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Partner Institution: ICAI – Universidad Pontificia Comillas

Abstract

Topological maps represent an environment as a graph, with nodes corresponding

to points of interest and edges representing traversable paths. This work presents a

system for constructing a topological map of an indoor environment using odometry

measurements and camera images. The system processes visual inputs through a

deep learning model to extract feature representations, which are then used for

similarity comparisons during node extraction. Odometry data helps adjust the

positions of the nodes, improving robustness. A loop closure detection and rewiring

mechanism is proposed to update loop edges when a closure is found. Semantic

information is incorporated to enable voice-controlled navigation.
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1 Introduction

Comillas ICAI participates in the UNIJES SocialTech Challenge [9], a competition to

develop an autonomous wheelchair capable of navigating office environments. This year’s

challenge involves increasingly complex tasks, starting with obstacle-free navigation and

progressing to static and dynamic obstacle avoidance.

The proposed system combines a camera, a LiDAR1 sensor, and wheel odometry to

perceive and interpret the environment. While navigation is primarily based on a LiDAR-

based metric map, a complementary topological map is introduced to improve efficiency

and enable voice control. Topological maps [1, 7] represent environments as graphs of key

locations and paths, offering robustness to localization errors and reduced computational

demands. This structure also facilitates integration with a natural language processing

(NLP) module, allowing users to control the wheelchair via voice commands.

The system was tested using the COLD dataset [5], which includes data from multiple

indoor trajectories in three different laboratories (Freiburg, Saarbrücken and Ljubljana).

Results demonstrate reliable performance under varying lighting conditions and confirm

the effectiveness of the NLP system in enhancing accessibility via voice control.

2 Project Definition
Figure 1 illustrates the main phases of the system. Given an indoor office environment,

the objective is to automatically segment areas of interest using visual data from a camera

and an estimate of the wheelchair’s movement.

1LiDAR (Light Detection and Ranging) is a remote sensing method that uses laser pulses to measure
distances to a target.
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Figure 1: Pipeline of the proposed algorithm.

The process begins by extracting and describing features from the visual input to

represent the environment effectively. Grounded on these features, a clustering technique

based on the algebraic connectivity [2] identifies transitions between different areas, al-

lowing the system to define meaningful nodes along the trajectory.

When a new node is detected, the system determines whether it corresponds to a

previously visited location or a new area. In the case of revisiting, the existing graph

is updated by integrating the new observation, enabling loop closure and improving the

consistency of the map. Semantic labels are incorporated into the graph to associate areas

with relevant concepts, enabling functionalities such as voice-controlled navigation. To

increase robustness, graphs generated from different trajectories are aligned, and over-

lapping nodes are fused. This step helps reduce localization and detection errors by

combining information across both paths.

3 System Description

The first stage of the system involves training the feature extractor. ResNet-101 [3] was

employed as the backbone architecture for both the CNN and the AE models. These

models were then fine-tuned using the complete set of images from the COLD dataset.

After training, the models were used to extract relevant features from the images, which

were subsequently utilized for node-to-node comparisons.

To simulate real-time behavior, where multiple sensors provide data simultaneously,

ROS2 [4] was used as the development framework. The COLD dataset supplies both

odometry data and images for each trajectory. Using ROS2 nodes, data from both sources

can be retrieved at the same time, closely mimicking a real-world scenario. A dedicated

ROS2 node was implemented for each task. However, due to significant discrepancies

between the ground truth localization and the odometry data, pose estimation was ulti-

mately performed using ground truth information instead of odometry estimates.

The primary ROS2 node is responsible for building the topological map using the data

received from the camera node and estimating the pose with the ground truth information.
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Figure 2: Images from Freiburg A laboratory. Left: Trajectory followed by the robot
with the identified nodes highlighted in red. Right: Final graph extracted from robot’s
trajectory.

Once maps from two different trajectories are generated, another node aligns them to

produce the final graph. Finally, an additional node processes natural language commands

using the final graph. Each node is enriched with semantic information by first detecting

the objects (YOLOv8 [8]) in its associated image, then generating a sentence that lists

all detected objects, and finally obtaining the embedding of that sentence (CLIP [6]).

4 Results

The system demonstrates robust performance across all tested trajectories (four out of the

five available) excluding the Ljubljana laboratories due to excessive errors in their location

coordinates that prevented their use. As shown in Figure 2, nodes are accurately placed

in points of interest such as doorways, corridors and rooms, resulting in a coherent graph

structure that facilitates smooth navigation. The rewiring mechanism effectively refines

the connections between nodes located within rooms, while the NLP module demonstrates

high accuracy in identifying the nodes referenced by user commands, both in English and

Spanish.

5 Conclusions
This work introduces a system for building topological maps of indoor spaces using images

and pose data. A deep learning model based on ResNet-101 was used to extract visual

features, helping identify key locations. Node selection was guided by changes in visual

appearance using the algebraic connectivity, and a loop closure and rewiring mechanism

improved the graph’s structure. The system was built using ROS2 for a convenient

deployment and includes a natural language feature based on semantic information. Tests

with the COLD dataset show the system is accurate, reliable, and suitable for real-world,

voice-guided navigation in assistive robotics.
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Abstract

Los mapas topológicos representan el entorno en forma de grafo, donde los nodos

representan puntos de interés y las aristas representan caminos transitables. Este

trabajo presenta un sistema para construir un mapa topológico de un entorno inte-

rior utilizando mediciones de odometŕıa e imágenes procedentes de una cámara. El

sistema procesa las entradas visuales a través de un modelo de deep learning para ex-

traer representaciones de caracteŕısticas, que luego se utilizan para comparaciones

de similitud durante la extracción de nodos. Los datos de odometŕıa ayudan a

ajustar las posiciones de los nodos, mejorando la robustez. Se propone asimismo un

mecanismo de detección de cierre de lazo y recableado para actualizar las aristas del

lazo una vez se encuentra un cierre. Finalmente, se incorpora información semántica

para permitir la navegación controlada por voz.

Palabras clave: SLAM, deep learning, computer vision, mapas topológicos, semántica

1 Introducción

Comillas ICAI participa en el UNIJES SocialTech Challenge [9], una competición para

desarrollar una silla de ruedas autónoma capaz de navegar en entornos de oficina. El

desaf́ıo de este año implica tareas cada vez más complejas, comenzando con la navegación

sin obstáculos e incrementando la dificultad con obstáculos estáticos y dinámicos.

El sistema propuesto combina una cámara, un sensor LiDAR1 y odometŕıa de las

ruedas para percibir e interpretar el entorno. Aunque la navegación se basa principal-

mente en un mapa métrico basado en LiDAR, se introduce un mapa topológico comple-

mentario para mejorar la eficiencia y permitir el control por voz. Los mapas topológicos

[1, 7] representan los entornos como grafos de ubicaciones y caminos clave, ofreciendo

robustez a los errores de localización y menores requisitos computacionales. Esta estruc-

tura también facilita la integración de un módulo de procesamiento de lenguaje natural

(NLP), permitiendo a los usuarios controlar la silla de ruedas mediante comandos de voz.

El sistema ha sido probado usando el dataset COLD [5], que incluye datos de múltiples

trayectorias en tres laboratorios diferentes (Friburgo, Saarbrücken y Liubliana). Los re-

sultados demuestran un rendimiento fiable en diversas condiciones de iluminación y con-

firman la eficacia del sistema NLP para mejorar la accesibilidad mediante el control por

voz.

1LiDAR (Light Detection and Ranging) es un método de teledetección que utiliza pulsos láser para
medir distancias a un objetivo.
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Figure 1: Pipeline del algoritmo propuesto.

2 Definición del Proyecto
La Figura 1 ilustra las fases principales del sistema. Dado un entorno de oficina interior,

el objetivo es segmentar automáticamente las áreas de interés utilizando datos visuales

de una cámara y una estimación del movimiento de la silla de ruedas.

El proceso comienza extrayendo y describiendo caracteŕısticas de la entrada visual

para representar el entorno de manera efectiva. Basado en estas caracteŕısticas, una

técnica de clustering basada en la conectividad algebraica [2] identifica las transiciones

entre diferentes áreas, permitiendo al sistema definir nodos significativos a lo largo de la

trayectoria.

Cuando se detecta un nuevo nodo, el sistema determina si corresponde a una ubicación

visitada previamente o a una nueva. En el caso de una revisita, el grafo existente se

actualiza integrando la nueva observación, permitiendo el cierre de lazo y mejorando la

consistencia del mapa. Las etiquetas semánticas se incorporan al grafo para otorgar un

significado a cada nodo, permitiendo funcionalidades como la navegación controlada por

voz. Para aumentar la robustez, los grafos generados a partir de diferentes trayectorias

se alinean, y los nodos superpuestos se fusionan. Este paso ayuda a reducir los errores de

localización y detección al combinar información de ambos mapas.

3 Descripción del Sistema
La primera etapa del sistema consiste en el entrenamiento del extractor de caracteŕısticas.

Se ha empleado ResNet-101 [3] como arquitectura base tanto para los modelos CNN como

para los modelos AE. Estos modelos han sido ajustados (fine-tuned) posteriormente uti-

lizando el conjunto completo de imágenes del dataset COLD. Después del entrenamiento,

los modelos se utilizaron para extraer caracteŕısticas relevantes de las imágenes, que pos-

teriormente se utilizaron para comparaciones de nodos.

Para simular un comportamiento en tiempo real, donde múltiples sensores proporcio-

nan datos simultáneamente, se ha utilizado ROS2 [4] como framework de desarrollo. El

dataset COLD proporciona datos de odometŕıa e imágenes para cada trayectoria. Usando

los nodos de ROS2, los datos de ambas fuentes se pueden recuperar al mismo tiempo, im-
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Figure 2: Imágenes del laboratorio A de Friburgo. Izquierda: Trayectoria seguida por el
robot con los nodos identificados resaltados en rojo. Derecha: Grafo final extráıdo de la
trayectoria del robot.

itando un escenario del mundo real. Se ha implementado un nodo ROS2 dedicado para

cada tarea. Sin embargo, debido a discrepancias significativas entre la localización real

(ground truth localization) y los datos de odometŕıa, la estimación de la pose se realizó

finalmente utilizando la información real en lugar de las estimaciones de odometŕıa.

El nodo principal de ROS2 es responsable de construir el mapa topológico utilizando

los datos recibidos del nodo de la cámara y estimando la pose con dicha información. Una

vez que se generan los mapas de dos trayectorias diferentes, otro nodo los alinea para

producir el grafo final. Finalmente, un nodo adicional procesa los comandos de lenguaje

natural utilizando el grafo resultante. Cada nodo se enriquece con información semántica

detectando primero los objetos (YOLOv8 [8]) en su imagen asociada, luego generando una

frase que combina todos los objetos detectados, y finalmente obteniendo el embedding de

esa frase (CLIP [6]).

4 Resultados

El sistema demuestra un rendimiento robusto en todas las trayectorias probadas (cuatro

de las cinco disponibles) excluyendo el laboratorio de Liubliana debido a errores excesivos

en sus coordenadas de ubicación. Como se muestra en la Figura 2, los nodos se colocan

con precisión en puntos de interés como puertas, pasillos y habitaciones, lo que da como

resultado una estructura de grafo coherente que facilita una navegación fluida. El mecan-

ismo de recableado (rewiring) ajusta eficazmente las conexiones entre los nodos ubicados

dentro de las habitaciones, mientras que el módulo NLP demuestra una alta precisión en

la identificación de los nodos referenciados por los comandos del usuario, tanto en inglés

como en español.
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5 Conclusiones
Este trabajo presenta un sistema para construir mapas topológicos de espacios interiores

utilizando imágenes y datos de pose. Se utiliza un modelo de deep learning basado en

ResNet-101 para extraer caracteŕısticas visuales, lo que ayuda a identificar ubicaciones

clave. La selección de nodos se gúıa por cambios en la apariencia visual utilizando la

conectividad algebraica, y un mecanismo de cierre de bucle y recableado (loop closure

and rewiring) mejora la estructura del grafo. El sistema se ha construido utilizando

ROS2 para una implementación conveniente e incluye una función de lenguaje natural

basada en información semántica. Las pruebas con el dataset COLD muestran que el

sistema es preciso y fiable, consturyendo un mapa del entorno robusto y adecuado para

la navegación guiada por voz.
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Madrid

Junio de 2025



Declaro, bajo mi responsabilidad, que el Proyecto presentado con el tı́tulo Visual

Topological SLAM using Deep Learning Techniques en la ETS de Ingenierı́a -
ICAI de la Universidad Pontificia Comillas en el curso académico 2024/25 es de mi
autorı́a, original e inédito y no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente, y la información que ha
sido tomada de otros documentos está debidamente referenciada.
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Abstract—Topological maps represent an environment as

a graph, with nodes corresponding to points of interest

and edges representing traversable paths. They offer effi-

cient integration with natural language modules and are

computationally lighter than metric maps, which, while

more precise, demand greater processing power. This work

presents a system for constructing a topological map of

an indoor environment using odometry measurements and

camera images. Visual inputs are processed through a deep

learning model to extract feature representations, which are

then used for similarity comparisons during node extraction.

Odometry data is used to refine node positions, enhancing

robustness. A loop closure detection and rewiring mech-

anism is proposed to update loop edges when a closure is

detected, improving the connectivity between affected nodes.

Two different trajectories are aligned and their nodes fused

to increase robustness and correct detection errors. Finally,

semantic information is incorporated by first detecting the

objects in each node’s image, then listing them in a sentence

and lastly obtaining the embedding of the sentence with

a language model. This process enables voice-controlled

navigation.

I. INTRODUCTION

This section covers the contextual information neces-
sary for the correct understanding of the project, its main
objectives, and the structure of the project.

A. Context and Motivation

Comillas ICAI participates in the UNIJES SocialTech
Challenge, a robotics competition with social purposes.
The goal for the 2024/2025 edition is to build an au-
tonomous wheelchair capable of navigating efficiently
within an office environment. The competition is struc-
tured around three challenges: first, the wheelchair must
visit a sequence of specified points of interest in a
designated order. The second challenge introduces static
obstacles, and the third challenge adds dynamic obstacles
to further test navigation capabilities. While the primary
focus of the 2024/2025 competition is on office environ-
ments, the system proposed in this work is adaptable
to other indoor spaces such as museums, schools, or
supermarkets.

The main navigation system of the wheelchair uses a
LiDAR1-based metric map, which stores precise infor-
mation about the distances between obstacles. While this
provides an accurate and detailed representation of the
environment, it comes with a high computational cost.
To complement the metric map, this work introduces
an algorithm that builds a topological map: a graph-
based structure that stores only key locations and the
connections between them. Topological maps are more
efficient, mimicking how humans perceive their surround-
ings: by focusing on relative positions rather than exact
distances, enabling navigation without collisions. They

1LiDAR stands for Light Detection and Ranging. It is a remote
sensing method that uses laser light to measure distances to objects.

are also less sensitive to localization errors, as they do
not depend on precise coordinates, and can be easily
combined with semantic information to support voice-
controlled navigation.

The main motivation behind this project lies in the
advantages of combining a metric map with a topological
one. Furthermore, the introduction of deep learning fea-
tures provides a more robust environment representation
for both navigation and voice-control.

The use of a topological SLAM algorithm allows
the autonomous wheelchair to create a more efficient
environment representation for global navigation. When
combined with a metric map, the system can achieve
accurate navigation based on natural language processing
(NLP) commands, a feature that would be much harder
to implement without a graph-based structure.

B. Objectives

The purpose of this project is to build a topological
map that can be used for efficient navigation. To achieve
this goal, the process is divided into three subobjectives:
feature extraction, node extraction, and loop closure with
map alignment. On top of that, the integration of semantic
information will be set as an extra objective once the rest
of the system is completely functional.

The pipeline begins when the camera captures an image
of the environment. The first subojective is to train a
model capable of providing a consistent representation of
its environment that can used in the following stages. This
feature vector has to be both low-dimensional compared
to the original images and also robust against diverse
lightning conditions.

The next step is node extraction, which involves select-
ing the most informative locations to serve as nodes in the
topological map. Thus, the second subojective involves
developing a system that accurately detects when a new
node needs to be added to the graph. This task will
be successfully accomplished if the generated nodes are
located in meaningful places (rooms, corridors, doorways)
and the graph structure is coherent and non-redundant.

Finally, the system must determine whether a newly
captured image corresponds to a previously visited loca-
tion or a new one. This process, known as loop closure
detection, is carried out by comparing the current feature
vector with those of existing nodes. Therefore, the final
subojective will be to optimize the generated graph to
ensure consistent location of nodes and avoid missing
or over-represented spaces. This process involves both a
functional loop detection algorithm and a graph alignment
process that combines information from multiple maps to
corrrect detection ald location errors.
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Figure 1. Summary of the proposed algorithm.

After completing the three main subobjectives, seman-
tic information can be added to the graph’s nodes as an
extra goal. This enriched representation enables seamless
integration of a voice-controlled navigation system.

C. Project Structure

The proposed algorithm consists of the following steps.
It begins by capturing an image of the environment,
which is processed by a deep learning model (CNN or
AutoEncoder) to produce a feature vector representing its
visual content. An object detection model is then applied
to identify all objects present in the image associated with
each node. These objects are combined into a descriptive
sentence, which is passed through a language model to
generate an embedding that captures the semantic infor-
mation of the node. This enriched representation enables
the integration of voice-controlled navigation.

Although the initial plan was to use odometry data
for localization, the measurements from the selected
dataset exhibited significant discrepancies compared to
the ground truth data. As a result, the localization mod-
ule was based on ground truth information rather than
odometry estimates. This information is used to estimate
the position of each image, which, combined with the
previously extracted vectors, defines a node in the graph.
The new node is then compared to existing ones, based
on both pose and visual feature similarity, to determine
whether it represents a new location or an update to an
existing node. If the system detects a previously visited
location (i.e., a loop closure), odometry data is used to
adjust the positions of the affected nodes, ensuring con-
sistent localization. Additionally, a rewiring mechanism

refines the connections between nodes within the loop to
improve the graph’s structure.

Once two different trajectories have been completed,
the map alignment module combines the resulting graphs
to enhance robustness and correct errors in node detection
and placement. A visual summary of this process is shown
in Figure 1.

The remainder of this report is structured as follows:
Section II presents a review of related work. Section III
explains the techniques and algorithms used through-
out the project. Section IV describes the experiments
conducted to evaluate system performance. Section V
analyzes the results obtained. Finally, Section VI outlines
the project’s conclusions and suggests potential directions
for future work.

II. RELATED WORK

This section provides a review of the literature on
visual topological Simultaneous Localization and Map-
ping (SLAM). It begins by covering the different op-
tions for perception systems, which are the sensors used
to capture environmental information. Feature extraction
mechanisms are analyzed afterwards, followed by node
clustering and map alignment techniques. The analysis
finishes with a revision of loop closure detection and
map alignment algorithms. Finally, the section covers
different techniques for integrating semantic information
into topological maps.

A. Perception

In the perception phase, robots gather information
about their environment using various sensors with which
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Table I. Summary of sensors used in various sources.

Source
Camera

LiDAR Odometry IMU
RGB RGB-D Thermal

Sousa and Bassani [37] ↭
Blochliger et al. [12] ↭ ↭

Zhu et al. [40] ↭ ↭
Hughes et al. [35] ↭ ↭ ↭
Chaplot et al. [25] ↭ ↭

Agha et al. [28] ↭ ↭ ↭ ↭ ↭
Bavle et al. [33] ↭ ↭

Luo and Chiou [14] ↭ ↭ ↭
Yoshida et al. [39] ↭ ↭
Wang et al. [27] ↭

Hou et al. [4] ↭ ↭
Piergiovanni et al. [30] ↭ ↭

Vora et al. [26] ↭ ↭
Qi et al. [15] ↭

they are equipped. There are two primary options when
selecting sensors for a robot performing SLAM: an RGB
camera, which captures 2D images with one or three
color channels, and LiDAR, which generates a point cloud
estimating the distance to each point within its field of
view. Both options can be used separately or combined
to leverage the advantages of both worlds. Incorporating
odometry measurements or information from an Inertial
Measurement Unit (IMU) can help represent the environ-
ment in a more precise way in both approaches.

Some systems rely solely on camera information for
the visual SLAM algorithm. Sousa and Bassani [37] use
a CNN architecture to extract features from 2D images
that are then converted to features of a topological map.
Yoshida et al. [39] present a system that receives an RGB
image as input of an instance segmentation algorithm
which is then transformed into a graph for further process-
ing. A similar system in presented by Wang et al. [27],
where the authors perform instance segmentation of RGB
images and then filter out dynamic objects. A two-camera
system is proposed by Hou et al. [4], where they use
the right- and left-hand sides of the same camera with
different lightning conditions to train a robust model.
Some techniques make use of odometry sensors or IMU
information to make a more accurate representation of
the environment, as shown in the Hydra architecture by
Hughes et al. [35]. Finally, the use of noisy odometry
sensors along with RGB panoramic images can help
autonomous robots better localize themselves in indoor
environments, as presented by Chaplot et al. [25].

On the other hand, there are techniques that make use

of point cloud representations obtained with LiDARs.
One example is the architecture proposed by Blochliger
et al. [12], where they generate a voxel map with 3D land-
marks and posterior processing. Odometry information is
also useful when combined with point clouds, as shown
by Bavle et al. [33]. The authors use LiDAR information
to recognize places and localize the robot, alongside the
odometry measurements.

A third option is to use both an RGB camera and a
LiDAR unit to obtain environmental information. Some
techniques process input data from each device separately,
while others combine the data into integrated features that
are then fed into subsequent deep learning architectures.
The first group includes systems like NeBula, by Agha
et al. [28], which participated in the DARPA Subterranean
Challenge. They combine LiDAR an IMU data for ac-
curate localization with cameras for specially complex
environments. In the work by Luo and Chiou [14], the
authors construct a metric map using LiDAR data and a
topological map using RGB images, incorporating odom-
etry measurements into both to achieve a more accurate
representation. The second group includes architectures
that leverage the intrinsic and extrinsic parameters of the
sensors to ensure spatial consistency between camera and
LiDAR data. An example is the system developed by
Waymo, as presented by Piergiovanni et al. [30], which
employs dynamic connection learning to capture relation-
ships between LiDAR and RGB features, using attention
mechanisms to focus on the most relevant features. Vora et
al. [26] introduce an architecture that “paints” the LiDAR-
generated point cloud with semantic information obtained
from a segmentation algorithm applied to RGB images.
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This semantic information is appended to the point cloud,
which can then be processed using a conventional LiDAR
algorithm. A primary drawback of these techniques is
their increased computational cost, due to the use of 3D
CNNs.

A similar option comes with the use of RGB-D cam-
eras, whose images are known to have 2.5 dimensions (the
2D image plus the depth dimension). Zhu et al. [40] use
an RGB-D camera to integrate appearance, geometric and
semantic features with a cross-attention decoder so the
model remains robust when one of the metrics incurs in
error. The architecture presented by Qi et al. [15] performs
instance segmentation with 2D images and then extend
them to perform 3D image segmentation on reduced parts
of the image. Table I provides a summary of the sensors
used in each of the discussed works.

B. Feature Extraction

The feature extraction process transforms sensor data
into numerical representations (features) suitable for use
in deep learning models. Common systems include a CNN
to extract image features, which are then stored in a graph
structure for subsequent processing.

Sousa and Bassani [37] employ a multi-step process
where visual features are extracted from images using
GoogleNet. This vector represents visual characteristics
and is used both for object classification and to establish
spatial relationships between map nodes. The method in-
troduced by Hou et al. [4] makes use of the image features
from a layer of a CNN as image descriptors for the loop
closure detection. Zhu et al. [40] leverage an RGB-D
camera to combine geometric, semantic and appearance
features using cross-attention to obtain a single feature
for hierarchical semantic mapping. In the work shown
by Wang et al. [27], the authors propose a system that
performs semantic segmentation on the RGB image and
uses it to extract distinctive landmarks and to create a
semantic graph. The landmarks are fed into a CNN to
calculate the similarity between different frames with the
help of the semantic graph.

Other techniques, such as the one presented by Hughes
et al. [35], employ RGB images to build a hierarchical
scene graph. In this case, the authors use three different
processes for different level features and computations.
A similar approach is presented by Bavle et al. [33], but
in this case the perception system is a LiDAR and the
hierarchy is defined by fixed categories (floors, rooms. . . ).
The system used by Blochliger et al. [12] receives a sparse
visual SLAM map with triangulated landmarks and builds
a topological map in which the vertices are convex voxel
clusters and the edges are their adjacent areas.

The architecture proposed by Yoshida et al. [39] pro-
cesses the input RGB images through a semantic seg-

mentation algorithm and converts the output to a graph
by using adjacent bounding boxes and threshold-based
distances. This graph is then fed to a graph convolutional
network (GCN) for knowledge transfer. In the system
developed by Chaplot et al. [25], four functions are
combined to update the topological graph and to plan
both global and local trajectories. A hybrid approach
is presented by Luo and Chiou [14], where they build
a graph in which nodes can have three different levels
of abstraction: low abstraction (metric map) and high
abstraction (topological map). This hybrid representation
allows efficient semantic-based navigation.

As an alternative to CNNs, autoencoders have also been
used as feature extractors in cases in which a lower dimen-
sionality provides remarkable advantages. CodeSLAM
[13] was a pioneering method that integrated an autoen-
coder into SLAM to learn a compact representation of
dense geometry. Instead of storing full-resolution depth
maps, they trained a variational autoencoder to encode
a depth map into a low-dimensional code. In addition,
conditioning the depth map on the image enables the code
to focus only on those aspects of the geometry that cannot
be directly predicted from the image.

Luo et al. [29] addressed the loop closure detection
problem with a Stacked Assorted AutoEncoder (SAAE).
Traditional bag-of-words (BoW) place recognition strug-
gles under appearance change. SAAE instead learns a
robust image descriptor by combining multiple autoen-
coders. Specifically, it stacks a denoising autoencoder (to
make features robust to noise and appearance change), a
convolutional autoencoder (to preserve spatial structure
in the feature), and a sparse autoencoder (to enforce
compactness and reduce dimensionality). The resulting
loop closure feature is more robust than those produced
by single-type autoencoders or BoW models.

Song et al. [42] propose a loop closure detection
method based on a variational autoencoder (VAE) with
an attention mechanism. The VAE network is trained to
extract a low-dimensional vector representation of each
input image, effectively serving as a learned global feature
instead of handcrafted features. This autoencoder-derived
descriptor, along with an attention module that improves
the encoding of important regions, is used to match
images for loop closure. This study reveals the viability of
replacing CNN and hand-crafted feature extractors with
low-dimensional autoencoder representations.

The Transformer architecture introduced by Vaswani
et al. [11] has also been used in a variety of visual SLAM
projects, with a special focus on dynamic environments.
Chen et al. [41] propose VTD-SLAM, a visual SLAM
system that replaces CNN-based segmentation with an
improved Vision Transformer (ViT) backbone to handle
dynamic scenes. Using the Transformer’s global self-
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attention (instead of only local convolutions), the system
better captures long-range dependencies for accurate seg-
mentation, achieving a 17% reduction in trajectory error
compared to a CNN-based method.

In the work by Wang et al. [38], the authors propose a
hybrid approach that combines CNNs with Transform-
ers. The CNN component is utilized to extract initial
feature maps from input images, capturing local features
effectively. These feature maps are then enhanced by the
Transformer module, which models contextual relation-
ships within the image. This combination leverages the
strengths of both architectures: the CNN’s proficiency in
local feature extraction and the Transformer’s capability
to understand global context through self-attention mech-
anisms.

Sun et al. [32] developed LoFTR, a detector-free fea-
ture matching network that uses transformers to replace
the traditional keypoint detector and descriptor pipeline.
LoFTR establishes dense pixel-wise correspondences be-
tween image pairs via self- and cross-attention layers,
producing high-quality matches even in low-texture or
motion-blurred areas. As an improvement over LoFTR in
SLAM, Qu et al. [43] present MSpGLoFTR, which intro-
duces multi-scale attention mechanisms to better handle
scale variations.

C. Node Clustering and Map Matching

Once the features from the input source are extracted,
they are typically organized into a graph structure com-
posed of nodes. Each node represents a location of interest
in the real world, while edges indicate the traversable
space between nodes. Node clustering is a part of this
process, where similar nodes are grouped together to
simplify the system architecture and prevent the need for a
unique node for every analyzed feature. In map matching,
the system seeks to establish associations between nodes
in consecutive frames or between the current frame and
an existing map.

The algorithm presented by Blochliger et al. [12] clus-
ters the recognized space starting with a unique point
in the center of each free space zone (stored with its
convex hull) and grows it iteratively, ensuring that no
obstacles are added to the cluster. In the system presented
by Sousa and Bassani [37], each node is represented
by three vectors (position, visual features and average
distance features vectors). The visual features vector of
the nodes that enter the system gets compared to the
existing ones. If the distance to the closest features vector
is lower than a certain threshold, its visual features are
consolidated and the graph is updated. However, if the
distance is higher than the threshold, a new node is created
with its new position and a moving average between the
new visual features and the last vector’s visual features.

Chaplot et al. [25] propose that each node keeps the
panoramic image taken in its position and the relative pose
between them. The Graph Update function then compares
previous nodes with the new one to determine whether to
create another node. A similar approach is considered by
Luo and Chiou [14], where each node’s features come
directly from the CNN. Clustering is carried out between
nodes based on spatial proximity or semantic similarity
of these features.

Bavle et al. [33] present a system that constructs a hi-
erarchical scene graph from low-level vector information,
which is clustered into free space clusters. In the following
layer, these clusters are connected, integrating both metric
and semantic information. New connections are then
established to higher layers that represent rooms and floor
levels. In the system shown by Yoshida et al. [39], a GCN
is used to extract a feature vector from the graph. Node
clustering techniques are applied to the node embeddings
produced by the GCN to decide whether each feature can
be classified into an existing cluster, or it may form a new
one.

In very complex environments, like the one shown
by Agha et al. [28], it is preferable to store precise
geometric information rather than a topological structure.
In this case, semantic information is added to the map
to increase its navigation capabilities. Moreover, multiple
robots share their maps to build a stronger global local-
ization system.

D. Loop Closure Detection and Map Alignment

The final part of the process involves detecting already
visited zones and adjusting the generated map to ensure
consistency between different localizations.

The system presented by Bavle et al. [33] performs
loop closure detection with hard constraints at very low
level features, representing neighboring keyframe poses,
while softer constraints are applied in higher layers of the
graph.

Luo and Chiou [14] propose that CNN and geometric
information are both used to determine whether the robot
has returned to an already visited location. Once loop
closure is detected, the robot performs map alignment
to correct the trajectory. The work by Wang et al. [27]
introduces an advanced loop closure detection method
that combines information from two different systems.
The first system compares geometric similarity between
graphs derived from a semantic segmentation algorithm.
The second system integrates information from CNN
features and Hu moments to assess appearance similarity.
Each segmented image is compared to all images in the
dataset that share at least one common label.

Hou et al. [4] provide an extensive comparison between
hand-crafted features and CNN features (output of Con-
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Table II. Comparison of Visual Topological SLAM using Deep Learning Techniques.

Source Approach Input Data Key Features Use Case

Sousa and
Bassani [37] CNN RGB image Feature consolidation Indoor robots

Blochliger et al. [12] 3D voxels generation 3D landmarks
(LiDAR) Efficient path planning Indoor robots

Zhu et al. [40] CNN & decoder RGB-D image Feature representation Indoor robots
Sünderhauf et al. [5] CNN RGB image Feature extraction Varies

Hughes et al. [35] CNN & 3D mesh RGB image 3D scene graphs Indoor robots
Chaplot et al. [25] CNN RGB image Image-goal navigation Indoor robots

Agha et al. [28] LiDAR-based LiDAR landmarks &
IMU

Autonomy in challenging
environments

All kinds of
robots

Bavle et al. [33] LiDAR-based LiDAR landmarks 3D scene graphs Indoor robots

Luo and Chiou [14] CNN & metric map RGB image &
LiDAR landmarks Semantic mapping Service robots

Yoshida et al. [39] CNN & GCN RGB image Semantic localization Indoor robots

Wang et al. [27] CNN RGB image Loop closure detection Outdoor & indoor
robots

Hou et al. [4] CNN RGB image Loop closure detection Outdoor & indoor
robots

Piergiovanni
et al. [30] 3D CNN RGB video &

LiDAR landmarks 3D object detection Autonomous
vehicles

Vora et al. [26] CNN & LiDAR RGB image &
LiDAR landmarks Input feature fusion Outdoor robots

Qi et al. [15] CNN RGB-D image 3D object detection Outdoor & indoor
robots

Bloesch et al. [13] AutoEncoder RGB and grayscale
images Dimensionality reduction Indoor robots

Luo et al. [29] AutoEncoder RGB image Loop closure detection Outdoor robots

Song et al. [42] AutoEncoder +
Attention RGB image Loop closure detection Outdoor robots

Chen et al. [41] Transformer RGB image Image segmentation Indoor robots
Wang et al. [38] Transformer + CNN RGB image Place recognition Outdoor robots

Sun et al. [32] Transformer RGB and grayscale
images Feature matching Indoor robots

Qu et al. [43] Transformer RGB image Feature matching Outdoor robots

volutional or Pooling layer) as image descriptors for loop
closure detection. They reach the conclusion that CNN
features achieve the same performance with good lighting
condition but outperform hand-crafted features with worse
conditions.

Sünderhauf et al. [5] investigate the performance of
CNN features and propose two techniques to enhance
the speed of image comparisons. The first technique
involves approximating the cosine distance, while the
second technique clusters features into semantic groups
to facilitate faster comparisons. The algorithm proposed
by Hughes et al. [35] constructs a hierarchical set of
descriptors that represent the surroundings of each node.
When conducting loop closure detection, the algorithm
traverses this hierarchy from places to objects to appear-
ance descriptors. If the similarity of the place descriptors
is higher than a certain threshold, the algorithm proceeds
to compare the object descriptors, and so forth.

The graph-based structure present in many of these

techniques can be optimized to ensure the global con-
sistency of graph nodes and edges, thereby mitigating
potential errors in pose estimates and the inherent noise in
sensor measurements. One of the most popular methods
for addressing this issue is the Levenberg-Marquardt
algorithm, which is employed to solve non-linear least
squares problems. Table II shows a brief description of
the techniques used in the mentioned literature.

E. Semantics Integration

One of the main advantages of topological maps is their
compatibility with natural language navigation. Semantic
information provides insights into the objects, features
or places that appear in a certain image. By integrating
this knowledge into the graph, nodes become richer
representations of the environment that unlock a new
range of possibilities. When working with a semantically-
informed topological map, the user can operate the system
with natural language commands, increasing both the
accessibility and the ease of use. Semantic information
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can also be used to enhance the system’s robustness
against dynamic objects or changes in lighting conditions.

During the last decade, the focus on finding optimal
algorithms to extract semantic information has shifted
from traditional vision algorithms to deep learning tech-
niques that leverage CNNs. These advanced algorithms
meet both main requirements for visual SLAM: high
semantic extraction accuracy and real-time performance.
Three specific techniques may be used for this purpose:
object detection, semantic segmentation and instance seg-
mentation.

Object detection consists on identifying distinct objects
in an image, which can help the system build a better
understanding of the environment. One of the most com-
mon one-stage object detectors is YOLO [8], which has
been improving over the years [10] [24] and provides
a consistent enough performance for object detection in
SLAM. It has been diversely employed in tasks like
reconstructing the 3D shape of objects from 2D object
detections [21] or reducing position error in autonomous
navigation systems [22]. SSD [7] is another commonly
used one-stage detector that optimally balances speed and
accuracy. It has been used in several works, like the
system designed by Doherty et al. [20], in which they
increase robustness against perceptual aliasing and odom-
etry error, or the work presented by Zhong et al. [19],
improving the performance of a SLAM system in dynamic
environments.

Semantic segmentation is used to classify different parts
of an image but cannot differantiate between instances of
the same class. Murali et al. [9] employ this technique to
combine semantic information with visual features, im-
proving accuracy on GPS-denied navigation. Yu et al. [18]
present a novel system in which they integrate semantic
segmentation with local mapping and loop closing to
improve dynamical environments understanding.

Finally, the most powerful image understanding tech-
nique is instance segmentation, which is an improvement
over object detection by providing pixel-wise detection.
However, its real-time performance is not comparable
to that of an object detection system. The most used
technique is Mask-RCNN, which has been used in works
like the one by Runz et al. [17], where they build a RGB-
D SLAM system capable of labeling objects even when
they move independently from the camera.

III. METHODOLOGY

This section provides a detailed explanation of the algo-
rithms and techniques employed during the development
of the system. It begins with a description of the chosen
dataset, followed by an overview of the entire process, and
concludes with an emphasis on two main components: (1)
the training and validation phases of the different models

used for feature extraction, and (2) the simulation of a
real-life scenario using ROS2 [36], a robotics framework
that enables real-time communication between different
nodes.

A. COLD Dataset

The COLD dataset [1] was selected to replicate the
office-like environment that the wheelchair will encounter
during the competition. This dataset includes data from
five different trajectories recorded by robots operating in
three laboratories (Freiburg, Saarbrücken, and Ljubljana).
Freiburg and Saarbrücken present standard and extended
trajectories, which include room types not existing in
the standard ones. The dataset provides images captured
by the robots at various locations, along with odometry
measurements of the robots’ trajectories. Each trajectory
includes a variety of weather and lighting conditions
(sunny, cloudy, or night), resulting in a total of 77
recorded sequences across the three labs. Although the
dataset also includes LiDAR measurements, these were
not utilized in this project.

Due to significant inconsistencies between the odom-
etry data and the ground truth data (derived from image
file names), the odometry information could not be used
in the localization module. Consequently, the system was
developed using ground truth data for localization instead
of relying on odometry estimates. While this eliminates
the issue of odometry drift, one of the major challenges in
robotic navigation, it also means the simulation scenario
does not fully demonstrate one of the key advantages of
topological maps: their robustness to odometry drift. Un-
like metric maps, topological maps are less dependent on
precise positional accuracy, making them especially effec-
tive in scenarios where odometry is unreliable. Odometry
data will be incorporated once the system is deployed on
the actual wheelchair, using sensor information from the
platform’s wheels.

Another issue with the COLD dataset is the misalign-
ment between the coordinates of the images and their cor-
responding positions on the map. To correct this, a linear
transformation was applied to the recorded coordinates to
accurately plot the robot’s real path. For each trajectory, a
set of weights was trained to fit a 5th-degree polynomial
to both the x- and y-coordinate sets. The polynomial for
each map was trained by selecting a minimum of 15
image coordinates and their estimated corresponding real
coordinates in the map. This transformation successfully
reconstructs the correct path, especially in maps with a
fairly square shape. However, the Ljubljana trajectories
exhibited such severe localization inconsistencies that
they were considered unusable and had to be discarded.
Figure 2 shows the results of this transformation: image
coordinates are correctly mapped to map coordinates.
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Figure 2. Example of the path followed by the robot in the Freiburg
A lab.

B. General Overview

The first part of the project focuses on training a
deep learning model to perform feature extraction on the
provided images. CNNs and AutoEncoders have been
chosen for this task due to their strong performance in
image understanding and their ability to generate feature
vectors that serve as image descriptors. A Transformer-
based model was also considered but ultimately rejected
due to its higher complexity and only marginal perfor-
mance gains, as simpler models already achieved high
accuracy. An Autoencoder was ultimately selected for
most components of the system, as it demonstrated robust
performance across a wide range of lighting conditions.

With the feature extractor trained, the next step involves
simulating a real-life scenario in which data from various
sensors arrives simultaneously. To achieve this, the ROS2
robotics framework is used due to its ability to integrate
multiple nodes and establish real-time communication
between them. The first two nodes implemented are
responsible for publishing odometry data and camera im-
ages, respectively. A third node, tasked with building the
graph, receives data from these two sources to construct
the topological map.

Initially, this third node computed the robot’s new
pose based on the latest odometry readings. However,
as previously discussed, the odometry data proved to be
unreliable, leading to highly inaccurate localization. As
a result, localization is instead derived from the positions
where the incoming images had been captured, leaving the
odometry node obsolete. The camera image node thus is

responsible for both localization and map construction.

Once the robot’s updated pose is estimated, the in-
coming image is processed through the feature extractor
to obtain its vector representation. This vector is then
added to the affinity matrix used in the node extraction
process. By monitoring the eigenvalues of the Laplacian
matrix, the system can detect significant changes in visual
appearance, triggering the creation of a new node.

Each new node is then compared against existing nodes
in terms of both pose and visual similarity. If no similar
node is found, the new node is added to the graph and
connected to the previous one. On the contrary, if a suf-
ficiently similar node is found, the two nodes are merged
by averaging their poses and combining their associated
images. If not enough visual correspondences are detected
to stitch the images, they are simply concatenated. This
merging process indicates a loop closure, triggering the
adjustment of all node positions within the loop. This
correction distributes localization errors across all edges
in the loop, rather than concentrating it solely on the last
connection, an especially important feature when using
real odometry data, where accumulated drift must be
managed effectively.

In addition to adjusting node positions, a rewiring
mechanism is used to update graph edges when new
connections could improve structural coherence. This
rewiring is also triggered when the robot passes near
an existing node, even if the location is not identified
as a new node, further enhancing the consistency of the
topological map.

After adding a new node or combining the new node
with a previous one, the semantic information of the node
is updated. To accomplish this task, an object detector
(YOLOv8 [16]) finds all the objects present in their
associated image and combines them in a sentence. This
sentence is then fed to a language model (CLIP [31])
that outputs a sentence embedding, which is used as the
semantic information of the node.

Finally, once two complete trajectories have been pro-
cessed and their corresponding maps generated, they are
merged to improve the robustness of the resulting map
and to correct node detection and localization errors. To
ensure that as much information as possible is preserved,
the combined graph includes the union of the nodes from
both individual maps.

This merging process involves comparing all nodes
from one map to all nodes from the other. For each node,
the best match in the other graph is identified based on
both positional proximity and visual feature similarity.
If the overall similarity is high enough, the two nodes
are merged into a single node in the final graph. If no
sufficiently similar node is found, the unmatched node
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is added to the final graph and connected to the current
node.

After a node is added or merged, its connections are
also examined to determine whether any existing edges
can be updated or improved based on the newly included
node.

C. Model Training and Validation

The feature extractor is the model responsible for
generating a robust vector representation of an image that
retains as much relevant information as possible while sig-
nificantly reducing dimensionality. In this project, images
were first resized to a resolution of 224!224 and then
transformed into a 1024-dimensional feature vector. To
ensure consistency and compatibility across the system,
all trained models were designed to output vectors of the
same dimensionality.

The approach used to train a robust feature extractor
involved training a classification model and then using
the output of its final representation layer, just before
the classification layer, as the feature vector. This method
proved effective, as the trained models successfully pro-
duced meaningful representations of their environments.
The training and validation data consisted of images
obtained from 77 trajectories in the COLD dataset, each
labeled with the type of room in which it was captured.
Of these, 64 trajectories were used for training and 13
for testing, corresponding to an approximate 83–17%
split. Testing trajectories included only standard paths to
avoid introducing unseen classes. Specifically, 5 out of 32
Saarbrücken trajectories, 5 out of 26 Freiburg trajectories,
and 3 out of 19 Ljubljana trajectories were used for
testing, with the remainder allocated to training.

To train these models, a pretrained network was used
as a backbone, followed by fine-tuning with indoor en-
vironment images from the COLD dataset. The StepLR
learning rate scheduler was employed during training to
stabilize the process. It reduces the learning rate by a
factor of gamma (0.2) every step size (15) epochs.

The first model tested was a traditional CNN, known
for its strong performance in image understanding by
applying convolutional kernels across spatial regions of
the image. ResNet101 [3] was used as the backbone. Its
final two layers were removed and replaced with two
fully connected layers, separated by a ReLU activation
function. This modified architecture reduced the 2048-
dimensional output of ResNet to an intermediate 1024-
dimensional vector (used as the extracted feature vector),
and then further down to 12 output classes corresponding
to those in the COLD dataset. An average pooling layer
was inserted before the fully connected layers to reduce
spatial dimensions while preserving contextual informa-

tion, and a dropout [2] unit was included to mitigate
overfitting.

The second model explored was an AutoEncoder, a
flexible architecture designed to compress an input into
a lower-dimensional latent space and then reconstruct the
original input from that representation. In this project, the
latent space was set to 1024 dimensions, and the repre-
sentation in this space was used as the extracted feature
vector. Figure 3 displays the mentioned architecture. The
initial attempt involved training the entire AutoEncoder
from scratch; however, this approach proved unstable and
difficult to optimize, achieving only around 60% accuracy.

Figure 3. Architecture of the AutoEncoder with ResNet101 backbone.

To address this, the AutoEncoder was redesigned to
incorporate the same ResNet101 backbone as the encoder.
Its final layers were replaced with trainable fully con-
nected layers that produced the 1024-dimensional latent
vector. A decoder network was then trained from scratch
to reconstruct the original image. To improve training
stability and encourage generalization, batch normaliza-
tion layers were added after each transposed convolution
in the decoder. This revised approach was significantly
more stable and even outperformed the CNN in terms of
accuracy.

However, the model showed signs of overfitting, with
training accuracy approaching 100%. To counteract this,
a dropout unit was introduced, which successfully re-
duced training accuracy while improving validation per-
formance, ultimately resulting in a more robust model
when applied to unseen data.

D. ROS2 Structure

ROS2 is a robotics framework that facilitates real-
time communication between different nodes using a
publisher-subscriber architecture. A node acts as a pub-
lisher when it sends a message on a specific topic, and any
node subscribed to that topic receives the message upon
publication. Messages can carry various types of data,
such as numbers, vectors, or booleans. This architecture
is well-suited for simulating scenarios similar to those
the wheelchair will encounter during the competition,
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where multiple data sources transmit information simul-
taneously.

In this context, the data required to build the topo-
logical map includes odometry measurements and cam-
era images. Each data type is handled by a separate
node, responsible for extracting relevant information from
the dataset, processing it into a suitable format, and
publishing it on a designated topic. The graph builder

node receives this information, constructs the graph, and
publishes a confirmation message on the graph alignment

topic.

This notification first triggers the publication of the
second trajectory from the camera node. Upon the second
publication, it initiates the alignment of the two maps by
the map alignment node. Once this process is complete,
the map alignment node publishes another confirmation
message, enabling the commands node to operate using
natural language commands. A visual representation of
the system is shown in Figure 4.

Figure 4. Diagram of the ROS2 architecture. Blue circles represent
nodes, while rectangles represent topics. Arrows pointing a topic

indicate that the node publishes in that topic, and arrows pointing a
node indicate that the node is subscribed to that topic. The odom topic

connection is crossed because it is not used at the end.

The odometry node is responsible for reading the
odometry file from the dataset and publishing the readings
on the odom topic. However, the dataset provides the
robot’s estimated position at each timestamp, rather than
the actual wheel movements typically associated with
odometry. To address this and improve the realism of
the system, the wheel movements, represented by linear
and angular velocities, were computed from the position
and time differences between consecutive measurements.
These computed velocities were then published using
a CustomOdometry message, which included both the
derived odometry data and the corresponding time inter-
val. As previously mentioned, the original odometry data
contained significant discrepancies and could not be used
directly.

The camera node is responsible for reading images
from the corresponding file and feeding them into the

feature extractor model to obtain their vector represen-
tations. These image features are then published in an
ImageTensor message on the camera topic. The camera

node is also subscribed to the graph alignment topic,
which is used by the graph builder to signal that the
initial graph construction is complete. This notification
allows the camera node to begin publishing images from
the second trajectory to be analyzed.

The next node in the architecture is the graph builder

node, the main component of the system responsible
for constructing a topological graph based on odometry
measurements and camera images. Initially, this node
subscribed to both the odom and camera topics, but was
finally subscribed only to the latter due to issues with
the odometry data. Once the graph is built, it publishes a
confirmation message through the graph alignment topic.

The process begins by receiving a feature representation
of an image along with its corresponding file name,
which contains the pose at which the image was cap-
tured. The robot’s current pose is then updated using
this information. The previously described polynomial
[III-A] is applied to transform the robot’s position into
map coordinates, allowing the entire path to be accurately
plotted.

The next step is to perform the node extraction algo-
rithm, which involves detecting when the robot enters
a new area different from the one it was previously
in, thereby requiring the addition of a new node to
the graph. Although this task can be approached using
threshold-based techniques, such methods often lack gen-
eralizability across different environments, and selecting
a robust threshold is typically hard. As explained by Boal
and Sánchez-Miralles [6], this task can be accomplished
using only visual information and without thresholds by
leveraging the Laplacian matrix. This matrix has several
properties grounded in graph theory that are useful in
tasks such as clustering. In particular, its second smallest
eigenvalue, known as the algebraic connectivity or Fiedler
value, measures how well connected a graph is. This value
will be used to detect significant changes in the visual
appearance of the environment, which typically indicate
that the robot has entered a new room.

When working with undirected graphs, the computation
of the Laplacian matrix begins with the affinity matrix
A → Rn→n, a binary matrix with ones in positions where
two nodes are connected and zeros elsewhere, and the
degree matrix D → Rn→n, a diagonal matrix containing
the number of connections (degree) of each node.
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aij =

{
1 if i and j are connected
0 otherwise

dij =

{∑n
j=1 aij if i = j

0 otherwise

(1)

There exist several definitions of the Laplacian matrix.
In this work, the symmetric normalized Laplacian is
used, a positive semidefinite matrix whose eigenvalues
are always real and nonnegative. This matrix is defined
as follows:

Lsym = D↑ 1
2LD↑ 1

2 = I ↑D↑ 1
2AD↑ 1

2 (2)

The problem of detecting a change in appearance can
be approached as a clustering problem, for which the
Laplacian matrix can be effectively used. The idea is to
group similar images into clusters such that, when in-
coming images begin to differ significantly from previous
ones, a new cluster is formed, indicating the need to add
a new node to the graph. By constructing the affinity
matrix as a similarity matrix between previously captured
images, the algebraic connectivity will decrease when the
robot starts receiving visually distinct images from a new
area. As more images from this new area accumulate
and show increasing similarity, the algebraic connectivity
will rise again. For efficiency and memory considerations,
the affinity and degree matrices are limited to the most
recent n = 30 images. Figure 5 shows the pipeline of the
described method.

Figure 5. Node extraction pipeline. Inspired by Boal and
Sánchez-Miralles [6].

The algebraic connectivity is monitored by computing
the Laplacian matrix and extracting its second smallest
eigenvalue (the Fiedler value). By plotting a time series
of this value, displayed in Figure 6, distinct clusters
of similar images can be observed. A peak and valley
detection algorithm can then be applied to identify the
exact moments of appearance change, signaling that the
robot has entered a new location and a new node should
be added to the graph.

Figure 6. Algebraic connectivity segmented by valleys.

This peak and valley detection algorithm is an online
method for detecting valleys in a stream of algebraic
connectivity values (ϑ2), using two thresholds: ϖ, the min-
imum peak value, and ϱ, the minimum required difference
between consecutive peaks and valleys. It tracks local
maxima and minima in real-time, alternating between
searching for peaks and valleys. When a peak exceeding ϖ
is followed by a drop of at least ϱ, a valley is anticipated.
Once the signal rises by at least ϱ from the minimum, the
valley is confirmed and its index is returned. If no valley
is detected, the algorithm returns 0.

After identifying a valley, a representative image must
be selected to associate with the new node. The best
representative is the image most similar to the others.
To avoid recomputing all similarities, the degree matrix,
which contains the sum of similarities for each image, can
be used: the image corresponding to the maximum value
in the degree matrix is selected as the representative.

Once the representative image is selected, a new node
is created with its associated ID, pose, image, and visual
features, completing the node extraction process. This
new node is then compared to existing nodes in the
graph to determine whether it corresponds to a previously
visited location or a new one. The comparison takes
into account both pose and visual information to avoid
over-reliance on pose data, which may be inaccurate due
to odometry errors. This step is particularly challenging
because nodes located at the same position may have
completely different associated images if they were cap-
tured in opposite directions. Ideally, such nodes should be
merged; however, relying too heavily on visual similarity
might cause the system to incorrectly associate the new
node with a different location.

To address this, the weight of the visual similarity
in the overall comparison score is modulated based on
the similarity of the angles with which the images were
captured. The more similar they are, the higher the weight
assigned to visual similarity, up to a maximum of 0.5.
The remaining weight is assigned to pose similarity. This
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ensures a balanced comparison that accounts for both
visual and spatial consistency. The following equations
explain how the overall similarity is computed.

Let:
• ςi be the orientation (pose angle) of node i,
• ς be the orientation of the new pose,
• vi be the visual feature vector of node i,
• v be the visual feature vector of the new pose,
• dpos

i be the position distance of node i to the new
pose,

• dvis
i = cosine distance(vi,v)

!ςi = |(ςi ↑ ς + φ) mod 2φ ↑ φ| (3)

wi = 0.5

(
1↑ !ςi

φ

)
where wi → [0, 0.5] (4)

si = (1↑ wi) · dpos
i + wi · dvis

i (5)

After computing the overall similarity with all existing
nodes, the most similar node is identified. If the distance
between this node and the new node exceeds a defined
threshold, the closest node is considered too far, and
the new node is added to the graph and connected to
the previous node. At this point, a rewiring algorithm
is executed to improve the graph structure. The rewiring
algorithm performs two checks: (1) whether the new edge
between the new node and the current node can be split
by introducing one of the current node’s neighbors and
(2) whether the edges between the current node and its
neighbors can be recomputed by routing through the new
node.

Both checks involve projecting the new node onto the
candidate edge. If the projection is sufficiently close to
the new node, this suggests that incorporating the node
into the edge would smooth the graph structure. In such
cases, the new node is fused, both in terms of pose and
visual appearance, with the projected location. Since the
projection does not correspond to an existing node (and
thus lacks an image), the closest associated image is used
during the stitching process. Figure 7 shows a visual
representation of the algorithm. The semantic vector of
the node is then updated to reflect the new image.

Conversely, if the distance to the closest neighbor falls
below the threshold, a loop closure is detected. The closest
node is updated with information from the new node:
their poses are averaged, and their images are stitched.
If not enough matching points are found, the images are
concatenated. Figure 8 presents a visual summary. Again,
the semantic vector is updated to reflect the modified
image. After fusing the two nodes, all nodes within the
loop have their positions adjusted to correct odometry
errors.

Figure 7. Visual representation of the rewiring algorithm. Blue circle
indicates proximity area. If the projection is close enough to the

original node, rewiring is performed.

Figure 8. Node fusion process. Red circle indicates proximity area.

Graph optimization is performed using the GTSAM
library [34], which distributes the error across all nodes
in the loop rather than concentrating it on the final edge.
This step would be more critical in systems using raw
odometry, where loop closure drift is typically more
significant. In this case, however, the total error is limited
to the original distance between the two fused nodes.
After position adjustment, the rewiring algorithm is run
to explore possible new connections by projecting each
node in the loop onto graph edges that do not currently
include them. Again, is the projection is close enough,
the loop gets rewired and a new connection is added.
This process is crucial for maintaining a consistent graph
structure where edges represent the optimal connections
between nodes.

The final function of the graph builder node is trig-
gered when no new node is detected. If the system
determines that it is passing extremely close, an order
of magnitude closer than other distance thresholds, to an
existing node, a loop closure is detected, and the same
update procedure is applied to this node. This step is
fundamental for correctly connecting nodes when no new
relevant location is detected by the algorithm.

The pipeline continues with the map alignment node,
which is responsible for aligning the two generated maps.
It subscribes to the graph alignment topic and publishes
to the commands topic. It waits for a confirmation mes-
sage on the former to begin the alignment process and
publishes a confirmation message on the latter to enable
the NLP commands module to start operating.

Once the notification is received, the maps are loaded,
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Figure 9. Semantics integration process.

and the alignment process begins. To preserve as much
information as possible, the final graph includes the union
of nodes from both graphs. Initially, the final graph
is a clone of the first graph, and each node from the
second graph is compared to the nodes in the first. The
initial intention was to run both trajectories in parallel
and publish their generated maps through a ROS2 topic.
However, experiments revealed that this approach was too
ambitious, as the laptop could not handle the memory
requirements, and the graphs contained too much infor-
mation to be sent as messages. In the end, the option to
save and load the graphs proved to be more practical. It
also enabled the use of previously generated graphs for
subsequent analysis, alignment, plotting, or navigation.

For each node in the second graph, a KD-tree is used to
find the closest nodes from the first graph in terms of spa-
tial distance. The k nearest neighbors are then compared
using both their relative distances and visual distances, the
latter computed using cosine measure. Visual similarity is
also considered with the intention to avoid over-relying on
pose information, which could contain significant error in
an odometry-based setting.

Once the best match is found, its overall proximity is
evaluated against a threshold to decide whether to fuse
the nodes or add the new node to the final graph. If the
distance is below the threshold, the nodes are considered
to represent the same point, and their information is
merged. The fusion procedure is the same as in the
previous node: their poses are averaged, and their images
are stitched. Once the image is updated, a new feature
vector is generated, and the semantic information gets
updated.

If the distance exceeds the threshold, the nodes are
considered to represent distinct locations, and the new
node is added to the graph. It is connected to the previous
node, and a rerouting procedure begins. All neighbors of
the previous node are analyzed to determine if their edges
can be split by inserting the new node. This is done by
computing the cosine of the angle between the direction
vector from the previous node to each neighbor and the
direction to the new node. The idea is that closely aligned
edges represent an opportunity to insert the new node and
place a new edge in that direction. If the closest edge
is sufficiently aligned, it is split to pass through the new

node. Additionally, edges from the new node are evaluated
to determine if the inclusion of the new node improves
the graph structure, again using cosine similarity between
edge directions to identify potentially replaceable edges.
Figure 10 shows a visual representation of the process.

Figure 10. Map alignment process. Cosines of ω and ε are analyzed
to check whether a rerouting should be performed.

Once the map alignment process is complete, the
node saves the final graph and publishes a confirmation
message, enabling the NLP commands node to begin
operation.

Finally, once the final graph is obtained, the map is
ready to be navigated using natural language commands.
The command node allows the user to enter a query
indicating where they want to go, and the system identifies
the node that is closest to that location. The user’s
query is translated from any language into English before
processing, making the system accessible to everyone.

A sentence embedding is generated using the CLIP
[31] model and compared to the semantic embeddings
(of the same dimensionality) associated with all nodes
in the graph. Using the cosine similarity function, the
system finds the closest embedding, which represents the
location the user most likely intended. For example, if the
user says “I want to go to the kitchen”, the sentence is
converted into an embedding and compared to those of
the graph nodes. Nodes whose images contain common
kitchen-related objects, such as chairs, fridges, pans, or
cutlery, will have embeddings close in space to that of
the user’s sentence, and one of them will be selected as
the closest match. Figure 9 shows a visual summary of
the algorithm.
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Figure 11. Training and validation accuracy of the three selected models.

IV. EXPERIMENTS

The purpose of this section is to provide a guideline for
potential reproducibility of the project, as well as insights
into the hardware and software resources utilized and the
different experiments carried out with the system.

A. Model Preparation

The preparation of the models used as feature extractors
has been done with PyTorch (2.5.1+cu124) [23], a Python
library focused on deep learning systems. This library
supports the use of GPU units for parallel training,
which has been carried out using the university’s virtual
classroom computers.

The training of the model starts by running the
train.py module inside /src. First, it downloads the
COLD dataset if it has not been downloaded yet. The data
is then processed and transformed into the correct format
for subsequent use. Afterwards, the dataset is prepared
with an 83–17 split between training and testing, further
dividing the training set in training and validation (80–20
split). Images in the dataset are resized to a resolution of
224↓224 and normalized.

With the data prepared, the next step is to choose the
model to train: the CNN or the AutoEncoder. Different
hyperparameters can be tuned for training, which are
displayed in Table III.

For efficiency, both models are implemented as classes
inheriting from torch.nn.Module. They contain the
resnet101 backbone loaded with default weights,
along with an added sequence of layers to perform their
respective tasks, as explained in the previous section. The
models include a forward function for training pur-
poses and an extract_features function for feature
extraction. Figure 11 shows the training and validation

Table III. Model Hyperparameters and Training Configuration.

Parameter Value

epochs 60
lr_backbone 1↓ 10↑5

lr 1↓ 10↑3

batch_size 128
dropout 0.5
step_size 15
gamma 0.2
Loss Function Cross Entropy
LR Scheduler StepLR
Optimizer Adam

accuracy of the three best-performing models: a CNN
(m8_cnn), an AutoEncoder (m12_ae), and an AutoEn-
coder with an added dropout unit to reduce overfitting
(m13_ae). Both AutoEncoders started with significantly
lower accuracy compared to the CNN but eventually
surpassed it on the validation set.

B. ROS2 Environment Management

The ROS2 (Humble Hawksbill) environment is
structured as follows:

vts_ws/

• images/

• launch/

– project.launch.py

• src/

– vts_camera/

↓ vts_camera/

· camera.py

· camera_node.py

– vts_odom/

↓ vts_odom/

· odometry.py

· odometry_node.py

– vts_graph_building/
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↓ vts_graph_building/

· graph_builder.py

· graph_builder_node.py

· node.py

– vts_commands/

↓ vts_commands/

· commands.py

· commands_node.py

– vts_map_alignment/

↓ vts_map_alignment/

· map_alignment.py

· map_alignment_node.py

· graph_class.py

– vts_msgs/

↓ msg/

· ImageTensor.msg

· CustomOdometry.msg

The system starts when the launch file is executed.
This file specifies the name of the feature extractor to be
used, the selected laboratory, the two specific trajectories
within that laboratory, and the nodes to be deployed. It
also provides the weights for the polynomial used to map
image coordinates to map coordinates.

Each ROS2 node is contained within its own pack-
age, which includes a standard .py file responsible for
the internal logic of the node, and a _node.py file
responsible for communication with other nodes. The
graph_builder package also includes a specific Node
class representing the graph’s nodes. This class provides
several functions to enable the integration of semantic in-
formation into the graph. The map_alignment package
additionally includes a simple Graph class that facilitates
the construction of the final navigation structure.

When the full process is executed, the initial graphs are
saved as graph_1.pkl and graph_2.pkl. Both files
are then loaded by the map_alignment node, which
generates the final_graph.pkl file. Simultaneously,
the path followed by the robot is plotted, and the final
aligned map is saved as a .png image.

The process highly depends on the hyperparameters
selected, with the performance varying from map to map
for the same set of hyperparameters. For that reason,
each map has a unique set of optimal hyperparameters
that produce the most robust result, shown in Table IV.
These parameters include the ϖ and ϱ values of the peak
and valley detection algorithm and distance thresholds for
node fusion and edge rewiring.

Table IV. Hyperparameters used for each environment. dist_thrs
represents the node fusion distance, proj_dist the rewiring

maximum distance when a loop closure is found and
ext_proj_dist the rewiring maximum distance when no loop

closure is found. All distances measured in metres (m).

Parameter Frei. A Frei. Ext. Saar. A Saar. Ext.

gamma 0.5 0.4 0.5 0.4
delta 0.11 0.09 0.11 0.09
dist_thrs 3.5 2.0 3.0 4.0
proj_dist 3.0 3.5 1.25 4.25
ext_proj_dist 2.5 3.5 1.0 4.0

C. Description of the Experiments

Experiments with the COLD dataset were conducted
to evaluate the performance of the complete pipeline in a
simulation environment. The four environments tested are
the Freiburg and Saarbrücken laboratories, each evaluated
using both standard and extended trajectories.

The goal of these experiments is to demonstrate that the
system can build a topological map that accurately repre-
sents the environment. This will be considered successful
if the nodes effectively describe key points of interest,
such as rooms, doorways, and corridor centers, while
avoiding redundancy or sparsity, and if the edges between
nodes are optimal for navigation. The evaluation metric
for this component will be primarily visual, based on the
generated graphs. The commands node can be assessed
by verifying whether the destination it produces matches
the user’s intended location, either by checking the node’s
position or inspecting the associated image.

The remaining of this section will focus on the different
experiments carried out, starting with the creation of
topological maps for the four different environments and
following with the NLP commands module.

Figure 12 shows the two generated graphs from the
Freiburg A lab, along with the aligned map, which rep-
resents the final output of the system. In this case, both
individual trajectories produce highly consistent results,
with nodes representing key locations in various rooms,
doorways, and corridors. The edges are generally well-
placed, although each trajectory includes one edge that
passes through a wall. This situation, while not ideal, is
not necessarily incorrect, as edges describe traversable
paths between nodes without implying that the robot
needs to follow the straight line of the edge. As mentioned
at the beginning of the report, topological maps are not
intended to be perfectly accurate representations of the
physical environment, so some minor misplacements are
to be expected. The aligned map addresses one of these
issues and merges the nodes from both graphs. While
this fusion introduces a sharp turn in the middle of
the corridor, it also improves the connections within the
rooms and enhances the overall structure.

Figure 13 displays the graphs obtained from the
Freiburg Extended lab. In this case, the initial trajectories
are very similar but each presents certain issues. Trajec-
tory (a), collected under cloudy conditions, is not properly
rewired and results in a graph that is suboptimal for
navigation. The second graph contains two edges that run
through a wall. However, this case highlights the effec-
tiveness of the map alignment process, which successfully
resolves all these issues and produces a clean, accurate
graph. By combining both maps, individual errors are
mitigated, resulting in a final graph that is well-suited
for navigation.
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(a) Single trajectory in night conditions. (b) Single trajectory in sunny conditions. (c) Aligned map.

Figure 12. Freiburg A: Comparisons of mapping results.

(a) Single trajectory in cloudy conditions. (b) Single trajectory in sunny conditions. (c) Aligned map.

Figure 13. Freiburg Ext: Comparisons of mapping results.

Figure 14 presents the results from the Saarbrücken A
lab, the most complex environment considered, featuring
numerous rooms and tight turns in the robot’s path. It
includes a U-shaped sub-trajectory in the lowest room,
which was one of the key motivations for implementing
the rewiring mechanism. Both initial trajectories perform
well in mapping their surroundings, producing denser
graphs due to the lab’s particular layout. Despite the
increased complexity, the system produces a robust result,
with good node placement and connectivity, and only
a few edges passing through walls. The alignment pro-
cess once again improves the graph by correcting some
misplacements and removing redundancies. The U-shaped

area is accurately represented, as well as the small rooms
located on both sides of the corridor.

Finally, Figure 15 presents the results from the last
trajectory in the Saarbrücken Extended laboratory. This
case features two fairly distinct trajectories that represent
the environment almost perfectly. Only the second tra-
jectory exhibits two slightly misplaced edges that skip
the doorway and run directly through a wall. However,
the aligned map once again resolves the issue, producing
an almost flawless graph with nodes precisely where
they should be and edges forming a consistent structure
suitable for navigation.

Regarding the NLP commands module, numerous ex-

21



Universidad Pontificia Comillas
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(a) Single trajectory in cloudy conditions. (b) Single trajectory in night conditions. (c) Aligned map.

Figure 14. Saarbrücken A: Comparisons of mapping results.

(a) Single trajectory in cloudy conditions. (b) Single trajectory in sunny conditions. (c) Aligned map.

Figure 15. Saarbrücken Ext: Comparisons of mapping results.

periments have been conducted with consistent success.
Sentences in any language can be input, and the system
translates them into English before processing. The graph
then outputs the node closest to the requested room, along
with its associated image. To test the module’s perfor-
mance, the output image was analyzed and the resulting
node’s room was verified to match the intended destina-
tion. Figure 16 shows an example of the system in use.
Note that the query sentence is in Spanish (“Ve a la sala
de ordeandores”) and the system perfectly handles it. The

associated image also represents the desired destination.
The performance of this module highly depends on the
object detector and the language model. Both models can
be improved by increasing the number of parameters used,
with its corresponding increase in energy consumption
and response time. Depending on the application, different
verions of the models can be employed.

During experimentation, two issues were identified
that offer room for improvement. The first involves the
need for a similarity threshold that allows the system to
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Figure 16. Node generated and associated image when asked: “Ve a la sala de ordenadores”. Blue highlight indicates the selected node and the
computers rooms in the map.

recognize when the requested location does not exist in
the generated map. If the maximum embedding similarity
does not exceed this threshold, the system should inform
the user that no matching location was found. However,
no threshold was found that could consistently distinguish
between existing and non-existent places.

The second issue relates to how images are stitched
during the graph-building process. When stitching fails,
the images are simply concatenated and the pipeline
continues. This can result in images being combined when
they should not be, leaving the node with a corrupted
associated image, which negatively affects the object
detection process. An example of this situation can be
found in Figure 18, in Appendix 1. The associated image
corresponds to the place where the user intends to go,
but it includes other concatenated images that do not
represent that place. Still, the selected node is the correct
one. This issue can be mitigated by either reducing the
number of required keypoint matches or avoiding image
concatenation if the error raises from a different cause.

Further experiments were conducted using the CNN

extractor instead of the AutoEncoder. A considerable de-
crease in performance was observed, as fewer nodes were
detected using the same set of hyperparameters. This can
be attributed to a poorer feature representation produced
by the final two Linear layers of the CNN extractor, in
comparison to the latent space representation generated
by the AutoEncoder. This outcome also supports the
initial hypothesis that better classifiers yield better image
representations. The results are shown in the Appendix in
Figure 19, Figure 20, and Figure 21.

Additional experiments were conducted by varying the
hyperparameter values to assess their influence on the
system’s overall performance. The most significant pa-
rameters were ϖ and ϱ, which control the peak and valley
detection algorithm, as well as the distance threshold used
to determine whether two nodes are close enough to be
merged. As expected, making the valley detection stricter
led to fewer nodes being identified, resulting in a sparser
graph that represents the environment less accurately.
An example of this can be found in the Appendix, in
Figure 22.
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V. RESULTS

The experiments demonstrate the robust performance
of the system across different trajectories and lighting
conditions. While the graph generated prior to the align-
ment phase is already consistent and provides a reliable
environment for navigation, the alignment process further
refines the result, producing well-defined graphs.

The training of the feature extractor has been success-
ful, as the features employed are highly representative of
the different places. This is supported by the placement of
nodes in the middle of rooms and doorways, where the
features change according to the environment, specially
notable in Figure 15 (c) and Figure 12 (c). As a result,
the system can accurately detect appearance changes. This
validates the initial approach of training a classifier model
and later using its feature map as the final model.

The effectiveness of the node extraction process can be
observed when analyzing the node positions. According
to the logic of the algorithm, nodes should be placed at
the most representative points of different locations. These
points typically correspond to room centers and doorways,
where appearance changes are most pronounced. This ex-
pectation aligns with the final result: nodes are generally
placed at key locations visited by the robot, and edges
connect them in a structure well-suited for navigation.
This further confirms the success of the peak-and-valley
algorithm, as valleys are correctly detected and image
clustering is robust. The selection of the representative
node for each cluster also appears to work reliably.

In some cases, nodes are positioned such that the
edge connecting them is forced to pass through a wall.
While this is not a critical issue, the results would be
more consistent if this did not occur. This situation
typically arises when the robot makes quick turns and
the affinity matrix lacks sufficient images from the new
location, causing adjacent nodes to be placed too far apart.
This suggests an opportunity for improvement, possibly
through the introduction of a tight-turn detection system
to adjust behavior in such scenarios.

The mapping of image coordinates to map coordinates
functions well overall. The fitted polynomial consistently
adjusts the incoming coordinates for accurate plotting
on the map. However, in some cases, especially in very
rectangular maps, the plotted trajectory intersects with
walls. This is likely due to higher polynomial fitting errors
at extreme values.

Loop closure detection is a critical component of
topological maps. The correct functioning of this module
is essential to ensure location consistency and avoid
redundancy. The detection system demonstrates excellent
results, especially considering how frequently the robot
exits and re-enters rooms within a short time span, effec-
tively closing loops. The system appears to manage rooms

very well, with node fusion functioning properly and the
graph optimization module producing robust locations.
Notably, there are no false positives, likely due to the strict
conditions required to confirm a loop closure. There are
some false negatives, particularly in the Saarbrücken A lab
(Figure 14, but these are corrected during the alignment
phase. The node fusion algorithm also works remarkably
well, in particular when handing new connections and
poses. Image stitching is correctly done in most cases,
but leaves some room for improvement when not enough
keypoint matches are found.

The rewiring system performs as intended, ensuring
that loop nodes are connected in the most optimal way.
Given the high number of rooms and frequent small loops
in these environments, it is important to detect when
rewiring can improve the graph’s structure by preventing
redundant parallel edges. Analysis of the generated graphs
shows that the system performs well in the vast majority
of cases. One exception is found in the second trajectory
of the Saarbrücken A lab (Figure 14, where rewiring fails,
likely because the projected node is too far away. How-
ever, this inconsistency is resolved during map alignment.
In the Freiburg A lab (Figure 12, there is a particularly
illustrative example of the system’s effectiveness: in the
top room, the node at the doorway is created as the robot
exits rather than enters. Prior to the introduction of the
rewiring system, the node at the origin of the coordinate
system was directly connected to the top node, resulting
in a poorly connected graph.

Graph alignment was introduced to leverage the var-
ied lighting conditions provided by the COLD dataset,
enhancing the system’s robustness in changing environ-
ments. Its inclusion has proven to be a key factor in
the overall success of the mapping process, correcting
nearly all errors from earlier phases and ensuring that the
final graphs accurately represent the environment while
being optimized for navigation. It not only refines slightly
misaligned nodes, but also adds missing ones and corrects
erroneous edges. In effect, alignment acts as an averaging
mechanism between two graphs, mitigating errors from
both. As is typical with ensemble methods, combining
more than two maps is expected to yield even better
results.

Finally, the NLP commands module also shows robust
performance. The system reliably identifies similar em-
beddings and outputs the correct node in nearly all test
scenarios. Failures were mostly caused by corrupted im-
ages that had been concatenated with too many dissimilar
ones, negatively affecting object detection performance.
It is important to note that this module depends on both
the object detector and the language model, both of which
can be further improved if needed. This component signif-
icantly enhances the system’s accessibility, allowing it to
be used by people regardless of their technical knowledge
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or spoken language. This is a crucial consideration, given
that the system is intended for use by individuals with
disabilities, for whom increased accessibility is especially
valuable.

In conclusion, the system demonstrated a high degree
of consistency and reliability across diverse trajectories
and environmental conditions. The visual results showed
topological maps that were not only structurally valid
but also semantically meaningful and suitable for real-
time interaction. Each component of the pipeline (feature
extraction, node extraction, loop closure, map alignment,
and semantic embedding) played a distinct and verifiable
role in the system’s performance. These results confirm
the practical applicability of the developed architecture
and highlight its potential for deployment in assistive
robotics and other real-world scenarios.

VI. CONCLUSION AND FUTURE WORK

This work presents a pipeline for constructing a visual
topological SLAM system leveraging deep learning tech-
niques, with the goal of enabling voice-controlled navi-
gation in indoor environments. The system demonstrates
the feasibility of generating a robust and lightweight
topological map using only image data and odometry,
enriched with semantic context and implemented with a
ROS2 framework.

During development, several key objectives were met.
A feature extractor was trained using an AutoEncoder
architecture with a ResNet101 backbone, producing a
1024-dimensional latent space capable of preserving vi-
sual coherence across diverse lighting conditions. This
embedding formed the basis for node extraction and loop
closure detection, providing a compact yet informative
representation of the visual environment.

The approach to node extraction was designed to avoid
arbitrary thresholds by leveraging the algebraic connec-
tivity of the Laplacian matrix associated with the graph.
This allowed the system to detect significant changes in
appearance that correspond to new locations, enabling
scalable and adaptive graph construction.

Loop closure detection was implemented using a hybrid
similarity measure that considered both pose and visual
appearance. When a loop is identified, the GTSAM library
is used to optimize the graph structure by distributing
error across the connected nodes. Additionally, a rewiring
mechanism is employed to refine graph connectivity by
introducing more representative connections where appro-
priate, enhancing the coherence of the topological map.

One of the system’s notable contributions is the devel-
opment of a map alignment module that merges indepen-
dently generated trajectories into a unified graph. This
module assessed spatial and visual proximity between
nodes, merging or incorporating nodes to improve the

overall structure. The resulting graph exhibits greater con-
sistency and reduced redundancy, providing a foundation
for subsequent navigation tasks.

The integration of semantic information into the graph
was achieved through object detection using YOLOv8 and
sentence embeddings generated by CLIP. Each node was
enriched with a semantic vector, enabling the interpreta-
tion of natural language commands in multiple languages.
The inclusion of language understanding into the SLAM
pipeline marks a step toward more intuitive and accessible
assistive navigation systems.

Despite the system’s positive performance, several ar-
eas remain for future improvement. A key objective is
the integration of real odometry data from a wheelchair
platform to evaluate the system’s robustness in realistic
conditions, particularly with respect to localization drift,
an issue that topological maps aim to mitigate.

Other open challenges include handling invalid seman-
tic queries. Defining a reliable mechanism to reject such
inputs is essential for improving overall robustness. Addi-
tionally, the current image stitching method occasionally
produces images that degrade semantic interpretation. Fu-
ture iterations may benefit from more advanced stitching
algorithms or different strategies when feature matching
fails.

Looking ahead, the system could be extended to support
multi-agent mapping, where different agents collabora-
tively explore and merge their respective maps. Such
functionality would increase scalability, and redundancy,
features particularly valuable in large or dynamic environ-
ments. Overall, the methods and architecture developed
in this work provide a strong foundation for accessible,
intelligent indoor navigation, integrating insights from
robotics, deep learning, graph theory, and natural language
processing.

REFERENCES

[1] KTH. The COLD database. 2009. URL: https : / /
www.cas.kth.se/COLD/.

[2] Nitish Srivastava et al. “Dropout: a simple way
to prevent neural networks from overfitting”. In:
J. Mach. Learn. Res. 15.1 (Jan. 2014), pp. 1929–
1958. ISSN: 1532-4435.

[3] Kaiming He et al. “Deep Residual Learn-
ing for Image Recognition”. In: arXiv preprint

arXiv:1512.03385 (2015).
[4] Yi Hou et al. “Convolutional neural network-based

image representation for visual loop closure de-
tection”. In: 2015 IEEE International Conference

on Information and Automation (2015), pp. 2238–
2245. DOI: 10.48550/arXiv.1504.05241.

25

https://www.cas.kth.se/COLD/
https://www.cas.kth.se/COLD/
https://doi.org/10.48550/arXiv.1504.05241


Universidad Pontificia Comillas
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Escuela Técnica Superior de Ingenierı́a (ICAI)
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APPENDIX

APPENDIX 1: ADDITIONAL FIGURES

Figure 17. Training and validation loss of the three selected models.

Figure 18. Node generated and associated image when asked: “Go to the restrooms”. Blue highlight indicates the selected node and the restrooms
position in the map.

28



Universidad Pontificia Comillas
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(a) Single trajectory in night conditions. (b) Single trajectory in sunny conditions. (c) Aligned map.

Figure 19. Freiburg A. Mapping results with CNN extractor.

(a) Single trajectory in cloudy conditions. (b) Single trajectory in sunny conditions. (c) Aligned map.

Figure 20. Freiburg Ext. Mapping results with CNN extractor.
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(a) Single trajectory in cloudy conditions. (b) Single trajectory in sunny conditions. (c) Aligned map.

Figure 21. Saarbrücken Ext. Mapping results with CNN extractor.

(a) Single trajectory in cloudy conditions. (b) Single trajectory in night conditions. (c) Aligned map.

Figure 22. Saarbrücken A. Mapping results with stricter valley detection.
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