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Abstract

Automotive manufacturing industries work at the lowest error margin in the produced parts, and even
a small defect can impact their production and success. Post-production quality inspection by humans
is expensive and time-consuming. Therefore, industries need to propose automatic and cost-effective
quality inspection systems. Deep learning (DL) algorithms have been successfully applied in computer
vision systems for defect detection in manufacturing applications, improving accuracy and robustness
by learning features from large image datasets. However, one concern in DL-based inspection systems
is the class imbalance problem caused by the difficulty in obtaining sufficient defective image samples.
This work presents a deep learning-based computer vision system for the detection of defects in battery
lid holes. Three architectures are compared and evaluated: YOLOv11, ResNet18, and EfficientNet-B0.
After data set preparation and enhancement, the proposed models achieved accuracies greater than
97% and high recall values, demonstrating their feasibility for integration into real-time industrial
quality control processes.
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1 Introduction human eyes, and human inspection is expen-
sive and time-consuming. Thus, industries need
to replace traditional inspection approaches with
automatic and cost-effective systems [3].
Computer vision system enables computers to

collect and analyze visual data from images and

The manufacturing industries are placed in a com-
petitive environment where agility, quality, and
efficiency impact their success [1]. They work at
the lowest error margin in the produced com-

ponents, and even a small defect or variance
can corrupt the whole production [2]. The post-
production quality inspection by humans can
prevent defective parts from arriving to the cus-
tomers. However, many defects are hidden from

videos using artificial intelligence (AI) algorithms,
mimicking human vision capabilities [4]. It allows
automated product quality inspection, reducing
human errors and resources, increasing efficiency,



and ensuring quality. The core of this system
is the AI model employed to learn from data
and perform predictions. Recently, deep learn-
ing (DL) models have emerged as a robust Al
approach, outperforming traditional AI models.
DL approaches can learn complex image represen-
tations and identify defects by employing artificial
neural networks and learning algorithms trained
on large image datasets [5].

Several DL algorithms have been successfully
employed for defect detection in various manufac-
turing applications, including textile [6], additive
manufacturing [7], steel [8], and automotive [9-14].
Defect detection using DL can enhance accuracy
and robustness by learning features from large
image datasets. In literature, many DL architec-
tures and models have emerged for defect inspec-
tions, such as YOLO [9, 10], SqueezeNet [11],
EfficientNet [12], ResNet [13], and LeNet [14]. For
example, in [13], a ResNet model achieved 99% of
accuracy in detecting the presence or absence of
screws in an automotive part. Despite DL-based
inspection systems outperforming traditional Al
models, one concern is the class imbalance prob-
lem caused by the difficulty of obtaining sufficient
defective samples [15]. To address this problem,
data augmentation techniques can be employed
[16, 17].

In this work, we propose a deep learning-
based computer vision system for the detection
of defects in battery lid holes. The system was
conceived to automate the entire inspection work-
flow, from image acquisition to model training
and evaluation. Data were collected using six
strategically positioned cameras along the pro-
duction line, ensuring complete coverage of each
component. A proprietary automatic segmenta-
tion algorithm was then applied to detect and
crop each hole individually, generating a homo-
geneous dataset for weld defect detection. Since
the dataset was naturally imbalanced, with most
holes being defect-free, data augmentation tech-
niques were applied to increase variability and
robustness. After labeling the samples for both
classification and detection tasks, the dataset was
divided into training, validation, and test sets,
and several deep learning models were trained,
including YOLOv11 for detection and ResNet18
and EfficientNet-B0 for classification. The trained
models achieved accuracies above 97% and high
recall values, demonstrating their feasibility for

integration into real-time industrial quality con-
trol.

The specific goal of this work is to develop an
automated system capable of accurately detecting
weld defects in battery lid holes. The system must
reliably identify and discard defective parts with-
out human intervention, while remaining robust
to variations in illumination, defect types, and
surface differences between components. Further-
more, it must operate at a speed compatible
with real industrial production lines, ensuring that
inspection is performed without slowing down the
workflow. This problem highlights the need for a
tailored computer vision system capable of com-
bining effective preprocessing, annotation, and
deep learning techniques to classify parts as either
compliant or defective under realistic production
conditions.

This work is organized as follows. Section
2 presents the main related works. Section 3
describes the employed materials and methods.
Section 4 presents the experimental results and
discussion. Section 5 concludes the paper.

2 Related works

With the advances in DL algorithms, researchers
are increasingly exploring DL capabilities to learn
and analyze data images in automotive manu-
facturing applications automatically. Wang et al.
[9] propose an adhesive defect detection approach
for automotive applications based on YOLOVS.
It incorporates an attention mechanism, called
skip squeeze and excitation, into YOLOv8 and
replaces the original IoU loss function with the
WIoU loss function to improve the detection per-
formance for small adhesive defects. The proposed
approach achieved higher accuracy and speed than
the standard YOLOvS.

In the automotive industry, a concern is the
quality of the welding spots in the produced parts.
Since manual inspection is usually inefficient and
error-prone, in literature, several computer vision
works for automatic spot welding quality can be
found in [10-12, 18]. For example, Dai et al. [10]
present a modified YOLOv3 model for small spot
welds to detect their positions and qualities. In
addition, data augmentation techniques (flipping,
color jittering, shift, and crop) are proposed to
increase the dataset. The results demonstrated



that Faster R-CNN slightly outperforms the mod-
ified YOLOv3 in detection performance but at
a higher time cost. Other studies are devoted
to inspecting welding defects in power batteries
[11, 12] since a safety vent welded on the battery
can prevent unpredictable explosions.

Hachem et al. [13] propose an automatic part
quality control in an automotive company to
replace a visual inspection method performed by
an operator. The proposed system, composed of a
ResNet-50 model, detects the presence or absence
of screws in a component with 99% of accuracy.
Muresan et al. [14] present a convolutional neu-
ral network based on the LeNet-5 architecture
to identify well-placed, badly placed, and miss-
ing bushings in an automotive component. The
proposed model achieved between 98% and 99%
accuracy under different scenarios that is differ-
ent light conditions and camera’s positions. Thus,
taking into account the emerging success of DL
in defect detection, this paper proposes a DL
algorithm to inspect an automotive part.

3 Materials and methods

This section presents the problem description and
the main steps of the proposed methodology.

3.1 Problem description

This work addresses a real-world industrial case of
an international company specializing in design-
ing, developing, and manufacturing metal auto-
motive components. The company provides parts
to several automobile manufacturers in the world.
In particular, it aims to improve its computer
vision system that automatically detects failures
or missing welded washers on small holes in bat-
tery covers and, thus, discards the defective ones.
The main objective is to avoid defective covers
arriving to the customers.

Currently, the company operates with a com-
puter vision system for inspecting battery covers
that employs a grayscale value pyramid algorithm,
developed by an external software provider. For
each battery cover, the actual system receives six
images from six cameras (Figure 1); then, the algo-
rithm inspects each hole and classifies it as OK
(i.e., without defect) or NOK (i.e., with defect).
Figure 2 shows examples of OK and NOK holes.

If a defect is detected by the algorithm, an opera-
tor must inspect the cover to confirm the failure.
Thus, if the algorithm misclassifies a cover as
NOK, an operator spends time reviewing good
covers; nevertheless, if it misclassifies a defective
cover as OK, a customer may receive a faulty part.
Thus, the company wants to develop a new algo-
rithm to reduce cases of false NOK without losing
the system’s ability to detect defective covers.

3.2 Data acquisition

The images used were collected from an assembly
line of the company in Spain. They correspond to
a cover battery from one model car. To acquire
images, a cover battery is held perpendicular to
the ground; then, an arm robot photographs it
using six cameras. Each camera captures an image
of an area of the cover, and each image contains
between 5-8 visible holes (see Figure 1). The cam-
eras overlap some areas, so repeated holes can be
found within these six images. In addition, the
captured images may have different lighting con-
ditions, mainly because the parts’ material com-
position may vary by batch and reflect different
lighting settings.

The data acquisition process has generated an
initial set of 378 images (2856 x 2848 resolution)
of 63 covers, being that 54 covers are non-defective
and 9 are defective (i.e., a cover with at least
one defective hole). As there are fewer samples of
defective holes, data augmentation is employed to
increase the data samples.

3.3 Data preprocessing

In this step, images are transformed so that they
can be effectively processed by the learning model.
In particular, this step converts the initial set of
images with multiple holes to an augmented set
of cropped images with one hole. The following
substeps were performed to automatically locate,
crop, and label each hole, as well as create new
images.

3.3.1 Cropping

To locate and crop a hole from an image, the ini-
tial set of images (in RGB mode) was converted
into grayscale images using the OpenCV API. To
do this, the pixels of the grayscale images can
assume values between 0 (black) and 255 (white).



(b) Camera 2.

(c) Camera 0.

(d) Camera 5.

(e) Camera 3.

(f) Camera 1.

Fig. 1: Battery cover images captured by the system’s cameras.

Fig. 2: Examples of defective (top) and non-
defective (bottom) holes.

Then, binary images were obtained using a simple
threshold. This method assigns 1 to pixels equal
to or greater than a threshold and 0 to pixels less
than a threshold. After checking different random
threshold values, the best value was found to be
60 for the given images. Using this binarization
procedure, the darkest image areas (such as the
holes) become black, and the lighter areas become
white, achieving maximum contrast.

After binarization, contour detection tech-
niques were applied to locate the potential holes.
Contours with an area smaller than 500 pixels
were discarded, while the remaining ones were
approximated by rectangular bounding boxes. To
reduce false positives, only contours with a nearly
square aspect ratio and within the expected spa-
tial region of the holes were considered. For
each valid contour, the centroid was computed as
the reference point of the hole. Close centroids
were merged using a Euclidean distance criterion
(threshold = 300 pixels) to avoid duplicate detec-
tions. Finally, the centroids were ordered accord-
ing to their position (left-right and top—bottom)
to match the layout of the holes as seen by
the cameras. Around each centroid, a region of
400 x 400 pixels was cropped, resulting in 1,080
(OK) and 125 (NOK) images corresponding to
non-defective and defective holes, respectively.

3.3.2 Data augmentation

The previous step revealed fewer images of defec-
tive (NOK) holes than non-defective (OK) holes.
Thus, the database has a class imbalance prob-
lem. This occurs when there is a disproportionate



ratio of instances. In class imbalance databases,
a learning model tends to be more biased toward
the majority class, leading to inaccurate classifi-
cation of the minority class and poor classification
accuracy [19].

This problem can be overcome by data aug-
mentation techniques that synthetically create
new data samples to address imbalance classes
[16]. In literature, several image data augmen-
tation techniques are available, such as classical
approaches (e.g., flipping, rotation, translation,
filters, and noise) and deep learning approaches
(e.g., generative adversarial networks and neural
style transfer) [17].

Among them, classical image data augmen-
tation techniques were applied to increase the
number of the minority class (NOK) in this work.
Using rotation and filter (brightness and contrast)
techniques, 623 new NOK images were generated.
After these procedures, 1,832 image data points
were obtained, being that 1,084 images are from
the OK class and 748 images are from the NOK
class.

3.3.3 Labeling

After, the images were manually labeled using the
Labellmg tool [20]. It is a popular image anno-
tation tool for creating labeled datasets so that
DL models can be easily trained. Labellmg allows
labeling by drawing bounding boxes and, thus,
generating annotations in a text document with
the number of the annotated class followed by the
coordinates of the bounding box. In this case, the
1,694 images were annotated as OK or NOK, and
then the result was saved into a .txt file.

3.3.4 Data splitting

The dataset was divided into training, validation,
and test subsets to evaluate the performance of
the proposed models. A total of 1,283 images were
used for training (759 OK and 524 NOK), while
325 images (325 OK and 224 NOK) were reserved
for validation. For the test set, the original num-
ber of defective covers (9 NOK) was augmented
to balance the classes, resulting in a total of 341
test hole images. This splitting strategy ensured
that model training and hyperparameter tuning
were performed on independent sets, while the
final evaluation relied on unseen data.

3.4 Model description and setup

The YOLOv1l model, one of the most recent
architectures in the YOLO family, was employed
for object detection. The training process was
initialized from the pre-trained nano version
(yololln.pt) on the COCO dataset, allowing the
transfer of optimized weights for general detection
tasks and their adaptation to the specific prob-
lem through fine-tuning. The input image size was
fixed at 640 x 640 pixels, applying padding when
necessary to preserve the original aspect ratio.
Training was performed for 100 epochs, with per-
formance evaluated on the validation set at the
end of each epoch.

The default YOLOv1l configuration was
adopted for the AdamW optimizer, with an initial
learning rate of 1 x 1073 and a cosine learning
rate scheduler, which progressively decreases the
learning rate as training advances. To improve
generalization and mitigate overfitting, data aug-
mentation techniques integrated in the YOLO
framework were employed, including slight rota-
tions, brightness and contrast variations, horizon-
tal flips, and random scaling.

For the binary classification stage of each
hole, two architectures were employed: ResNet18
and EfficientNet-B0. Both models were initialized
with weights pre-trained on ImageNet and sub-
sequently fine-tuned through transfer learning for
the specific task. In both cases, the final fully
connected layer was replaced by a single logit
output (dimension = 1), enabling direct optimiza-
tion of a binary loss. The loss function employed
was BCEWithLogitsLoss, which integrates the sig-
moid activation into the loss term itself, providing
improved numerical stability compared to apply-
ing a sigmoid followed by a conventional Binary
Cross-Entropy.

The model inputs were resized to 224 x 224
pixels and normalized using the standard Ima-
geNet statistics, ensuring compatibility with the
initial convolutional layers of both architectures
and a homogeneous data flow. The dataset was
organized using the ImageFolder structure (train/
and val/ subfolders per class), which facilitated
data loading through PyTorch Datal.oaders and
random shuffling within mini-batches.

The optimization procedure was identical for
both models to ensure a fair comparison. Specif-
ically, the Adam optimizer was employed with



an initial learning rate of 1 x 1073, a batch size
of 32 (adjusted according to GPU memory), and
a training schedule between 10 and 50 epochs
depending on validation convergence. No layers
were explicitly frozen; therefore, full fine-tuning
was performed, allowing both the early convolu-
tional blocks and the newly added classification
layer to adapt to the visual characteristics of
the holes and their defects. During validation,
model outputs were passed through a sigmoid and
thresholded at 0.5 to obtain the predicted label;
this threshold could be adjusted later depending
on the desired precision—recall trade-off for real
industrial deployment.

At each epoch, the training loss was moni-
tored, and in validation, classification metrics were
computed, including precision, recall, F1-score,
and accuracy. After training, the best state of
each model was saved for subsequent evaluation
in Section 4.

3.5 Model evaluation

Accuracy, precision, recall, Fl-score, and infer-
ence time were employed to evaluate the models.
Accuracy measures the model performance by
calculating the proportion between predictions
made by a model and the actual values. Thus, it
indicates the model’s ability to assign labels to
the classes correctly. Mathematically, accuracy is
defined as [7]:

TP+TN
TP+FP+ TN+ FN’

(1)

accuracy =
where T'P is the number of true positive samples,
TN is the number of true negative samples, F'P
is the number of false positive samples, and F'N is
the number of false negative samples. In this work,
positive and negative classes are represented by
OK and NOK, respectively. Accuracy values are
between 0 and 1, where the closer to 1, the better
the classification.

While accuracy provides a global measure, it
may not always reflect class-specific behavior, par-
ticularly under class imbalance. For this reason,
precision, recall, and the F1-score were also used.
Precision is the ratio of correctly predicted pos-
itive cases with respect to all predicted positive
cases:

TP

—_— . 2
TP+ FP 2)

precision =

Recall measures the ability of the model to
identify all relevant positive cases, i.e., the ratio
of correctly predicted positives with respect to all
actual positives:

n—- 1P (3)
recatt = TP+FN

The Fl-score combines both precision and
recall into a single metric, expressed as the har-
monic mean of the two:

precision - recall

Fl1=2 (4)

precision + recall”

Finally, inference time was considered as a
practical metric of efficiency, measuring the aver-
age time required by each model to process one
part. This aspect is particularly relevant in indus-
trial inspection, where thousands of parts must
be evaluated daily, and computational latency
directly affects production throughput.

4 Experimental results and
discussion

The experiments were conducted on a PC
equipped with an AMD Ryzen 7 5800H proces-
sor with Radeon Graphics (3.20 GHz), 16 GB
of RAM, and an NVIDIA GeForce RTX 3060
Laptop GPU. The operating system employed
was Windows 11 Professional 64-bit. The models
were developed using PyTorch version 2.5.1 with
CUDA 11.8, and the programming language was
Python 3.12.7.

Upon moving to the test evaluation, the results
provide a deeper understanding of the models’
behavior and, in particular, the sources of pre-
diction errors. As shown in Table 1, most errors
correspond to hole samples previously marked
by the collaborating company in order to rein-
force inspection techniques. In general, the models
correctly learned to identify the majority of intro-
duced defects; however, certain specific cases still
challenged their generalization capacity.

Two recurrent error patterns were identified.
First, some holes contained stickers placed on
their surface, which often led YOLO to gener-
ate duplicate detections and occasionally caused
misclassifications. Second, several OK holes were



Table 1: Average performance metrics on the test set for the evaluated models.

Model Accuracy Precision Recall Fl-score Inference time (s)
EfficientNet-B0 0.924 0.889 0.786 0.832 1.601
ResNet18 0.924 0.889 0.786 0.832 1.507
YOLOv11 0.988 0.889 0.870 0.879 3.350

painted in black, masking their visual appear-
ance and leading multiple models to mispredict
them as NOK. These situations are noteworthy
because, although stickers and painted holes were
also present in the training set, the models did not
always generalize correctly in the test set, high-
lighting the limitations of the architectures when
facing certain visual variations.

Another relevant aspect is inference time. Con-
trary to initial expectations, the classification-
based models (EfficientNet-BO and ResNet18)
showed very similar and relatively low execution
times, around 1.5-1.6 seconds per part. In con-
trast, YOLOv11, despite being conceived for real-
time detection, exhibited a significantly higher
latency, reaching 3.35 seconds, i.e., approximately
twice the time of the classification approaches.
Although this difference may appear small in
absolute terms, it becomes highly relevant in an
industrial production scenario, where thousands
of parts must be inspected daily and cumulative
delays directly affect process efficiency.

Overall, the discussion of test results provides
clearer insights than those obtained during vali-
dation. As summarized in Table 1, ResNet18 and
EfficientNet-B0 achieved nearly identical metrics,
with an accuracy of about 92% and an F1-score of
0.83, whereas YOLOv11 reached a superior per-
formance, with an accuracy close to 99% and an
F1-score of 0.88. This confirms YOLOv11 as the
architecture with the highest generalization abil-
ity under adverse test conditions. Nevertheless,
its superior predictive quality comes at the cost
of nearly doubled inference time compared to the
classification models. Therefore, the final choice
between detectors and classifiers depends on the
trade-off between accuracy and processing speed
required in the industrial deployment scenario.

5 Conclusion

This work presented a deep learning-based com-
puter vision system for the automatic detec-
tion and classification of defects in battery lid
holes, aiming to reduce the cost and subjectiv-
ity of manual quality inspection in the automotive
industry. The methodology integrated both detec-
tion (YOLOv11) and classification (ResNet18 and
EfficientNet-B0) approaches, trained and vali-
dated on a dataset of cropped hole images pre-
pared through image preprocessing and augmen-
tation.

The experimental results confirmed the effec-
tiveness of deep learning in this domain. While the
classification models achieved solid performance,
with accuracies of around 92% and Fl-scores
of 0.83, YOLOv1l clearly outperformed them,
reaching nearly 99% accuracy and an Fl-score of
0.88. These findings demonstrate that YOLOv11
exhibits higher generalization ability to adverse
visual conditions, such as stickers or black paint,
which posed difficulties for the classification-based
models. Nevertheless, this superior accuracy came
at the expense of longer inference times (3.35
seconds per part, approximately double that of
ResNet18 and EfficientNet-B0).

From an industrial perspective, this trade-off
between accuracy and speed is critical. In pro-
duction environments where thousands of parts
must be inspected daily, the selection of the
most appropriate model depends on the opera-
tional priorities: maximizing detection reliability
or minimizing latency. In either case, the proposed
system demonstrates the feasibility of integrat-
ing deep learning into real-time quality control
workflows, contributing to enhanced efficiency,
reduced human dependency, and improved overall
reliability of inspection processes.

Future work will focus on augmenting and
diversifying the dataset, exploring advanced aug-
mentation strategies to further mitigate class
imbalance, and optimizing inference through



lighter architectures or hardware acceleration.
Such improvements are expected to reinforce the
robustness and scalability of the proposed solu-
tion, paving the way toward its deployment in
large-scale industrial scenarios.
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