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Resumen Numerosas industrias se han beneficiado de la TA, y la industria de la moda no es una excepcion.
Al comprender qué hace que un conjunto de ropa sea “bueno”, las empresas pueden ofrecer recomendaciones
personalizadas. Este proyecto avanza en la recomendacién de moda utilizando Transformers [7] para predecir
si las prendas combinan bien en un conjunto y para completar conjuntos parciales. Exploramos la estrategia de
Curriculum Learning (CL) [7], donde el modelo se entrena gradualmente con ejemplos cada vez més dificiles.
Nuestra contribucién estudia una variacién de esta estrategia de entrenamiento: seleccionar ejemplos mas
dificiles mediante clustering [I7] y probar cémo esta eleccién afecta el aprendizaje. También analizamos la
naturaleza subjetiva de la tarea a través de una encuesta [I8] y un andlisis cualitativo.

Palabras clave: Recomendacién Automatica de Moda, Transformers, Clustering, Curriculum Learning

1. Introduccion

Con el crecimiento exponencial de los productos de moda disponibles, los sistemas de recomendacién automa-
tizados se han vuelto esenciales para mejorar la experiencia del cliente. En este proyecto, seguimos el modelo
Transformer de Sarkar (2018), que logra rendimiento ”estado-del-arte” en dos tareas clave: Compatibility-
Prediction (CP), donde el modelo aprende a evaluar si un conjunto de prendas forma un conjunto coherente,
y Fill-in-the-Blank (FITB), donde completa un conjunto seleccionando la prenda més adecuada dados varios
candidatos.

Comenzamos entrenando el modelo en CP, ya que esta tarea es esencial para que el modelo desarrolle una
nocion de compatibilidad estilistica. Este modelo se utiliza para inicializar FITB, una tarea m&s compleja
en la que, dado un conjunto incompleto, el modelo debe distinguir el articulo correcto (positivo) de varias
prendas incompatibles (negativos), aprendiendo a acercar los positivos y alejar los negativos en su espacio
de representacién interna. Para guiar este proceso, aplicamos Curriculum Learning (CL), aumentando
progresivamente la dificultad de las muestras negativas. Cuando los negativos son demasiado similares al
positivo, pueden confundir al modelo, debilitando la senal de supervisién.

Nuestra contribucién es una estrategia de muestreo negativo mediante Clustering No Supervisado. La
idea es dividir el catdlogo de prendas en clusters de manera que los articulos dentro de un mismo cluster sean
compatibles en los mismos conjuntos. Dada esta particién, seleccionamos negativos de un cluster diferente al
del articulo positivo, reduciendo la probabilidad de muestrear un articulo compatible como negativo. Probamos
dos técnicas de clustering: K-Means, que captura la similitud visual entre articulos, y Procesos de Dirichlet
Jerarquicos (HDP), que capturan patrones estilisticos a partir de datos textuales. Con K-Means y CL
estandar, logramos un rendimiento estado-del-arte, mientras que HDP supera el baseline sin CL. Estos resultados
sugieren que combinar la similitud visual de K-Means con los patrones estilisticos de HDP tiene un gran potencial
para mejorar aun mas el rendimiento del modelo.

2. Definicion del Proyecto

Este Trabajo de Fin de Grado (TFGQ) se basa en el modelo Outfit-
Transformer [7], incorporando los embeddings Fashion-CLIP [10]
para mejorar la eficiencia computacional y las representaciones
multimodales. El objetivo del proyecto es replicar el rendimiento
del modelo en Prediccién de Compatibilidad (CP) y Fill-in-the-
Blank (FITB), y explorar mejoras en la estrategia de ”curricu-
lum learning” utilizada en FITB mediante clustering no su-
pervisado. Especificamente, introducimos K-Means y Procesos
Dirichlet Jerdrquicos (HDP) para guiar el muestreo negativo, con
el fin de evitar la seleccién de candidatos igualmente compatibles
como negativos y reducir asi la ambigiiedad del entrenamiento.
Los objetivos de este trabajo son (1) revisar el estado del
arte en recomendacién de moda, (2) replicar el modelo Outfit-
Transformer [7], y adoptar los embeddings Fashion-CLIP de Oh
et al. [I0] para mejorar la eficiencia, (3) comparar la estrategia
original de ”curriculum learning” con nuestra mejora propuesta
basada en clustering no supervisado, y (4) evaluar el rendimiento Figure 1: Arquitectura del OutfitTrans-
del modelo y explorar la subjetividad de la compatibilidad de former [7].
moda a través de una encuesta de usuarios que compara sus
opiniones humanas con las predicciones del modelo.



3. Descripcién del Modelo

El modelo OutfitCLIP Transformer procesa conjuntos de ropa como secuencias no ordenadas de prendas, puesto
que la compatibilidad es independiente del orden de las prendas. Cada prenda estd representada por un Fashion-
CLIP embedding de 1024 dimensiones que combina sus caracteristicas visuales y textuales del dataset Polyvore.
El modelo transforma estos embeddings en una representacion global del conjunto para las tareas de CP y
FITB. Su arquitectura, mostrada en la Figura |1} consta de: (1) una capa de proyeccién lineal que reduce los
embeddings de 1024 a 128 dimensiones; (2) un token CLS aprendible que se antepone a la secuencia para
aprender informacién del conjunto; (3) un encoder con cuatro capas y cuatro cabezas de atencién, que capturan
las interacciones entre las prendas; y (4) la extraccién del embedding del token CLS para tareas posteriores.
Para CP, una cabeza de clasificacién genera un logit de compatibilidad. Para FITB, se calculan las distancias
euclideas entre el embedding del conjunto incompleto y los embeddings de los articulos candidatos para clasificar
el articulo correcto.

CP se plantea como un problema de clasificacién binaria y se entrena utilizando la pérdida ”Focal Loss” con
un parametro de enfoque v = 2, que enfatiza los ejemplos dificiles. Dado el puntaje de compatibilidad predicho
p € ]0,1] y la etiqueta y € {0,1}, la loss es:

Ltocal(p, y) = —auy(1 — p)7log(p) — (1 — ay)(1 — y)p” log(1 — p),

donde a; = 0.5. El entrenamiento se realiza durante 200 épocas usando AdamW con mini-batches de outfits.
FITB tiene como objetivo seleccionar el articulo correcto para completar un conjunto incompleto. El modelo

se entrena utilizando una ”triplet margin loss”, que fomenta que el embedding del conjunto incompleto z,

(consulta) esté mds cerca de la prenda correcta z, (positivo) que de cualquier candidato incorrecto z,, (negativo).

La funcién de pérdida se define como:

1 .
Liriplet = B Z max(0, d(ij ) ij) - Iln#l? d(ij ) Zm) + 1),
j=1

donde d(-,-) es la distancia euclidea, p = 2.0, y B es el tamano del batch. Empleamos CL para aumentar
progresivamente la dificultad de las prendas negativas: comenzando con negativos aleatorios, luego muestreando
desde la misma categoria que el articulo correcto, y finalmente desde la misma subcategoria [7]. Nuestra
contribucion refina esta tultima fase mediante el muestreo de negativos de diferentes clusters dentro de la misma
subcategoria, abordando la alta similitud entre los articulos observada en el dataset que puede confundir la
triplet loss. Exploramos dos métodos de clustering: K-Means, aplicado a los embeddings Fashion-CLIP para
agrupar prendas por similitud visual, y Procesos Dirichlet Jerdrquicos (HDP), utilizando descripciones textuales
de las prendas para modelar la co-ocurrencia y capturar patrones estilisticos.

4. Resultados

Prediccién de Compatibilidad (CP): El OutfitCLIPTransformer alcanzé un AUC de 0.95, superando el
0.93 del OutfitTransformer original [7] y coincidiendo con la implementacién de Oh [I0], como se muestra
en la Tabla|l] Con un umbral de 0.5, la precisién fue baja (61.86%) debido a un sesgo hacia la prediccién de
compatibilidad, pero al elevar la frontera de decicision a 0.6, la precisién mejord a 87.94%. Algunas predicciones
incorrectas revelaron un desacuerdo entre las etiquetas del dataset y la compatibilidad percibida. En particular,
el ejemplo mostrado en la Figura 2} —etiquetado como compatible pero asignado por el modelo con un puntaje
bajo (0.4891)—motivé la creacién de una encuesta a pequenia escala para evaluar el juicio humano. Recogimos
respuestas de 36 participantes sobre 4 de estos casos limite, y en este ejemplo, el 86% de los encuestados
consideraron el conjunto incompatible [I8]. Esto confirmd la naturaleza subjetiva de la moda y las limitaciones
de la etiquetacién rigida binaria.

Modelo CP

OutfitTransformer (Paper) 0.93
OutfitCLIPTransformer (Open Source)  0.95
OutfitCLIPTransformer (Nuestra Impl.) 0.95

Figure 2: Ejemplo de falso negativo: el modelo predijo una prob-
abilidad de 0.4891, indicando incompatibilidad, mientras que la
etiqueta verdadera era compatible. En una encuesta, el 86% de
los encuestados pensaron que era incompatible.

Table 1: Comparacién AUC en Compatibility Prediction.
Tanto nuestro modelo como el Open Source utilizan los em-
beddings Fashion-CLIP
Fill-in-the-Blank (FITB): El rendimiento de FITB se resume en la Tabla Nuestros resultados parten de la
implementacién Open Source de Oh et al.[T10], que ya mejora el 0.67 de accuracy del articulo original[7] a 0.69
utilizando los embeddings Fashion-CLIP. Nuestro baseline sin CL alcanza un 0.65, pero al aplicar CL estandar,
logramos alcanzar estado del arte, con un accuracy de 0.72.

Nuestros métodos propuestos de muestreo basado en clustering también obtienen buenos resultados. K-
Means alcanza esta precision de estado del arte (0.72), mientras que HDP logra 0.68, ambos superando el



baseline sin CL. Esto es una senal prometedora, pues sugiere que un refinamiento de los clusters, podria mejorar
aln mas el rendimiento.

El anélisis cualitativo revel6 limitaciones en el dataset: varios candidatos de FITB eran igualmente compat-
ibles o incluso idénticos, pero las etiquetas solo consideraban uno como correcto, limitando la capacidad de la
métrica para reflejar el verdadero rendimiento del modelo.

Variante del Modelo FITB
OutfitTransformer (Paper, CL) 0.67
OutfitCLIPTransformer (Oh et al.) 0.69
OutfitCLIPTransformer (No CL) 0.65
OutfitCLIPTransformer (CL Estdndar)  0.72
OutfitCLIPTransformer (K-Means CL)  0.72
OutfitCLIPTransformer (HDP CL) 0.68

Table 2: Comparacién de precisiéon FITB para diferentes

) Figure 3: Ejemplo de prediccién incorrecta del mod-
variantes del modelo.

elo para FITB, donde varios candidatos son igual-
mente vélidos/idénticos.

K-Means gener6 clusters visualmente coherentes, pero pasé por alto la compatibilidad. Confiar inicamente en
la similitud visual puede llevar a muestrear negativos que atn son compatibles con el conjunto a pesar de ser
visualmente distintos, como se muestra en la Figura [l HDP captur6 patrones estilisticos, aunque perdié esa
cohesion visual dentro de los clusters. Esto revela la necesidad de una técnica de clustering que combine las
fortalezas de ambos enfoques: coherencia visual y compatibilidad seméantica.

Figure 4: Ejemplos de clustering con K-Means y HDP para muestreo negativo. Fila superior: conjuntos incompletos con el articulo
positivo (cuadro rojo) eliminado. Fila inferior: cuatro negativos muestreados para cada caso.

5. Conclusiones

Este trabajo demuestra el potencial de utilizar la TA en la industria de la moda, particularmente a través
del uso de Transformers combinados con embeddings Fashion-CLIP y curriculum learning. Al integrar los
embeddings CLIP, mejoramos significativamente la eficiencia del entrenamiento y el rendimiento del modelo
en tareas como Prediccién de Compatibilidad (CP) y Fill-in-the-Blank (FITB). La estrategia de curriculum
learning, que aumenta progresivamente la dificultad del muestreo negativo, mejoré atin méas estos resultados.

Durante nuestro analisis, identificamos que la presencia de prendas casi idénticos dentro del dataset podria
confundir al modelo durante el muestreo negativo. El clustering con K-Means ayudé a organizar los articulos en
clusters visualmente similares basados en los embeddings CLIP, pero no consider6 cémo interactian las prendas
en los conjuntos. Experimentamos con Procesos Dirichlet Jerdrquicos (HDP), que capturaron mds patrones
estilisticos a través de los datos textuales, pero carecieron de la riqueza visual de los embeddings CLIP, lo
que resulté en clusters menos visualmente coherentes. K-Means alcanzé un accuracy de 0.72, igualando el CL
estandar, mientras que HDP alcanzé 0.68, superando la linea base sin CL. Estos resultados sugieren que las
técnicas de clustering mejoran el rendimiento, y su refinamiento podria superar el estado del arte.

Otra observacion clave fue la subjetividad de la tarea. En CP, algunas etiquetas del dataset no coincidieron
con las respuestas de una encuesta humana, lo que resalta el desafio de definir la compatibilidad de manera rigida.
En FITB, varios candidatos eran igualmente validos, pero el dataset solo consideraba uno como correcto, lo que
limité la capacidad de reflejar el rendimiento del modelo. Esta subjetividad complica tanto el entrenamiento
como la evaluacién, revelando que las etiquetas rigidas no siempre son apropiadas para las tareas de moda.

Trabajo futuro: Los esfuerzos futuros se centraran en refinar las técnicas de clustering, como explorar
modelos hibridos que combinen las fortalezas de K-Means y HDP para mejorar el muestreo negativo. También
buscamos desarrollar métricas de evaluacion que reflejen mejor la naturaleza subjetiva de la moda.
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Abstract Numerous industries have benefited from AI, and the fashion industry is no exception. By un-
derstanding what makes a “good” outfit, companies can offer tailored recommendations. This project advances
fashion recommendation using transformers[7] to predict whether items of clothing go well together in an outfit
and to complete partial outfits. We explore curriculum learning[7], where the model is gradually trained on
increasingly difficult examples. Our contribution studies a variation of this training strategy: selecting harder
examples through clustering[I7] and testing how this choice affects learning. We also analyze the subjective
nature of the task through a survey [I8] and qualitative analysis.

Keywords: Automated Fashion Recommendation, Transformers, Clustering, Curriculum Learning

1. Introduction

With the exponential growth of available fashion products, automated recommendation systems have become
essential to enhance customer experience and engagement. In this project, we follow the transformer-based
model proposed by Sarkar et al. [7], which achieves state-of-the-art performance on two core fashion recommen-
dation tasks: Compatibility Prediction (CP), where the model learns to assess whether a set of garments
forms a coherent outfit, and Fill-in-the-Blank (FITB), where it completes an incomplete outfit by selecting
the most suitable item from a pool of candidates.

We first train the model on CP, as this task is essential for the model to develop a sense of style compatibility.
The trained model is then used to initialize FITB, a more complex task in which the model must complete an
outfit by distinguishing the correct item (positive) from several incompatible alternatives (negatives), learning
to bring positives closer and push negatives away in its internal representation space. To guide this process, the
original paper applies curriculum learning (CL), gradually increasing the difficulty of the negative samples.
While experimenting with CL, we observed that, as difficulty increases, negatives tend to become too similar
to the positive (or even valid alternatives) As a result, these “hard” negative examples may end up confusing
the model and weakening the training signal.

Our contribution is a negative sampling strategy through Unsupervised Clustering. The idea is to
partition the catalog of items into clusters so that items within the same cluster are compatible in the same
outfits. Given this partition, we select negatives from a cluster different from the positive item’s cluster,
reducing the likelihood of sampling a compatible item as a negative. We tested two clustering techniques:
K-Means, which captures visual similarity between items, and Hierarchical Dirichlet Processes (HDP),
which captures style patterns from textual data. With K-Means and Standard CL, we achieved state-of-the-art
performance, while HDP surpasses the baseline without CL. These results suggest that combining K-Means
visual similarity with HDP’s stylistic patterns has great potential to further enhance model performance.

2. Project Definition

This Final Degree Project (TFG) builds upon the OutfitTrans-
former model [7], incorporating Fashion-CLIP embeddings [10]
for computational efficiency and improved multimodal represen-
tations. The project aims to replicate the model’s performance
on Compatibility Prediction (CP) and Fill-in-the-Blank (FITB),
and to explore improvements to the curriculum learning strategy
used in FITB through unsupervised clustering. Specifically, we
introduce K-Means and Hierarchical Dirichlet Processes (HDP)
to guide negative sampling, with the goal of avoiding the selection
of equally compatible candidates as negatives and thus reducing
training ambiguity.
The objectives of this work are (1) to review the state-of-the-
art in fashion recommendation, (2) replicate the OutfitTrans-
former model [7], and adopt Fashion-CLIP embeddings from
Oh et al. [I0] to improve efficiency, (3) to compare the origi-
nal curriculum learning strategy with our proposed enhancement
based on unsupervised clustering, and (4) to evaluate model per- Figure 5: OutfitCLIPTransformer architec-
formance and explore the subjectivity of fashion compatibility —ture, from [7].
through a user survey comparing human judgments to model
outputs.



3. Model Description

The OutfitCLIP Transformer model processes outfits as unordered sets of items, as item order does not affect
compatibility. Items are represented by a 1024-dimensional Fashion-CLIP embedding that combines visual and
textual features from the Polyvore dataset. The model transforms these embeddings into a compact outfit
representation for Compatibility Prediction (CP) and Fill-in-the-Blank (FITB) tasks. Its architecture, shown
in Figure [5| consists of: (1) a linear projection layer reducing embeddings from 1024 to 128 dimensions; (2) a
learnable CLS token prepended to the sequence to learn outfit information; (3) a transformer encoder with four
layers and four attention heads, capturing item interactions; and (4) extraction of the CLS token’s embedding
for downstream tasks. For CP, a classification head outputs a compatibility logit. For FITB, Euclidean distances
are computed between the incomplete outfit’s embedding and candidate item embeddings to rank the correct
item.

CP is framed as binary classification and trained using focal loss with focusing parameter v = 2, which
emphasizes difficult examples. Given predicted compatibility score p € [0,1] and label y € {0,1}, the loss is:

Leocal(p, y) = —auy(1 — p)7log(p) — (1 — au)(1 — y)p” log(1 — p),

where a; = 0.5. Training is performed for 200 epochs using the AdamW optimizer with mini-batches of outfits.

FITB aims to select the correct item to complete an incomplete outfit (where one item has been masked).
The model is trained using a triplet margin loss, which encourages the embedding of the incomplete outfit z,
(query) to be closer to the correct item z, (positive) than to any incorrect candidate z,, (negative). The loss
function is defined as:

B
1 .
Ltriplet = E Z HlaX(O, d(Z(Ij ’ ij) - Iln;él? d(Zth ’ Zﬂz) + M)?
j=1

where d(-,-) is Euclidean distance, p = 2.0, and B is the batch size. We adopt curriculum learning (CL)
to progressively increase the difficulty of the negative items: starting with random in-batch negatives, then
sampling from the same category as the correct item, and finally from the same subcategory [7]. Our contribution
refines this last phase by sampling negatives from different clusters within the same subcategory, addressing
high item similarity observed in the dataset that can confuse the triplet loss. We explored two clustering
methods: K-Means, applied to Fashion-CLIP embeddings per subcategory to group items by visual similarity,
and Hierarchical Dirichlet Processes (HDP), using textual descriptions of outfit items to model co-occurrence
and capture stylistic patterns.

4. Results

Compatibility Prediction (CP): The OutfitCLIPTransformer achieved an AUC of 0.95, surpassing the
original OutfitTransformer’s 0.93 [7] and matching Oh’s implementation [10], as shown in Table [3 Both our
model and Oh’s use Fashion-CLIP embeddings. At a threshold of 0.5, accuracy was low (61.86%) due to a bias
toward predicting compatibility, but raising the threshold to 0.6 improved accuracy to 87.94%. Some incorrect
predictions revealed a mismatch between dataset labels and perceived compatibility. In particular, the example
shown in Figure @Fwas labeled as compatible but assigned by the model a low score (0.4891)—motivated the
creation of a small-scale survey to assess human judgment. We collected responses from 36 participants on four
such borderline cases, and in this example, 86% of respondents considered the outfit incompatible [I8]. This
highlights the subjective nature of fashion and the limitations of rigid binary labeling.

Model CP

OutfitTransformer (Paper) 0.93

OutfitCLIPTransformer (Open Source)  0.95 . . .

Outfit CLIP Transformer (Our Impl.) 0.95 Figure .6.: Fa}lse. negatlYe examp.le:. .the model predicted a 0.4891
probability, indicating incompatibility, whereas the true label was
compatible. In a survey, 86% of respondents thought it was in-

Table 3: AUC comparison for Compatibility Prediction. compatible.

Fill-in-the-Blank (FITB): FITB performance is summarized in Table 4. We build upon the open-source
implementation by Oh et al.[I0], which already improves the original paper’s 0.67 accuracy[7] to 0.69 by using
Fashion-CLIP embeddings. Our baseline without curriculum learning (CL) achieves 0.65, but applying standard
CL to Oh’s setup boosts accuracy to 0.72, establishing a new state of the art.

Our proposed clustering-based sampling methods also yield strong results. K-Means matches this state-of-
the-art accuracy (0.72), while HDP achieves 0.68, outperforming the no-CL baseline. This is a promising signal,
suggesting that clustering can meaningfully guide negative sampling and has room for further refinement.



Qualitative analysis revealed limitations in the dataset: several FITB candidates were equally compatible
or even visually identical to the ground truth, yet counted as incorrect, limiting the metric’s ability to reflect
true performance.

Model Variant FITB
OutfitTransformer (Paper, CL) 0.67
OutfitCLIPTransformer (Oh et al.) 0.69
OutfitCLIPTransformer (No CL) 0.65
OutfitCLIPTransformer (Standard CL)  0.72
OutfitCLIPTransformer (K-Means CL)  0.72
OutfitCLIPTransformer (HDP CL) 0.68

Table 4: Comparison of FITB accuracy for different model

) Figure 7: Example of incorrect model prediction for
variants.

FITB, where several candidates are equally valid/in-
dentical

K-Means generated visually coherent clusters, but overlooked contextual compatibility. Relying solely on
visual similarity can lead to sampling items that still match the outfit despite being visually distinct, as shown
in Figure [§] HDP captured stylistic patterns in outfits, though limited by sparse textual metadata, lacking
visual cohesion within clusters. This reveals the need for a clustering technique that combines the strengths of
both approaches: visual coherence and semantic compatibility.

Figure 8: Examples of K-Means and HDP clustering for negative sampling. Top row: incomplete outfits with the positive item
(red box) removed. Bottom row: four sampled negatives for each case.

5. Conclusions

This work demonstrates the potential of using in the fashion industry, particularly through the use of Trans-
formers combined with Fashion-CLIP embeddings and curriculum learning. By integrating CLIP embeddings,
we significantly improved the efficiency of training and the performance of the model in tasks like Compatibility
Prediction (CP) and Fill-in-the-Blank (FITB). The curriculum learning approach, which progressively increased
the difficulty of negative sampling, further enhanced these results.

During our analysis, we identified that the presence of nearly identical items within the dataset could
confuse the model during negative sampling. K-Means clustering helped organize items into visually similar
clusters based on CLIP embeddings but did not consider how items interact in outfits. We experimented with
Hierarchical Dirichlet Processes (HDP), which captured more stylistic trends through textual data but lacked
the visual richness of CLIP embeddings, resulting in less cohesive clusters. K-Means achieved an accuracy of
0.72, matching standard curriculum learning, while HDP reached 0.68, showing improvement over no curriculum
learning. These results suggest that clustering techniques enhance performance, and further refinement could
outperform standard curriculum learning.

Another key observation was the subjectivity of the task. In CP, some labels in the dataset did not align
with the answers from a human survey, highlighting the challenge of defining compatibility rigidly. In FITB,
multiple candidates often appeared equally valid, but the dataset only labeled one of them as correct, leading
to confusion. This subjectivity complicates both training and evaluation, revealing that rigid labels are not
always appropriate for fashion tasks.

Future Work: Future efforts will focus on refining clustering techniques such as exploring hybrid models
that combine the strengths of K-Means and HDP to improve negative sampling. We also aim to develop
evaluation metrics that better reflect fashion’s subjective nature.
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1. Introduction

1.1. Motivation and Context

Fashion has always been one of my greatest passions,
but until now it had remained outside the academic
sphere of my studies in Artificial Intelligence. This
project has allowed me to bring both worlds together
by exploring how AI can be applied to fashion, a cre-
ative and constantly evolving industry.

Recommender systems play an increasingly impor-
tant role in the fashion sector, helping users discover
items and outfits aligned with their personal style.
With the rise of personalized shopping experiences and
virtual wardrobes, intelligent outfit recommendation is
not only a technical challenge but also a commercial
necessity.

1.2. Academic and Technological Relevance

Fashion recommendation systems have evolved from
basic collaborative filtering models to sophisticated
deep learning architectures. In this context, transform-
ers —originally designed for natural language process-
ing— have shown promising results in modeling item
compatibility, especially when garments are treated as
tokens in a sequence. This perspective enables the
model to capture contextual relationships within out-
fits.

Integrating fashion and Al reflects not only a per-
sonal goal but also a broader trend in the industry,
where data-driven insights increasingly influence de-
sign, curation, and user interaction. The potential so-
cietal and commercial impact of such systems under-
scores the relevance of this project.

1.3. Objectives

The main objectives of this project are:

e To investigate the current approaches and tech-
niques used in fashion outfit recommendation.

e To study and implement the OutfitTransformer
model, understanding its architecture and perfor-
mance.

e To explore recent adaptations of the model, such
as the use of OpenAI’s CLIP for multimodal em-
beddings, as presented in the optimized imple-
mentation by Wonjun Oh [I0].

e To experiment with the integration of classical
machine learning techniques, such as clustering
(e.g., k-means), to improve the difficulty progres-
sion of negative sampling during training.

e To examine more advanced clustering strategies,
such as Dirichlet Processes, as a potential di-
rection for future improvement of compatibility
modeling.

1.4. Resources and Feasibility

The implementation has been carried out on a per-
sonal MacBook with M2 chip for initial experiments.
For larger scale training, access to ICAI’s lab infras-
tructure with GPU support was available when needed.
Thanks to the use of precomputed embeddings and effi-
cient model design, the experiments were computation-
ally feasible without requiring significant additional re-
sources.

1.5. Document Structure

The document is structured as follows: Section [
presents a review of related work and the current state-
of-the-art in outfit recommendation. Section [3] details
the methodology, model design, and training strategy.
Section [4] discusses the experimental setup and perfor-
mance evaluation. Section [5| presents the results and
analysis. Finally, Section [f] provides conclusions and
proposes directions for future research.

2. State of the Art

Fashion outfit recommendation has evolved signifi-
cantly over the past decade, transitioning from sequen-
tial models to advanced transformer-based architec-
tures that capture complex item relationships.

2.1. Sequential Modeling with LSTMs

One of the earliest notable contributions is the work
by Han et al. [I], which employs a Bidirectional LSTM
to model outfits as ordered sequences. Their model
is capable of tasks such as Fill-in-the-Blank (FITB),
where the model must select the correct item from
a set of candidates to complete an incomplete outfit.
The model is also capable of outfit generation, learning
visual-semantic embeddings from images and textual
descriptions. While effective, the LSTM-based design
assumes a fixed order of garments, which is not ideal
for fashion recommendation where the order of items
often does not affect compatibility.

2.2. Pairwise and Graph-Based Compatibility

Subsequent work focused on pairwise compatibility,
which involves learning the pairwise compatibility be-
tween two items rather than the compatibility of entire
outfits. McAuley et al. [2] and Veit et al. [3] determine
full outfit compatibility by aggregation (e.g., averag-
ing) over all the pairwise compatibility scores. These
approaches struggled with global context. Graph-
based methods, such as Cucurull et al. [4] and Cui et
al. [B], used graph neural networks to model compati-
bility as edge predictions, capturing higher-order rela-
tionships. However, their reliance on extensive neigh-
borhood data limits applicability for new or sparsely
connected items [6].



2.3. Transformer-Based Representations

A major advancement came with the OutfitTrans-
former by Sarkar et al. [7], which treats outfits as un-
ordered sets, encoding images and text with ResNet
and SentenceBERT via a transformer encoder. It ex-
cels in several fashion recommendation tasks: Com-
patibility Prediction (CP), FITB, and Complementary
Item Retrieval (CIR) through curriculum learning, out-
performing LSTMs and graph-based models on the
Polyvore dataset. We describe these tasks in detail
in Section [31

2.4. CLIP-Based Extensions

Wonjun Obh’s open-source implementation [10] en-
hances the OutfitTransformer by integrating CLIP
embeddings [8], robust multimodal representations
trained on vast image-text pairs. Precomputed CLIP
embeddings reduce training time and memory, boost-
ing CP and FITB performance. This underscores the
power of vision-language models in fashion recommen-
dation [6].

2.5. Summary and Research Gaps

Fashion outfit recommendation has increasingly
adopted transformer-based architectures, which excel
at modeling outfits as unordered sets of garments. Un-
like sequential models [I], transformers capture com-
patibility without assuming a fixed item order, lever-
aging the attention mechanism’s core properties: per-
mutation invariance (treating outfits as sets) and global
contert (modeling interactions among all items). These
qualities, inherent to attention, make transformers, as
used in the original paper’s Outfit Transformer [7], ideal
for tasks like Compatibility Prediction (CP) and Fill-
in-the-Blank (FITB), described in Section

Opportunity to Enhance Curriculum Learning
For FITB, the original paper [7] employs curriculum
learning (CL) to train the model by introducing pro-
gressively harder negative samples. Early epochs sam-
ple negatives randomly, mid-stage epochs sample from
the same category as the positive item, and later
epochs draw negatives from the same subcategory as
the positive item. Negatives are essential for teaching
the model to distinguish compatible from incompatible
items. However, we identified a possible opportunity
for improvement: sampling negatives from the same
subcategory may select items that are visually identi-
cal or equally valid, potentially confusing the model.
For example, consider a positive item (a black t-shirt)
in a subcategory {black t-shirt, black t-shirt with logo,
white t-shirt, red t-shirt}. Sampling the black t-shirt
with logo as a negative could be suboptimal, as it might
be compatible with the outfit, making it harder for the
model to learn clear distinctions.

Clustering-Based Negative Sampling To ex-
plore this opportunity, we tested clustering-based neg-

ative sampling, detailed in Section [3.6.3] Using K-
Means, we group items within subcategories by visual
similarity based on Fashion-CLIP embeddings [10]. For
the example above, K-Means might form three clusters:
one for black t-shirts (including the logo variant), one
for white t-shirts, and one for red t-shirts. Sampling a
negative from a different cluster (e.g., red t-shirt) min-
imizes the chance of selecting a compatible item. Hier-
archical Dirichlet Processes (HDP) [11] cluster items
based on textual co-occurrence in outfits, capturing
stylistic patterns (e.g., casual vs. formal). As shown in
Section [p| these techniques aid model learning, match-
ing the standard CL performance, with potential for
further improvement through refined clustering.

Subjectivity in Fashion Compatibility Fashion
compatibility is inherently subjective, posing chal-
lenges for training and evaluation. To investigate this,
we surveyed 36 respondents to evaluate CP examples
where the model struggled, comparing human judg-
ments to dataset labels. We discovered significant dis-
cordance between human opinions and dataset labels,
which impacts model training and metric reliability due
to the use of hard labels. In FITB, we observed that
multiple candidates are often visually or stylistically
valid, yet only one is labeled correct, skewing accu-
racy metrics, as discussed in Section[5] This subjectiv-
ity underscores the limitations of hard labels and the
need for evaluation metrics that accommodate multi-
ple valid solutions, such as ranking-based or soft-label
approaches.

Our work leverages the GitHub implementation’s
Fashion-CLIP embeddings [10], which improve effi-
ciency over the original paper’s ResNet-18 and Sen-
tenceBERT approach [7]. We enhanced FITB training
by implementing the original paper’s CL and proposed
clustering to seize the identified opportunity. Two re-
search gaps guide our study: (1) refining CL with ad-
vanced clustering, potentially combining K-Means’ vi-
sual coherence with HDP’s stylistic insights [I1]; and
(2) developing metrics that reflect fashion’s subjectiv-
ity to align with human preferences, as explored in
Section[f] These gaps are addressed in subsequent sec-
tions.

3. Methodology

This section describes the technical formulation and
architecture of the system developed for fashion out-
fit compatibility. The original OutfitTransformer [7]
paper defines three core tasks:

1. Compatibility Prediction (CP): A binary
classification task that determines whether a

given set of fashion items forms a compatible out-
fit.

2. Fill-in-the-Blank (FITB): A ranking task
where the model must select the correct item
from a set of candidates to complete an incom-
plete outfit.



3. Complementary Item Retrieval (CIR): A
retrieval task aimed at finding the most compat-
ible item from a large candidate pool to add to a
given outfit.

In this project, we focus specifically on the CP and
FITB tasks. For FITB, we first experiment with a
baseline version without curriculum learning, then im-
plement the approach proposed in the original paper
that incorporates curriculum learning. Finally, we ex-
tend this strategy by introducing clustering techniques
to select better negative samples, aiming to further im-
prove model performance. The CIR task is used dur-
ing training as described in the original methodology,
but evaluation is carried out using the FITB task, as
CIR involves ranking a very large pool of candidates,
making it both computationally demanding and signif-
icantly more complex.

3.1. Problem Formulation

Let Z ={I1,Is,...,In} denote the set of N = 251,008
fashion items in the Polyvore dataset [9], where each
item I; is associated with:

e A unique identifier item_id;.

e A semantic category ¢; € C (e.g., “top”, “bot-
tom”, “shoes”).

e A subcategory label s; € S (e.g., “blouse”,
“sneakers”), encoded as an integer.

e A precomputed Fashion-CLIP embedding e; €
R924) combining visual and textual features.

e A cluster label k; € K, obtained by applying K-
Means to the CLIP embeddings of items in the
same subcategory s;.

An outfit O is a set of k distinct items from Z,
denoted as O = {I;,, I,,...,I;, }, where iy, io,..., 0
are unique indices in {1,2,..., N} and k is typically
3-5.

3.1.1 Compatibility Prediction (CP)

Goal: Predict whether an outfit O is compatible (label
y = 1) or incompatible (y = 0).
Input: An outfit O = {I;,,...,
dings {ei;, ..., €, }-
Output: A probability p(y = 1|O) € [0, 1].
Training Data: A dataset Dcp = {(O;,y;)})L,,
where y; € {0,1} and M is the number of outfits.

I;,} with embed-

3.1.2 Fill-In-The-Blank (FITB)

Goal: Given an incomplete outfit O’ = {I;,,..., I;, _,}
and four candidate items {I,, Ic,, Ic;, I, }, select the
correct item I, that completes the outfit.
Input: O’ with embeddings {e;,,...,e;,_,} and
candidates with embeddings {e.,, €c,, €cs, €c, }-
Output: The index [ of the correct candidate.

Training and Validation Data: For training, we
use a dataset defined as follows:

Dk = {(05, 1)}
where O; is an incomplete outfit (i.e., the original outfit
with one item removed), and I, is the ground-truth
item that completes the outfit. During training, for
each (O}, 1,;), the model samples negative items to
form a set of candidates for contrastive learning. The
model encodes O; into an outfit embedding zo/ and
computes embeddings 2, for the positive item and 2y,
for the negatives. The training objective is to minimize
the distance between 20/ and z;,; while maximizing the
distance to the negative embeddings.
For validation, the dataset is define as:

(Oé'a {ICj17[Cj27ICj3’ICj4}’ lj) 521

where [; is the index of the correct item among the four
candidates. The model generates an embedding zo- for
the incomplete outfit and compares it to the candidate
embeddings {z¢;,, %c;ss Ze;35 2¢;4 ) Using the Euclidean
distance to determine whether the correct item is the
nearest in embedding space.

val _
DFITB -

3.2. Model Architecture: OutfitCLIPTrans-

former

The core model, OutfitCLIPTransformer, processes
variable-length sequences of item embeddings to pro-

duce a fixed-size outfit embedding. Let O =
{Li,,...,I;;} with embeddings £ = [e;,,...,€e;,] €
REx1024 The model is defined as follows:

1. Projection: A linear layer fp; : R1924 — RY
maps each embedding to a lower dimension:
E/ = fproj(E) = EWproj + bproj7 El € RkXd7
where W05 € R1024xd bproj € RY and d = 128.

2. CLS Token: A learnable token CLS € R1*4 ig
prepended to form:

S = [CLS; E'] e R4,

3. Transformer Encoder: A transformer encoder
with L = 4 layers, H = 4 attention heads, and
dropout p = 0.1 processes S:

S" = TransformerEncoder(S, mask),

where mask € {0,1}**! indicates padded posi-
tions (0 for valid, 1 for padding).

4. Output Embedding: The CLS token embed-
ding is extracted:

z=8'0,:] € R
This architecture, illustrated in Figure [0} forms the

basis for both CP and FITB tasks. For CP, a classifi-
cation head fgs : R — R produces a logit:

Zlogit = fcls(z) = Wclsz + bc157



followed by a sigmoid to obtain p(y = 1|0) = 0 (2iogit)-
For FITB, the embedding z is used directly for distance
computations.

Figure 9: OutfitCLIPTransformer architecture, from
original paper [7].

3.3. Compatibility Prediction (CP)

3.3.1 Objective

Minimize the focal loss over Dcp to learn compatibility:

M
1
ECP = M Zﬁfocal(p(yj = 1|Oj)vyj)a
j=1

where the focal loss is:

Lfocal(pa y) = - O‘ty(l - p)'y IOg(p)
— (I —ay)(1 —y)p” log(1 - p),

with oy = 0.5 and focusing parameter v = 2.

3.3.2 Algorithm

The model is trained for 200 epochs using AdamW with
a learning rate n = 2 x 107, gradient accumulation
over 4 steps, and a OneCycleLR scheduler. For each
batch of outfits {O;, y; }le:

1. Compute embeddings E; = [ej1,...,ej;] for
each O;.

2. Pad to max length knyax, forming E €

RB X kmax X 1024

3. Apply transformer to get z; € R'?® for each out-
fit.

4. Compute logits ziogit,; = feis(25)-

5. Calc%’late loss Lbatch =
% Zj:l [’focal(o'(zlogit,j)a yj)'

6. Backpropagate and update weights.
Metrics (accuracy, precision, recall, F1, AUC) are com-
puted per epoch.
3.4.

The model with the highest AUC in the CP task is
used as initialization for the FITB task.

FITB without Curriculum Learning

3.4.1 Objective

In this setting, the model produces two types of em-
beddings:

e The query embedding z,; is computed as:
z¢; = OutfitCLIP Transformer(0}) € R,
where Oj is the incomplete outfit.

e The positive embedding z,, is computed as:
zp, = OutfitCLIPTransformer ({1, }) € R'?*,
where I, is the ground-truth item completing
the outfit.

The objective is to minimize an in-batch triplet
margin loss to learn a ranking where the positive item
is closer to the query than negatives:

B
1 .
Ctriplﬂ = E Z max(O, d(ZqJ‘ ) Zp; ) _rggl d(ZQj ) Zpi)+/1')7
j=1

where z,, is the query embedding, 2, is the positive
embedding, d(-,-) is the Euclidean distance, p = 2.0
is the margin, and negatives are the positives of other
batch samples zp, .

3.4.2 Algorithm

The model, pretrained on CP, is fine-tuned for 200
epochs. For each batch {(0}, I, )}

j=1"
1. Compute  query  embeddings  z,; =
Outfit CLIPTransformer(O%) € R'?%.

2. Compute positive
OutfitCLIP Transformer({I,, }) € R*?%.

embeddings  zp, =

3. Calculate pairwise distances D € RE*E | where
Dji = d(zq;, 2p,)-

4. Extract positive distances D, ; and hardest neg-
ative min#j Dj,i~

5. Compute loss Lyaten and backpropagate.

For wvalidation on Dgrrg, compute distances be-
tween query embedding z,, and candidate embeddings
{2¢j1s -+ %¢;4 }» selecting the index with minimum dis-
tance. Accuracy is the fraction of correct predictions.



3.5. FITB with Standard Curriculum Learn-
ing
3.5.1 Objective

The goal is to improve FITB performance by adopting
the curriculum learning strategy from the original Out-
fitTransformer paper [7], which progressively increases
negative sampling difficulty:

e Epochs < 40: In-batch negatives, using positive
embeddings from other outfits in the batch (as in

Section .

e Epochs 40-49: Negatives sampled from the
same semantic category ¢, as the positive item.

e Epochs > 50: Negatives sampled from the same
subcategory s, as the positive item.

Each item I; has a category c¢; and subcategory s;.
Negatives are dynamically sampled items I, ;, with em-
beddings z,, = OutfitCLIPTransformer({I,,}) € R
computed, except for in-batch negatives, which use
Zn; = zp, (for i # j). The triplet margin loss mini-
mizes the distance between the query embedding zg;
and positive embedding z,, while maximizing the dis-
tance to the negative embedding 2y, .

3.5.2 Algorithm

The training pipeline is identical to the baseline FITB
setup (Section , except for the negative sampling
strategy. For each batch {(O0},1,,)}2

j=1-
1. Compute query  embeddings  z, =
Outfit CLIPTransformer(0}) € R'?%.
2. Compute positive  embeddings 2, =

Outfit CLIP Transformer ({1, }) € R'?%.

3. Sample negative items I,,, based on the curricu-
lum schedule:

e Epochs < 40: Use positive items I,,, (for
i # j) from other batch outfits, with em-
beddings z,; = zp,.

e Epochs 40-49: Sample /,,; from the same

semantic category ¢, as I, and compute
= OutfitCLIPTransformer({I,,}) €
RIQS-

e Epochs > 50: Sample [,,; from the same
subcategory s, as Ip,, and compute z,;, =

OutfitCLIP Transformer ({1, }) € R'?%.

4. Calculate pairwise distances Dj, = d(zq;,2n,)
for each query and negative, and D;; =
d(zq;, 2p;) for the positive.

5. Compute the triplet margin loss Lpatcn using the
positive distance D;; and the hardest negative
distance min D; .

6. Backpropagate and update weights.

For validation on D}3.5, compute distances be-
tween query embedding z,; and candidate embeddings
{2¢;15- -+ 2¢;4 }» selecting the index with minimum dis-
tance. Accuracy is the fraction of correct predictions.
3.6. FITB with Curriculum Learning and
Clustering

3.6.1 Objective

This approach extends the standard curriculum learn-
ing strategy (Section to further enhance FITB per-
formance by addressing the issue of near-identical gar-
ments in the Polyvore dataset. Visualizing examples
from the same subcategory revealed that many items
are visually or semantically similar, often equally valid
for completing an outfit. This similarity poses a chal-
lenge for contrastive learning: when negative samples
are randomly drawn from the same category or subcat-
egory, they may include items that are actually com-
patible with the outfit, inadvertently introducing label
noise and confusing the model. To mitigate this, we
incorporate clustering-based negative sampling, modi-
fying the curriculum schedule:

e Epochs < 40: In-batch negatives, as in Sec-
tion 3.4l

e Epochs 40-49: Negatives sampled from the
same semantic category ¢, as the positive item.

e Epochs > 50: Negatives sampled from the same
subcategory s, as the positive but from a differ-
ent cluster, using cluster IDs k;.

Each item I; has a category c;, subcategory s;,
and cluster ID k; (from clustering). Negatives are dy-
namically sampled items I,;, with embeddings z,;, =
Outfit CLIP Transformer({1,,}) € R'*® computed, ex-
cept for in-batch negatives (z,, = z,,). The triplet
margin loss minimizes the distance between z,, and
2p; while maximizing the distance to zy;.

3.6.2 Algorithm

The training pipeline is identical to the standard FITB
with curriculum learning setup (Section, except for
the negative sampling strategy in the third phase. For
each batch {(O}, I,,) le, the third phase is as follows,
while the rest remains unchanged:
3. Sample negative items I,,; based on the curricu-
lum schedule:

e Epochs < 40: Use positive items I,, (for
i # j) from other batch outfits, with em-
beddings z,,, = z,.

e Epochs 40—49: Sample [,,; from the same
semantic category c, as ij, and compute
zp, = OutfitCLIPTransformer({I,,}) €
RIZB.

e Epochs > 50: Sample I, from the
same subcategory s, as I, but a differ-

ent cluster k; # k,, and compute z,, =
OutfitCLIP Transformer ({1, }) € R,



3.6.3 Clustering Methods

Our clustering-based negative sampling relies on
grouping items to avoid selecting negatives too similar
to the positive. We explore two clustering techniques:
K-Means and Hierarchical Dirichlet Processes (HDP).

K-Means Clustering K-Means is applied indepen-
dently to each subcategory using Fashion-CLIP em-
beddings to create visually coherent clusters capturing
stylistic differences. For each subcategory:

e Collect all items with valid embeddings.

e Set the number of clusters k& = max(5,|2]),
where n is the number of items and o = 300
is a parameter chosen after visualizing clusters
with different values and evaluating training per-
formance.

Each item receives a cluster ID k;, stored for training.

Dirichlet (HDP) Clustering While KMeans cap-
tures visual and textual similarity at the item level,
it does not account for how garments co-occur within
outfits. To address this, we experimented with hier-
archical Dirichlet processes (HDP), which treats each
outfit as a document of item textual descriptions, dis-
covering latent topics (clusters) based on co-occurrence
patterns.
This generative model has several advantages:

e It allows for a flexible number of clusters, adapt-
ing to the complexity of the data without requir-
ing a fixed k.

e It assigns each outfit a mixture over topics, offer-
ing a probabilistic view of its style.

This approach provides a complementary view to
K-Means by incorporating higher-level outfit structure.

4. Experiments

This section details the implementation and experi-
mental evaluation of the fashion outfit recommendation
system, ensuring reproducibility and summarizing the
design alternatives explored to achieve the final archi-
tecture. We first describe the technical setup, including
the dataset, embedding generation, and training pro-
cedures, followed by the experimental stages and key
observations that shaped the system’s development.

4.1. Implementation Details

The system was implemented using Python 3.12, with
dependencies specified for reproducibility. Detailed
setup instructions, including dependency installation
and compatibility notes, are available in the project’s
README fild1]

Thttps://github.com/lara-ocon/TransformingFashion

4.1.1 Polyvore Dataset

The experiments utilize the Polyvore dataset’s
nondisjoint split, which includes complete outfits
with metadata and item-level annotations. The
dataset is structured as:

e images/: Item images named item_id. jpg.

e item metadata.json, item_title.json: Cate-
gory, subcategory, descriptions, and titles.

e disjoint/, nondisjoint/: Train, validation,

and test splits for each task (CP, FITB and CIR).

The disjoint version ensures no item overlap be-
tween train and test sets, promoting strict generaliza-
tion. However, in this project we use the nondisjoint
split, which allows for overlapping items, facilitating
more realistic evaluation.

Inside each task directory (compatibility/ and
fill in the blank/), the data is organized in
train. json, valid. json, and test. json files:

e Compatibility: Each entry includes an outfit
and a binary label indicating whether it is com-
patible.

e Fill-in-the-Blank (FITB): Each entry includes
an incomplete outfit, a list of four candidate
items, the position where the item was removed,
and the index of the correct item.

4.1.2 CLIP Embedding Generation

To represent each fashion item as a dense feature vec-
tor, we follow the OutfitTransformer implementation
and generate multimodal embeddings using the pre-
trained patrickjohncyh/fashion-clip model (CLIP
ViT-B/32). Each item is encoded based on both its
image and text description.

This process is implemented in the notebook
generate_clip_embeddings.ipynb.

Main steps:

e Each item is loaded using metadata from
item metadata. json.

e The corresponding image (images/item_id. jpg)
is resized to 224 x 224 and preprocessed.

e Both the image and text are processed through
the FashionCLIP model to obtain embeddings.

e The resulting image and text embeddings (each
of dimension 512) are concatenated to obtain a
single 1024-dimensional vector per item.

Embeddings are computed in batches using PyTorch’s
DataLoader, optionally distributed across GPUs via
torch.distributed, and saved as .pkl files.
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4.1.3 Training Procedure for Compatibility
Prediction

The CP model, detailed in Section [3.1.1] was trained
using precomputed FashionCLIP embeddings. The
setup includes:

Dataset and Dataloaders We employed the
nondisjoint/compatibility /train.json dataset, where
each training example consists of an outfit (i.e., a list of
item IDs) along with a binary compatibility label. Pre-
computed FashionCLIP embeddings were loaded and
used directly as item representations, thus avoiding
the need for end-to-end image or text encoding dur-
ing training.

A custom PyTorch dataset class,
PolyvoreCompatibilityDataset, was wused to
return a list of FashionItem objects along with their
compatibility label. ~These FashionItem instances
include metadata and its precomputed (1024,) CLIP
embedding. The dataloader batch collate function
returned batches of size N as a dictionary containing;:

e query: List[List[FashionItem]] — a batch
of outfits.

e label: List[int] — the corresponding binary
labels.

Training Setup Training runs for 200 epochs us-
ing the focal loss and AdamW optimizer, as specified
in Section PyTorch implements the OneCycleLR
scheduler, gradient clipping (norm 1.0), and four-step
accumulation. Checkpoints are saved per epoch, with
the best validation AUC model selected for testing and
FITB pretraining. Metrics (accuracy, AUC, F1, preci-
sion, recall) are computed using PyTorch utilities.

Curriculum

4.1.4 Cluster Generation for

Learning

Clustering, described in Section organizes items
for FITB’s curriculum learning negative sampling. Im-
plementation details include:

K-Means Clustering To generate clusters, we ap-
ply the K-Means algorithm individually for each sub-
category (category-id)).

Letting N denote the number of items within a
given subcategory, we determine the number of clus-
ters k dynamically using the heuristic:

k = max(5, L)ONOJ)

This ensures a minimum of 5 clusters per subcategory,

while scaling with the amount of available data. For

very small subcategories (less than 10 items), clustering
is skipped to avoid unstable results.

Cluster assignments are parsed into 3 dictionaries:

its

and

each item_id to
category_id,

e item_to_info: maps
semantic_category,

cluster_id.

e cluster_to_items: maps a cluster identi-
fier tuple (semantic_category, category-id,
cluster_id) to the list of items it contains.

each
pair

e category_to_clusters: maps
(semantic_category, category_id)
to the set of cluster IDs available within it.

These dictionaries are serialized using pickle and
are later used during training to sample hard negatives
from different clusters of the same subcategory.

HDP Clustering for Curriculum Learning A
textual representation is constructed for each item
by concatenating all available metadata fields, includ-
ing title, description, categories, url_name, and
related. For every outfit in the train, valid, and
test splits, we aggregate the cleaned descriptions of
its items to form a document. These documents serve
as input to a Gensim HDP model.

Once trained, the model provides a topic distribu-
tion for each document. To assign a cluster to each
item, we average the topic distributions across all out-
fits in which the item appears and assign the item to
the topic with the highest mean probability. Items with
no valid assignment are grouped under a fallback clus-
ter -1.

We store the resulting cluster assignments and then
build the same three dictionaries as with K-Means.

4.1.5 Training Procedure for Fill-in-the-Blank

(FITB)

The FITB model, detailed in Sections [3:4}- [3.6] is
trained from the best CP checkpoint. The setup in-
cludes:

Dataset and Dataloaders Training  uses
nondisjoint/train.json, creating queries by
removing one item per outfit. Validation/test-
ing uses fill_ in the blank/valid.json  and
test.json. PolyvoreTripletDataset and
PolyvoreFillInTheBlankDataset return 1024-

dimensional embeddings, with dataloaders providing:
e query: List of outfit items.
e answer (training): Positive item.

e candidates and label (validation): List of can-
didate items and correct index.

Training Setup Training runs for 200 epochs using
the triplet margin loss and AdamW optimizer, as in
Sections Curriculum learning samples nega-
tives via sample_negatives, with loss computed every
four steps. Validation selects the candidate with min-
imum distance, using PyTorch for accuracy. The best
validation accuracy model is selected.



4.2. Experiments

Throughout development, we tested multiple design al-
ternatives to arrive at the final system. Below, we sum-
marize the experimental stages and key observations.

4.2.1 Initial ResNet-18 Implementation

We first implemented OutfitTransformer from scratch
using only image inputs with a ResNet-18 backbone.
This was inefficient, requiring one hour per epoch on
12GB NVIDIA GPUs at ICAI, with high memory us-
age and unstable training. It served as a CP baseline
but was discarded due to limited iteration potential.

4.2.2 ResNet-18 with Sentence-BERT

We extended the model to include text features, com-
bining ResNet-18 image embeddings with Sentence-
BERT text embeddings, aligning with the original pa-
per [7]. This improved CP accuracy to 0.80 but re-
mained computationally expensive, hindering hyperpa-
rameter exploration.

4.2.3 Complementary Item Retrieval (CIR)
Challenges

Upon moving to the challenging task of Complemen-
tary Item Retrieval (CIR), we encountered new scal-
ability issues. The CIR setting requires the model to
identify the missing item from a candidate pool of ap-
proximately 251,000 items. Even minor inaccuracies in
ranking led to performance failures, as many distractor
items are nearly identical or equally compatible. Train-
ing times increased, and results were poor, leading us
to focus on FITB.

4.2.4 CLIP Embedding Adoption

Adopting Wonjun Obh’s open-source implementa-
tion [I0] with CLIP embeddings was transformative.
Precomputed FashionCLIP embeddings reduced in-
credibly training time and memory usage, achieving a
CP AUC of 0.95. This pipeline enabled efficient FITB

experiments.

4.2.5 CLIP with Standard Curriculum Learn-
ing

We tested CLIP embeddings with the standard cur-
riculum learning strategy from the original paper [7],
as described in Section [3.5} This improved FITB ac-
curacy from 0.65 to 0.72.

4.2.6 Clustering for FITB

Random negative sampling in FITB often included
near-identical or compatible items, causing label noise.
We introduced curriculum learning with clustering:

e K-Means: Applied per subcategory, producing
coherent clusters. Training with K-Means nega-
tives moderately improved FITB accuracy, con-
firming structured sampling’s value.

e HDP: Used text descriptions to capture out-
fit co-occurrence patterns. While less visually
coherent than K-Means, HDP clusters reflected
stylistic patterns, offering insights for future hy-
brid approaches.

5. Results

5.1. Compatibility Prediction (CP)

To evaluate the model’s ability to predict outfit com-
patibility, we trained the model on the compatibil-
ity prediction task for 200 epochs. As shown in Fig-
ure the training loss steadily decreases while the
AUC reaches a value of 0.95 by epoch 50. On the test
set, our implementation with CLIP features achieves
an AUC of 0.9509.

Figure 10: Training loss and AUC over epochs for the
compatibility prediction task.

We compare our results against the original Out-
fitTransformer paper and the open-source implemen-
tation. Table Bl summarizes the AUC scores:

Model CP (AUC)
OutfitTransformer (Paper) 0.93
OutfitTransformer (Open Source) 0.95
OutfitTransformer (Our Impl.) 0.95

Table 5: AUC comparison for Compatibility Predic-
tion. Both Open Source Implemtation and our’s using
CLIP embeddings

5.1.1 Test Metrics

Metric Value
AUC 0.9509
Accuracy 0.6186
F1 Score  0.7232
Precision 0.5676
Recall 0.9964

Table 6: Test performance of the CP model using the
epoch 50 checkpoint and a decision threshold of 0.5.

The Compatibility Prediction (CP) model achieves
a high Area Under the Curve (AUC) of 0.9509 on a



balanced test set (10,000 compatible and 10,000 in-
compatible outfits), indicating excellent ability to rank
compatible outfits (label = 1) above incompatible ones
(label = 0) across decision thresholds. However, the ac-
curacy of 61.86% is significantly lower, primarily due to
the default decision threshold of 0.5 applied to sigmoid-
transformed logits.

At this threshold, the model exhibits high recall
(99.64%) but low precision (56.76%), correctly identify-
ing 9,964 compatible outfits (true positives) with only
36 misses (false negatives), yet misclassifying 7,592 in-
compatible outfits as compatible (false positives). The
F1 score of 72.32% reflects a trade-off between these
metrics. The confusion matrix reveals only 2,408 true
negatives, highlighting the model’s difficulty in iden-
tifying incompatible outfits. This bias toward com-
patibility predictions is attributed to the threshold be-
ing too permissive, as most probabilities exceed 0.5,
and to the model’s learned representations, which cap-
ture consistent stylistic patterns in compatible outfits’
Fashion-CLIP embeddings more effectively than the di-
verse features of incompatible outfits.

Threshold optimization confirms this issue: at
0.6, accuracy improves to 87.94% and F1 to 87.68%,
with precision rising to 89.62% and recall dropping to
85.83%, reducing false positives to 1,037. Thresholds
below 0.4 classify all outfits as compatible (accuracy =
50.00%, recall = 100.00%), while those above 0.8 clas-
sify all as incompatible (accuracy = 50.00%, recall =
0.00%), indicating a skewed probability distribution.

5.1.2 Qualitative results

We also show qualitative results of the CP task in Fig-
ure [T1], Figure [[2} Figure [[3] and Figure These ex-
amples illustrate successful predictions as well as fail-
ure cases.

True Positives (TP). As seen in Figure the
model assigns high compatibility scores (all around
0.74) to truly compatible outfits. These examples show
consistent alignment in both color palette and style,
suggesting that the model effectively captures visual
coherence when it is present.

Figure 11: Examples of true positives in CP.

True Negatives (TN). In contrast, the true neg-
atives in Figure are classified correctly but with
scores very close to the 0.5 decision threshold. For
example, pairing a winter coat with a bikini and heels
may be obviously incompatible to a human observer,
yet the model only assigns a score of 0.49. Similarly,
outfits with clashing styles or prints—such as combina-
tions of strawberries, metallic textures, plaid, and leop-
ard—are also classified as incompatible, but again with
low certainty. This reflects a broader pattern observed
during evaluation: the model struggles to confidently
reject incompatible outfits, rarely assigning very low
probabilities. This indecisiveness, clustered around the
threshold, reinforces the earlier observation of a poorly
calibrated decision boundary.

Figure 12: Examples of true negatives in CP.

False Positives (FP). False positives, shown in Fig-
ure further illustrate this issue. The first exam-
ple scores 0.50, barely surpassing the threshold, even
though the outfit is clearly mismatched. The second
outfit receives a high compatibility score (0.73), de-
spite being labeled incompatible, highlighting the sub-
jectivity of the task. In a survey we conducted with 36
respondents [I8], 69% classified this outfit as compati-
ble, suggesting human disagreement with the dataset’s
label. Similarly, the third example, scored at 0.54, was
deemed compatible by 83% of respondents, reinforc-
ing that some users perceive these looks as coherent.
These cases reveal that the model often overestimates
compatibility, aligning with human perceptions in sub-
jective cases but conflicting with the binary dataset
labels.



Figure 13: Examples of false positives in CP.

False Negatives (FN). The false negatives in Fig-
ure are particularly challenging. All examples are
visually bold and involve complex combinations of col-
ors and textures—traits that might confuse the model’s
compatibility judgment. Scores for these examples
cluster tightly around 0.49, demonstrating the model’s
lack of confidence. Our survey[I8] revealed that 55.5%
classified the second example as incompatible, despite
its compatible label, and 86% deemed the third exam-
ple incompatible, indicating significant disagreement
with the dataset. These findings underscore the diffi-
culty of classifying unconventional outfits, where both
the model and human observers struggle to align with
the binary ground truth.

Figure 14: Examples of false negatives in CP.

These results, supported by the survey find-
ings, highlight the inherent subjectivity of fash-
ion compatibility. Designers often break traditional
rules—intentionally mixing patterns, textures, and
styles in ways that defy expectations yet result in ac-
claimed looks. The divergence between dataset labels
and human judgments, as seen in the false positives and
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negatives, underscores that compatibility is rarely bi-
nary, explaining the model’s tendency to assign border-
line scores and suggesting the need for more nuanced
evaluation metrics in future work.

5.2. Fill-in-the-Blank (FITB)

5.2.1 Test Metrics

We evaluate the Fill-in-the-Blank (FITB) task under
several training regimes to understand the effectiveness
of different learning strategies. Our baseline implemen-
tation using CLIP embeddings but without curricu-
lum learning (CL) achieves an accuracy of 0.65. The
GitHub implementation [I0] uses CLIP embeddings
but omits the CL strategy described in the original pa-
per [7], achieving an accuracy of 0.69. By implement-
ing the original paper’s CL approach [7]—progressively
sampling harder negatives based on semantic cate-
gories, as detailed in Section [3.5]—we improved accu-
racy to 0.72; a significant enhancement over both the
original paper’s 0.67 and the GitHub baseline.

With our variant of curriculum learning, which in-
troduces negative samples via clustering, sampling neg-
atives from K-Means clusters results in an accuracy
of 0.72, matching the best results achieved with se-
mantic curriculum learning. Using HDP-based clus-
ters also improves performance over the non-CL base-
line (0.68 vs. 0.65), although it remains slightly below
other strategies. These results suggest that even un-
supervised cluster-driven curricula can be beneficial,
especially when constructed with meaningful represen-
tations.

Model Variant FITB
OutfitTransformer (Paper, CL) [7] 0.67
OutfitCLIPTransformer (Oh et al.) [I0]  0.69
OutfitCLIPTransformer (No CL) 0.65
OutfitCLIPTransformer (Standard CL)  0.72
OutfitCLIPTransformer (K-Means CL)  0.72
OutfitCLIPTransformer (HDP CL) 0.68

Table 7: Comparison of FITB accuracy for different
model variants using FashionCLIP embeddings, except
for the original OutfitTransformer, which uses ResNet-
18 and Sentence-BERT. CL denotes curriculum learn-
ing.

While the clustering strategy (using HDP) im-
proves accuracy over the baseline, it does not outper-
form curriculum learning with CLIP embeddings. This
indicates that while the use of clusters can help, the
richness of CLIP embeddings plays a crucial role in
the model’s performance. Further optimization of the
clustering techniques, including more refined hyperpa-
rameter tuning and exploring ways to integrate contin-
uous CLIP embeddings into methods like HDP, could
potentially enhance the model’s performance and clus-
tering effectiveness.

It is also important to note that fashion is inher-
ently subjective. Visual inspection of FITB predic-



tions reveals that many candidate items are visually
similar or equally compatible. This observation em-
phasizes the limitations of using FITB accuracy as the
sole metric for performance. In the next section, we
explore the model’s predictions qualitatively to gain
deeper insights into its behavior.

5.2.2 Qualitative Results

Figures and showcase examples of correct and
incorrect predictions. These visualizations provide in-
sights into what the model learns and the inherent am-
biguities in the dataset.

In the correctly classified examples of Figure[15|, we
observe that the model is capable of capturing domi-
nant colors and subtle stylistic coherence. In Example
1, although multiple candidates could plausibly com-
plete the outfit, the model selects the one that aligns
better with the outfit’s pink tones. In Example 2, the
outfit features two pink and three turquoise garments,
and the model again selects the pastel color that com-
plements the rest. Example 3 is more ambiguous, in-
volving varied tones, yet the model correctly predicts
a pair of earrings that visually match the necklace, re-
vealing the model’s capacity to understand finer cor-
relations. Finally, in Example 4, two nearly identical
white t-shirts are among the candidates—one with a
small logo and the other plain. Despite the minimal
difference, the model correctly chooses the labeled op-
tion, underscoring both its sensitivity and the prob-
lematic nature of this evaluation setup, where multiple
answers could be equally valid.

The failure cases in Figure [I6] highlight key limi-
tations of the dataset and the task itself. In Example
1, all options are plausible, and the model selects one
that—despite being marked incorrect—may not be less
compatible than the labeled choice. Example 2 demon-
strates a similar issue: although the model chooses a
rose-gold watch instead of the golden one labeled cor-
rect, the decision is arguably more appropriate given
the outfit’s palette. Example 3 further exposes the
challenge of indistinguishable options—multiple black
sunglasses with only slight variations in shape. As ex-
pected, the model picks a plausible candidate, but not
the one marked correct. Finally, in Example 4, the
ambiguity is maximal: two identical pairs of Converse
sneakers are presented, yet only one is labeled as cor-
rect. The model selects the other, highlighting the
unrealistic rigidity of assuming a single ground-truth
answer.

These examples demonstrate a major shortcoming
of the FITB evaluation setup: the assumption of one
correct answer among four often clashes with the sub-
jectivity and flexibility of fashion. The model may
be penalized for selecting perfectly valid alternatives.
This observation strongly motivated the introduction
of cluster-based sampling, not only to reduce confu-
sion during training—by avoiding equally valid neg-
atives—but also to promote more reliable and inter-
pretable evaluation. Clustering helps avoid present-
ing items that are visually indistinguishable from the
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(a) Example 1

(b) Example 2

(c) Example 3

(d) Example 4

Figure 15: Examples of 3 correct predictions of FITB
task.



(a) Example 1

(b) Example 2

(c) Example 3

(d) Example 4

Figure 16: Examples of 3 incorrect predictions of FITB
task.
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ground-truth option, thereby yielding a fairer testing
scenario.

5.3. Clustering Analysis

We compare the quality of clusters produced by K-
Means and HDP.

5.3.1 K-Means Clusters

In the case of K-Means, we generated clusters inde-
pendently for each subcategory. For Subcategory 11
(tops), the algorithm formed 30 distinct clusters. Fig-
ure[I7showcases examples of three representative clus-
ters.

(a) Cluster 19 - Example 1

(b) Cluster 2 - Example 2

(c) Cluster 24 - Example 3

Figure 17: Examples of 3 different K-Means clusters in
Subcategory 11.

Overall, the visual coherence of the clusters sug-
gests that K-Means is effective at capturing meaning-
ful patterns. For instance, the algorithm successfully
distinguishes plaid shirts, denim tops, and striped t-
shirts—even though all fall under the same subcat-



egory. This implies that CLIP embeddings are rich
enough to encode subtle differences in fabric, cut, and
texture, which the clustering algorithm can then lever-
age.

However, K-Means also has limitations. Since it re-
lies purely on visual similarity in the embedding space,
it does not account for how garments interact within
actual outfits. As a result, it may group items that
are visually similar but do not necessarily pair well to-
gether in a fashion context. Additionally, the number
of clusters must be manually defined per subcategory.
Although we used a heuristic to set k, a more princi-
pled or adaptive approach could further improve clus-
ter quality, albeit at the cost of higher computational
expense.

5.3.2 Example of K-Means Negatives

Figure [18| shows an example from the FITB task using
K-Means clusters. In this case, we remove a pair of
floral pants from an outfit and sample ten negative
items from other clusters within the same subcategory.

(a) Outfit with floral pants removed

(b) Negative candidates from other clusters

Figure 18: Example of cluster-based negative sam-
pling. While all negative samples differ clearly from
the removed floral pants, some (like plain ones) could
still be compatible—revealing a limitation of this ap-
proach.

It can be seen that the sampled negatives differ
clearly from the removed item in terms of color, tex-
ture, material... This forces the model to learn to iden-
tify the most similar item according to visual and se-
mantic cues.

However, this strategy also reveals a key limitation.
In this example, the floral pants complete the outfit
because they match the jacket’s pattern, creating a co-
herent look. Still, a plain pant—though visually dis-
similar to the correct item—could also be compatible.
Since K-Means selects negatives purely based on vi-
sual distance from the removed item, it often includes
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valid items as negatives simply because they are not
similar in embedding space, even if they could be valid
matches in context.

In other words, since K-Means clustering is
based solely on the visual embeddings of individual
items—without considering how they interact with
other garments in real outfits—it may inadvertently
teach the model that only items visually close to the
removed one are acceptable, ignoring the fact that com-
patibility can depend on broader contextual relation-
ships within the outfit.

5.3.3 HDP Clusters

Unlike K-Means, which clusters individual items purely
based on their CLIP visual embeddings, HDP is ap-
plied over full outfits by aggregating the textual de-
scriptions of the items in them. This means the model
is indirectly learning which garments tend to appear
together—capturing notions of style rather than just
visual similarity.

Figure [19| shows three examples of HDP-generated
clusters. In the first, we observe a mix of vibrant
green, white, and pink tops, including cropped cuts
and leaf prints, all suggesting a cheerful or youth-
ful aesthetic. In the second example, pastel-colored
blouses dominate, implying a softer, perhaps more el-
egant style—although a few items seem mismatched,
indicating imperfect boundaries. The third cluster fea-
tures tighter, cropped tops that align with a more mod-
ern or bold fashion style, though again, a few outliers
appear.

These results suggest that HDP excels at identi-
fying stylistic patterns across outfits, but it occasion-
ally groups garments that do not visually resemble the
rest. We attribute this limitation to the lower fidelity
of textual metadata compared to CLIP embeddings:
item descriptions are often sparse, inconsistent, or in-
complete, making it difficult for HDP to fully capture
nuanced visual properties.

In future work, we envision combining the strengths
of both approaches—retaining the contextual aware-
ness of HDP while leveraging the representational rich-
ness of visual embeddings. For instance, adapting HDP
to operate over discretized embedding features could
offer a hybrid solution. However, discretization may
introduce information loss, and developing a principled
way to incorporate both signals remains an open chal-
lenge.

5.3.4 Example of HDP Negatives

Figure 20| shows an example from the FITB task using
HDP-based clustering. In this case, the outfit exhibits
a distinct aesthetic—featuring ripped jeans, studded
black boots, and an olive green jacket with metallic
embellishments, reminiscent of the edgy style of brands
like Zadig & Voltaire. The top is removed from the
outfit, and the ten negative samples are drawn from
other HDP clusters within the same subcategory.



(a) Cluster 6 - Example 1

(b) Cluster 5 - Example 2

(c) Cluster 1 - Example 3

Figure 19: Examples of 3 different HDP clusters in
Subcategory 11.
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Interestingly, most of the sampled negatives reflect
entirely different aesthetics, which would likely clash
with the bold and cohesive look of the original outfit.
This suggests that HDP can be especially effective at
generating meaningful negatives when the outfit style
is well-defined.

However, not all outfits are as stylistically distinc-
tive. In more ambiguous or mixed-style cases, HDP’s
performance tends to degrade, and the sampled nega-
tives may be less useful. Nonetheless, this example il-
lustrates HDP’s potential to capture higher-level stylis-
tic coherence, even when relying solely on textual in-
formation.

(a) Outfit with t-shirt removed

(b) Negative candidates from other HDP clusters

Figure 20: Example of cluster-based negative sampling
using HDP. The sampled negatives differ clearly in
style from the removed item, demonstrating how HDP
can generate stylistically meaningful contrasts in out-
fits with a coherent theme.

6. Conclusions and Future Work

6.1. Conclusions
This project has explored the application of
transformer-based architectures, specifically the

OutfitCLIPTransformer, to the challenging domain of
fashion outfit recommendation, focusing on Compat-
ibility Prediction (CP) and Fill-in-the-Blank (FITB)
tasks. Our findings underscore several critical insights
into the interplay between advanced AI techniques
and the inherently subjective and complex nature of
fashion.

A key enabler of this work was the use of pre-
computed CLIP embeddings, as proposed by Oh [10],
which significantly improved computational efficiency
and model performance. These multimodal embed-
dings, combining visual and textual features, reduced
training time from hours to minutes or seconds per
epoch and lowered memory requirements compared to
earlier approaches relying on ResNet-18 or Sentence-



BERT. This efficiency facilitated extensive experimen-
tation, achieving an AUC of 0.9509 for CP and an ac-
curacy of 0.72 for FITB, surpassing the original Outfit-
Transformer’s reported results (0.93 AUC for CP and
0.67 accuracy for FITB) and aligning with the perfor-
mance of Oh’s optimized implementation. The superi-
ority of CLIP embeddings over ResNet and Sentence-
BERT highlights their ability to capture nuanced vi-
sual and semantic features critical for fashion recom-
mendation tasks.

The CP task exposed the subjective and complex
nature of outfit compatibility. Despite the high AUC
and recall (99.64%), the model’s low precision (56.76%)
at the default decision threshold of 0.5 indicates a ten-
dency to overpredict compatibility, often misclassifying
incompatible outfits. Qualitative analysis revealed that
scores for true negatives and false positives clustered
near the threshold, reflecting the model’s difficulty in
confidently rejecting incompatible outfits. This chal-
lenge stems from the ranking-based nature of compat-
ibility prediction, where decision boundaries are not
well-defined, and the dataset’s subjective labels, where
even “incompatible” outfits may appear coherent to
some users. Threshold optimization improved accu-
racy to 87.94% at 0.6, but the task remains inherently
challenging due to the lack of clear separation between
compatible and incompatible outfits.

For the FITB task, adopting the curriculum learn-
ing (CL) strategy from the original OutfitTransformer
paper [7] improved accuracy from 0.65 (no CL) to
0.72, demonstrating the value of progressively harder
negative sampling. Our contribution lies in extend-
ing this approach with clustering-based negative sam-
pling, using K-Means and Hierarchical Dirichlet Pro-
cesses (HDP), to address the issue of near-identical or
equally valid candidates in the dataset. K-Means clus-
tering, applied to CLIP embeddings within subcate-
gories, matched the CL performance (0.72 accuracy)
by sampling negatives from different clusters, reducing
label noise during training. HDP, applied to textual
metadata, achieved a slightly lower accuracy (0.68)
but offered a complementary perspective by capturing
stylistic patterns based on item co-occurrence in out-
fits. These clustering strategies mitigate the confusion
caused by sampling negatives that are visually or stylis-
tically similar to the ground truth, a significant issue
given the dataset’s vast pool of approximately 251,000
items.

The Complementary Item Retrieval (CIR) task
proved exceptionally difficult, akin to finding a nee-
dle in a haystack. The requirement to select a single
correct item from such a large candidate pool, where
many items are nearly identical or equally compati-
ble, led to poor performance. This challenge, combined
with observed disagreements among human annotators
on outfit compatibility in the dataset, underscores the
limitations of current evaluation frameworks that as-
sume a single correct answer. Our qualitative analysis
of FITB predictions further highlighted this issue, as
the model was often penalized for selecting plausible
alternatives that differed only marginally from the la-

beled ground truth.

In summary, this work demonstrates the effective-
ness of leveraging CLIP embeddings, as introduced
by Wonjun Oh [I0], in conjunction with transformer-
based models for fashion recommendation. Our novel
clustering-based negative sampling strategies enhance
model robustness by addressing dataset ambiguities,
while our analysis reveals the critical impact of sub-
jectivity and task complexity on performance. These
findings contribute to a deeper understanding of Al-
driven fashion recommendation and lay a foundation
for future improvements.

6.2. Future Work

Building on the insights gained, several directions for
future research emerge to address the limitations iden-
tified and further advance fashion recommendation sys-
tems:

Hybrid Clustering Techniques While K-Means
effectively captured visual similarity and HDP revealed
stylistic co-occurrence patterns, neither fully addressed
the dual need for visual coherence and contextual com-
patibility. A hybrid clustering approach could combine
the strengths of both methods. For instance, discretiz-
ing CLIP embeddings into a vocabulary suitable for
HDP could allow the model to learn style-based clus-
ters while retaining the rich visual information of em-
beddings. Alternatively, graph-based clustering meth-
ods that model item co-occurrence as edges and embed-
dings as node features could better capture the inter-
play between visual similarity and outfit context. Such
techniques would enable negative sampling that avoids
confusing the model with compatible alternatives, im-
proving both CP and FITB performance.

Refined Negative Sampling Strategies The CIR
task’s complexity suggests a need for smarter negative
sampling during training. Instead of sampling nega-
tives solely based on visual or categorical differences,
future work could incorporate outfit-level compatibility
scores (e.g., from the CP model) to ensure negatives are
truly incompatible with the query outfit. Additionally,
adaptive curriculum learning schedules that dynami-
cally adjust the difficulty of negatives based on model
performance could further enhance learning efficiency
and robustness.

Multi-Answer Evaluation Metrics The subjec-
tivity in fashion compatibility, evident in both CP and
FITB, necessitates evaluation metrics that account for
multiple valid solutions. For FITB, rather than penal-
izing the model for selecting a plausible but “incorrect”
candidate, future work could focus on detecting equally
valid candidates in the dataset using clustering or simi-
larity analysis of candidate embeddings. By identifying
items that are visually or stylistically indistinguishable
from the ground truth, evaluation metrics such as accu-
racy could be adjusted to credit the model for select-
ing any valid candidate, yielding more representative
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performance measures. For CP, exploring soft labels
or probabilistic compatibility scores could mitigate the
binary nature of current annotations, aligning better
with human disagreement in the dataset.

Outfit-Level Style Modeling HDP’s ability to
identify stylistic patterns suggests potential for outfit-
level style modeling. Future work could develop mod-
els that explicitly learn style representations (e.g., ca-
sual, formal, bohemian) by combining visual embed-
dings with co-occurrence patterns. These representa-
tions could guide negative sampling, improve compat-
ibility predictions, and enable style-transfer applica-
tions, such as recommending outfits that adapt a user’s
preferred style to new contexts.

Enhanced CIR Frameworks To make CIR more
tractable, future research could explore hierarchical re-
trieval approaches, where the model first narrows down
the candidate pool to a smaller subset (e.g., using
clustering or category filtering) before performing fine-
grained ranking. Pre-filtering near-identical items us-
ing clustering or similarity thresholds could also reduce
the haystack effect, making the task less daunting and
more aligned with real-world recommendation scenar-
ios.
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