. 208-227 https://rpg.ifi.uzh.ch/docs/teaching/2024/Ch4_AMRobots.pdf

[35] Schmidt, A., Kraft, M., & Kasiński, A. (2010). An evaluation of image feature detectors and

descriptors for robot navigation. In Lecture notes in computer science (pp. 251–259).

https://doi.org/10.1007/978-3-642-15907-7_31

[36] Chien, H., Chuang, C., Chen, C., & Klette, R. (2016). When to use What feature? SIFT, SURF,

ORB, or A-KAZE features for monocular visual odometry. IEEE, 1–6.

https://doi.org/10.1109/ivcnz.2016.7804434

[37] Hartmann, J., Klussendorff, J. H., & Maehle, E. (2013). A comparison of feature descriptors

for visual SLAM. European Conference on Mobile Robots, 56–61.

https://doi.org/10.1109/ecmr.2013.6698820

https://doi.org/10.1155/2012/797063
https://doi.org/10.1016/j.robot.2016.03.004
https://doi.org/10.1002/rob.20159
https://doi.org/10.1109/tcds.2020.3038898
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.stereolabs.com/en-es/store/products/zed-x-mini-stereo-camera
https://www.stereolabs.com/en-es/store/products/zed-x-mini-stereo-camera
https://docs.nav2.org/setup_guides/transformation/setup_transforms.html
http://wiki.ros.org/tf
https://doi.org/10.1007/978-3-319-08338-4_25
https://www.stereolabs.com/docs/ros2
https://docs.nav2.org/tutorials/docs/integrating_vio.html
https://doi.org/10.1023/b:visi.0000029664.99615.94
https://rpg.ifi.uzh.ch/docs/teaching/2024/Ch4_AMRobots.pdf
https://doi.org/10.1007/978-3-642-15907-7_31
https://doi.org/10.1109/ivcnz.2016.7804434
https://doi.org/10.1109/ecmr.2013.6698820

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

BIBLIOGRAPHY

81

[38] Noble, F. K. (2016). Comparison of OpenCV’s feature detectors and feature matchers. IEEE,

1–6. https://doi.org/10.1109/m2vip.2016.7827292

[39] Lowe, D. (1999). Object recognition from local scale-invariant features. IEEE, 1150–1157

vol.2. https://doi.org/10.1109/iccv.1999.790410

[40] Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008b). Speeded-Up Robust Features

(SURF). Computer Vision and Image Understanding, 110(3), 346–359.

https://doi.org/10.1016/j.cviu.2007.09.014

[41] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011b). ORB: An efficient alternative to

SIFT or SURF. International Conference on Computer Vision, 2564–2571.

https://doi.org/10.1109/iccv.2011.6126544

[42] OpenCV: ORB (Oriented FAST and Rotated BRIEF). (n.d.).

https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html

[43] Isik, M. (2024). Comprehensive empirical evaluation of feature extractors in computer vision.

PeerJ Computer Science, 10, e2415. https://doi.org/10.7717/peerj-cs.2415

[44] Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: a versatile and accurate

monocular SLAM system. IEEE Transactions on Robotics, 31(5), 1147–1163.

https://doi.org/10.1109/tro.2015.2463671

[45] OpenCV: Feature matching. (n.d.).

https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html

[46] Moreno-Valenzuela, J. (2008). Robot control using On-Line modification of reference

trajectories. In InTech eBooks. https://doi.org/10.5772/6216

[47] OpenCV: Feature Matching with FLANN. (n.d.).

https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html

[48] Jafari, O., Maurya, P., Nagarkar, P., Islam, K. M., & Crushev, C. (2021). A Survey on Locality

Sensitive Hashing Algorithms and their Applications. arXiv (Cornell University).

https://doi.org/10.48550/arxiv.2102.08942

[49] Wang, K., Ma, S., Chen, J., Ren, F., & Lu, J. (2020b). Approaches, challenges, and applications

for Deep Visual odometry: toward complicated and emerging areas. IEEE Transactions on
Cognitive and Developmental Systems, 14(1), 35–49.

https://doi.org/10.1109/tcds.2020.3038898

[50] Wang, S., Clark, R., Wen, H., & Trigoni, N. (2017). DeepVO: Towards end-to-end visual

odometry with deep Recurrent Convolutional Neural Networks. IEEE, 2043–2050.

https://doi.org/10.1109/icra.2017.7989236

[51] Li, R., Wang, S., Long, Z., & Gu, D. (2017). UnDeepVO: Monocular Visual Odometry through

Unsupervised Deep Learning. arXiv (Cornell University).

https://doi.org/10.48550/arxiv.1709.06841

[52] Almalioglu, Y., Saputra, M. R. U., De Gusmao, P. P. B., Markham, A., & Trigoni, N. (2019).

GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with

Generative Adversarial Networks. 2022 International Conference on Robotics and Automation

(ICRA). https://doi.org/10.1109/icra.2019.8793512

[53] Wang, W., Hu, Y., & Scherer, S. A. (2020). TartanVO: a generalizable Learning-based VO.

arXiv (Cornell University). https://doi.org/10.48550/arxiv.2011.00359

[54] Françani, A. O., & Maximo, M. R. O. A. (2025). Transformer-based model for Monocular

Visual Odometry: A video understanding approach. IEEE Access, 1.

https://doi.org/10.1109/access.2025.3531667

https://doi.org/10.1109/m2vip.2016.7827292
https://doi.org/10.1109/iccv.1999.790410
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1109/iccv.2011.6126544
https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html
https://doi.org/10.7717/peerj-cs.2415
https://doi.org/10.1109/tro.2015.2463671
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://doi.org/10.5772/6216
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://doi.org/10.48550/arxiv.2102.08942
https://doi.org/10.1109/tcds.2020.3038898
https://doi.org/10.1109/icra.2017.7989236
https://doi.org/10.48550/arxiv.1709.06841
https://doi.org/10.1109/icra.2019.8793512
https://doi.org/10.48550/arxiv.2011.00359
https://doi.org/10.1109/access.2025.3531667

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

BIBLIOGRAPHY

82

[55] Fraundorfer, F., & Scaramuzza, D. (2012b). Visual Odometry: Part II: Matching, Robustness,

Optimization, and Applications. IEEE Robotics & Automation Magazine, 19(2), 78–90.

https://doi.org/10.1109/mra.2012.2182810

[56] Castacks. (n.d.). GitHub - castacks/tartanvo: TartanVO: A Generalizable Learning-based VO.

GitHub. https://github.com/castacks/tartanvo

[57] NVIDIA Jetson AGX Orin. (n.d.-b). NVIDIA. https://www.nvidia.com/es-es/autonomous-

machines/embedded-systems/jetson-orin/

[58] ZED X Mini Stereo Camera | StereoLabs. (n.d.-b). https://www.stereolabs.com/en-

es/store/products/zed-x-mini-stereo-camera

[59] ZED X One | StereoLabs. (n.d.-b). https://www.stereolabs.com/en-es/products/zed-x-one+

[60] Herbertbay. (n.d.). GitHub - herbertbay/SURF: SURF - Speeded Up Robust Features - source

code. GitHub. https://github.com/herbertbay/SURF?tab=License-1-ov-file#readme

[61] ROS 2 Documentation — ROS 2 Documentation: Humble documentation. (n.d.).

https://docs.ros.org/en/humble/index.html

[62] Nav2 — Nav2 1.0.0 documentation. (n.d.). https://docs.nav2.org/

[63] Rodríguez Pérez, L. (2024). Desarrollo de un módulo de navegación en entornos dinámicos

para una plataforma robótica con cinemática diferencial (Trabajo Fin de Máster). Universidad

Pontificia Comillas. https://repositorio.comillas.edu/jspui/handle/11531/82755

[64] Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus. Communications of the

ACM, 24(6), 381–395. https://doi.org/10.1145/358669.358692

[65] The KITTI Vision Benchmark Suite. (n.d.). https://www.cvlibs.net/datasets/kitti/

[66] robot_localization wiki — robot_localization 2.6.12 documentation. (n.d.).

https://docs.ros.org/en/melodic/api/robot_localization/html/index.html

https://doi.org/10.1109/mra.2012.2182810
https://github.com/castacks/tartanvo
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-orin/
https://www.stereolabs.com/en-es/store/products/zed-x-mini-stereo-camera
https://www.stereolabs.com/en-es/store/products/zed-x-mini-stereo-camera
https://www.stereolabs.com/en-es/products/zed-x-one
https://github.com/herbertbay/SURF?tab=License-1-ov-file#readme
https://docs.ros.org/en/humble/index.html
https://docs.nav2.org/
https://repositorio.comillas.edu/jspui/handle/11531/82755
https://doi.org/10.1145/358669.358692
https://www.cvlibs.net/datasets/kitti/
https://docs.ros.org/en/melodic/api/robot_localization/html/index.html

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX I: SUSTAINABLE DEVELOPMENT GOALS

83

ANNEX I: SUSTAINABLE DEVELOPMENT GOALS

The present project focuses on developing a visual odometry-based autonomous navigation

system for an autonomous wheelchair, contributes directly to several of the United Nations

Sustainable Development Goals (SDGs) outlined in the 2030 Agenda. The following

alignments have been identified:

SDG 3: Good Health and Well-Being

Enhancing autonomous mobility for individuals with motor disabilities has a direct impact

on their physical health and emotional well-being. By equipping the wheelchair with robust

and accurate autonomous navigation capabilities, the project promotes user independence,

reduces reliance on caregivers, and improves overall quality of life in both private and public

environments.

SDG 9: Industry, Innovation and Infrastructure

The development of an advanced sensor fusion and visual odometry system involves the

application of cutting-edge technologies in computer vision, mobile robotics, and machine

learning. This technological integration fosters innovation in assistive robotics and

contributes to the advancement of intelligent and accessible infrastructure for individuals

with limited mobility.

SDG 10: Reduced Inequalities

Access to advanced mobility technologies represents a key step toward social inclusion.

Through technically effective and potentially low-cost solutions such as deep learning-based

monocular odometry, this project opens the door to broader accessibility, helping to reduce

the gap between people with and without disabilities.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX II: USER MANUAL

84

ANNEX II: USER MANUAL

INTRODUCTION

This user manual provides detailed guidance on how to set up, configure, and operate the

visual odometry system developed for the autonomous wheelchair. This manual is intended

for users with basic ROS2 knowledge who want to deploy or test the system under different

configurations, and that has already checked how to system works as a whole in [63].

SYSTEM OVERVIEW

The system is divided into two main ROS2 workspaces:

A. zed_ros2_ws – Visual Odometry and EKF Modules

This workspace contains all visual odometry modules, including:

• mono_vo:

o VisualOdometryNode.py: Classic monocular visual odometry

• tartanvo_ros2:

o tartanvo_node.py: Deep learning-based monocular odometry node using

the TartanVO model.

o zed_odom_transformer.py: Transforms raw visual odometry to align with

the robot’s base frame.

o EKF configuration file ekf.yaml under config/.

o General files for visual odometry and sensor fusion.

• tsformer_vo_node: Node for monocular odometry using TSformer-VO.

• zed-ros2-wrapper: Official Stereolabs ROS2 interface for the ZED cameras (ZED

X Mini and ZED X One).

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX II: USER MANUAL

85

B. ros2_tracer_ws – Original Navigation System

This workspace originates from [63].

CONFIGURATION

EKF Setup (Fusion or Vision-Only)

The EKF configuration file is in the following location:

zed_ros2_ws/src/tartanvo_ros2/config/ekf.yaml

• Using VO + encoders:

Both inputs should be declared as the following, as both are used:

• Using visual odometry only

In this case, the best solution is to comment out the encoders input and make the

cameras input as main (odom0).

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX II: USER MANUAL

86

Encoders odometry setup

The encoder data processing is implemented in:

ros2_tracer_ws/src/tracer_odometry/tracer_odometry/odometry.py

This script has two logic sections:

• The first section should be used when only encoders odometry wants to be used,

returning to the system used in [63].

• The second section reformats and publishes the encoder data to the EKF, so it should

be set when fusion want to be achieved.

Depending on the setup, comment or uncomment the appropriate section. The script

contains references to know which part corresponds to each configuration.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX II: USER MANUAL

87

Nav2 Stack Configuration

The Nav2 navigation system requires an odometry source. This is defined in:

ros2_tracer_ws/src/tracer_bringup/params/nav2_params_real.yaml

Set the odom_topic parameter to:

• /odom → for encoder-only mode.

• /odometry/filtered → for EKF fusion mode (visual + encoders or visual only).

LAUNCHING THE SYSTEM

The system must be launched in the correct order to ensure sensor availability and topic

synchronization.

1. Launching the Camera (via SSH)

Before connecting via Remote desktop to the NVIDIA Jetson, the camera has to be launched

from local computer terminal (cmd in windows). This is caused by ports issues with the

graphics when trying to get the connection between the camera and the NVIDIA Jetson using

a remote desktop. The commands to execute are:

ssh socialtech@192.168.0.11

#Password: LabControl (not a command)

cd ~/zed_ros2_ws

source install/setup.bash

[Alias]

Where [Alias] depends on the camera used:

• zedxmini

• zedxone

mailto:socialtech@192.168.0.11

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX II: USER MANUAL

88

2. Launching the Navigation and VO System

Once the camera is active, connect with the Jetson via remote desktop. Use multiple tabs

with Terminator terminal to keep each process organized (CTRL + E, CTRL+O)

For Stereo + Encoders mode, the recommended execution is:

For the Monocular (TartanVO) + Encoders mode, the recommended execution is

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX II: USER MANUAL

89

DEBUGGING AND COMMON ISSUES

Proper system operation can be monitored using ROS2 diagnostic tools. To verify that topics

are being correctly published and nodes are active, the following command is useful:

ros2 topic echo /odometry/filtered

Replace the topic with any of interest (e.g., /scan, /zed/zed_node/odom, /encoders_odom) to

validate its data flow.

Also plotting the whole TF tree might help to see if there is any topic or transformation

missing might help to identify the issue. The command is:

ros2 run tf2_tools view_frames

It is very important to always ensure each terminal session has sourced the correct

workspace:

source install/setup.bash

To inspect all active topics:

ros2 topic list

To visualize the topic-node connections and identify missing links or inactive components:

rqt_graph

Common issues

Below are some frequent problems that may arise during system operation, along with

recommended diagnostic steps:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX II: USER MANUAL

90

• Encoder Odometry Not Publishing (only when using Raspberry Pi configuration)

Symptom: No data appears on /encoders_odom.

Possible Cause: The Raspberry Pi (which transmits encoder data) is not connected to

the network.

Solution: From the Jetson terminal run the following command, and check if the

Raspberry Pi IP appears (192.168.1.154). If it does not, reboot it.

sudo arp-scan --localnet

• LiDAR data not publishing

Symptom: The topic /scan is not active or is not publishing expected data.

Possible Cause: The LIDAR IP address is no longer assigned.

Solution: Confirm that the Ethernet interface connected to the LIDAR has an IP in the

correct range (192.168.1.50). If this configuration is missing, use the provided command

to reconfigure the LIDAR:

lidar_config

This tool resets the IP and communication parameters based on the standard procedure

defined in [63].

• Camera Not Working or Crashing When Launched from Windows Terminal

Symptom: Errors appear when launching zedxmini or zedxone from a Windows

terminal, or no image/odometry is received.

Possible Cause: The camera was connected after powering on the NVIDIA Jetson.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ANNEX II: USER MANUAL

91

Solution: The camera must be physically connected before powering up the Jetson. If

the camera is plugged in after boot, it may not be recognized by the system and will not

function. Reboot the Jetson with the camera already connected to resolve the issue.

		2025-07-21T09:42:24+0200
	Jesús Tordesillas Torres

		2025-07-21T09:50:36+0200
	BOAL MARTIN LARRAURI JAIME - 05304600H

		2025-07-21T09:59:46+0200
	PANDELET DURAN ERNESTO - 30276808E

