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OPTIMIZACION DE PROYECTOS Y ESTRATEGIAS DE DESPACHO
DE BESS EN EL MERCADO ERCOT

Autor: Fernandez de la Concha Rebollo, Iiiigo
Director: Sangroniz Ojer, Ifigo
Entidad Colaboradora: Solea Power Corp. SA

RESUMEN DEL PROYECTO

Los Battery Energy Storage Systems (BESS) se estan consolidando rapidamente como
tecnologias fundamentales en los sistemas eléctricos modernos, especialmente en mercados
con alta penetracion renovable y gran volatilidad de precios. Un ejemplo 6ptimo es el de
Electric Reliability Council of Texas (ERCOT), que gestiona uno de los mercados eléctricos
mas dinamicos y singulares del mundo. ERCOT opera bajo un esquema “energy-only”, sin
mercado de capacidad centralizado y con minima interconexioén con redes vecinas. Este
disefio intensifica el papel de las sefiales de precio para equilibrar oferta y demanda,
generando elevada volatilidad, frecuentes episodios de curtailment en la generacion
renovable y exposicion a eventos extremos como la tormenta invernal de 2021. En este
contexto, los BESS ofrecen un doble beneficio: proporcionan a los inversores oportunidades
de arbitraje energético y servicios de red, al tiempo que refuerzan la resiliencia de ERCOT
absorbiendo excedentes renovables y cubriendo picos de demanda. Para desarrolladores
como Solea Power Corp., una startup con sede en Houston que busca expandirse del solar al
almacenamiento, estas oportunidades se ven matizadas por la elevada incertidumbre y los
costes prohibitivos de los estudios preliminares. De alli surge la motivacion de esta tesis:
crear un modelo tecno-econdmico sélido y eficiente en recursos que permita evaluar la
viabilidad de BESS a nivel nodal en ERCOT y guiar decisiones de inversion antes de
comprometerse a estudios de interconexiéon completos.
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Figura Al. Mezcla de generacion en ERCOT 2025

El objetivo principal de este trabajo es disefar y aplicar un marco de modelado tecno-
economico capaz de simular el rendimiento y la rentabilidad de un BESS de 2 horas de ion-
litio en los mas de 17,000 nodos de precios de ERCOT. El modelo integra tres dimensiones
clave:

I.  Pardmetros técnicos como “depth of discharge” (DoD), “state of charge” (SoC),
“round-trip efficiency” (RTE) y tasas de degradacion anual.



II.  Logica de despacho basada en diferenciales del “Day-Ahead Market” (DAM), con
extension a estrategias hibridas DAM-RTM.
III.  Una capa financiera de “project finance” que incluye CAPEX, OPEX, el “Investment
Tax Credit” (ITC) del 30% para almacenamiento independiente, depreciacion
acelerada MACRS, y estructura deuda-capital.

De forma paralela, se desarrolld un modelo de curtailment para evaluar el valor afiadido de
la hibridacion solar + almacenamiento, particularmente en regiones como el oeste de Texas
donde los niveles de curtailment son elevados. En conjunto, estos componentes conforman
una herramienta escalable y de nivel inversor para apoyar el desarrollo de proyectos de
almacenamiento.

El modelo se implementd mediante una arquitectura hibrida de datos y simulacion. El
conjunto de precios DAM de ERCOT (mas de 3.9 millones de valores horarios entre marzo
de 2021 y septiembre de 2024) fue estructurado en una base de datos SQL para lograr una
eficiencia Optima. Python actué como intermediario, recuperando precios nodales y
transfiriéndolos a un motor de despacho en Excel/VBA, donde se simularon ciclos de
carga/descarga diarios bajo supuestos estacionales (1 ciclo/dia en verano, 2 ciclos/dia en
invierno). La degradacion se aplicd externamente para mantener modularidad, y la capa
financiera se integré directamente en Excel, asegurando accesibilidad para usuarios no
técnicos. Este flujo SQL—Python—Excel redujo tiempos de simulacién de mas de 5 minutos
por nodo a menos de 1, permitiendo un benchmarking completo de ERCOT de forma
transparente y simple.
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Financial Model)
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Figura A2. Arquitectura del modelo tecno-economico de BESS

En la seccion de resultados, el modelo se aplico primero a dos casos de estudio: Pamplona
(Houston Hub) y Santa Monica (North Hub). Pamplona se benefici6 de mayor volatilidad y
“spreads”, generando ingresos del primer afno de $89,412/MW y IRRs de 4.9% (proyecto) y
6.0% (accionistas). Santa Monica, en contraste, alcanzé $85,247/MW y retornos mas débiles
(3.9% aprox. en ambos IRRs), reflejando spreads menos pronunciados pese a precios solares
competitivos. Estos casos subrayan la necesidad de analisis a nivel nodal, ya que los
promedios de hub ocultan diferencias relevantes en rentabilidad.
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Figura A3. Ingresos anuales promedio por hub principal de ERCOT (excluyendo Coastal y Panhandle)

A escala de hub, el West Hub lider6 con $90,497/MW -afio, impulsado por volatilidad, pero
limitado por curtailment y congestiéon. Houston sigui6é con $87,505/MW-afio, atractivo para
arbitraje, pero con desafios de interconexion y suelo disponible. Los hubs Norte y Sur
ofrecieron menores ingresos absolutos, pero con mas estabilidad (Norte) o mayor potencial
de hibridacion (Sur). Estos resultados refuerzan el papel decisivo de la ubicacion en la
viabilidad de proyectos BESS.

El analisis de sensibilidad mostr6 que la estrategia de despacho y el CAPEX son los factores
dominantes. Pasar de una estrategia solo DAM a un escenario DAM-RT casi duplicé los
ingresos del primer afio (+64%) y triplico el IRR de los inversores (de 6.0% a 31.7%),
reduciendo el payback de 10-12 afios a 3-5. El CAPEX también resulté determinante: en el
escenario optimista de NREL ($473/kW) los IRRs subieron a +15%, mientras que en el
conservador ($844/kW) cayeron a <3%. Los parametros técnicos como DoD y RTE tuvieron
un impacto secundario, aunque importante: reducir DoD de 95% a 80% bajo ingresos un
16%, mientras que variar RTE entre 91% y 95% movio IRRs en menos de 1%.

Tabla Al. Resumen de andlisis de sensibilidad para el nodo Pamplona

Scenario Y1 Revenue Project IRR
($m) (Y0)
Base Case (DAM, 93% RTE, 95% DoD, Mid 8.9 4.9
CAPEX §$756/kW)
DAM-RT Dispatch 14.7 16.1
Optimistic CAPEX ($473/kW) 8.9 15.5
Conservative CAPEX ($844/kW) 8.9 2.7
1 Cycle/Day 7.1 3.8
80% DoD 7.5 3.8
65% DoD 6.1 2.7
95% RTE 9.1 5.4
91% RTE 8.7 4.5

Desde una perspectiva practica, este modelo ya ha aportado valor a Solea Power Corp., al
servir como herramienta de filtrado preliminar para priorizar nodos antes de encargar
estudios de interconexion con un alto coste asociado (Screening Study y Full Interconnection



Study). Al reducir tiempos y costes, el modelo permitié conservar recursos, acelerar
decisiones y responder a las expectativas de stakeholders que buscan alta rentabilidad con
bajo capital inicial. Para una startup compitiendo contra empresas con mayor respaldo, esta
eficiencia representa una ventaja decisiva.

En conclusion, este trabajo demuestra que el almacenamiento en ERCOT representa tanto
una oportunidad como un reto. Las oportunidades se maximizan cuando los proyectos estan
bien ubicados, se benefician de estrategias predictivas de despacho y de reducciones en
CAPEX. Los riesgos derivan de la saturacion en mercados de servicios complementarios, la
incertidumbre regulatoria y la degradacion tecnologica. El modelo aqui desarrollado, al
combinar rigor técnico con realismo financiero y facilidad de uso, no solo contribuye
académicamente, sino que también proporciona a la industria una herramienta practica de
apoyo a decisiones. Futuras extensiones del modelo deberian integrar despacho en tiempo
real, modelado probabilistico de Monte Carlo y algoritmos de prediccion de precios nodales
basados en IA. En ultima instancia, este trabajo muestra que los BESS, correctamente
modelados y desplegados, pueden pasar de ser activos dependientes del mercado a
convertirse en pilares de rentabilidad para inversores y de resiliencia para la red de ERCOT.



OPTIMIZATION OF BESS PROJECTS & DISPATCH STRATEGIES
IN THE ERCOT MARKET

Author: Fernandez de la Concha Rebollo, Iiiigo
Director: Sangroniz Ojer, Ifigo
Collaborating Entity: Solea Power Corp. SA

ABSTRACT

Battery Energy Storage Systems (BESS) are rapidly emerging as cornerstone technologies
for modern power systems, especially in markets with high renewable penetration and
extreme price volatility. Nowhere is this more evident than in the Electric Reliability Council
of Texas (ERCOT), which operates one of the world’s most dynamic and unique electricity
markets. ERCOT is an energy-only system without a centralized capacity market and with
minimal interconnection to neighboring grids. This design amplifies the role of price signals
in balancing supply and demand, resulting in high volatility, frequent curtailment of
renewable output, and exposure to extreme events such as the 2021 winter storm. In this
context, BESS offer a dual benefit: providing investors with opportunities for energy
arbitrage and grid services while supporting ERCOT’s resilience by absorbing surplus
renewable generation and supplying peak demand. For developers like Solea Power Corp.,
a Houston-based startup expanding from solar into storage, these opportunities are tempered
by high uncertainty and the prohibitive cost of early-stage studies. This thesis was motivated
by the industrial need to create a robust, resource-efficient techno-economic model that can
evaluate BESS feasibility at ERCOT’s nodal level and guide investment decisions before

committing resources to full interconnection studies.
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Figure A2. Fuel mix ERCOT market

The objective of this work is to design and apply a techno-economic modeling framework
capable of simulating the performance and profitability of a 2-hour lithium-ion BESS across
ERCOT’s 17,000+ pricing nodes. Specifically, the model integrates three core dimensions:

I.  Technical assumptions such as depth of discharge (DoD), state of charge (SoC),
round-trip efficiency (RTE), and annual degradation.
II.  Dispatch logic based on Day-Ahead Market (DAM) price spreads, with extensions
to Day-Ahead/Real-Time (DAM—-RT) hybrid strategies.
III. A project finance layer that includes capital expenditure (CAPEX), operating
expenditure (OPEX), 30% standalone storage Investment Tax Credit (ITC),
accelerated MACRS depreciation, and debt—equity structuring.



A parallel curtailment model was also developed to evaluate the added value of solar +
storage co-location, particularly in regions such as West Texas where curtailment levels are
high. Together, these components form a scalable and investor-grade decision-support tool
for storage development.

The model was implemented through a hybrid data and simulation architecture. ERCOT’s
DAM price dataset, comprising over 3.9 million hourly nodal values between March 2021
and September 2024, was structured into a SQL database to enable efficient querying. Python
acted as the intermediary, retrieving node-level prices and feeding them into an Excel/VBA
dispatch engine where daily charge—discharge cycles were simulated under seasonal
assumptions (1 cycle/day in summer, 2 cycles/day in winter). Degradation was applied
externally to maintain modularity. The financial layer was embedded directly in Excel,
ensuring accessibility for non-technical users. This SQL—Python—Excel pipeline reduced
simulation runtime from over 5 minutes per node to under one minute, enabling full ERCOT
benchmarking while remaining transparent and user-friendly.

SQL Database
(ERCOT LMP data
4 GB, 17k+ nodes)

Python Script
(Data Retrieval & Validation)

Excel + VBA
(Dispatch Simulation,
Financial Model)

|

Outputs
(NodeName_BESS.xIsx,
Charts, KPIs)

Figure A2. Workflow architecture of BESS techno-economic model

The results section first applied the model to two case studies: Pamplona (Houston Hub) and
Santa Monica (North Hub). Pamplona benefited from high volatility and spreads, yielding
Year 1 revenues of $89,412 per MW installation and project IRRs of 4.9% (unlevered) and
6.0% (levered). Santa Monica, by contrast, delivered lower revenues, $85,247 per MW, and
weaker returns (3.9% for both IRRs), reflecting thinner spreads despite competitive solar
pricing. These case studies highlight the necessity of nodal-level analysis, as hub averages
alone obscure meaningful differences in profitability.

Expanding to the hub scale, results showed the West Hub leading with $90,497/MW-year,
driven by volatility but constrained by curtailment and congestion. Houston followed at
$87,505/MW-year, attractive for arbitrage but challenged by land and interconnection
bottlenecks. North and South hubs underperformed in absolute terms but offered either
stability (North) or strong co-location value (South). These findings underscore the decisive
influence of location in ERCOT’s BESS market.



Hubs Average daily revenues per month

400 AL
350
300
g 250 E North
200
>
& 150 @ South
100 = Houston
50 3
o [ o @ @1 LRt o ot
Q ) N D N Z N S N < X N
Q\@ & & <& VQ« R\ \o(\ S S & 2 &50"’ ((\\Qe @\o@
NG <<Q‘§> e QY‘Q/ o & ?}52,
3 SR

Figure A3. Average annual revenues across ERCOT Main Hubs, excluding Coastal and Panhandle

The sensitivity analysis revealed dispatch strategy and capital costs as the dominant levers
of feasibility. Transitioning from a DAM-only strategy to an idealized DAM-RT scenario
nearly doubled Year 1 revenues (+64%) and tripled shareholder IRR (from 6.0% to 31.7%),
cutting payback from 10-12 years to 3-5. CAPEX proved equally decisive: under NREL’s
optimistic trajectory ($473/kW), IRRs rose to +15%, while conservative assumptions
($844/kW) reduced returns to <3%, close to unviability. Technical parameters such as DoD
and RTE acted as secondary refinements, though still very important: lowering DoD from
95% to 80% cut revenues by 16% approximately, while adjusting RTE between 91% and
95% shifted IRRs by less than 1%. These results confirm that while technical optimization
enhances margins, structural factors such as cost reductions and real-time trading strategies
define project viability.

Table Al. Sensitivity Analysis summary table

Scenario Y1 Revenue Project IRR
($m) (%)
Base Case (DAM, 93% RTE, 95% DoD, Mid 8.9 4.9
CAPEX $756/kW)
DAM-RT Dispatch 14.7 16.1
Optimistic CAPEX ($473/kW) 8.9 15.5
Conservative CAPEX ($844/kW) 8.9 2.7
1 Cycle/Day 7.1 3.8
80% DoD 7.5 3.8
65% DoD 6.1 2.7
95% RTE 9.1 5.4
91% RTE 8.7 4.5

From a practical perspective, this model has already delivered value to Solea Power Corp.
by serving as a low-cost screening tool to prioritize nodes before commissioning costly
interconnection studies. These studies, which include Screening Studies and Full
Interconnection Studies, represent significant expenses in both time and consultant fees. By
filtering nodes upfront, the model enabled Solea to conserve resources, accelerate decision-
making, and align with the expectations of stakeholders seeking high-return, low-investment



opportunities. For a startup competing against larger firms with deeper pockets, this
efficiency represents a decisive advantage.

In conclusion, this thesis demonstrates that battery storage in ERCOT is both an opportunity
and a challenge. Opportunities are greatest when projects are strategically sited, leverage
predictive dispatch, and benefit from declining capital costs. Risks stem from market
saturation in ancillary services, policy uncertainties, and degradation dynamics, all of which
require careful modeling. The model developed here, by combining technical rigor with
financial realism and operational usability, not only advances academic understanding but
also equips industry practitioners with a practical decision-support tool. Future extensions
could include real-time dispatch integration, probabilistic Monte Carlo modeling, and Al-
based forecasting of nodal prices. Ultimately, this thesis shows that BESS, when properly
modeled and deployed, can evolve from market dependent assets into cornerstones of both
investor profitability and ERCOT grid resilience.
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1. INTRODUCTION AND PROJECT APPROACH

1.1 BACKGROUND AND CONTEXT

The Electric Reliability Council of Texas (ERCOT) manages the electricity grid for around
26 million people, covering approximately 90% of the state’s total electricity demand. As an
independent system operator (ISO), ERCOT is responsible for maintaining grid reliability
and operating a unique energy-only market. In this system, power generators are paid only
for the electricity they produce and sell, rather than receiving additional payments for simply
being available, which is included in the ancillary services market working in parallel to the
day-ahead and real-time markets. This structure makes ERCOT’s market more dependent
on price fluctuations to encourage supply, especially during periods of high demand or grid

stress.

Over the past decade, Texas has experienced a rapid expansion in renewable energy capacity,
primarily in wind and solar. By early 2025, according to ERCOT, installed wind capacity
has almost reached 40 GW, while solar capacity has surged past 30 GW, with projections
indicating continuous growth. This rapid influx of intermittent renewable generation has
introduced significant challenges related to energy price volatility, particularly in the Day-

Ahead Market (DAM) and the Real-Time Market (RTM). HVAC
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CURRENT MONTHLY
GENERATION CAPACITY

@ Solar
6 MW (0.0%) 30,860 MW

@ Wind
19,512 MW (38.0%) 39,754 MW

o Hydro
138 MW (0.3%) 572 MW

o Power Storage
12 MW (0.0%) 12,590 MW

Q Other
0 MW (0.0%) 142 MW

Q Natural Gas
21,825 MW (42.5%) 66,366 MW

@ Coal and Lignite
4,872 MW (9.5%) 14,713 MW

Nuclear
5,026 MW (9.8%) 5268 MW

Figure 3. Fuel mix ERCOT market

ERCOT’s operational structure differs notably from other U.S. electricity markets due to its
energy-only market design and limited interconnection to external grids. This means that
ERCOT does not rely on capacity payments to ensure generation adequacy; instead, it uses
real-time price signals to incentivize both supply and demand behavior. The market operates
primarily through three core mechanisms: the Day-Ahead Market (DAM), the Real-Time
Market (RTM), and the Ancillary Services markets. In the DAM, market participants submit
bids and offers for electricity supply and demand on an hourly basis for the next day, very
similar to OMIE’s day ahead market in the Iberian Peninsula. Accepted bids set binding
schedules and prices, offering price certainty and early visibility into system conditions. The
RTM, by contrast, settles imbalances between DAM schedules and actual real-time
conditions through 5-minute price intervals (publishes in 15-minute price intervals in
ERCOT’s official website), capturing short-term fluctuations in demand and generation.
These fluctuations are often driven by factors such as renewable output variability, forced
outages, and load forecast errors, with a significant % coming from forced outages due to
several external reasons, such as the malfunction of equipment due to severe meteorological

conditions, something especially common in the southeast region, around Houston.

To maintain grid stability, ERCOT also procures ancillary services. There are 5 main
ancillary services, which BESS (Battery Energy Storage Systems) assets are increasingly
well-positioned to provide thanks to their fast response capabilities. These services are

Regulation Up, Regulation Down, Responsive Reserve, Non-Spin Reserve, and the 2023

11
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newly added Contingency Reserve, acting as an emergency buffer of the rest of reserves.
Particularly, the latter has been very relevant to large proportion of battery reserves recently,

something that will be discussed in later topics.

These 3 mechanisms are co-optimized within the broader market and cleared based on both
price and system needs. Importantly, the lack of interconnection to other markets means
ERCOT must always manage supply and demand balance internally, leading to higher levels
of price volatility than in other ISOs. This market structure creates favorable conditions for
BESS operators to pursue energy arbitrage strategies and capture high-value revenue streams
from ancillary services. By maintaining available capacity for frequency regulation, BESS
units can participate in grid stability services, while also charging during low-price periods,
typically driven by renewable generation surpluses, and discharging during high-price

intervals, such as during peak demand or supply shortfalls.

Price spreads between specific hours in a day in DAM and RTM, as well as the differences
between DAM and RTM themselves, have widened due to increased renewable penetration,
with instances of negative pricing during periods of excess supply and price spikes during
peak demand. For example, in 2023, ERCOT recorded multiple instances of extreme price
fluctuations exceeding $5,000/MWh due to supply-demand imbalances exacerbated by
extreme weather events. These fluctuations have been seen in the past as well, so there’s

validity to believe it will continue occurring in the upcoming years.

12
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Figure 4. Price spikes in Houston Hub 2019-2022

To address these challenges, BESS have emerged as a critical technology to provide grid
stability, optimize market participation, and enhance revenue streams for energy traders and
project developers. BESS can store energy when prices are low and discharge when prices
peak, capitalizing on arbitrage opportunities while improving grid resiliency. In addition,
BESS also can capitalize as co-located installations to solar or wind farms, capitalizing on
curtailment periods of high renewable energy generation with negative market prices, by

storing the renewable energy and selling it at a higher price at a later time.

1.2 MOTIVATION
The increasing economic viability of battery storage projects has created a compelling case
for expanding beyond standalone solar developments into hybrid solar-plus-storage systems.
At Solea Power Corp, my primary role has been to drive this expansion by integrating BESS
into our project pipeline, capitalizing on the growing investor interest in energy storage

solutions.

This transition aligns with the broader market trend where energy developers seek to
maximize returns by leveraging price arbitrage opportunities and ancillary service revenues
in the ERCOT market. As price volatility intensifies due to renewable penetration, the ability

to store and dispatch energy at optimal times has become a critical factor in project success.
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Beyond financial incentives, the implementation of BESS contributes to grid stability by
mitigating extreme price fluctuations and alleviating supply-demand imbalances. By
reducing curtailment of renewable energy and optimizing dispatch strategies, storage
solutions play a crucial role in enhancing market efficiency. This project not only supports
Solea’s strategic objectives but also aligns with broader industry efforts to accelerate the

energy transition, positioning battery storage as a cornerstone of future electricity markets.

Having seen recent needs of grid stability on an international scope, the use of BESS is in
its peak momentum to ensure a correct energy transition, as it’s seen that a massive amount
of intermittent renewable energy output across the day doesn’t completely replace fossil

fuels unless energy storage can control when to inject this energy into the grid or not.

On a personal and professional development level, this thesis also seeks to reflect the
extensive work behind the modeling and market research efforts, with the goal of helping
expand Solea Power Corp.’s project scope by opening a new line of business focused on

BESS development and identifying new revenue opportunities

1.3 PROJECT OBJECTIVES

The aim of this study is to develop a techno-economic model for optimizing BESS
deployment within ERCOT. The model is based on DAM price data from March 2021 to
September 2024, analyzing historical trends across more than 17,000 pricing nodes in the
ERCOT network. By simulating the operation of a 2-hour lithium-ion battery facility, the
model evaluates revenue generation potential under varying market conditions. Key

parameters include:

o Charging during the two consecutive cheapest hours per day
e Discharging during the two most expensive hours per day
o Considering seasonal variations in charge-discharge cycles (1 or 1.5 cycles/day)

o Incorporating degradation factors and financial considerations (CAPEX, OPEX, tax
incentives, and financing structure)

14
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In turn, this thesis aims to enhance the development and deployment of BESS within the
ERCOT market by leveraging advanced techno-economic modeling and optimized dispatch

strategies. The primary objectives of the project are outlined below:

Optimize BESS dispatch strategies for profit maximization

The project seeks to develop and refine dispatch strategies that maximize the profitability
of BESS installations in ERCOT. By simulating historical Day-Ahead market data, the
model identifies optimal charge and discharge windows, charging during periods of low
prices and discharging when prices peak. This approach is intended to improve financial

returns while promoting efficient operational planning.

Deliver a scalable model for BESS across ERCOT’s 17,000+ nodes, identifying

biggest opportunities

A core component of this project is the development of a flexible techno-economic model
designed to assess the feasibility of BESS deployment across ERCOT’s expansive nodal
network. By integrating location-specific price dynamics, including specific locational
marginal prices (LMPs) across the nodes and infrastructure characteristics, the model
enables developers and investors to identify high-return sites and evaluate the trade-offs
between standalone and co-located configurations with renewable assets. To put into
business context, if a landowner is willing to sell/rent their land, this model could analyze
the land’s projection of revenues for the next 15 years and analyze that specific location’s

financial metrics, such as project IRR.

Assess the Technological Viability of Utility-Scale Lithium-Ion Batteries

A key goal is to evaluate the technical and economic suitability of lithium-ion batteries for
utility-scale storage applications. The analysis focuses on configurations such as 1-hour, 2-
hour, and 4-hour batteries, deep diving into 2-hour batteries for this thesis, considering
round-trip efficiency, degradation profiles, and lifecycle performance. This objective
ensures that the system design is aligned with realistic operational and investment

horizons.
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Evaluate the Impact of Market Price Volatility on BESS Performance

To address market uncertainties, the project analyzes the sensitivity of BESS revenues to
price fluctuations over multi-year periods. By modeling exposure to volatility in both the
DAM and RTM, this objective assesses potential financial risks and informs more resilient

investment decisions.

Support Renewable Integration by Enhancing Market Stability

The thesis explores how strategically deployed BESS can contribute to greater grid
reliability and price stability amid increasing renewable penetration. By absorbing excess
generation and releasing stored energy during supply deficits, batteries can reduce price

spikes and curtailment, ultimately supporting broader decarbonization efforts.
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2. STATE OF THE ART: ERCOT MARKET AND BATTERY

STORAGE TECHNOLOGIES

2.1 ERCOT MARKET OPERATIONS

The ERCOT grid operates a nodal system independently from the Eastern and Western
interconnections, making it a unique and self-contained power market in the United States.
With over 17,000 pricing nodes, ERCOT relies on locational marginal pricing (LMP) to
reflect real-time supply and demand conditions at each node. This structure promotes
geographically optimized development, as generators, and increasingly battery storage
systems, are incentivized to locate in areas with high price volatility or congestion. Within
this framework, short-term electricity trading takes place across two primary markets: the
Day-Ahead Market (DAM), where participants can hedge against price fluctuations by
scheduling energy deliveries a day in advance; and the Real-Time Market (RTM), which
settles every five minutes based on actual system conditions. Both markets are supported by
the Ancillary Services Market, which ensures system stability through frequency regulation,
spinning reserves, and fast-response products like the FRRS (Fast Response Reserve

Service).

In addition to these short-term markets, ERCOT also supports longer-term mechanisms such
as the Congestion Revenue Rights (CRR) Auction and bilateral trading, where Qualified
Scheduling Entities (QSEs) engage in contracts ranging from monthly to multi-year
durations. One common form of long-term agreement is the Power Purchase Agreement
(PPA), a contract between a generator and an QSE that locks in energy prices over time to
shield both parties from short-term market volatility. While ERCOT does not operate a
traditional capacity market like those found in the UK or Iberian Peninsula, it does maintain
a Reliability Unit Commitment (RUC) mechanism to ensure adequate generation is available
during periods of tight supply. As a result, strategic coordination between ERCOT and
market participants is essential to maintain both system reliability and economic efficiency.

The following figure illustrates how the ERCOT electricity market is structured across
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Figure 5. Market Information System Summary (ERCOT)

Out of this whole market, BESS gains a significant role in the short-term markets, where
volatility comes in to play and BESS could act as a solution to decrease this effect. The Day-
Ahead Market (DAM) allows generators and storage operators to lock in prices a day in
advance based on forecasted demand and supply conditions. BESS can leverage DAM
participation to optimize dispatch schedules, commit capacity, and hedge against volatility
in the Real-Time Market, although DAM also experiences high levels of volatility,
especially in extreme weather events. In contrast, the Real-Time Market (RTM) clears every
five minutes and reflects the most immediate supply-demand imbalances. This is where the
highest volatility can occur, paired with the high risk of trading in this market. This market
volatility is translated sometimes into hundreds or even thousands of dollars per MWh of

difference in a single day, difference that can be capitalized by BESS facilities if modeled
properly.
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The Ancillary Services Market provides payments for maintaining system reliability through
the 5 ancillary services markets there are: Regulation Up, Regulation Down, Responsive
Reserve, Non-Spin Reserve and the ERCOT Contingency Reserve Service (ECRS), which
recently came into play as of June 2023. Offers on ancillary services are submitted in a MW
basis and are paid in $ / MW. According to ModoEnergy, from January to June 2023, 87%
of BESS revenues in ERCOT came from ancillary services, signaling a clear opportunity for

BESS to make consistent revenues at that time.

From January to June 2023 (inclusive), 87% of battery energy storage
revenues in ERCOT came from Ancillary Services

. $6,01/MW

nergy w Ancillary Services

$39,036/MW

MODOENERGY

Figure 6. BESS revenue breakdown in 2023’s first semester (ModoEnergy, 2023)

The integration of renewable energy has transformed Texas’s electricity landscape, with
wind and solar generation now accounting for more than 40% of total generation (U.S.
Energy Information Administration [EIA], 2024), a share expected to continue growing
steadily in the coming years. This shift, however, has introduced even more volatility into
the market, with frequent occurrences of negative pricing (curtailment) when renewable
generation outstrips demand, and extreme price spikes during peak consumption periods.
The widening spread between DAM hourly prices in the same day has heightened the
importance of energy storage solutions, as they offer a means of mitigating these fluctuations
while enhancing system reliability. One of the defining features of ERCOT as already

mentioned is its nodal pricing system, which contains over 17,000 unique LMPs across the
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grid. This granular pricing mechanism reflects local congestion, losses, and supply-demand
mismatches in real time, and introduces both risk and opportunity for battery operators.
Strategically sited BESS assets can capitalize on locational price volatility, charging when
local prices dip due to excess solar or wind generation, and discharging when congestion
spikes prices at nearby nodes, especially during evening hours where no renewable energy
generation is present, and people get back from work. This makes site selection and nodal
modeling especially important for standalone storage developers seeking to maximize

revenue.

As 0f 2025, ERCOT has over 90GW of battery storage projects in its interconnection queue,
reflecting the growing interest in storage as a solution to market inefficiencies. However, it
has to be pointed out that this large queue doesn’t reflect reality as of now, as less than 30%
of BESS projects in the queue actually get to the construction phase, highlighting the fierce
competition and still lack of full knowledge on when and where to build a project. This
growth has been further stimulated by regulatory incentives, particularly the extension of the
30% Investment Tax Credit (ITC) for standalone storage projects under the Inflation
Reduction Act (IRA), which, although a controversial theme as of now, will keep being

available until 2032.
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Figure 7. ERCOT’s BESS interconnection queue by location and capacity

A well-known example of market volatility in ERCOT came in the winter storm in February
2021, which led to prolonged outages and extreme price spikes across Texas. This event
highlighted the vulnerability of thermal generation and the importance of dispatchable
energy reserves. Similarly, daily solar oversupply in regions like West Texas now causes
frequent midday price drops, followed by sharp ramps during evening demand peaks, ideal
conditions for two-hour lithium-ion systems to perform arbitrage. According to an expert
interview conducted from a local engineering company, “During that storm, we almost paid
for all our BESS’ projects CAPEX through energy arbitrage, as prices spiked enormously.”
To back this claim, the EIA published, “In February 2021, wholesale prices held at or near
the $9,000/MWh ERCOT price cap for approximately 77 hours, from midnight on February
15 to the morning of February 19.” This ultimately shows that volatility can happen at any
given time, and both BESS and the grid can benefit economically from a profound BESS
integration, bearing in mind this was a very uncommon occurrence, although with increased
probability in recent times as observed in recent years, where the occurrence of extreme

weather events has increased significantly.
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In addition, while these seasonal patterns have remained relatively stable in recent years,
long-term climate projections for Texas suggest potential shifts that could alter electricity
demand peaks and renewable generation profiles. Average summer temperatures are
expected to rise, increasing cooling loads and potentially extending the duration of daily
price spikes into late evenings. Conversely, more variable winter weather, including extreme
cold storms similar to the 2021 case, could create additional intraday peaks beyond the
current two-cycle winter profile. Such changes, driven by both climate change and evolving
consumption behavior, may influence the optimal seasonal dispatch strategies for BESS in
the future. As a result, models that hard-code seasonal cycles based solely on historical data

should be periodically revisited to ensure alignment with emerging climatic and market

conditions.

Observed and Projected Temperature Change
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Figure 8. Projected temperature increases in different emissions scenarios in Texas (North Carolina Institute

for Climate Studies, 2022)

2.2 UTILITY-SCALE BATTERY ENERGY STORAGE TECHNOLOGIES

BESS have emerged as a fundamental component of modern grid infrastructure, driven by
rapid technological advancements and cost reductions. The global energy storage market has

experienced unprecedented growth. According to IEA, “Storage installations in 2024 beat
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expectations with 205GWh installed globally, a staggering y-o-y increase of 53%. The grid
market has once again been the driver of growth, with more than 160GWh deployed
globally, of which 98% was lithium-ion.” In the United States, the sector is expanding at an
annual growth rate exceeding 30%, with ERCOT at the forefront of this transition due to its

dynamic pricing structure and increasing reliance on renewable energy sources.

ERCOT battery starage projocts

Figure 9. Standalone and co-located BESS facilities in ERCOT market

Now, how does a battery energy storage system work exactly? Battery energy storage
systems (BESS) are electrochemical technologies that allow energy to be stored and
discharged later, playing a key role in enhancing grid flexibility and reliability. These
systems can charge from the grid or directly from generation assets, like solar installations,
and later release stored energy to supply electricity or provide ancillary services during
periods of high demand or reduced supply. Various battery chemistries exist for grid-scale
applications, including lithium-ion, lead-acid, redox flow, and molten salt technologies, each
with distinct performance characteristics and trade-offs. Among them, lithium-ion batteries
currently dominate the utility-scale market in the United States and globally, driven by rapid

technological advancements and significant cost reductions.
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Lithium-ion batteries are divided as of now into 4 types, each playing a completely different
role in market operations, and having completely different levels of technology maturity:
one-hour, two-hour, four-hour and eight-hour batteries. One-hour batteries primarily serve
ancillary service markets, where rapid response times are crucial for frequency regulation.
Two-hour batteries, which are the focus of this study, are particularly suited for energy
arbitrage, capitalizing on the price differentials between low-price charging periods and
high-price discharge periods, although it has been seen that many benefit from ancillary
services regulation as well. Meanwhile, four-hour batteries are increasingly utilized for peak
shaving and capacity firming, offering extended discharge durations to stabilize grid
fluctuations, although its level of technological maturity and costs are still a short-term
barrier for a clear entry. On the other hand, eight-hour BESS systems are gaining attraction
on the market to possibly replace CCGT’s as a long-term ancillary services response, but it’s

still being studied and on a pre-implementation phase.

2.2.1 System Architecture and Core Components

There are several crucial components for an optimal functioning of BESS systems. These

arc:

e Battery cells: This is the main storage component which can vary in type, including
lithium-ion and lead-acid batteries, as well as several others discussed.

e Battery Management System (BMS): Serves as a SCADA (Supervisory Control and
Data Acquisition) solely focused on monitoring battery health and functionality to
ensure safe operations.

e Power Conversion System (PCS): Controls the bidirectional flow of power (charge
and discharge cycles) and converts DC power from the battery to AC power at an
appropriate voltage level required by the network, using an inverter and a set up
transformer, similar components to a PV (Photovoltaic) installation. This is crucial

to couple BESS to the electrical grid, so it can properly function.
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e Energy Management System (EMS) and SCADA: Serve as the general SCADA and
performance optimization component. These components work simultaneously
together to optimize the performance and integration of BESS into the broader power

system

IVAC  MVAC

o
inverter/ ?{
charger
set-up " tie-line
transformer :

-----------

set points

status info

batteries
system
operator *Battery Management System

Figure 10. Key components of BESS interconnected at the transmission substation level (Denholm, 2019)

Once the key technical components are discussed, there are also auxiliary components
that are necessary for the BESS system to function optimally to be mentioned. This

equipment/infrastructure includes:

o Auxiliary Services Room: This subsystem is responsible for supplying low-voltage
power to various auxiliary equipment throughout the BESS installation. This
includes internal lighting, HVAC and cooling systems, the later integrated in the
battery enclosure, control systems, and safety mechanisms such as fire detection. It
ensures the continuous operation of non-power-conversion elements, especially
during low-demand or stand-by periods. One of the key components in terms of
energy consumption costs is included in this room, which is the HVAC and cooling
systems, as they are expected to work all year round to maintain the batteries’ optimal

functional temperature.
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o Storage Room: Also known as a warehouse. This room is designated for housing
spare parts and essential equipment required for the preventive, predictive and
corrective maintenance of the BESS. By keeping critical components on-site,
operators can reduce system downtime in case of minor faults or failures. These
critical components include spare battery modules (key component in OPEX, as
several modules are replaced each year to maintain the BESS at peak power
performance), replacement fuses and sensors, as well as specific tools for battery
servicing used by on-site operators if needed.

o Control Room: This is the central node for the monitoring and management of the
BESS. It hosts the SCADA systems, battery management platforms, and data
acquisition servers that collect real-time system metrics and performance indicators.
From this room, operators can visualize, control, and optimize system operation.

o Metering Cabinet: The metering cabinet is used to measure and transmit active and
reactive power flows at the point of interconnection. It ensures compliance with
market and grid operator requirements, such as those mandated by ERCOT, by
providing accurate import/export data for billing, dispatch validation, and
operational records.

o High Voltage Customer (HVC) Kiosk: This kiosk is a must for all energy systems
functioning on the grid. It serves as a safety and isolation interface between the BESS
facility and the utility grid. It enables operators to disconnect the system during
planned maintenance or automatically during fault conditions. The HVC kiosk
contains switchgear and circuit breakers designed to handle high voltage levels
(typically 11kV to 33kV) used in grid interconnection.

o Battery Container: The battery container is the structural and functional unit that
houses the core energy storage elements. Typically built from reinforced steel or
shipping container shells, it is engineered for thermal management, safety, and
modularity. Each container includes its own fire suppression system, local battery
management units, and environmental controls. These fire suppression systems have
been an ongoing work in progress due to the high toxicity of gases emitted in a BESS

fire in Arizona, which raised the concern of the Federal Emergency Management
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Agency (FEMA), which conducted R&D studies in the University of Texas at Austin

to develop standard operating procedures in the case of a BESS fire.

2.2.2  Lithium-ion batteries

Lithium-ion batteries are electrochemical energy storage systems that store and release
electrical energy through controlled chemical reactions, redox reactions to be specific. At
their core, they consist of two electrodes, a negative electrode (called the anode) and a
positive electrode (called the cathode), separated by an electrolyte and a porous separator.
Two current collectors, positive and negative, finish up the initial setup of a lithium-ion
battery. During operation, lithium ions (Li*) shuttle back and forth between the two

electrodes, which is what enables the battery to charge and discharge repeatedly.

Lithium-ion Cell

Electrolyte

Current Current

Collector Collector

Lithium ions Cathode

Separator

Figure 11. Lithium-ion cell composition (Source: Octopart)

When the battery is charging, an external electrical current is applied, which forces lithium
ions to leave the cathode and move through the electrolyte toward the anode. At the same
time, electrons travel through the external circuit (since they cannot pass through the

electrolyte) and reach the anode, where they combine with the lithium ions. These ions are
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then stored in the anode’s material structure, commonly made of graphite, through a process
called intercalation. In this state, the battery is storing energy in chemical form. During
discharge, the process is reversed. Lithium ions leave the anode and migrate back through
the electrolyte toward the cathode, releasing energy in the process. As they move, electrons
flow again through the external circuit to power a load (such as the grid), meeting the lithium
ions at the cathode where they are reabsorbed into its structure, often made from lithium
metal oxides like Lithium iron phosphate (LFP). This movement of ions inside the battery
and electrons through the external circuit is what delivers electrical power to the system. The
separator placed between the anode and cathode serves a critical safety role by physically
preventing the electrodes from touching and causing a short circuit, while still allowing
lithium ions to pass through. Meanwhile, the electrolyte, typically a solvent with lithium salt,

facilitates ionic conductivity between electrodes without allowing electron flow internally.

These charging and discharging cycles are highly reversible under proper conditions, which
is what allows lithium-ion batteries to be used for thousands of cycles. However, over time,
side reactions such as solid electrolyte interphase (SEI) formation, lithium plating, or loss of
active lithium can reduce the efficiency of ion movement and ultimately degrade the
battery’s performance and its State of Health, which will be discussed further along the

document.

In the context of utility-scale battery energy storage systems, lithium-ion technology is
implemented by combining thousands of individual cells into modules, racks, and
containerized systems. These are then integrated with power electronics, thermal
management, and control systems to form a grid-connected solution capable of charging
from or discharging to the grid. Although the principle of operation remains the same as in
consumer-scale batteries, the complexity increases significantly due to scale, safety, and

thermal uniformity requirements.
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Advantages

Lithium-ion batteries have become the preferred choice for utility-scale energy storage
systems due to their combination of high performance, scalability, and commercial maturity.
One of their most notable advantages is their high energy density, which allows a large
amount of energy to be stored in a relatively small footprint, being a critical factor for grid-
scale installations where land use may be constrained. To make a fair comparison, IMW of
solar occupies around 2.5-3 acres, whereas 100MW of a 2-hour lithium-ion BESS occupies
around 5 acres, so roughly 50 times less space, hence a reduction in environmental impact.
On top of their small footprint, their modular architecture allows flexibility in system sizing
and deployment, from small commercial units to multi-megawatt grid-connected plants,
meaning a BESS can be the exact size needed for a project without having to over dimension

or under dimension the installation.

In addition, lithium-ion systems offer fast response times and high-power capabilities,
enabling them to react within milliseconds to grid signals. This makes them ideal for
applications such as frequency regulation, voltage support, and energy arbitrage in dynamic
markets like ERCOT. Another key strength is their round-trip efficiency, typically ranging
from 85% to 93%, which means that most of the energy stored can be recovered during
discharge. Their ability to complete thousands of cycles before significant degradation also
contributes to strong long-term performance. These advantages, combined with rapidly
falling battery costs driven by EV-sector demand (refer to chapter 2.3), have positioned

lithium-ion technology as the dominant solution in today’s energy storage landscape.

Disadvantages

Despite their widespread adoption, lithium-ion batteries also present several technical and
economic challenges, especially in long-duration or harsh operating environments. First,
they are sensitive to extreme temperatures: high heat accelerates degradation exponentially
and may lead to thermal runaway, while low temperatures increase internal resistance and

reduce performance. This translates into needing complex thermal management systems,
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particularly in hot climates like Texas, adding to both OPEX and auxiliary consumption,
meaning location is also an important factor when it comes to operational costs. Another
limitation is their duration capacity; Lithium-ion batteries are typically optimized for 1 to 4
hours of discharge, which makes them less suitable for long-duration energy shifting or
seasonal storage needs. However, there are optimistic advancements regarding 8-hour
BESS, which is crucial in longer term ancillary services. Furthermore, these batteries require
careful charge/discharge management to avoid deep cycling or overcharging, both of which
accelerate degradation and reduce system life, acting as a barrier to overwork the battery as

much as desired.

On the economic side, concerns remain around the availability and ethical sourcing of
critical materials such as lithium, cobalt, and nickel, especially as global demand rises and
these resources are scarce, especially lithium, which is the core component of the batteries.
Safety is also a key issue: while modern systems include advanced Battery Management
Systems (BMS), there is still an inherent risk of fire due to the flammable organic electrolyte
used in most lithium-ion chemistries. “In April 2019, an unexpected explosion of batteries

on fire in an Arizona energy storage facility injured eight firefighters.” (FEMA, 2020)

2.2.3 Operational and Degradation Characteristics of Lithium-Ion Batteries

To develop an accurate techno-economic BESS model, it had to be understood what
technicalities make a BESS function one way or another and find the optimal point to
maximize revenue and useful life of battery modules in the installation. Technical
specifications such as state of charge, depth of discharge, functioning temperature, and
round-trip efficiency are not only essential for evaluating the performance of the system, but
also critical for designing strategies that preserve long-term functionality and financial

viability.
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State of Charge (SoC)

State of Charge (SoC) refers to the percentage of a battery’s total capacity currently stored
and available for use. Maintaining a high SoC over extended periods, particularly above
80%, has been shown to accelerate calendar ageing due to increased chemical instability and
higher rates of reactions. Conversely, persistently low SoC levels can result in reduced power
availability and faster internal resistance buildup. To mitigate both forms of degradation,
operational strategies typically define an optimal SoC window, often between 20% and 80%,
within which the system cycles during regular operation. This practice helps to extend the
usable life of the battery while maintaining adequate flexibility for energy dispatch. As an
example of what this means in a practical case, if a battery is fully charged for 12 hours in a
day and fully discharged for the remaining 12 hours (assuming ramp up charge and ramp up
discharge time is negligible), the state of charge of the battery would be 50% on average,
which is also called the mid-state of charge (Mid-SoC). To back this claim, the European
Union funded a project named “Batteries 2020, which united nine battery experts to study
the effect, along a few other effects, of SoC on battery ageing. Figure 12 shows the capacity

of a battery at different SoC levels throughout its lifetime, in storage days.
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Figure 12. Capacity over battery cell lifetime at different SoC levels (Timmermans et al., 2016)

It can be observed that as SoC increases, the decrease in capacity over time is exponential,
therefore the model has to carefully follow a path where the battery is not full for long

periods of time, so that degradation doesn’t become exponential.
Depth of Discharge (DoD)

DoD measures the portion of a battery’s capacity that is discharged in a single cycle. The
severity of DoD is a primary factor in cycle ageing, with deeper discharges inducing greater
mechanical and chemical stress on battery materials. Lithium-ion cells exhibit significantly
longer lifetimes when operated with shallower DoD; for instance, reducing DoD from 100%
to 50% can nearly double the number of achievable full cycle equivalents (FCE). FCE are
defined as number of complete cycles, from 100% of the energy rated capacity to 0%,
without meaning it does that in one go, rather in a set of lower rated cycles to not overwork
the battery. This correlation between DoD and number of FCE is due to the reduced strain
on the electrode-electrolyte interfaces and lower thermal stress within the cell. As such,
managing DoD is a key operational lever for maximizing lifetime energy throughput and

should be taken into account when designing the model, as choosing between one DoD or
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another can make a project feasible or not. Figure 13 shows the capacity curves at different

DoD levels for a battery working at 50% Mid SoC and 25°C, which are criteria close to an

optimal level of functioning.
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Figure 13. Capacity curves of battery cell at 25°C and 50% Mid-SoC at different DoDs (Timmermans et al.,

201¢6)

Following a similar trend as SoC, the higher the Depth of Discharge used in a BESS system,

the more exponential the capacity degradation becomes. This has to be carefully considered

for the model, as lower DoDs mean lower energy storage on average, hence less revenues,

but higher DoDs means higher battery replacement costs, so an optimal DoD

shall be picked

for the model. To further acknowledge the importance of DoD in capacity degradation,

Figure 14 shows 2D and 3D cell degradation models, which show the importance of not

overloading a battery cell.
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Figure 14. Capacity degradation curves at 25°C and 50% Mid-SoC at different DoDs throughout the cell’s
lifecycle, measured in FCEs. The figure shows extrapolated 2D and 3D degradation models tested.
(Timmermans et al., 2016)

Temperature

Temperature is also a key factor to be considered when ensuring optimal system
performance. When temperatures are too low, typically below 15 °C, the internal resistance
of the battery increases, which reduces power output and slows down the chemical reactions
inside the cells. In addition, charging at low temperatures also raises the risk of lithium
plating, a condition where lithium metal deposits on the anode instead of intercalating
properly, potentially leading to faster degradation and even safety risks.
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Figure 15. Example of lithium plating due to low temperatures (Liu et al., 2020)
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On the other hand, high temperatures above 35—40 °C accelerate chemical ageing. This
includes faster breakdown of the electrolyte, which in turn reduces the battery’s capacity and
efficiency. Long-term exposure to heat can also damage the battery’s internal structure and
raise impedance. As a result, most lithium-ion BESS installations are designed to operate
within an ideal range of 20 °C to 30 °C. To stay within this range, utility-scale systems rely
on active cooling and HVAC systems that manage container temperatures and help extend
the life of the batteries, even when they are cycled intensively or exposed to extreme weather
conditions. This HVAC system in locations like West Texas, known for long periods of dry
heat, is key to ensure an optimal performance, and is also a large component of energy
consumption in the installation. The following figure, from the Batteries 2020 study, shows

the difference between battery ageing at different temperature levels, combined with SoC

levels mentioned earlier.
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Figure 16. Capacity curves at different temperature levels and different SoC levels

It can be observed that ageing accelerates at higher temperature levels, backing up the
importance of a constant battery container temperature of around 25°C to maintain optimal

BESS conditions. Not only that, but a correct and optimal combination of these 3 variables
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is crucial for battery operators to conserve batteries and maximize revenues throughout all

the batteries’ lifetime.
Round-Trip Efficiency (RTE)

RTE is defined as the ratio between the energy discharged by the battery and the energy
initially used to charge it, taking into account it can be measured at different points of the
installation (BESS to transformer, BESS to inverter terminals, etc.). For lithium-ion systems,
measured at the inverter terminals, this efficiency typically ranges from 85% to 93%
depending on technology, ambient conditions, and power conversion losses. RTE naturally
declines over time because of internal resistance buildup and degradation of electrode
materials, chemical reactions that can be accelerated depending on the 3 variables discussed
earlier. Maintaining a high RTE is essential for ensuring that a significant portion of the
energy cycled through the system can be monetized or delivered to the grid. RTE is
essentially what can increment IRR within BESS projects, ultimately increasing the positive
gradient movement of investors into these projects. Not only that, but as more projects go
underway, demand will increase significantly, hence technology will develop and BESS
projects will increasingly have better RTE’s and lower costs, increasing even further investor
movement. This metric will be discussed further down in the model as a key assumption to

achieve accuracy in the model.
Capacity Fade and State of Health (SoH)

Capacity fade/degradation is a natural process that reduces the maximum charge a battery
can hold over time. It is influenced by two main degradation pathways: calendar ageing and

cycle ageing.

Equation 1. Total capacity degradation as a sum of the two degradation pathways (Journal of Energy
Storage, Vol. 65)

_  rcalendar cycle
Cdeg - Cdeg + Cdeg [%]

36



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAI)
C O M ILLA S UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING

UNIVERSIDAD PONTIFICIA

e CAE Document 1. Project Report

e Calendar ageing occurs passively due to chemical instability at the electrode-
electrolyte interface, even when the battery is idle or in standby mode. It’s influenced
significantly by high temperatures and prolonged storage at high SoC, 2 of the key

variables described earlier.

e Cycle ageing results from mechanical and electrochemical stress induced by
repetitive charging and discharging, particularly at high DoD, high C-rates
(charge/discharge speeds), or in extreme temperatures. This ageing as mentioned is

due to the other key variable missing, DoD, as well as temperature.

The cumulative effect of both types of degradation leads to a gradual reduction in usable
capacity and energy efficiency. Empirical studies, as the ones mentioned earlier in this
section, show that under moderate usage conditions and controlled DoD profiles, lithium-

ion batteries may experience annual capacity losses between 1.8% and 2.5%.

The State of Health (SoH) is directly related to the capacity degradation. SoH provides an
indication of the battery’s current performance relative to its original, nominal capacity. It
encapsulates all forms of degradation, both calendar and cycle-related, and is used to track
the effective ageing of the system. As the battery degrades, its SoH decreases, reflecting
reductions in energy capacity, power output, and efficiency. A typical utility-scale battery
may be considered to reach its end of life when SoH falls below 70-75%, although this
threshold can vary depending on project economics and performance requirements. Accurate
SoH monitoring is crucial for lifecycle management and planning reinvestment or

repowering decisions.
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Figure 17. SoH and Cycle degradation throughout a 3-year test (Journal of Energy Storage, Vol. 65)

Overall, utility-scale lithium-ion batteries typically offer a calendar lifetime of 10 to 15 years
or 4000 to 6000 full equivalent cycles, depending on the specific chemistry and operational

regime.
Auxiliary Consumption and Internal Loads

In addition to the core energy cycling process, BESS installations incur internal energy
consumption from auxiliary systems, including thermal management (HVAC), fire
suppression, lighting, and the operation of battery management and control systems. These
loads are essential for maintaining safe and efficient operation, especially in regions with
high ambient temperatures. Cooling systems can consume a meaningful share of the total
input energy, especially during peak summer months in Texas. Auxiliary consumption must
be factored into the net energy output of the system, as it directly reduces the effective round-

trip efficiency and impacts both operational costs and revenue projections in the model.
System Availability and Operational Hours

The expected availability of a utility-scale BESS system typically exceeds 95% and, in
modern installations, can approach or surpass 99%. This figure accounts for scheduled
maintenance, unexpected downtime, and limitations due to thermal derating or grid

constraints. High availability is crucial for reliable participation in market services such as

38



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAI)
C O M ILLA S UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING

UNIVERSIDAD PONTIFICIA

e CAE Document 1. Project Report

frequency regulation, and energy arbitrage, the two main sources of revenue for BESS
projects in ERCOT. To maintain such performance, predictive maintenance and real-time

diagnostics are often integrated into supervisory control systems.

Table 1 shows an executive summary of the key parameters discussed:
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Table 1. Summary of Key Operational Parameters in Utility-Scale BESS

Parameter Definition Optimal Range/ Target Impact on System Performance
Avoids accelerated calendar aging
Percentage of total energy stored in . o . . .
. ) 20%—-80%; Mid-SoC of 50% is ideal |from high SoC or resistance buildup
State of Charge (SoC) the battery, reflecting available

capacity at a given moment

for degradation control

from low SoC; helps extend battery
life

Depth of Discharge (DoD)

Percentage of total capacity
discharged during a single cycle,
influencing wear on battery

components

<70% per cycle; balance needed

between usable energy and longevity

High DoD accelerates cycle aging;
lower DoD improves lifetime but

may reduce energy throughput

Temperature

Ambient or internal battery
temperature, which affects
electrochemical reaction rates and

safety

20-30 °C container environment for

best efficiency and aging mitigation

Low temps increase resistance and
lithium plating risk; high temps speed

up degradation and reduce life span

Round-Trip Efficiency (RTE)

Efficiency ratio of discharged energy
to charged energy, including losses

from conversion and heat

85%-93% depending on system

design and ambient conditions

Higher RTE improves economic
viability and increases usable output;

key for IRR and profitability

Capacity Fade / State of Health
(SoH)

Capacity fade is the gradual loss of
energy-holding ability; SoH indicates
performance relative to original

capacity

SoH > 70-75% is considered
operational; fade rate ~1.8%—2.5%

annually

Declining SoH reduces effective
capacity and may trigger end-of-life
replacement; drives maintenance

planning

Auxiliary Consumption

Internal energy use for cooling,
monitoring, lighting, and other
support systems within the

installation

Minimize HVAC share through
efficient thermal design; varies with

climate

Reduces net energy output and
affects cost-efficiencys; critical for

OPEX and financial modeling

System Availability

Proportion of time the system is fully
operational and available for dispatch

and revenue-generating services

>95% typical; modern systems aim

for >99% uptime

High availability ensures revenue
stability in energy and ancillary
markets; critical for investor

confidence
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Understanding the technical characteristics of lithium-ion battery performance is essential
not only from an engineering perspective but also as a foundational input for financial
modeling, as it will later be shown on Chapter 3: Description of the Developed Model.
Each parameter, whether round-trip efficiency, degradation rate, or auxiliary load, directly
impacts the economic viability of a utility-scale BESS installation. A high-efficiency system
with low degradation will yield greater usable energy over time, reducing levelized cost of
storage (LCOS) and improving long-term returns. Conversely, systems subject to aggressive
cycling, thermal stress, or suboptimal operating windows may face premature capacity loss,

higher maintenance costs, and compressed financial performance.

2.3 ECONOMICS AND MARKET VIABILITY OF BESS IN ERCOT

Lithium-ion currently comprises 98% of grid-scale deployments, driven by its superior
energy density, cost profile, and widespread manufacturing base. According to the
International Energy Agency (IEA, 2022), lithium-ion batteries have decreased in costs from
approximately $1,100/kWh in 2010 to below $150/kWh in 2024. Alternative chemistries
such as sodium-ion, solid-state, flow batteries and iron-air batteries are emerging as potential
competitors, offering promising advantages in longevity, safety, and cost-effectiveness,
which in turn will continue developing the BESS market in favor of developers.
Nevertheless, lithium-ion technology continues to lead in utility-scale applications due to its

established supply chain and performance reliability.

Looking ahead, technological advancements are expected to further enhance the
performance and cost-effectiveness of battery storage solutions. Emerging developments in
artificial intelligence-driven dispatch optimization, grid-forming inverter technologies, and
long-duration energy storage (LDES) systems are likely to redefine the role of BESS in the
energy transition. The integration of solid-state and flow battery technologies could provide
alternatives with improved safety and extended cycle life, while the adoption of machine
learning algorithms for predictive analytics may further refine trading strategies. Moreover,
the potential deployment of iron-air and liquid metal batteries, which offer discharge

durations exceeding ten hours, could significantly expand storage applications beyond
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current market capabilities, as they could play a key role in non-spining reserve services,

which must be sustainable for 4 hours, replacing power plants completely.

The financial viability of BESS projects is contingent upon multiple factors, including
revenue stacking strategies, degradation rates, and operational costs. By leveraging multiple
revenue streams, such as energy arbitrage, frequency regulation, and ECRS regulation,
storage operators can optimize financial returns. However, battery degradation remains a
critical consideration, necessitating advanced battery management systems (BMS) to extend
asset lifespans and maintain efficiency levels. Economic projections for BESS projects in
ERCOT suggest a CAPEX of approximately $750,000 per megawatt under moderate cost
assumptions by 2027. These CAPEX projections come from NREL and will play a key role

in the financial model of this project.

Utility-Scale Battery Storage

Mature
Market
No Credits

2,000

RS E—
) 20

2,000
occ 1,000 t\

2020 2025 2030 2035 2040 2045 2050

Parameter value projections by scenario, financial case, cost recovery period,
Conservative @ and technological detail.
Moderate
Advanced *

Figure 18. Utility-Scale Battery Storage costs projections based on 3 scenarios: Conservative, moderate, and

advanced. (NREL, 2023)

The ERCOT market is uniquely structured among U.S. grid operators, as it operates under a

fully deregulated framework with real-time nodal pricing and no centralized capacity

42



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAI)
C O M ILLA S UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING

UNIVERSIDAD PONTIFICIA

e CAE Document 1. Project Report

market. This design has created favorable conditions for merchant battery storage developers
who can capture value directly from price volatility, ancillary services, and arbitrage
opportunities. ERCOT has also introduced specific mechanisms such as the Responsive
Reserve Services (RRS), (comprising of Fast Frequency Response, Primary Frequency
Response and Load Resource on Under-Frequency Relay, the latter not being well suited for
batteries) which provides a tailored market product for high-speed resources like lithium-ion
BESS, allowing them to participate more efficiently in frequency regulation. On the policy
side, the Inflation Reduction Act (IRA) introduced a 30% standalone Investment Tax Credit
(ITC) for energy storage projects beginning in 2023, a key financial enabler that has
significantly improved project bankability across the U.S. (IEA, 2022).

As of 2025, ERCOT’s battery storage interconnection queue has surpassed 90GW,
highlighting rapid growth in developer interest. In parallel, firms like NextEra or ENGIE
have announced multi-hundred-megawatt projects in the ERCOT pipeline, many designed
to operate without Power Purchase Agreements (PPAs), relying instead on spot market
signals and flexible dispatch strategies. This wave of investor-led development reflects both
the revenue potential of storage in ERCOT and a growing appetite for merchant risk,
supported by data-driven optimization and real-time analytics. The following table shows
biggest BESS developers (or companies that have bought developed projects) in the

interconnection queue as of late 2024.
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Table 2. Companies, by size, that have BESS projects in ERCOT'’s interconnection queue

Type of Developer Companies Sum of MW Min Project size

Big ENGIE, Iberdrola, > 500 MW 150 MW
NextEra, etc

Medium Gransolar, PineGate, > 500 MW <150 MW
Abei
Small Terra-Gen, Ignis <500 MW 10MW

Group, Redeux Energy

Despite this positive momentum, merchant BESS projects in ERCOT also face operational
and financial risks that must be carefully considered. In recent years, ancillary services have
played a key role in BESS revenue generation within ERCOT, particularly through
frequency regulation products such as Regulation Up (Reg-Up), Regulation Down (Reg-
Down), and the more recently introduced Enhanced Contingency Reserve Service (ECRS).
Since its launch in June 2023, ECRS has delivered some of the highest revenues per
megawatt for storage resources, with BESS comprising approximately 20-30% of its
awarded capacity. However, market data from sources such as ModoEnergy indicate that the
total ancillary services capacity is nearing saturation, with full saturation projected by
December 2024. As auction competition intensifies, clearing prices are expected to decline,
especially for short-duration systems competing against 4- to 8-hour installations better
suited for ECRS requirements. This fierce competition in the ancillary services market may
lead to price cannibalization, particularly for one-hour systems that rely heavily on
regulation revenues. These trends reinforce the rationale for this thesis’s focus on energy
arbitrage as the primary revenue stream for modelling purposes, while treating ancillary

service revenues as an upside potential rather than a base-case assumption.
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The capacity of battery energy storage reserved for Ancillary Services is
set to exceed relevant Ancillary Service volumes in December 2024

Projected 2024 average Ancillary Services procurement (MW)

NSRS m ECRS
s RRS-PFR = Reg. Down
= Reg. Up Projected Commercially Operational Storage Capacity
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Figure 19. Projected ancillary services capacity saturation by the end of 2024 (ModoEnergy, 2024)

Dec

Additionally, real-time market volatility, while offering upside, can expose projects to
unpredictable dispatch and revenue fluctuations, especially in nodes with limited congestion
relief. These factors underscore the importance of location-specific modeling, degradation-
aware dispatch strategies, and robust financial structuring to ensure long-term viability in

ERCOT’s fast-evolving energy landscape.

2.4 LIMITATIONS OF CURRENT PRACTICES IN ERCOT

As the ERCOT grid continues to evolve, battery storage systems are becoming an
increasingly important tool to manage variability in renewable generation, relieve local
congestion, and capture price arbitrage opportunities. However, despite the growing number
of BESS installations, many current operational practices remain underdeveloped or overly

simplistic, resulting in missed revenue potential and unnecessary technical degradation.

One of the most important and underexplored areas is the lack of locational dispatch
optimization. In ERCOT, as mentioned above, prices are determined on a nodal basis, with
over 17,000 unique settlement points, each influenced by local transmission constraints,

supply-demand balances, and congestion. Despite this, many commercial BESS systems are
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developed and operated using average zonal or hub-level price assumptions, neglecting the
significant variability between neighboring nodes. This oversight can lead to poor siting
decisions, suboptimal arbitrage strategies, and ultimately diminished project economics. By
contrast, a nodal-level optimization model, like the one presented in this thesis, enables
developers and operators to anticipate locational price spreads and tailor dispatch behavior

to the revenue potential of each individual node.

Another limitation lies in the underutilization of curtailment opportunities, especially in co-
located solar + storage configurations in West Texas, where the region is known for its high
levels of curtailment due to wind farms’ PTC (Production Tax Credit), which leads to
negative LMPs. Not only the negative pricing influence is caused by wind farms, with solar
penetration growing rapidly in Texas, particularly in West and South ERCOT, the grid
increasingly experiences midday price collapses and periods of negative LMPs when solar
output exceeds demand or transmission capacity. While these conditions present ideal
charging windows for BESS systems, many are either unaware of curtailment trends or fail
to integrate them into their dispatch logic. The absence of curtailment-aware strategies
means that valuable energy is left untapped, and developers are unable to fully monetize
their generation. Incorporating historical curtailment patterns and real-time congestion
signals into operational planning can unlock significant value, especially for two-hour

batteries aimed at capturing peak ramping periods after solar drop-off.

In addition, current market practices often overlook the strategic potential of alternative
storage technologies that could complement or eventually surpass lithium-ion systems. Flow
batteries offer compelling advantages for long-duration applications, especially during
periods of extended renewable surplus, thanks to their ability to discharge for 6+ hours,
sustained cycle life, and inherently safer aqueous electrolytes. Unlike lithium-ion systems,
where energy storage is fixed by cell capacity, flow batteries store energy in external
electrolyte tanks, which allows independent scaling of power and energy capacity to suit
specific use cases, making dimensioning even more precise than it is with lithium-ion
batteries. According to the BCC Research blog, global flow-battery systems are well suited

for grid-level, multi-hour storage and are seeing rapid advancements in both electrolyte
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chemistry and stack design. These systems also boast lower fire risk and longer operational
lifespans, often between 25-30 years compared to approximately 15-20 years in typical
lithium-ion deployments. One of the most key aspects of flow batteries are the different
material battery types there are: All-vanadium, Zinc-bromine, lithium-ion flow batteries, etc.
This in turn could decongest the massive demand there is for lithium-ion now, which could

reduce a possible future shortage of said material.

charger T > Load

[

j 5+ / v4+
Electrolyte
storage tank

Figure 20. Flow battery schematic (Infinite Power, 2024)

As the ERCOT market approaches saturation in short-duration services, the economic case
for LDES is gaining traction. In nodes experiencing frequent renewable oversupply and
extended ramp events, flow batteries could provide value that lithium-ion systems struggle
to capture, primarily through extended energy shifting without undue degradation or safety
risk. While lithium-ion remains the backbone of current deployments, advancements in flow-
battery economics and performance may soon present a viable alternative for selected
ERCOT applications. Moreover, the flow-battery market is projected to grow from roughly
US $417 million in 2024 to over $1 billion by 2029, representing a compound annual growth
rate of 21.7%.
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Market forecast to grow at a CAGR of 21.7% (2024-2029)
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Figure 21. Outlook of Flow batteries market growth 2024-2029 (BCC Research, 2023)

However, despite these advantages, flow batteries currently face three main challenges that
limit their immediate competitiveness in the utility-scale market. First, they tend to have
higher upfront capital costs, largely due to the need for specialized stacks, tanks, and
supporting infrastructure. Second, their lower energy density compared to lithium-ion means
that more space is required to store the same amount of energy, making them less practical
in land-constrained sites or compact installations. Lastly, the systems themselves are more
mechanically complex, relying on pumps, valves, and continuous liquid circulation, which
introduces additional points of failure and can increase both maintenance demands and

operational oversight.

Moreover, most current BESS systems do not incorporate degradation-aware dispatch, a
factor that has growing relevance as battery cycling frequency increases. Traditional
dispatch algorithms often rely on simple threshold rules based on price signals or SoC
targets, without considering long-term wear, thermal stress, or internal resistance growth.
This leads to overly aggressive cycling, especially during periods of high price volatility,
accelerating calendar and cycle degradation. In contrast, more advanced dispatch strategies

adjust behavior based on real-time SoH indicators, ambient temperature, and historical
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degradation trends. These strategies may include limiting full charge/discharge cycles or
shifting charging windows during extreme heat. While Al- and Machine-Learning based
control logic is starting to gain traction in research environments, it is still rare in utility-

scale commercial deployments, leaving significant performance gains unrealized.

These limitations, ranging from locational blindness to oversimplified dispatch logic,
underscore the need for more sophisticated BESS project design and operational planning in
ERCOT. By integrating site-specific price dynamics, curtailment behavior, degradation-
aware control, and long-duration alternatives, the industry can move toward more resilient,
efficient, and profitable storage deployments. The following chapter presents a modeling
approach that seeks to address many of these gaps, offering a techno-economic framework
for evaluating nodal battery performance in a highly granular and realistic ERCOT

environment.

49



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAI)
C O M ILLA S UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING

UNIVERSIDAD PONTIFICIA

e CAE Document 1. Project Report

3. DESCRIPTION OF THE DEVELOPED MODEL

This chapter presents the development of a techno-economic model designed to evaluate and
optimize battery energy storage system (BESS) deployment within the ERCOT market.
Building on the research objectives introduced earlier, the model is technically framed to
simulate the daily operation of a 2-hour lithium-ion battery under realistic market conditions,
using historical Day-Ahead Market (DAM) pricing data across ERCOT’s 17,000+ nodes
from March 2021 to September 2024. The model integrates dispatch logic based on price-
driven cycling behavior, seasonal charging strategies, battery degradation mechanisms, and
core financial metrics, including capital and operating expenditures, tax incentives, and cash
flow analysis. By identifying high-value nodes and optimizing dispatch performance at a
granular level, this modeling framework supports more informed investment decisions and

promotes smarter BESS development across the ERCOT network.

3.1 DATA ARCHITECTURE

To simulate battery performance under real market conditions, a robust and scalable data
architecture was essential. This model relies on ERCOT Day-Ahead Market (DAM)
locational marginal pricing (LMP) data from March 2021 to September 2024, covering
thousands of pricing nodes across the Texas grid. Given the scale and granularity of this
dataset, roughly 16GB of structured price information stored across daily CSV files, building
an efficient and automated pipeline was critical for both model accuracy and usability. In
addition to historical price data, the model development benefited from access to detailed
transmission capacity information provided by EPE (Electric Power Engineers). This
included N-0 and N-1 ratings for ERCOT’s transmission lines, which indicate the network’s
ability to handle additional generation or storage capacity under normal and contingency
conditions. These data were cross-referenced with ERCOT’s 2024 interconnection queue for
BESS and solar projects, then georeferenced and converted into shapefile and .kmz formats
for integration into EPE’s Google Earth Pro platform. This mapping enables rapid visual
assessment of both market attractiveness, through nodal price overlays, and physical

interconnection feasibility. While these spatial datasets are not embedded within the
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financial model itself, they form a valuable complement to the techno-economic analysis,

particularly for early-stage site screening and stakeholder discussions.

2 Google Earth Pro - o x
Archivo Edtor Ver Heromientas Afod Ayuda
¥ Buscar

a[m [+]+]= 5 o) ~ i Google Earth

= P

Figure 22. Mapped BESS 2024 interconnection queue into Google Earth Pro (white markers = projects)

The initial phase of model development focused on a subset of several thousand of the most
relevant ERCOT nodes, specifically those for which Settlement Point Prices (SPPs) were
available and consistent, mounting up to a total of around 1GB of price information across
daily CSV files. DAM pricing data for each of these nodes was downloaded in .csv format
from ercot.com, which was organized by separate day files, therefore an API was necessary
to extract around 1,300 different .csv files from the website. To automate early-stage testing,
a Python script using pandas and openpyx] was developed to sweep through daily price files,
extract values corresponding to specific node names, and paste them into a centralized Excel
spreadsheet. The user could input a desired node name into the Excel interface, and Python

would extract its price history, enabling a simplified version of the dispatch simulation.
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DeliveryDate  HourEnding oint ice 2-Hour Point Prices DAM MAX 2-Hour PP (RT-DAM)
01/03/2021 1:00 0 0 0 )
01/03/2021 2:00 0 0 0 ]
01/03/2021 3:00 0 0 0 ]
01/03/2021 4:00 0 0 0 32275
l 01/03/2021 5:00 0 0 0 20,47
01/03/2021 6:00 0 0 0 35,035
01/03/2021 7:00 0 0 0 40,095
01/03/2021 8:00 0 0 0 49,7275
01/03/2021 9:00 0 0 0 59,9625
01/03/2021 10:00 0 0 0 136,9275
01/03/2021 11:00 0 0 0 123,4975
01/03/2021 12:00 0 0 0 34,55
01/03/2021 13:00 0 0 0 32,015
01/03/2021 14:00 0 0 0 28,8575
01/03/2021 15:00 0 0 0 26,89
01/03/2021 16:00 0 0 0 27,68
01/03/2021 17:00 0 0 0 31,4325
01/03/2021 18:00 0 0 0 53,365
01/03/2021 19:00 0 0 0 69,0475
01/03/2021 20:00 0 0 0 75,1328
01/03/2021 21:00 0 0 0 68,3675
01/03/2021 22:00 0 0 0 49,305
01/03/2021 23:00 0 0 0 43,095
01/03/2021 24:00:00 0 0 0 38,4525
02/03/2021 1:00 0 0 0 36,0175
02/03/2021 2:00 0 0 0 34,24
02/03/2021 3:00 0 0 0 34,205
02/03/2021 4:00 0 0 0 35,445
02/03/2021 5:00 0 0 0 38,4975
02/03/2021 6:00 0 0 0 128,345
02/03/2021 7:00 0 0 0 141,2425
02/03/2021 8:00 0 0 0 54,345
02/03/2021 9:00 0 0 0 4184
0 0 0 38,81

02/03/2021 10:00

Figure 23. Initial template of data collection from .csv files located in separate folder

As the project evolved, the availability of complete daily ERCOT LMP datasets for all
pricing nodes unlocked the potential for full-system simulations across the entire network.
This allowed the model to scale from a few thousand SPPs to over 17,000 ERCOT nodes,
covering the full set of LMPs published in the DAM. However, this expansion significantly
increased the data load, making the Python-Excel pipeline inefficient for repeated queries.
With over 3.9 million data points covering the full period, extracting data from raw CSVs

became time-consuming, leading to the integration of a structured SQL solution.

This new architecture was built in SQL Server Management Studio (SSMS), where LMP
data was organized into separate databases by year (LMP_2022, LMP 2023, etc.), for which
each database had a table where all data from that specific year was included. Each table
within each database was indexed by node name, date, and hour to enable rapid filtering and
retrieval. This greatly enhanced performance: the Python script was modified to connect
directly to the SQL database, fetch price data for a selected node, and forward it to the Excel
model automatically. Now when the user entered a node ID in the Excel interface and pressed
a macro button, Python executed a real-time query to SQL, retrieved the relevant pricing

data, and populated the Excel sheet with historical hourly prices.
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Figure 24. Separate LMP databases by year, with a .dbo LMP table located in each database containing
yearly data
This SQL-Python—Excel structure not only increased the model’s responsiveness, from
several minutes down to roughly one minute per node simulation, but also made the system
fully scalable to cover the entire ERCOT network. The automated pipeline allows users to
simulate BESS dispatch strategies for any known ERCOT node, with outputs linked directly
to both the techno-economic and financial calculations. By combining open-source tools and
structured data handling, the model balances computational efficiency with transparency and
user control. Not only that, but this code updating lead to the model in Excel running in a
more smooth way, as now the data was loaded into a separate input sheet within the model,
where data was referenced directly into the model, aiding in tables and figures being updated

automatically.
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& ¥ FileTables

Extemal Tables 9 2040107 0100000000000 ROLLEN_138A 1583
Graph Tables 10 20240101 0100000000000 ROLLEN_138Z 1583
B dbo.MPs 11 2020101 0100000000000 ROLLEN_ 138U 1583

Views 12 20240101 0100000000000 ROLLEN_138T 1583
P —— 3 0100000000000 BLESSING_V.B 1479
Sy 4 2040101 0100000000000 BLESSING_LA 1473

15 20240101 0100000000000 BLESSING VA 1493

2 W frogeepimating 6 20240101 0100000000000 EB_BLES 8955 1538
3 8 Query Store 17 20240101  0100:000000000 STRANG_ 138X 1583
% M Service Broker 18 20240101 O100:000000000 STRANG_ 138V 1583
& Storage 19 20240101 0100000000000 STRANG_138U 1583
Security 20 20240101 0100000000000 RNG_8035 1583

# W LMP_2025 21 20240101 0100000000000 RNG TR3 1583

& W LMP_2026 22 20240101  0100:000000000 HAT_800S 1585
Secriy 7 0101 01000000000 AT 8020 158
5 8 Server Objects 24 2040101 0100000000000 HAT_EO1S 1585
25 2040101 0100000000000 HAT_13A 1585

2 & Replication

2 20240101 0100000000000 HAT 1358 1585
i Man et 27 20240101 0100000000000 HAT_8010 1585
@ [ Xevent Profiler 25 2040101  0100:000000000 HAT_TRY 1585
23 20240701 0100000000000 HAT_TRZ 1585
30 20240101 0100000000000 HAT_LDI 1585
31 20240101 0100000000000 HAT_LD2 1585
2 0700000000000 CLKA 1584

0 Query executed successfully. @ LAPTOP-00DUQEG2\SQLEXPRESS .. LAPTOP-00DUQEG2\isang .. LMP_2024 | 00:00:00 100 rows

7 Ready ln1 Col 1 INS

Figure 25. Data pipeline stored in SOQL SSMS for the LMP 2024 database

EE Resulis g Messages
Delivery Date  Hour Ending Bus Mame LMP  DSTFlag

1 01:00:00.0000000 RIWOOD__138A 1567 N
2 2024-01-01 01:00:00.0000000 RIWOOD__1382 1567 N
3 2024-01-01 01:00:00.0000000 RIWOOD__138U 1567 N
4 2024-01-01 01:00:00.0000000 RIWOOD__138T 1567 N
5 2024-01-01 01:00:00.0000000 MAGRUDER_V_A 135 N
i} 2024-01-01 01:00:00.0000000 MAGRUDER_L_A 135 M
i 2024-01-01 01:00:00.0000000 MAGRUDER_L.B 135 N
8 2024-01-01 01:00:00.0000000 MAGRUD_BUS_2 135 M
9 2024-01-01 01:00:00.0000000 ROLLEN_ 1384 1583 N
10 2024-01-01 01:00:00.0000000 ROLLEN_ 1382 1583 N
11 2024-01-01 07:00:00.0000000 ROLLEN_ 138U 1583 N
12 2024-01-01 01:00:00.0000000 ROLLEN__ 138T 1583 N
13 2024-01-01 01:00:00.0000000 BLESSING_V_B 1479 N
14 2024-01-01 01:00:00.0000000 BLESSING L A 1479 N
15 2024-01-01 01:00:00.0000000 BLESSING_V_A 1483 N
16 2024-01-0 01:00:00.0000000 EB_BLES_8955 1538 N
17 2024-01-01 01:00:00.0000000 STRANG_ 138X 1583 N
18 2024-01-01 01:00:00.0000000 STRANG_ 138V 1583 N
19 2024-01-01 01:00:00.0000000 STRANG__ 138U 1583 N
20 2024-01-01 01:00:00.0000000 RNG_8035 1583 N
21 2024-01-01 01:00:00.0000000 RNG_TR3 1583 N
22 2024-01-01  07:00:00.0000000  HAT_800S 1585 N

Figure 26. Closeup on data pipeline

Now, to achieve this data recollection from a specific node without having to write the node
down in the code and execute the code, a macro button was inserted in a new ‘Input sheet’
within the model to run the economic dispatch once the specific node and the hub against

which the node wanted to be compared to were selected. Pressing the ‘Calculate Economic
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Dispatch’ button would link the excel to the python code to execute it, running down the

whole modeling process in a button click:

Equation 2. Flow Diagram explaining modeling process through its data architecture

Button press — Python activation through Excel Macro
— SQL Data extraction from available databases through python command
— Data load into existing model — Dispatch calculation

— New Excel saved by the name ""Node"_BESS'

3.2 MODELING ASSUMPTIONS

To ensure realistic and scalable simulation of BESS performance under ERCOT market
conditions, the model incorporates a comprehensive set of technical, operational, and
financial assumptions. These are based on industry standards for utility-scale lithium-ion

batteries and tailored to ERCOT’s nodal pricing environment and dispatch volatility.
Technical Parameters and Operational Strategy

Battery size is a configurable input, allowing project developers to tailor simulations to
specific site constraints or land availability. Most of the simulations in this thesis are based
on a 100 MW /200 MWh configuration, but the model is flexible across sizes. The round-
trip efficiency is set at 93%, consistent with current technology performance and aligned
with expectations for near-future improvements. Base DoD is modeled at 95%,
acknowledging more aggressive cycling to maximize economic value, while accounting for
higher degradation rates in the financial outputs. State of Charge (SoC) is implicitly modeled
assuming the battery is fully charged for the same number of hours as it is discharged,

maintaining symmetry over long-term operation, leaving a modeled Mid-SoC of 50%.

The thermal environment is set at a constant 25 °C operational temperature, which aligns
with optimal thermal control strategies for lithium-ion installations. This helps minimize
thermal stress, stabilize internal resistance, and reduce the risk of accelerated aging. HVAC
and auxiliary energy consumption are modeled as a flat 6% of potential annual energy

revenues, serving as a proxy for SCADA, temperature control, and balance-of-plant
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operations. While this figure could fluctuate seasonally, it is conservatively kept constant

across all simulation runs.

Battery lifetime is assumed to be 15 years for systems operating at 1.5 cycles per day and 20
years for systems constrained to one full cycle per day. Degradation is modeled as a
combination of calendar aging and cycle aging, with an annual round-trip efficiency loss of
1% and a capacity fade of 1.95% per year at 95% DoD. The model allows users to vary DoD
assumptions (e.g. 100%, 95%, 80%, 65%, or 50%) to evaluate trade-offs between energy
throughput and degradation. These rates were benchmarked using findings from the
Batteries 2020 study and serve as the technical backbone for projecting system performance

over time.

Figure 27. Technical parameters input in Excel, including degradation curves from scientific study used

The dispatch logic is seasonally adjusted based on historical ERCOT price behavior. As
observed in the monthly average price profiles, May to September typically display a single
peak around evening hours, while January to April and November—December show two clear
peaks per day. The model integrates this variation by assigning 1 cycle/day in summer
months and 2 cycles/day in winter months, with each daily strategy simulated using hourly
average DAM prices over the full historical range. Simulations are conducted on a day-by-
day basis, with price data pulled directly from SQL and used to dynamically assign charging

(lowest price hours) and discharging (highest price hours) windows.

56



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
C O M ILL AS UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING

UNIVERSIDAD PONTIFICIA

1cAl 1cADE cins Document 1. Project Report

600
500

400

— May

Jun

Jul

$/MWh
w
8
8

Aug

—SED

Oct
200

100

0
1:00 2:00 300 4:00 500 600 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 1500 16:00 1700 18:00 19:00 2000 21:00 22:00 23:00 0:00

Figure 28. Average hourly LMP for a sample node in one-cycle modeled months
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Figure 29. Average hourly LMP for a sample node in two-cycle modeled months

An additional feature of the model allows for an optional hybrid DAM-RT strategy. In this
configuration, energy is acquired during the DAM’s cheapest two hours, providing
scheduling certainty, and discharged during the RTM’s highest two price hours of the same
day. While this approach assumes ideal foresight, being very optimistic to forecast with
exactitude the two highest consecutive hours of the day, it serves as an upper-bound scenario

for evaluating the potential benefits of integrating predictive machine learning models or
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day-ahead price forecasting engines into BESS control systems. This functionality is referred
to in the model as the DAM-RT dispatch mode, and helps estimate the upside of future smart

dispatch optimization tools.

MAX 2-Hour PP (RT-DAM) |
19,76
2,16
2,25
4,25
6,75
20,47
35,035
48,55
52,97
59,9625
136,9275
123,4975
49,76
43,27
36
358
37,27
43,24
64,91

Figure 30. DAM-RT modeling column example

Curtailment and Co-location Opportunity Estimation

To evaluate the value-add of BESS in co-located solar + storage scenarios, the model
estimates economic curtailment using historical curtailment hour counts and ERCOT hourly
DAM price profiles. This is done by calculating the sum-product of curtailed energy hours
(in MWh) with the average DAM price at that same hour and month. This method provides
a reasonable approximation of revenue lost per MW per year due to curtailment events in

solar-only installations.

It’s important to note that this figure represents only the value of lost energy at the time of
generation. To put this into an example, if a specific hour of a day of a specific month the
LMP where a solar installation is located experiences curtailment, the curtailment model
values that “economic loss”, or missed revenue, as the average LMP at which energy is sold
at that hour in that month. This means that a BESS co-located at the same site can not only
capture that curtailed energy, but shift it to higher-value hours later in the day, unlocking

further upside not fully captured in this baseline. Therefore, this model treats economic
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curtailment as a lower bound on co-location opportunity, recognizing that real operational

strategies may yield higher arbitrage value.

Curtailment Hours
6:00:00AM  7:00:00AM  8:00:00AM  9:00:00AM 10:00:00AM 11:00:00AM 12:00:00PM  1:00:00PM  2:00:00PM 3:00:00PM  4:00:00PM 5:00:00PM  6:00:00 PM

-] 6:00:00AM  7:00:0( 8:00:00AM  9:00:00AM 10:00:00AM )0:00

1 65,8360802 78,3830108 59,5473118 3 9 485013078
444849412 443307647 317848235 3,0563 31,8748235

374511458 38,7057292 30,3548958 2 5 24,0 8 24,3 { 27

342687778 34,7135556 28,4448889 26,8472222 0066667 4

| 33206129 32,1567742 30,5234409 31,4117204 33,1676344 35863871 39721828 45,802043 { 92,8624731

6177778 30,706 30,9453333 32,9585556 374138889 424081111 529341111 758468889

305598925 31,0653763 314160215 32,5787097 38,1772043 46,1011828 60,6602151 95,4924731

384577419 388077419 39,118172 40,5393548 454337634 535741935 64,3190323 104,628065

9 3241788889 36,616 368324444 36,174 36,3094444 389436667 434192222 50,1603333 62,0175556 77,4421111

10 31,00086022 39,6776344 40,8078495 36,1870968 344715054 348662366 36,5743011 39,3341935 43378172 49,1813978 57,6332258 66,7669892 74,6695699
1 8157197802 46,9484615 46,673956 39,460989 37,0152747 352267033 34,6086813 33,9198001 334130769 336867033 34,8348352 50,9461538 93,051978
12 40,27655914 66,1735484 70,3135484 57,1664516 354201075 836773118 62,3287097

Figure 31. Curtailment heatmap by number of hours vs. Average hourly price in a month for that specific
hour
To contextualize the co-location analysis, a standard hourly solar generation profile for a
100 MW plant in the ERCOT North Hub is applied. This region has seen the most solar
development activity in Texas over the last decade and provides a representative benchmark

for solar output patterns and overlap with curtailment-prone hours.

NORMALIZED 100
0000

Figure 32. Generic 100MW ERCOT North Hub hourly solar profile in a given year

As a way of summarizing the modeling assumptions, the following summary table is shown

to show all modeling assumptions in an organized and brief way:

59



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAI)
C O M ILLA S UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING

UNIVERSIDAD PONTIFICIA

Document 1. Project Report

Table 3. Modeling assumptions executive summary used in the Excel model presented

Category Parameter

Battery size (MW/MWh)
System Size
Project lifetime

Round-trip efficiency
(initial)
Efficiency & Annual RTE degradation
Losses Auxiliary/HVAC loss
Battery operating
temperature
Depth of Discharge (DoD)
ity f t
Battery Capacity fade rate
Degradation 5§ of life SoH threshold
Aging factors considered
State of Charge = SoC modeling approach
(SoC)
Seasonal cycling approach
Price data granularity
Dispatch Strategy

Dispatch rule

DAM-RT hybrid option

Value / Assumption

User-defined; typically, 100 MW /200 MWh

15 years (1.5 cycles/day) or 20 years (1 cycle/day)

93%

1%

6% of potential annual energy revenue

Fixed at 25 °C for thermal stability

95% (configurable down to 50%)

1.95% per year (at 95% DoD)

70%

Both calendar and cycling aging

Balanced daily charge/discharge (50% average SoC)

1 cycle/day (summer), 1.5 cycles/day (winter

months)

Daily average hourly DAM prices

Charge during 2 cheapest hours, discharge during 2

peak hours

Optional: DAM purchase + RTM discharge using
ideal foresight
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CAPEX & OPEX Based on NREL cost curves (scenario-specific),
OPEX =3.5% CAPEX

Financial Inputs
Tax incentives 30% ITC deducted from CAPEX

Depreciation model U.S. MACRS-style depreciation

Curtailment value estimation | Sum-product of curtailed hours x DAM price

(hour/month)
Co-location Additional value from time- | Recognized as upside beyond base curtailment
Modeling shifting revenue
Solar generation profile Hourly profile for 100 MW system in ERCOT North
Hub

3.3 ALGORITHMIC LOGIC

The core of the model lies in its ability to emulate real-world battery dispatch behavior using
historical ERCOT price signals while ensuring technical realism and computational
efficiency. The algorithm is designed to simulate daily charge—discharge cycles based on
actual hourly LMP data, apply seasonal dispatch logic, and integrate degradation and

financial outputs in a modular, scalable way.

At its foundation, the model scans hourly Day-Ahead Market (DAM) prices for each node
across a historical period ranging from March 2021 to September 2024. This data is stored
as 24 rows per day, with each row representing a single hour’s LMP. The VBA macro,
triggered via an Excel button, processes this data row by row to simulate BESS operation
over time. For each 24-hour block, the macro identifies the two consecutive cheapest hours
as the charging window, and the two consecutive most expensive hours as the discharging
window. This pattern reflects a value-maximizing arbitrage strategy, initially constrained to
one charge and one discharge cycle per day to reflect battery symmetry and avoid overuse,
which was later seen to lack full optimality, where the seasonal one-cycle and two-cycle

mentioned earlier came into place.
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January February March April May June July August  SeptembeiOctober November December

1 2 3 4 5 6 7 8 9 10 11 12

MIN(2) 36,58075269 26,24223529 26,9028226 30,99575 39,19346774 45,7315 47,07612903 56,25379 50,43033 52,53747 43,17923077 38,51871
MAX(2) 163,0677419 114,5492941 135,770403 183,3878 318,5876613 351,01125 362,5026613 817,0515 282,8966 226,2522 172,8038462 174,4757
2-HOURDIFF 126,4869892 88,30705882 108,867581 152,3921 279,3941935 305,27975 315,4265323 760,7977 232,4663 173,7147 129,6246154 135,957
January February March April May June July August SeptembeiOctober November December

1 2 3 4 5 6 2 8 9 10 1 12

MIN 18,29037634 13,12111765 13,4514113 15,49788 19,59673387 22,86575 23,53806452 28,1269 25,21517 26,26874 21,58961538 19,25935
MAX 81,53387097 57,27464706 67,8852016 91,69392 159,2938306 175,505625 181,2513306 408,5257 141,4483 113,1261 86,40192308 87,23785
1-HOURDIFF 63,24349462 44,15352941 54,4337903 76,19604 139,6970968  152,639875 157,7132661 380,3988 116,2331 86,85737 64,81230769 67,97849

Figure 33. Output average example for two cheapest and two most expensive hours a day per month

To enforce technical realism, the algorithm guarantees that charging and discharging blocks
are symmetrical (i.e., two hours in and two hours out), and that no simultaneous
charging/discharging occurs. Once the battery has charged for its designated window, it is
locked from further charging until discharge is completed. This rule-based structure
maintains a Mid SoC of approximately 50%, consistent with long-term operation and the

assumptions defined in Section 3.2.
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For each day in historical LMP dataset:
1. Scan 24 hourly prices (one row = one hour)
2. Identify 2 consecutive lowest prices — Charge Window
3. Identify 2 consecutive highest prices — Discharge Window
4. If in winter month:
Repeat steps 2-3 for second cycle (1.5 cycles/day total)
5. Store charge/discharge hours and associated price spread
6. Calculate energy arbitrage revenue for the day
End loop
Aggregate daily results — Monthly averages — Annual revenue
Apply annual degradation and round-trip efficiency losses
Export KPIs to Excel output file

Figure 34. Simplified Pseudocode of the Daily BESS Dispatch Simulation Input
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After all daily cycles for selected node are simulated.:
1. Aggregate charge and discharge windows — Monthly averages
2. Calculate daily revenue per MW from price spreads
3. Aggregate daily revenues — Monthly and Annual revenue
4. Apply annual degradation (capacity + RTE reduction)
5. Compute average energy throughput and SoC pattern
6. Compare node KPIs vs. selected ERCOT hub
7. Optionally run DAM—-RT scenario and log separate outputs
8. Export all KPIs and revenue summaries to:
"NodeName BESS. xlsx"

Figure 35. Output Generation Logic for BESS Node Simulation

Seasonal variability in price patterns is handled via hard-coded month-by-month logic.
Based on consistent trends observed in multi-year ERCOT data, the model assumes 1 full
cycle per day in May through October, and 2 full cycles per day in January through April
and November—December. This corresponds to typical system stress and solar ramp-down
dynamics across ERCOT, where single-peak and dual-peak price patterns alternate
seasonally. Accordingly, the VBA macro applies either one or two charge—discharge blocks
per 24-hour period, depending on the month being processed. All dispatch windows are
stored in monthly vectors, which are used to calculate daily and monthly average revenue

per MW of installed capacity.

Each simulation is run one node at a time, as defined by the user in a central Excel interface
file called 2HR BatteryValuation LMP_ SQL.xlsm. The user selects a node of interest, e.g.,
to assess a specific project lead in Houston, and specifies a hub for benchmarking. Once the
button is pressed, Python first retrieves the node’s full historical LMP profile from the SQL

database and populates the Excel interface. Immediately after, the VBA logic is triggered,
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and the simulation begins. The system evaluates each day’s prices, applies the cycle logic,
and stores calculated monthly metrics. After the run is complete, the model generates a new
output file containing the full set of BESS valuation results, titled according to the selected
node (e.g., HoustonWestNode BESS.xlIsx). This output includes KPIs such as average daily

revenues, monthly earnings, and financial indicators used in Section 3.6.

SQL Database
(ERCOT LMP data
4 GB, 17k+ nodes)

|

Python Script
(Data Retrieval & Validation)

|

Excel + VBA
(Dispatch Simulation,
Financial Model)

|

Outputs
(NodeName_BESS.xIsx,
Charts, KPIs)

Figure 36. Al generated workflow architecture of BESS techno-economic model

The model applies degradation logic on an annual basis, which avoids unnecessary
complexity while preserving realism in long-term financial projections. Degradation is
modeled externally as an annual reduction in round-trip efficiency and usable capacity (as
explained in Section 3.2), and these effects are applied after the revenue simulation. In this
way, the model retains a clear separation between dispatch behavior and performance decay,
which simplifies sensitivity analysis and allows for repeatable tests across nodes and

configuration scenarios.

The logic also supports an optional DAM-RT hybrid dispatch mode, which can be toggled
to explore upside from price forecasting and machine-learning-enabled dispatch strategies.

In this configuration, the battery charges based on the two cheapest hours in the DAM, while
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discharging based on the two most expensive hours in the RTM of the same day. While this
approach assumes perfect foresight and ideal execution, it serves as a theoretical upper
bound for what could be achieved using advanced forecasting tools. The results from this
mode are included in the financial analysis as a comparative benchmark to the base-case

DAM-only dispatch.

Importantly, solar curtailment logic, solar curtailment, known as solar hours where the DAM
price is below zero, is modeled independently from battery dispatch. The curtailment
simulation, when activated, estimates the economic value of solar energy lost due to local
transmission constraints, although unable to see exactly where those constraints come from
in this model, or oversupply by summing curtailed hours against hourly prices. This allows
users to explore co-location potential by comparing solar losses with BESS revenues at a
given node. However, curtailment values are not treated as mandatory charging signals for
the BESS; rather, they serve to assess whether co-located development makes sense based

on independent performance of both subsystems.

(ERCOT LMP + Solar Data
4 GB, 17k+ nodes)

|

Python Script
(Data Retrieval & Preprocessing)

[ SQL Database ]

Excel Pivot Tables
(Refresh & Aggregation:
Curtailment, Avg. Solar Price)

Outputs
(Curtailment Charts,
$/MW/yr Lost, Co-location KPIs)

Figure 37. Al generated workflow architecture of curtailment model
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3.4 TECH STACK
The developed model is built on an integrated architecture combining Excel/VBA, Python,
and SQL, with each component performing a specific and complementary role. This
configuration was reached through a process of trial and error, balancing technical
capability, runtime efficiency, and ease of use for non-technical stakeholders. While Python
and SQL handle large-scale data retrieval and processing, Excel and VBA remain the core
environment for model execution, parameter adjustment, and results visualization, making
the tool accessible to project developers and decision-makers without programming

expertise.
Excel and VBA — Core Model Environment

Excel serves as the primary workspace, providing parameter input sheets, results dashboards,
and graphical summaries of key performance indicators. The heart of the model — the daily
dispatch simulation — is written entirely in VBA. This approach was initially chosen for its
directness and readability: anyone opening the model for the first time can follow the logic
without needing to understand an external programming environment. Once the VBA engine
calculates annual revenue predictions based on energy arbitrage, embedded Excel formulas
automatically populate the financial model, generating IRR, NPV, payback period, and other
economic outputs. The user interface is designed for simplicity: a single button runs the
entire workflow, and all tables and charts refresh automatically when a new node is

simulated.
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Insert Following DATA Below and Save

Node Name: NAVARRO_BUS1
Hub Zone: HB_NORTH

PRESS WHEN READY

Calculate Economic Dispatch

Figure 38. Excel interface with node selector and macro button

Python — Data Retrieval and Validation Layer

Python’s role in the architecture is focused on the efficient extraction of historical price data
from the SQL database. Using pandas, pyodbc, and openpyxl, the script retrieves the full
hourly DAM price profile for the selected ERCOT node and passes it into the Excel interface.
To ensure data integrity, the script includes security checks that verify the node exists in the
database and that the expected number of hourly records per year (8,760) is present. If either
condition fails, the process halts before any dispatch simulation begins. While Python’s
function is deliberately narrow in scope, this separation of tasks keeps the workflow modular

and easier to maintain.
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49  # Load the existing macro-enabled workbook

50 try:

51 book = load workbook(input_excel_path, keep_links=True, keep_vba=True)
52

53 # Copy data from "Input Sheet" to “SummarySheet"

54 input_sheet = book['Input Sheet']

55 summary_sheet = book['SummarySheet']

56 summary_sheet[ 'B1'] = input_sheet['B2'].value

57 summary_sheet['B2"'] = input_sheet['B3"'].value

58

59 # Remove the "Input Sheet"

60 del book['Input Sheet']

61

62 # Remove the existing sheet if it exists

63 if 'FilteredData' in book.sheetnames:

64 del book['FilteredData']

65

66 # Load the filtered data from the temporary file

67 temp_book = load_workbook(temp_excel path, data_only=True)

68 temp_sheet = temp_book[ 'FilteredData’]

69

70 # Create a new sheet in the existing workbook for the filtered data

71 target_sheet = book.create_sheet('FilteredData')

72

73 # Copy the data from the temporary sheet to the new sheet in the existing workbook
74 for row in temp_sheet.iter_rows(values_only=True):

75 target_sheet.append(row)

76

77 # Define the path for the new macro-enabled workbook

78 new_excel_path = os.path.join(os.path.dirname(input_excel path), f"{name_to_filter}.xlsm")
79

80 # Save the updated workbook as a new macro-enabled workbook

81 book.save(new_excel_path)

82 print(f"Filtered data written to the new Excel file at {new_excel_path}")

Figure 39. Battery Valuation Python Script Extract

SQL — Large-Scale Data Management

The SQL database, hosted locally on a company workstation, contains more than 16GB of
ERCOT locational marginal price data, covering over 17,000 nodes across approximately
3.5 years. Data is organized into annual tables (e.g., LMP_ 2022, LMP_2023) to optimize
query performance. Before SQL integration, the model relied on CSV extraction and
processing in Python, which required 5-10 minutes per node and placed a heavy load on
RAM. SQL reduced retrieval times to roughly one minute per node, with minimal memory
overhead, enabling faster iteration and making it feasible to run large numbers of simulations

without overloading hardware, leading to close to a 90% runtime decrease.
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Figure 40. Comparison of average model runtime before (CSV Based) and after (SOL Integration)

Integration Workflow

The sequence is fully automated from the Excel interface. When the user selects a node and
clicks the “Run Model” button, Python connects to SQL, retrieves the relevant dataset, and
writes it into the Excel model. VBA then executes the dispatch algorithm, calculates daily
and monthly revenues, and applies technical and financial assumptions such as degradation
rates, round-trip efficiency losses, and cycle patterns. The complete results, including tables,
charts, and a financial summary, are then saved as a separate Excel file named after the node
(e.g., HoustonWestNode BESS.xlsx). The same workflow structure is also used for the

curtailment model, enabling seamless evaluation of co-location opportunities.
Scalability, Reproducibility, and Adaptability

The architecture was designed for both scalability and reproducibility. Adding a new year of
data involves importing it into SQL under a new table and updating a single query in the
Python script, without modifying the VBA dispatch engine. Similarly, the model can easily
be adapted to work with Real-Time Market (RTM) data or to apply alternative dispatch
strategies. For reproducibility, the system’s design allows another analyst to operate it with

minimal training: open the master Excel file, select a node and hub for comparison, press
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the run button, and retrieve results. By maintaining consistent output file naming and

structure, simulations remain traceable and easy to archive.

t, "A").End(x1lUp) .Row
For j 10 To 21 ' t I 1
monthToFind = ws.Cells (12, j).Value
maxValues (1l To Application.WorksheetFunction.RoundUp ((lastRow / 24), 0))

nd Then
tFunction.Max (ws.Range (ws.Cells (i, 4), ws.Cells(i + 23, 4)))

es / countMaxValues

. J).v = avgMaxValue

5.Cells (14, j).Value = "N/A"

For j = 10 To 21 ' 1 I 1
monthToFind = ws.Cells (12, j).Value

ReDim minValues (1l To Application.WorksheetFunction.RoundUp((lastRow / 24), 0))

Figure 41. VBA Code extract showing automatization of model dispatch, adapting to new data to be included

in the future

3.5 FINANCIAL MODELING

The financial model in this study is designed to translate the technical and market
performance outputs of the VBA-SQL-Python dispatch framework into a comprehensive,
investment-grade cash flow projection. Its scope extends beyond simple revenue estimation,
incorporating capital expenditure (CAPEX), operating expenditure (OPEX), tax incentives,
depreciation, financing terms, and degradation assumptions into a single analytical
environment. The model is structured as a project finance special purpose vehicle (SPV), in
line with the prevalent practice in Texas where each large-scale renewable or storage project
is developed under a separate legal entity, typically a limited liability company (LLC). By

doing so, the model reflects real-world financing conditions, where lenders evaluate the
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project on its own merits and cash flows, without recourse to the parent company’s balance

sheet.

The primary objective of this financial layer is to determine the feasibility of a 2-hour
lithium-ion BESS deployment under ERCOT market conditions, based on actual nodal Day-
Ahead Market (DAM) price data. It evaluates both unlevered project internal rate of return
(IRR), assuming 100% equity funding, and levered shareholder IRR, where cash flows
account for debt service obligations. This dual-IRR approach allows for a more realistic
assessment of investment attractiveness from both a total capital and equity investor
perspective. The model also incorporates the 30% standalone storage Investment Tax Credit
(ITC) and accelerated MACRS five-year depreciation schedule, both of which are critical in

improving early-year cash flows and shortening the payback period.
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Figure 42. Extract of Financial model
System & Cost Assumptions
The base case assumes a 100 MW / 200 MWh utility-scale lithium-ion BESS, although the

model is fully parameterized to accept any capacity size. CAPEX assumptions are sourced

from the NREL BESS cost database under three scenarios, Conservative, Moderate, and
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Optimistic, with Moderate being used as the default. These baseline costs have recently been
adjusted in this thesis’ model from 2026 onwards to reflect the U.S. tariff increases on
Chinese imports announced in May 2024, which affect battery parts and non-EV lithium-ion
batteries. The CAPEX breakdown, drawn from the NREL dataset, is presented to provide
developers with visibility into the primary cost drivers, highlighting the proportion
attributable to the battery system itself compared to the electrical balance of system (BOS),

installation labor, EPC overhead, and other soft costs.

OPEX is modelled as 3.5% of total CAPEX per year, with 2.5% allocated to maintenance,
covering routine servicing, corrective repairs, and minor component replacements, and 1%
to insurance, which also includes provisions for battery module replacement in the event of
premature degradation within the warranty period. Augmentation is not explicitly scheduled;
instead, the system is operated until it reaches a reasonable state of health (SoH), at which
point refinancing or capacity restoration could be considered. The model therefore reflects a
“run-to-floor” operational approach rather than pre-programmed augmentation milestones,

keeping early-stage cash flows as high as possible to front-load returns.

Future Costs - Storage Futures Study Utilty-Scale BESS
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Figure 43. NREL-based Utility-Scale BESS Projections included in model (NREL ATB, 2020)
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Category Tariff Date
Battery parts Increase from 7.5% to 25% August 1, 2024
Electric vehicles Increase from 25% to 100% August 1, 2024
Facemasks Increase from O - 7.5% to 25% August 1, 2024
Lithium-ion EV batteries Increase from 7.5% to 25% August 1, 2024
Lithium-ion non-EV batteries Increase from 7.5% to 25% January 1, 2026

Figure 44. US Tariff Modifications on Chinese imports (US International Trade Administration, May 2024)

Policy, Tax, and Depreciation Assumptions

The financial model integrates the key policy mechanisms currently shaping the U.S. energy
storage sector. A 30% standalone storage Investment Tax Credit (ITC) is applied directly to
eligible CAPEX in the project’s first year, significantly improving equity returns and
reducing the required capital outlay. Accelerated depreciation is modelled using the
Modified Accelerated Cost Recovery System (MACRS) five-year schedule, which front-
loads depreciation benefits to the first half of the asset’s life, used mainly in the US. This
schedule allocates 20% in Year 1, 32% in Year 2, 19.2% in Year 3, 11.52% in Years 4 and

5, and 5.76% in Year 6, aligning with Internal Revenue Service guidelines for energy assets.

Federal corporate income tax is set at 28%, applied on earnings before interest and taxes
(EBIT). In addition, two local property tax scenarios are modelled: a high-tax case at 2.25%
of property book value per year when no tax abatement is given and a low-tax case at 1.5%
with tax abatement. Property tax abatements are granted in certain Texas counties where the
local governing authority deems the project beneficial to the regional economy, providing a
meaningful boost to after-tax cash flows. Sales tax on equipment is accounted for within the
CAPEX breakdown, and no separate recurring sales/use taxes are assumed during

operations.
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Financing Structure and Debt Assumptions

The model adopts a project finance special purpose vehicle (SPV) structure, with capital
sourced from a combination of debt and equity at a 65% / 35% ratio, although with a dynamic
option to change this debt-to-equity ratio. This mirrors common practice in the Texas
renewable sector, where each project is ring-fenced under a dedicated LLC to limit investor
exposure and enable debt to be secured solely against the project’s own cash flows. The
financing horizon is set to match the operational lifetime of the BESS, 15 years for the 1.5-
cycle scenario and 20 years for the 1-cycle scenario, although debt is conservatively
structured with a 10-year tenor. This shorter tenor reflects the potential reluctance of lenders

to commit for the full life of the asset in the merchant-heavy ERCOT market.

Debt service is modelled at a fixed 5.5% interest rate with straight-line amortization, and no
upfront financing fees are assumed. Reserve accounts such as a Debt Service Reserve
Account (DSRA) or Major Maintenance Reserve Account (MRA) are considered implicit
within the project’s CAPEX, with no separate cash trapping in the base case. This approach
maximizes distributable cash flow to equity in the early years, which is aligned with the
model’s strategy of capturing maximum value during the period of highest performance
before degradation meaningfully impacts throughput. Both unlevered (project-level) IRR
and levered (shareholder-level) IRR are calculated, allowing investors to assess returns with

and without debt gearing effects.
Revenue Streams and Price Treatment

The financial model’s revenue inputs are sourced directly from the VBA-based dispatch
algorithm described in previous sections, ensuring a seamless link between nodal market
performance and financial outputs. The base case assumes energy arbitrage solely within the
Day-Ahead Market (DAM), where the battery charges during the two cheapest consecutive
hours and discharges during the two most expensive consecutive hours each day. An optional
Day-Ahead/Real-Time (DAM-RT) hybrid scenario is also included, in which charging is
scheduled in DAM and discharging occurs in Real-Time during the two highest-priced hours
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of the day. While this DAM-RT approach is not used for the primary feasibility analysis, it
serves as a useful “upside” test case, particularly if predictive analytics or machine learning
algorithms are integrated in the future to anticipate high-price events in the Real-Time

Market.

No ancillary services revenues are included in the base case, ensuring that the outputs reflect
purely energy arbitrage potential. This conservative approach is deliberate, given that
frequency regulation and reserve markets in ERCOT are becoming increasingly competitive,
with revenue cannibalization already observed for short-duration assets. Price escalation is
modelled at a nominal 1.5% per year for both energy prices and O&M costs, maintaining
purchasing power parity over the life of the project. Revenues are inherently nodal in nature,

with basis differences between hub and node already embedded in the VBA model output.

118.190

Revenue Generated (S / MW / yr)

DAM-DAM Dispatch RT-DAM Dispatch

Figure 45. Example of revenue uplift /MW/yr from base DAM case to RT-DAM case

Performance, Degradation, and Availability Assumptions

Operational performance parameters in the model are calibrated to reflect their direct impact
on annual energy throughput and, consequently, on project revenues and lifetime economics.
The initial round-trip efficiency is set at 87% in Year 1, with a 1% annual decline factored

into the revenue stream to reflect average conversion losses cited in different studies. This
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efficiency decay compounds with the 1.95% annual battery capacity fade, a function of the
model’s high depth-of-discharge assumption, reducing the energy available for sale over
time. These losses directly erode gross revenues and, in later years, narrow debt service
coverage ratios, making early-year cash generation critical to the project’s financial

resilience.

An HVAC load equivalent to 6% of annual revenue is modelled as a fixed OPEX deduction,
capturing the cost of maintaining optimal operating temperatures. Availability is set at 99%,
with the residual 1% downtime assumed for scheduled maintenance and unforeseen outages.
While these operational metrics may appear modest in isolation, their cumulative effect over
a 15- or 20-year horizon materially impacts both unlevered and levered IRR, as well as the
net present value (NPV) of equity cash flows. By embedding degradation and availability
directly in the annual cash flow calculation, the model ensures that payback profiles and

sensitivity tests account for the inevitable decline in asset performance over time.

s
SOLEA POWER CORP

Revenue Generated (S / MW / yr) — Revenue including capacity and RTE losses

— Ideal Revenues (no losses)
120.000 +

110.000 ~
100.000 -
90.000 -
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50.000 -
40.000 -
30.000 +
20.000 ~
10.000 -

0
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Figure 46. Example of impact on yearly revenues per MW with and without losses
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Outputs, KPIs, and Sensitivities

The financial model produces a consolidated summary of project viability through a focused
set of key performance indicators (KPIs). These include unlevered project IRR, levered
shareholder IRR, net present value (NPV) at a weighted average cost of capital (WACC)
consistent with market norms, and simple payback period. While the model runs on annual
cash flows, Year 1 results also include a monthly revenue breakdown to provide seasonal
insight into spread volatility. Equity cash flows are presented as a net of debt service for the

levered case, allowing for direct comparison between project and shareholder returns.

Visual outputs are designed to make the financial implications of operational and market
assumptions intuitive for decision-makers. A dynamic waterfall chart illustrates the path
from gross revenues to equity cash flows, highlighting the proportional impact of OPEX,
taxes, debt service, and policy incentives. A cumulative cash flow graph shows the
breakeven year and total equity returns over the project life. Finally, a sensitivity “tornado”
chart evaluates the effect of key variables, such as CAPEX, degradation rate, price
escalation, and property tax scenario, on levered IRR, providing a quick diagnostic of which
factors most influence bankability. Together, these outputs enable a comprehensive
assessment of project economics that can be adapted to different nodes, system sizes, and

financing scenarios at the push of a button.

Cumulative Pay-Back

Figure 47. Example of cumulative pay-back within BESS model

By integrating granular nodal price data with detailed cost, policy, and financing

assumptions, the financial model bridges the gap between technical performance and
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investment decision-making. Its flexibility allows developers and investors to rapidly test
site-specific economics, financing strategies, and operational parameters, producing results
that are both market-reflective and investment-grade. The use of ERCOT’s nodal Day-
Ahead pricing ensures that location-specific value is captured, while optional DAM-RT and
co-location scenarios provide a pathway to explore upside potential without overstating the
base case. Ultimately, this modelling framework serves not only as a valuation tool, but as a
decision support system, enabling stakeholders to prioritize high-return opportunities,
mitigate financial risks, and align project development with long-term market trends in

Texas’s evolving energy storage landscape.

3.6 MODELING LIMITATIONS

While the developed techno-economic model is designed to provide a robust and location-
specific valuation of BESS projects within ERCOT, several limitations must be
acknowledged to ensure the correct interpretation of results. These limitations arise both
from deliberate scoping choices, made to maintain model clarity and processing efficiency,
and from external factors that could materially influence project economics but are not yet

integrated into the framework.

The most significant limitation is the exclusion of ancillary services revenues, despite their
historical importance in ERCOT’s storage market. As of 2024, the total available ancillary
services capacity is approaching full saturation, with projections from ModoEnergy
suggesting this will occur by December 2024. In saturated conditions, auction competition
forces participating BESS assets to bid lower to secure contracts, eroding the profitability of
ancillary-only dispatch strategies. Enhanced Contingency Reserve Service (ECRS),
introduced in June 2023, remains the most lucrative service on a $/MW basis, with BESS
comprising 20-30% of its capacity. However, ECRS also favors longer-duration systems,
typically 4- to 8-hour batteries, which fall outside the 2-hour lithium-ion scope of this thesis.
By focusing on pure energy arbitrage, the model avoids overestimating revenues in a market

segment where long-term sustainability is uncertain.
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ERCOT's battery market has entered its second phase - the majority
of revenue now comes from Energy arbitrage

Average monthly BESS revenue ($/kW-month)
Ancillary Services llDAM Energy M RTM Energy

40

30 L i

20

Phase 2:
Wholesale
Energy

-10
2020 2021 2022 2023 2024 2025

MODOENERGY

Figure 48. ModoEnergy study showing phase II of battery revenues, now focusing on energy arbitrage
(ModoEnergy, 2025)
The model also does not account for transmission congestion management costs or potential
transmission upgrades, which can be material in ERCOT’s nodal market. On the other hand,
recent news suggests important resource allocation in ERCOT to new 345kV and new 765kV
lines to be built across Texas, with additional line capacity upgrades for 138kV and 69kV
lines as well. While project viability inherently depends on interconnection capacity, these
costs are excluded from the financial layer, as it will be assumed that no project will be
placed in lines which need a self-financed line upgrade. However, through collaboration with
EPE, nodal transmission capacity (N-0 and N-1 ratings) is known for each line in the ERCOT
network. This information has been mapped against the 2024 interconnection queue of BESS
and solar projects, with each line identified and converted into shapefile and .kmz formats
for integration into Google Earth Pro, as shown in Figure 22 for BESS projects and the
following figure for PV projects. This geospatial resource allows developers to visually
assess both network capacity and market attractiveness when scouting potential project sites,

an asset that complements, but is not directly embedded within, the techno-economic model.
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Figure 49. Mapped PV 2024 interconnection queue into Google Earth Pro (vellow markers = projects)

Technology scope is another limiting factor. The model is calibrated exclusively for utility-
scale lithium-ion batteries, leveraging their current dominance in ERCOT’s storage mix.
Technical parameters such as round-trip efficiency, degradation, and HVAC loads are based
on lithium-ion performance profiles at an optimal operating temperature of 25°C. HVAC
energy consumption is fixed at 6% of annual revenues, contrasted once again with industry
experts, assumed sufficient to maintain this temperature across all ERCOT climate zones
when paired with proper insulation and CAPEX-allocated environmental controls. This
assumption removes seasonal variability from the model, meaning that real-world deviations

in auxiliary loads, especially during extreme Texas summers, are not reflected in cash flows.

Price data and dispatch logic also impose boundaries on the model’s predictive capability.
Revenues are based solely on historical Day-Ahead Market (DAM) price data (with optional
Real-Time discharge in the DAM-RT scenario), without any forward-looking price
forecasting. Seasonal cycle patterns, one cycle in summer months and two in winter, are hard
coded by month based on observed historical trends, which may shift in future due to factors

such as climate change. Projections for Texas suggest that average summer temperatures are
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rising, and winter peak demand patterns may change, which could alter the optimal seasonal

dispatch profile in the coming decades.

Finally, the co-location and curtailment analysis is run separately from the BESS dispatch
model. While this tool evaluates the economic value of lost solar output and potential battery
capture, it does not integrate co-location revenues directly into the financial outputs.
Moreover, the solar generation profile used in curtailment modelling is generic for the North
Hub, ERCOT’s most active solar development region in the last decade, and not node-
specific or weather-year specific. This approach provides a reasonable baseline but may

understate or overstate curtailment opportunities at individual sites.

Overall, these limitations underscore that the model is intended as a decision-support tool
rather than a definitive profitability guarantee. Its value lies in identifying attractive nodes,
testing operational strategies, and quantifying the impact of key technical and financial
parameters, all while recognizing that broader market forces, evolving policy, and

technological advancements will influence actual project performance.
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4. RESULTS ANALYSIS

The results chapter applies the developed techno-economic model to real ERCOT nodes,
illustrating how nodal conditions, solar resources, and market volatility shape the financial
viability of BESS projects. To contextualize model behavior, two representative case studies
are analyzed: Pamplona, located in the Houston Hub, and Santa Monica, located in the North
Hub. These sites were selected because they align with strategic interests in ongoing project
development, while also offering contrasting market conditions. Houston is characterized by
higher price volatility and stronger solar resources, albeit within a land-constrained
development environment. In contrast, the North Hub provides a more established region for

solar and storage projects, with relatively stable nodal dynamics and lower solar yields.

Figure 50. Pampona project location, West from Houston

Together, these case studies highlight how the same BESS configuration can yield differing
outcomes depending on local market conditions, thereby reinforcing the importance of
location-specific analysis. Following the node-level results, Section 4.2 expands the scope

to a system-wide benchmarking across ERCOT’s 17,000+ nodes, while Section 4.3
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introduces sensitivity testing to assess robustness under varying technical and financial

assumptions.

4.1 BASE CASE NODE ANALYSIS

This section evaluates the financial outcomes of the developed model at the node level for
the two mentioned nodes. For each selected site, annual revenues, project and shareholder
IRRs, and payback periods are presented. Results are then compared across nodes to

illustrate how location-specific market conditions drive project feasibility.

4.1.1 Pamplona (Houston Hub)

Pamplona presents one of the strongest profiles in this study due to its high price volatility
and spreads, which translate directly into enhanced arbitrage revenues. Under the base case
assumptions, the model estimates annual revenues of $89,412 per MW /2 MWh installation,
yielding a project IRR of 4.93% (unlevered) and a shareholder IRR of 6.0% (levered).
Payback periods are 10 years at the project level and 12 years at the shareholder level,
making Pamplona one of the more financially robust nodes evaluated. Although these
numbers don’t look very attractive for investors, it has to be taken into account that this base
model doesn’t account for intraday trading and ancillary services revenue, so only with
DAM-DAM dispatch those numbers look very interesting compared to the whole of
ERCOT, giving a positive KPI comparison vs. ERCOT, which will be discussed later.

POSSIBLE ANNUAL REVENUE 1 cycl
I gu=-—-11
POSSIBLE ANNUAL REVENUE 1.5 cycles IIIIII

| KPIs
Marginal Hub Revenue 2,98% PV: $ 14.374.190,58 I
i 0
Marginal Node Revenue 2,18% rs 10,00% IIIIII--.
KPI Comparison 5,16% NPV: $ (4.160.018,49) III
IRR: 6,0%
Pamck: 12,D!nrs

Figure 51. Pamplona Node (GEB_138A) Summary Sheet Results

From a solar perspective, Pamplona records an average solar price of $49.71/MWh, slightly
below the Houston hub average of $50.06/MWh. Curtailment is negligible, at only 2 hours

per year, far below the levels observed in West Texas nodes. Although this means co-
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location would not be driven by curtailment avoidance, there is a case for it if the available
land exceeds BESS requirements. Under such conditions, EPC and interconnection

synergies could make a combined solar + storage development economically compelling.

N W b U OO N X O
O O O o o o o o

Curtailment (S/MWh)

M JAN mFEB m MAR EMAPR mMAY mJUN mJUL mAUG mSEPT mOCT mNOV mDEC

Figure 52. 2 Curtailment hours seen in Pamplona node, at a given day at 1PM and 3PM

4.1.2 Santa Monica (North Hub)

Santa Monica provides an instructive counterpoint. Annual revenues were $85,247 per MW
/ 2MWh, almost $4,200 lower than Pamplona per MW per year, leading to weaker financial
returns: project IRR of 3.95% and shareholder IRR of 3.9%. Payback periods extended to
11 years (project) and 13 years (shareholders), reflecting thinner margins and higher relative
risk. While technically feasible, the project’s economics highlight the importance of node

selection in ERCOT’s volatile market.
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IIIIIlII-._

POSSIBLE ANNUAL REVENUE 1.5 cycles

s 8524754

| KPIs
Marginal Hub Revenue 0,38% sh PV: $ 25.853.918,73 ll
Marginal Node Revenue -0,05% rs 0,00% |IIIIIIIIIII.-
KPI Comparison 0,32% NPV: $  7.319.709,67

IRR: 3,9%
Payback: 13,0 years

Figure 53. Santa Monica Node (Navarro_Busl) Summary Sheet Results

Interestingly, Santa Monica’s average solar price of $45.84/MWh is slightly above the North
Hub average ($45.49/MWh). This made the site attractive for solar development, even if
BESS economics were weaker. In practice, the node ultimately supported a solar-only
project, illustrating how nodal conditions may favor different technologies. Curtailment at
Santa Monica is negligible, meaning co-location would not provide significant incremental

value beyond EPC or grid interconnection synergies.

4.1.3 Comparative Insights

The comparison between Pamplona and Santa Monica underlines how location-specific
conditions shape feasibility. Pamplona’s higher spreads and volatility support stronger BESS
returns, while Santa Monica, despite a slightly more favorable solar price, produces weaker
storage economics. This difference in economic viability is graphically seen by looking at

monthly average daily revenues seen in both nodes.
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Figure 54. Pamplona vs Santa Monica average daily revenues per month (3/MWh)

It can be observed that Pamplona’s node average revenues is higher for most months in
comparison to Santa Monica, being one of the only exceptions the month of August, where
intense heat waves are experienced more in the North Hub and volatility increases due to

spikes in demand.

In addition, both nodes exhibit very low curtailment, meaning co-location decisions here are
more a matter of synergies and land availability than curtailment relief. However, this is not
the case system wide. In West Texas, curtailment can reach hundreds of hours annually due
to high renewable penetration and transmission congestion, creating stronger incentives for
co-located storage to capture otherwise lost revenues. While not the focus of this study, this
contrast demonstrates why co-location potential must always be assessed in nodal context,

and why a node-by-node analysis is crucial for developers.
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Figure 55. Example of Curtailment in an average West node (DUBLIN 8)

The following table acts as a summary of different financial and technical metrics between
Santa Monica and Pamplona, which consolidate that in this case, Pamplona outperforms in
this model to Santa Monica, and so it should be the main focus if an investor was to choose

between the two.
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Table 4. Metric Comparison Summary between Pamplona and Santa Monica nodes

Metric

Annual Revenues Y1 ($/yr,
100 MW /200 MWh)

Project IRR (Unlevered)

Shareholder IRR (Levered)

Payback Period (Project)

Payback Period
(Shareholders)

Average Solar Price ($/MWh)

Curtailment Hours (per year)

Solar Feasibility

Co-location Potential

Volatility Profile

Pamplona (Houston Hub)

$894,127

4.93%

6.0%

10 years

12 years

49.71 (slightly < hub ave. 50.06)

Strong but secondary;

EPC/interconnection synergies matter

Conditional (if excess land & EPC
synergies)

High, strong spreads

Santa Monica (North Hub)

$852,470

3.95%

3.9%

11 years

13 years

45.84 (slightly > hub avg.
45.49)

Attractive solar-only; ultimately

developed as solar

Minimal (curtailment too low,

better as standalone solar)

Moderate, thinner spreads

4.2 SYSTEM-WIDE INSIGHTS FROM ERCOT BENCHMARKING

The comparative analysis between Pamplona and Santa Monica underscores the decisive

role of nodal conditions in shaping BESS project outcomes. While both sites display low

curtailment, their revenue profiles and IRRs diverge significantly due to differences in

volatility and hub-specific dynamics. To move beyond individual case studies, the next

section benchmarks result across ERCOT’s 17,000+ nodes, providing a system-wide view

of storage economics and highlighting where opportunities are concentrated.
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4.2.1 Hub-Level Benchmarking
ERCOT is divided into 6 main hubs: North, South, Houston, West, Coastal and Panhandle.

In this thesis, the main focus is on the first 4 hubs mentioned, as they’re the most common
hubs where projects are developed. Each hub generates has different price volatilities for
each month of the year, with some hubs benefiting from winter daily revenues against the
others (West Hub) whilst others benefit more on summer periods (Houston and North Hubs).
The following figure shows average daily revenues per month for North, South, Houston

and West Hub.

At the ERCOT-wide level, the average revenue across all 17,000+ nodes is $84,971/MW-
year, which serves as a baseline reference for identifying above- and below-average hubs.
However, hub-level conditions create meaningful divergences in BESS profitability, shaped

by volatility, congestion, and curtailment dynamics.

Hubs Average daily revenues per month
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Figure 56. Average annual revenues across ERCOT Main Hubs, excluding Coastal and Panhandle

The West Hub records the highest benchmark at $90,497/MW -year, surpassing the system-
wide mean by more than 6%. This reflects strong price volatility and arbitrage spreads,
largely driven by high solar penetration and frequent congestion. Something also important
to mention is the West’s high level of curtailment due to the massive wind energy penetration

through PTC, which lowers prices drastically in days of high renewable energy penetration.

90



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAI)
C O M ILLA S UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING

UNIVERSIDAD PONTIFICIA

e CAE Document 1. Project Report

This in turn means that not only BESS is interesting in the West Hub, rather that it could
help existing solar installation to not stop production at any time due to curtailment, as BESS

could absorb energy in periods of curtailment if co-located to a solar installation.

The Houston Hub follows with $87,505/MW-year, supported by high demand concentration
and frequent scarcity pricing, as well as being a hub known for its frequent extreme weather
events, especially frequent tornado appearance in the coast of Houston. While consistently
above the ERCOT average, the hub faces significant land and interconnection constraints,
making development more challenging. For developers who can secure land and

transmission rights, however, Houston offers some of the strongest arbitrage opportunities.

The North Hub averages $85,290/MW-year, placing it close to the ERCOT-wide mean.
Compared to Houston and West, its spreads are thinner, but its market is also less volatile,
offering more predictable (though slightly lower) returns, which adds security to
investments. This relative stability may appeal to more risk-averse investors, even if headline
revenues are lower, meaning looking for an over the average arbitrage revenue node in the

North Hub would be one of the most interesting projects in terms of low risk for investors.

Finally, the South Hub posts the weakest performance at $81,906/MW-year, roughly 3.6%
below the ERCOT mean. Moderate spreads, combined with growing renewable congestion,
reduce arbitrage margins, as well as the South Hub disposing of less industry and
concentrated population, which lowers demand in the hub compared to other Hubs like the
North Hub. On the other hand, for this hub, co-location with solar appears more promising
than standalone projects, as BESS can capture value by storing otherwise curtailed

generation.

Taken together, these benchmarks confirm that location is decisive for BESS feasibility in
ERCOT. While West and Houston present the highest standalone revenues, they are
constrained by high scale market uncertainty and grid bottlenecks. By contrast, North and

South hubs trade profitability for greater predictability, for the North Hub or co-location
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potential for the South Hub. Developers must therefore balance revenue opportunity against

operational challenges when selecting project sites.

4.2.2 Node Ranking & Relative KPIs

To complement the hub-level analysis, node-level KPIs provide a more granular perspective
on project feasibility. To obtain a full node-level KPI, the KPI had to be split into 2 separate
KPIs: Marginal Hub revenue, and Marginal Node revenue. The Marginal Hub revenue
expresses how the hub where the project analyzed is located differentiates in revenue level
to the global hub average, giving a KPI at hub level. For example, for this case, the West
hub leads this KPI, with a +6.5%. On the other hand, to obtain the final node level, it has to
be compared how the node’s revenues differ from the hub’s average it’s located in. The
following figure compares Pamplona and Santa Monica’s node to demonstrate the difference

in node quality for energy arbitrage between the two.

ssssssssssssss

Marginal Hub Revenue

Marginal Node Revenue

Pamplona Santa Monica

Figure 57. KPI value difference between Pamplona and Santa Monica, split into the two sub-KPls

Pamplona demonstrates a clear competitive advantage, generating $89,412/MW-year, which
is 2.2% above the Houston Hub average and 5.2% higher than the ERCOT-wide benchmark.

This reinforces Houston’s node overall attractiveness for BESS despite land constraints
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present, while also highlighting Pamplona as a strong outperformer even within its own hub,

showing Pamplona as a very attractive target for BESS development.

By contrast, Santa Monica sits almost exactly at the North Hub average ($85,290/MW-year),
showing virtually no deviation from its hub peers and only a marginal +0.4% above ERCOT
average. Although this makes Santa Monica less of a standout performer, its relative stability
and higher solar price compared to the hub average still mark it as an attractive site for solar-

only or hybrid development, which is a separate theme from this thesis.

This comparison underscores three key takeaways. First, location matters: node-level
dynamics can shift profitability by several percentage points even within the same hub, so
it’s important to analyze any node of interest separately, even if it’s present in a hub in
principle not as attractive as the other hubs. This leads into the second takeaway, that hub
averages conceal wide dispersion; strong nodes like Pamplona can significantly outperform
their hub peers, while others barely match averages. Finally, competitiveness must always
be measured against the ERCOT system-wide average, as this establishes a consistent

benchmark for BESS projects throughout ERCOT as a whole.

Together, these results show how ERCOT’s nodal system rewards developers who optimize
site selection at the most granular level. These KPIs intend to show a direct comparison
between all 17,000+ nodes in ERCOT without having to deep-dive into project economics
accurately. What this means is, that even if some assumptions are too conservative in the
financial model, as long as a project in a node has seen to be viable in practice, this model
can directly compare that node to any other node of interest, showing that if the node
comparison results in a positive outcome vs the existing viable node, then there’s a high
chance the node analyzed might be profitable as well. To transition forward, it is important
to note that while node KPIs highlight location-specific strengths, financial performance
remains highly sensitive to technical and economic assumptions such as CAPEX, cycle

depth, and market volatility. These sensitivities are addressed in the next section.
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4.3 SENSITIVITY ANALYSIS (PAMPLONA CASE STUDY)

To better understand how operational and financial assumptions influence project outcomes,
a sensitivity analysis was conducted on the Pamplona node in the Houston Hub. Pamplona
was chosen as the reference point because it showed the most promising economics in the
base case. By isolating this node, sensitivities can be clearly illustrated without duplicating

analysis across multiple sites.

The analysis varies individual parameters while holding all others constant, to identify the
drivers that most strongly affect project viability. Results are reported in terms of changes to

IRR, payback period, and cumulative revenues relative to the Pamplona base case.

Node Name GEB_138A POSSIBLE ANNUAL REVENUE 1 cycle - l II
s zomem |||||.--—'
Construction Date Start 202 POSSIBLE ANNUAL REVENUE 1.5 cycles

CAPEX Scenario Type MODERATE — II

Average Cycles /day 1

Storage Capacity(MW) 10 | KPIs
%Loan of Investment Marginal Hub Revenue 2,98%| ShareHolders PV: $§ 14.374.190,58
Debt Interest: 5,5 Marginal Node Revenue 2,18% rs 10,00% I II I I = | I
KPI Comparison 5,16% NPV: $ (4.160.018,49) III I
IRR: 6,0%
Payback: 12,0years

Figure 58. Pamplona Base Case Scenario

4.3.1 DAM vs. DAM—RT Dispatch

The most influential sensitivity factor was the choice of market participation strategy. Under
a Day-Ahead Market only (DAM) scenario, Year 1 revenues for a 100 MW / 200 MWh
installation at Pamplona reached approximately $8.94 million, as shown in the previous
figure. However, when simulating an ideal DAM-RT strategy, revenues jumped to $14.68

million, an increase of 64%.
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POSSIBLE ANNUAL REVENUE 1 cycle

-llIIIIIII POSSIBLE ANNUAL REVENUE 1.5 cycles

ShareHolders PV: $ 43.496.760,15

rs 10,00%
NPV: $ 24.962.551,08 IIII
IRR: 31,7% ' I.--'.ll

Payback: 3,0 years

Figure 59. Pamplona ideal DAM-RT Dispatch Scenario

This revenue uplift translated into a project IRR increase from 4.9% to 16.1%, and a
shareholder IRR increase from 6.0% to 31.7%, cutting payback times nearly in half (from
1012 years to 3—5 years). These results illustrate the transformative role of predictive
dispatch optimization. While the simulation assumes perfect foresight of real-time price
peaks, advances in machine learning and Al forecasting suggest that ERCOT operators could
realistically capture part of this upside in future years, exponentially increasing project

viability.

4.3.2 CAPEX Scenarios (NREL Cost Paths)

In addition, Capital expenditure assumptions represent another critical driver of feasibility.
Using NREL’s 2019 projections, there are three CAPEX projection tiers to be analyzed.
These are Optimistic, Moderate and Conservative. Bear in mind the base case used for past
results display show the moderate case for an initial construction date of 2027. The other

two scenarios give opposite results and differ heavily from the moderate scenario:

Both cases-maintained Year 1 revenues per an 100MW installation to $8.94 million.
However, on one hand, Optimistic CAPEX (473 $/kW) increased the project IRR to 15.5%
and the shareholder IRR to 30.1%, with payback shortened to six and three years,
respectively. On the other hand, Conservative CAPEX (844 $/kW) sharply reduced
feasibility, with IRRs falling to 2.7% (project) and 1.3% (shareholders). These results
demonstrate that CAPEX reductions remain a structural enabler for BESS projects, much
like the solar PV industry in its early growth phase. Without continued technological cost

declines or federal incentives, BESS projects face difficulty achieving investment-grade
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returns. In fact, without the 30% ITC, the Pamplona project, and almost any node project as
of now, would fall into negative NPV territory, making energy arbitrage alone insufficient

to sustain viability.

Conservative (8445/kW)

Moderate (756S/kW) .

0,00% 5,00% 10,00%  15,00%  20,00%  25,00% 30,00%  35,00%

B Shareholder IRR (Levered) H Project IRR (Unlevered)

Figure 60. IRR shifts under different CAPEX scenarios

4.3.3 Technical Parameters

Although dispatch strategy and capital costs remain the dominant factors in determining
project feasibility, the technical configuration of the battery also has a meaningful influence
on financial performance. The analysis highlights how changes in cycle count, depth of

discharge (DoD), and round-trip efficiency (RTE) affect revenues and investment metrics.

A first comparison was made between 1 and 1.5 cycles per day, using the winter period for
2 cycles and the summer period for 1 cycle as mentioned before in the model explanation.
Moving from 1.5 cycles/day (associated with a 15-year project life) to 1 cycle/day (extending
lifetime to 20 years) led to a sharp decline in Year 1 revenues, from $8.94 million to $7.07
million per 100 MW installation, equivalent to a 21% reduction and a significant reduction
in IRR. While the longer horizon of a single-cycle strategy partly compensates, investors
generally favor the higher near-term cash flows associated with 1.5 cycles/day, as these

shorten the payback period and reduce exposure to long-term market uncertainties. Not only

96



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAI)
C O M ILLA S UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING

UNIVERSIDAD PONTIFICIA

e CAE Document 1. Project Report

that, but that 21% reduction is very significant and shows the upside potential of taking

advantage of the two daily peaks and two daily troughs in winter periods.

Depth of discharge (DoD) was also shown to materially affect project economics. At a high
DoD of 95%, the battery captures maximum revenue potential. Reducing the DoD to 80%
decreases Year 1 revenues to $7.53 million, a 15.8% decline relative to the base case, while
project IRR falls to 3.8% and shareholder IRR to 3.6%. Further lowering the DoD to 65%
reduces revenues to $6.11 million (-31.7%), driving IRRs below 3%. Although lower DoD
settings extend technical lifetime by mitigating degradation, the associated reduction in

usable capacity imposes a significant economic penalty, outweighing the long-term benefit.

RTE demonstrates a smaller, but still notable, influence on profitability. Improving RTE
from 93% to 95% raises Year 1 revenues to $9.15 million, boosting IRRs to 5.4% (project)
and 7.0% (shareholders). Conversely, reducing RTE to 91% results in revenues of $8.74
million (—2.2% compared to the base case), with a subsequent reduction in IRR as well.
While these shifts are less dramatic than those produced by CAPEX or cycle settings, they

underline the importance of incremental technical improvements in maximizing returns.

Taken together, these results suggest that technical refinements act more as value optimizers
than as primary drivers of project feasibility. Higher RTE and carefully optimized cycle
scheduling can enhance margins and accelerate payback, but they do not fundamentally alter
the project’s economic outlook. Instead, they are most effective when combined with
stronger revenue levers such as DAM—RT arbitrage strategies or lower capital costs, where

they serve to amplify already favorable conditions.
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Figure 61. Revenue for Y1 per 100MW installation for different technical scenarios

4.3.4 Synthesis

This sensitivity analysis confirms that location and dispatch strategy are the decisive factors
in ERCOT’s BESS market. Dispatch tactics, CAPEX reductions and ITC support are
necessary to lift projects from marginal to attractive status, while technical assumptions such
as DoD and RTE provide fine-tuning rather than structural changes. In particular, the
transition from DAM-only to DAM—RT dispatch represents the most powerful lever, capable
of tripling shareholder IRR and halving payback times. The following table summarizes the
sensitivity analysis, starting from the base case and working down from most to less

impactful parameter changes.
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Table 5. Sensitivity Analysis summary table

Scenario Y1 Revenue Project Shareholder Project
3 IRR (%) IRR (%) Payback
(Years)
Base Case (DAM, 93% RTE, 95% 8,941,265 4.93 6.0 10

DoD, Mid CAPEX of 756 $/kW)

DAM-RT Dispatch 14,682,303 16.12 31.7 5
Optimistic CAPEX (473 $/kW) 8,941,265 15.46 30.1 6
Conservative CAPEX (844 $/kW) 8,941,265 2.69 1.3 12
1 Cycle/Day 7,071,878 3.80 3.8 12
80% DoD 7,529,487 3.78 3.6 13
65% DoD 6,117,708 2.70 2.0 16
95% RTE 9,146,811 5.40 7.0 10
91% RTE 8,735,719 4.45 5.0 11

The sensitivity analysis highlights that market strategy and capital costs are the dominant
levers of feasibility. Shifting from a DAM-only strategy to DAM-RT dispatch close to
doubles annual revenues and raises project IRR above 16%, confirming the central role of
real-time optimization for future models. Similarly, CAPEX assumptions critically shape
outcomes: an optimistic cost trajectory brings IRRs to 15-30%, while conservative costs
push the project close to unviability. By contrast, technical parameters such as DoD or
round-trip efficiency affect results in smaller increments, extending or shortening asset life

but not fundamentally altering feasibility.
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5. CONCLUSIONS

Battery Energy Storage Systems (BESS) have emerged as one of the most critical
technologies to ensure grid reliability and accelerate the energy transition. In ERCOT, where
extreme volatility, renewable penetration, and the absence of a centralized capacity market
create unique challenges, storage represents a clear pathway toward greater stability and
efficiency in the grid. The market outlook is highly promising: cost declines, regulatory
support such as the IRA, and continued investment in advanced chemistries and dispatch
optimization all point toward accelerated growth in the coming decade, apart from the
increase market participation from developers on BESS projects, and increase high demand

growth that allows for higher BESS penetration with a lower risk associated to it.

At the same time, however, risks remain. Increasing competition in the ancillary services
market close to full saturation, potential price cannibalization from oversupply of short-
duration systems, and uncertainties around long-term policy design could affect the
profitability of individual projects. These factors highlight that while the opportunity is
significant, careful modeling and site-specific analysis remain essential to de-risk investment

decisions, as done and analyzed in this thesis.

This thesis was motivated by two key drivers. First, the recognition that BESS has the
potential to reshape ERCOT’s market dynamics by reducing price volatility, mitigating
curtailment, and enabling higher shares of renewable integration. Second, the strategic
ambition to position Solea Power Corp. at the forefront of this transition by developing a
robust business branch dedicated to storage projects, extending its existing well known solar
development reputation. By creating a techno-economic model capable of capturing node-
level revenues, this work seeks not only to quantify opportunity but also to provide a
practical decision-support tool for developers, investors, and policymakers navigating

ERCOT’s rapidly evolving market.
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5.1 METHODOLOGY REVIEW

The methodology developed in this thesis successfully integrated large-scale market data
with a techno-economic modeling framework tailored to ERCOT’s unique conditions. By
combining SQL for data storage, Python for efficient extraction, and Excel with VBA for
dispatch simulation and financial modeling, the system achieved both depth and
accessibility. This hybrid design allowed complex nodal data from over 17,000 nodes to be

processed while remaining usable for stakeholders without programming expertise.
ERCOT Data — SQL — Python — Excel/VBA — Results & Financials

Key modeling assumptions, including conservative values for depth of discharge, round-trip
efficiency, and system lifetime, were deliberately chosen, and contrasted with industry
experts at the time, to reflect realistic project risk and functionality. The decision to simulate
seasonal cycle strategies and incorporate degradation factors ensured the outputs were
technically and financially accurate. At the same time, the use of node-level granularity
provided a distinctive advantage, enabling project feasibility to be evaluated at a resolution

rarely attempted in industry studies in this sector so far.

Nevertheless, several challenges emerged. The initial Excel CSV file processing speed
limited scalability when compared to an SQL environment, having to add complexity to the
model that directly translated into efficiency, going from a close to 1GB database to a 16GB
database leading to this change to be necessary. In addition, the model excluded real-time
trading and ancillary service participation in its base case, restricting revenue representation
to DAM-DAM energy arbitrage only. While this was intentional to maintain analytical
clarity, it highlights the need for more advanced dispatch approaches in future iterations.
However, the real time trading combination with DAM energy purchase was also included

later in the model to give an indicative measure of potential revenue growth.
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5.2 KEY INSIGHTS FROM RESULTS

The analysis of ERCOT’s nodal landscape showed that West Texas hubs remained the most
profitable for energy arbitrage, with average revenues of nearly 90,500 $/MW-year,
outperforming Houston (87,500 $/MW-year) and North (85,300 $/MW-year), hubs
containing the two nodes analyzed in this thesis, Pamplona and Santa Monica. However,
these gains are tempered by practical challenges, as West Texas is geographically remote,
sparsely populated, and has a history of community resistance to new renewable projects.
Houston, by contrast, faces tighter land availability and congestion, but its price volatility

and higher average price levels still make it one of the most attractive regions for developers.

At the node level, the Pamplona project in Houston emerged as the most feasible of the
studied cases, yielding close to 894,000 $ in Year 1 revenues for a 100 MW system, with a
10-year projected project payback. The Santa Monica project in the North Hub, while
slightly less profitable, still highlighted the importance of solar pricing dynamics and co-
location potential, showing that land-rich nodes with competitive solar pricing can still
represent viable investment opportunities there, although this wasn’t the main focus of the

study.

Regarding co-location, results confirm that its value is secondary in low-curtailment hubs
such as Houston and North. The real opportunity lies in West Texas, where solar generation
frequently exceeds transmission capacity and curtailment levels are higher, especially due
to the fact of high wind energy generation supported by Production Tax Credit, or PTC as
mentioned earlier in this thesis. In such nodes, a BESS can meaningfully capture lost solar

output and shift it to higher-priced hours, creating a dual benefit for project economics.

Finally, the study underscores the conditions under which BESS projects thrive or struggle.
High-viability conditions include DAM-RT optimized dispatch and lower CAPEX
scenarios, both of which can lift IRRs to investor-attractive levels above 15%. Conversely,
conservative CAPEX, removal of the ITC, or restrictive operational parameters (e.g.,

shallow DoD, lower RTE) significantly erode feasibility, in some cases pushing IRRs below
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3% and extending payback beyond acceptable ranges. This dual perspective illustrates the

fine balance between market opportunity and financial risk in ERCOT’s market.

5.3 LIMITATIONS OF THE STUDY

Like any techno-economic analysis, this study is built on a series of assumptions and
simplifications that, while carefully chosen, inevitably introduce certain limitations to the
whole scope of the study. These limitations reflect both the scope of the model design and
the broader uncertainties that characterize ERCOT’s evolving market environment. That
being said, they should not be interpreted as flaws but rather as boundaries that frame the
practical insights of this thesis, boundaries that could be developed in the future if a practical

team can get behind this study.

At a technical level, the model deliberately excludes ancillary service participation, weather
forecasting, and real-time dispatch adjustments. These were omitted to avoid
overcomplicating the core structure and to maintain a clear focus on energy arbitrage, the
most transparent and location-dependent revenue stream in ERCOT, also with the biggest
growth to come in upcoming years. Assumptions such as fixed temperature operation
(25°C), constant HVAC consumption (6%), and annualized degradation steps are
simplifications that strike a balance between technical realism and computational and
operational efficiency. While more granular modeling could capture marginal effects, the
expected deviations in long-term outputs are minor compared to the broader trends
highlighted by the model. On the data side, the study relies on March 2021 to September
2024 ERCOT DAM prices, as well as RT Hub prices outside the base case scenario. This
window provides sufficient coverage of recent market dynamics, including the extreme
summer of 2023, which saw very significant volatility. However, events such as Winter
Storm Uri (Feb 2021) were excluded, as they represent rare outliers that would skew long-
term feasibility assessments, even though as stated earlier in this thesis “almost payed off
the CAPEX of the whole BESS project we had”, stated by an industry expert. By focusing
on “typical” high-volatility periods rather than one-off crises, the model produces results
that are more representative of future project economics, rather than expecting that to happen

within the project’s lifetime.
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Financial assumptions also carry inherent simplifications. OPEX was modeled as 3.5%
(2.5% for maintenance and 1% for insurance) of CAPEX, with a fixed debt-to-equity
structure and standardized tax brackets. While these reflect realistic averages from NREL
and industry benchmarks, they do not account for project-specific variations such as site-
specific insurance premiums. These exclusions were intentional, given that such details can
be highly case-specific and would obscure the generalizable insights the thesis aims to

deliver.

Ultimately, these limitations underline the purpose of the model: not to provide a
deterministic forecast of project revenues, but to deliver an indicative framework for
assessing the relative attractiveness of nodes across ERCOT. By focusing on arbitrage and
scalable assumptions, the model serves as a decision-support tool that helps developers,
investors, and policymakers to identify promising locations and understand the trade-offs
involved in BESS deployment. Its results should therefore be read as directional guidance
rather than exact predictions, highlighting where opportunity is most likely to materialize

while acknowledging the inherent uncertainty of ERCOT’s competitive market.

5.4 RECOMMENDATIONS FOR FUTURE WORK

The most immediate step forward lies in extending the current model from a DAM-only
framework into a fully integrated DAM—-RT dispatch tool. While this thesis has already
demonstrated the theoretical upside of perfectly switching between DAM and RT’s most
profitable hours, this assumption represents an idealized scenario in which operators know
future prices with certainty, which is technically impossible. The logical next phase,
therefore, is to couple DAM—RT logic with predictive analytics, where machine learning or
Al-based algorithms forecast nodal price movements based on patterns in demand,
renewable generation, and system conditions, something that’s been done before in several
other markets and energy trading tactics. Even a moderately accurate predictive model could
unlock significant additional value, transforming BESS operations from reactive to proactive
and making BESS projects far more resilient to market volatility. Complementing this
possibly, a probabilistic Monte Carlo modeling approach should be explored, although this

should be treated as a phase II from future works. Monte Carlo would mean running
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thousands of dispatch scenarios under different stochastic inputs, where developers could
not only refine the predictive model but also quantify the probability of achieving a certain
revenue outcome under uncertainty. Such probabilistic insights would bridge the gap
between theoretical optimization and bankable project risk assessments, directly supporting

investment decision-making.

On a different note, despite signs of market saturation, the integration of ancillary services
revenues remains a relevant lever. Products such as regulation up/down and, occasionally,
ECRS, can provide valuable incremental revenues during specific system conditions,
especially when energy arbitrage margins tighten at some point in time. Incorporating these
services into the modeling framework would therefore broaden the spectrum of dispatch

opportunities, ensuring BESS assets remain adaptable across changing market dynamics.

Another avenue for future refinement involves the integration of ERCOT’s interconnection
queue and transmission pipeline dynamically, and not statically as its integrated now. By
automatically accounting for new projects under development, the model could anticipate
localized congestion effects and revenue cannibalization risks from additional storage
capacity. While complex, combining such a module with Al-driven DAM-RT dispatch
would move the model closer to a full predictive model of ERCOT’s evolving market

landscape, capable of guiding real-world project siting and investment.

In conclusion, this thesis demonstrates that battery energy storage has a promising future in
ERCOT. While challenges remain, ranging from volatility and market saturation to
technological degradation, the upside is undeniable. By strategically deploying storage at the
right nodes, optimizing dispatch between DAM and RT, and embracing predictive analytics,
batteries can evolve from margin-dependent assets into cornerstone resources for both
profitability and system stability. This is not only an opportunity for developers like Solea
Power Corp., but also for the broader ERCOT grid, which increasingly relies on flexibility
to integrate renewable energy generation and manage constant uncertainty, mainly due to
extreme weather events and unexpected transmission system congestions. Importantly, the

modeling framework presented here has already proven its practical value for Solea Power
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Corp., enabling the company to streamline project evaluation by identifying viable nodes
before committing to costly Screening and Full Interconnection Studies. By reducing both
working hours and upfront costs, the model has become a critical decision-support tool for
a startup with ambitious stakeholders seeking to maximize impact with limited resources.
Ultimately, the work presented here is both a reflection of current possibilities and a call to
action, as the models built today will shape not only the projects of tomorrow but also the

strategic pathways of companies driving the energy transition forward.
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ANNEX I: ALIGNMENT WITH THE SUSTAINABLE DEVELOPMENT GOALS
SDGS

The optimization of BESS projects and dispatch strategies in the ERCOT market aligns with
several key Sustainable Development Goals (SDGs) established by the United Nations. By
enhancing energy storage efficiency and supporting a more resilient and sustainable power

grid, this project contributes to global sustainability efforts in the following ways:

SDG 7: Affordable and Clean Energy — The project directly addresses the need for
reliable, clean, and affordable energy by optimizing the economic viability of battery storage
systems. By facilitating the integration of renewable energy sources such as wind and solar,
BESS reduces curtailment and ensures that clean electricity is available even during periods

of low generation. This improves grid stability and promotes a more sustainable energy mix.

SDG 9: Industry, Innovation, and Infrastructure — The increasing adoption of battery
storage in ERCOT represents a shift in energy infrastructure, enabling a smarter and more
flexible grid. The project contributes to technological innovation by developing a techno-
economic model that enhances decision-making for BESS deployment. This supports
investment in resilient energy infrastructure, fostering long-term sustainability in the power

sector.

SDG 11: Sustainable Cities and Communities — A more stable and efficient electricity
grid leads to reduced power outages and greater energy reliability, benefiting urban and rural
communities alike. By improving the ability to store and dispatch electricity efficiently, the
project helps mitigate the effects of energy shortages, which is particularly relevant in

extreme weather events such as those experienced in Texas in recent years.

SDG 12: Responsible Consumption and Production — The project promotes efficient
energy use by optimizing battery charging and discharging cycles to minimize waste. By
leveraging data-driven strategies, it ensures that energy is used more effectively, reducing
reliance on inefficient fossil-fuel-based peaker plants and decreasing overall energy losses

in the system.
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SDG 13: Climate Action — The role of battery storage in reducing greenhouse gas emissions
is fundamental to combating climate change. By enabling better utilization of renewable
energy and decreasing dependence on carbon-intensive backup power generation, this
project contributes to lowering the grid’s carbon footprint. Furthermore, by optimizing
dispatch strategies, it helps reduce market volatility and the need for expensive, high-

emission power generation during peak hours.

Through these contributions, the project not only advances the energy transition within
ERCOT but also serves as a model for sustainable energy development in deregulated

electricity markets worldwide.
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ANNEX II: 2-HOUR BATTERY VALUATION BESS BASE MODEL
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28 5964 8 PALSTNS 8 3271 ANDERSON 138 LZ NORTH $ (0.24) 495 0
29 5906 2 PALSTNS 8T 3271 ANDERSON 138 LZ NORTH §$ (0.24) 495 o
30 15901 13 PALSTNS 8U 3271 ANDERSON 138 LZ NORTH $ (0.24) 495 o
315816 2 POYNOR 9 3256 ANDERSON 69 LZ NORTH $ (0.23) 3% o
32 5767 2 PPOYNOR 9X 3256 ANDERSON 69 LZNORTH $ (0.23) 36 0
33 5754 1 TCKER RC LA 6937 ANDERSON 138 LZNORTH $ (0.17) 227 21
34 5566 6 TENNCLNY 8 3281 ANDERSON 138 LZ NORTH $ (0.07) 234 148
35 5522 7 TENNCLNY 85 3281 ANDERSON 138 LZ NORTH $ (0.07) 234 148
36 5518 2 TENNCLNY 8T 3281 ANDERSON 138 LZ NORTH $ (0,07) 234 148
37 /5459 14 2 135183 ANDREWS 345 LZ WEST $ 058 143 0
38 5454 2 2 135183 ANDREWS 345 LZWEST $ 058 143 o
39 5204 2 16847 EB 11284 ANDREWS 138 LZWEST $ 055 509 o
40 5224 8 AMOMIDFM 8 1282 ANDREWS 138 LZWEST $ 053 619 o
41 5051 6 AMOMIDFM_8Y 1282 ANDREWS 138 LZWEST § 053 619 o
42 5042 5 AMOMIDFM 82 1282 ANDREWS 138 LZWEST $ 053 619 0
43 /5005 9 ANDRD_K 1156 ANDREWS 138 LZWEST $ 056 493 0
4997 2 BAKKE_EB1 1280 ANDREWS 138 LZWEST $ 055 256 o
45 14956 1 BAKKE_EB2 1280 ANDREWS 138 LZWEST $ 055 256 o
46 |4936 1 BARROW_LINE 134043 ANDREWS 138 LZWEST $ 0S5 231 o
47 4867 1 BBE_EB 1272 ANDREWS 138 LZWEST § 055 524 o
48 4856 7 BBW_EB 1272 ANDREWS 138 LZWEST § 055 524 o
4838 9 BLBSW_6020 11284 ANDREWS 138 LZWEST $ 055 508 L
504707 1 BLesw 6021 11284 ANDREWS WSLZWEST § 055 S8 0
51 4700 4 BLESW £B1 11284 ANDREWS 1 LZWEST $ 055 58 0
52 4741 2 BLBSW_EB2 11284 ANDREWS 138 LZWEST $ 055 509 o
53 4710 2 BLBSW_EB3 11284 ANDREWS 138 LZWEST $ 055 509 o
54 4671 2 [EB_ACSSW_BBE 1157 ANDREWS 138 LZWEST $ 054 o o o
R Pl - e e Future BESs Costs e ,
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TR
AL ~ i X/ fev DeliveryDate o
g 5 e o o 2 R s T u v w X Y z ana
1 [DeliveryDate]Hourndir REGUP

2062021 1: 473

10| 24/06/2021 900 53
11| 24062021 1000 947,
12| 24062021 1100 1099
13 24/0672021 1200 1597
14 24/06/2021 1300 1333
15| 2410672021 14:00 20,57
16 2400672021 1500 29,54
7| 20062021 16:00 42
18| 20062021  17:00
19 24/0672021  18:00
20| 240612021  19:00
21| 240602021 20:00
22| 2400612021  21:00

. T I T T T ™ N a
ECRS (]
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5 0 55 v

23| 2410612021
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25| 2410612021 24:0
26| 2500612021
27/ 2500612021
28| 2500612021
20| 2500612021
30| 2500612021
31| 2500612021
32| 2500612021
33| 250062021
34| 2500612021
35| 2500612021
36| 25062021 1100
37| 250062021 1200
38| 25060021 131
39| 2500612021
40/ 2500612021
41| 2500612021
42| 2500672021
43| 2500602021
44| 2500612021
45| 25/06/2021
45| 2500612021
47| 2500612021
48| 250062021 r
40l 250601 240000 17
%

AL ~ i S~ DeliveryDate s

A 3 c ) 3 H ' ) K L M N o 3 a R s T u v w X ¥ z M 1.
1 [DeliveryDate]HourEnding HB_NORTH HB_SOUTH HB_HOUSTON HB_WEST HB_BUSAVG [}
2 [ 01/03/2021 100 116 116 116 097 114
3 | ow03n021 200 1 0% 1 0% 099
4| 01/03/2021 300 125 125 15 12 125
s | ow03r021 400 3 3 3 2w 3
5 | 010312021 500 375 3% ERCE 375
7 | 010312021 600 821 82 82 82 821
8| 010372021 700 2188 219 297 23 2187
9 | ov03/2021 800 2657 266 265 265 258
10 010372021 900 2635 2638 2637 6% 236
110032021 1000 2626 % %65 2618 223
2| ovoaz21 w00 2551 2509 291 2541 246
3] 003021 1200 2478 2397 26 2482 2,7
16 01032021 1300 2504 2352 %5 2477 288
15| 0032021 1400 1803 1683 21 178 1787
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17| oves201 1600 1786 1555 1882 1789 17.49
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19| 0110372021 : 2874 201 29 2358 2,09
20| 010312021 : 084 3638 2u o7 4004
21| 010312021 2 3% 2988 345 3427 053
22| 01/03/2021 B 3119 2746 I Y 304
23| 01/03/2021 » 281 24 %08 2589 2,12
24| 01/03/2021 i 2038 113 02 208 1967
25| 00/03/2021 24001 1863 1528 1868 1881 17,92
26| 02/03/2021 ¥ 176 1483 702 1802 1681
27| 0210312021 2 709 135 151 1746 1627
28| 0200312021 i 182 1345 131 1786 1605
20| 0210312021 : 1867 1328 11 1702 1588
30| 02/0312021 i 169 1382 163 1729 16,15
31| 0210372021 2 215 18,1 2% 28 2.9
32| 0210312021 E 4705 a7 o as 4595
33| 0210312021 2 5184 461 518 528 5064

v
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At - Jis Jev | Deliverydate v
1 [DeliveryDate]HourEnding SettlementPoint
2 12021-03-01 00:00:00.000 186
3 2021-03-01 01:00:00.000 1,16
4 2021-03-01  02:00:00.000 1
5 2021-03-01 03:00:00.00C 1,25
6 12021-03-01 04:00:00.00¢ 3
8 2021-03-01 06:00:00.00C 822
9 12021-03-01 07:00:00.000 21,96
10 12021-03-01  08:00:00.000 26,59
11120210301 09:00:00.00¢ 26,38
12 12021-03-01  10:00:00.000 26,24
13 2021-03-01  11:00:00.000 25,48
14 12021-03-01  12:00:00.000 2473
15 12021-03-01  13:00:00.00C 25,03
1920210301  17:00:00.000 19,23
20 2021-03-01  18:00:00.00¢ 24,01
212021-03-01  19:00:00.00C 409
2 12021-03-01  20:00:00.000 34,38
23 2021-03-01  21:00:00.00¢ 31,06
24 12021-03-01  22:00:00.00C 25,77
25 2021-03-01  23:00:00.00C 20,45
2612021-03-02  00:00:00.00C 17,46
27 2021-03-02  01:00:00.000 17,36
28 2021-03-02  02:00:00.00C 16,95
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30 12021-03-02  04:00:00.00¢ 6,48
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37 2021-03-02  11:00:00.00C 29,12
38 2021-03-02  12:00:00.000 26,23
39 2021-03-02  13:00:00.00¢ 22,52
40 2021-03-02  14:00:00.00C 18,65
42 2021-03-02  16:00:00.00C 17,69
43 2021-03-02  17:00:00.00C 18,64
44 12021-03-02  18:00:00.00C 2891
45 2021-03-02  19:00:00.00C 55,03
46 2021-03-02  20:00:00.000 30,29
47 2021-03-02  21:00:00.00C 26,84
48 12021-03-02  22:00:00.00C 2091
49 12021-03-02  23:00:00.000 19.98 W
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ANNEX III: CURTAILMENT ANALYSIS BASE MODEL

TR
A vt e~ InsertFollowing DATA Below and SAVE v
A 8 o 3 F s H ) K L m N o 2 Q R s T u v w X
1| Insert Following DATA Below and SAVE
2 |Node Name: corswestl 8
3 |Hub Zone:
4
5
7 PRESS WHEN READY
8
9
10
j; Calculate Curtailment Analysis
3
14
15
16
7
18
2
2
2
27
2
2
30
31
3
3
3
3%
37
3
39
“
@
@
“
a5
4
a7 v
T
A v ) v
5 < ) EF G H I ] K L [ N o 3 T u v w x v z na
i BusName ] ~|Voltage ~ |Load Z{~ |AIMP [~|N0 [~IN-1 [~ (]
2 Labels. ~ Sum of Voltage(kV) Average of ALMP Average of N-0 1 138 LZ SOUTH § (1,73) 302 1u7
3 = ANDERSON 1 138 LZ SOUTH § (1,73) 302 17
4 BB_/ 6 -0,180250092 64 1 138 LZ SOUTH $ (1,73) 302 u7
5 BB E 69 -0,180250092 64 2 345 1Z WEST $ 058 143 0
BIE S 2 135183 ANDREWS 35 ZWEST § 038 13 0
7 138 0191063993 05 3 91HUNT 69 LZNORTH § 0,26 33 0
8 (GIDEON_3821 138 0,191063993 405 3 961 HUNT 69 LZNORTH § 0,26 323 0
9 GIDEON_3824 138 0,191063993 405 5 38400 TERRELL 69 LZWEST § (0,07) 0 0
10 ‘GIDEON_3825 138 0,191063993 405 6 38397 TERRELL 69 LZWEST $ (0,07) 0 0
n (GIDEON_3828 138 405 8 328 DALLAS 138 LZ NORTH § 0,15 690 335
12 GIDEON_3831 138 405 8 828 DALLAS 138 LZ NORTE $ 0,15 690 335
13 L ALCRSWS_1Y 138 268 9 DALLAS 138 LZ NORTK § 0,15 690 335
14 L_BASTCI8_1X 138 450 10 38397 TERRELL 69 LZ WEST § (0,07) 0 0
15| LBASTCIB1Y 138 450 12 828DAUAS 138 LZNORTF § 0,15 60 3%
16 LBASTCBAZ 138 450 14 6891 HUNT 138 LZNORTH § 0,26 52 0
17 L_BASTWES_1Y 138 480 14 6891 HUNT 138 LZNORTE § 0,26 52 0
18 L_BLUEBO8_1Y 138 391 15 961 HUNT 69 LZNORTH § 0,26 323 0
19 L_BLUEBOS_1Z 138 391 16 838 DALLAS 138 LZ NORTH $ 0,15 676 294
20 L_BUTLERS_1Y 138 256 23 961 HUNT 69 LZNORTH $ 0,26 323 0
1 L_CEDAHIB_1Y 138 185 24 828 DALLAS 138 LZ NORTK § 0,15 335
22 L_CEDAHIB_1Z 138 185 25 828 DALLAS 138 LZ NORTK § 0,15 690 335
23 L_GARFIE5_1Y 345 642 32 828 DALLAS 138 LZ NORTH $ 0,15 690 335
24| LHILBIGB 1Y 138 3 33 961 HUNT 69 LZNORTF § 0,26 3 0
25 L_HILBIG8 2Y 138 433 DALL 138 LZNORTE § 0,15 690 335
26 L_HILBIG8_3Y 138 433 35 828 DALLAS NORTH § 0,15 335
27 L_NEWROS9_1Y 69 28 180 KAUF! 138 LZNORTK § 0,18 0 0
28 L_NEWROS9_2Y 69 28 201 76003 SCHLEICHER 345 LZWEST § (1.44) 5901 0
29 L_PAIGE 8_1Y 138 405 202 76003 SCHLEICHER 345 LZ WEST  § (144) 5901 0
30 L_REDROC8_1Y 138 386 202 7601 HLEICHER 345 LZ WEST  § (1,44) 5901 0
31 L_SETTLEB_1Y 138 #N/A 203 76003 SCHLEICHER 345 LZ WEST § (1,44) 5901 0
32| Usemmesay 138 NA 203 76003 SCHLEICHER 35 ZWEST § (144) 5901 0
33| Lsemssy 138 A 204 76003 SCHLEICHER 345 LZWEST § (144) 5901 0
34 L_SETTLEB_4Y 138 EN/A #N/A 300 960 HUNT 138 LZNORTE § 0,26 525 0
35 L_SIMGID8_1X 138 0,191063993 405 301 78583 KARNES 138 LZSOUTH § 0,70 409 0
36 L_SIMGID8_1Y 138 0,191063993 405 301 78583 KARNES 138 LZ SOUTH § 0,70 0
37 L_SIMGID8_1Z 138 0,191063993 405 312 312 PALO PINTO 138 LZ NORTK  #N/A HANIA #N/A
38 L_SIMGID8_4Y 138 0,191063993 405 400 960 HUNT 138 LZ NORTH § 0,26 0
39 L_SIMGID8_SY 138 0,191063993 405 400 960 HUNT 138 LZ NORTH $ 0,26 525 0
40 L_SMITHV8_1X 138 0,291940319 364 401 78539 COLORADO! 69 LZ_SOUTH $ (0,48) 0 0
41 LSMITHVBY 138 0291940319 364 501 319 BOSQUE 69 LZNORTH § 0,33 140 0
2| UsMTHve 1z 138 0291940319 364 577 60718 PECOS 13BLZWEST § (00) 702 0
43 L_SWIFTES_1Y 138 0,092199374 188 950 960 HUNT 138 LZNORTE § 0,26 525 0
a4 L_TAHIVIS_1Y 138 0,214238209 456 1064 42970 HARRIS 138 LZ HOUST § 6,11 649 0
45 L_WOLFLAS_1Y 138 0,229299547 348 1121 141152 CARSON 345 LZ WEST  $ (0,99) 849 0
46 L WOLFLAS_1Z 138 0,229299547 346 1150 960 HUNT 138 LZ NORTK § 0,26 525 0
47 L WOLFLAS 2Y 138 0229299547 346 1381 60385 PECOS 138 LZ WEST  § (0,10) 1791 0
48 L_WOLFLAB 3Y 138 0,229299547 346 1382 60385 PECOS 138 LZ WEST  § (0,10) 1791 0
49 1KV 0.214238209 1397 930 DENTON 138 17 NORTK § 10.97) 543 0 v
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“ ~ Jx | SUNSET v
A < ) 3 3 G H s K L ™ N o 3 a R s i u v .
1 |DeliveryDate HourEnding _SettiementPointPrice  Month Date Positive Prices (N°) 15757 January  Febmary  March Apiil May August  September October  November December [ ]
2 120210301 18,64 3 |\REFRESHOATA| “Iyo0of Prices (N°) 15758 1 2 3 4 5 8 9 1 12
3 2021030 : 118 T 80000 70000 60000  6:00:00  6:00:00 50000 7:00:00 70000 7:00:00
+ Joverosor 200 102 3 17:0000 _17.0000 180000 18:00:00 180000 180000 15:00:00 160000 16:00:00
5 120210301 3:00 125 3 34,649387 42,23196 $53,072931 42,916392 37,203253 39,931086
6 12021-03-01 4:00 3 3 34,830795 34,582775 44,537013 44,4016958 47,2935874 50,190754 44,608093 36,783663 37,632108
7 20210301 500 a7 3 AVGDIf. 0181408 -2,134738 068738 4834634 23050531 -185562 23,150196 6,43627006 -2.882177 16917004 041959 -2.298978
8 20210301 600 82 3
9 20210301 204 3 NORTH
10 2021-03-01 26,63 3 January  February  March At May June sy August  September October November December
11 20210301 %41 3 s 5 7 s s
12 2021.03:01 %32 3 0 70000 6000 60000 60000 60000 60000 60000  7:00:00 00 7
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17 12021-03-01 1758 3
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20 20210801 28 3 [verceoregrwn |
21 20210801 04 3
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26 20210302 1748 3
27 2021-03-02 176 3
28 20210802 1700 3
29 20210302 1683 3
30 20210302 1667 3
31 20210302 1661 3
32 2010302 215 3
33 1-03-02 47,15 3
34 2021-03-02 51,96 3
35 20210302 3556 3
36 20210302 320 3
37 20210 2.6 3
38 20210302 %27 3
39 2021-03-02 22,56 3
40 20210302 1869 3
41 20210302 1791 3
42 20210302 772 3
4 20210802 1863 3
4420210302 201 3
45 2021-03-02 55,01 3
46 2021-03-02 30,27 3
47 20210302 281 3
48 2021.03- 2.5 3
43 20210302 184 3
5020210803 1431 3
51 091000 1605 2 v
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1 DeliveryDate HourEnding SettlementPointPrice. (]
2 2021-03-01 00:00:00.000 1864
3 2021-03-01 01:00:00.000 118 116
420210301 02:00:00.000 102 101
5 2021-03-01 03:00:00.000 125 125
6 2021.03.01 3 299
7 20210301 376 375
8 2021-03-01 826 82
9 (2021-03.01 20 2,01
10 2021-03-01 26563 26,5
11 (2021-03-01 2641 2634
12 (2021-03-01 232 2626
13 (2021.03.01 25,57 25,52
142021-03-01 24,83 2,82
15 (2021.03.01 2511 25,13
16 (2021.03.01 18,07 181
17 |2021-03-01 17.58 17,62
1820210301 16:00:00.000 179 17.93
19 (2021-03-01  17:00:00.000 1899 19,01
20 2021-03-01  16:00:00.000 28 2381
212021-03-01  19:00:00.000 4094 409
22 2021-03-01 20:00:00.000 3444 3441
23]2021-03-01 21:00:00.000 3125 3121
2420210301 22:00:00.000 2581 25,81
2520210301 203 2035
2620210302 1744 1862
27 2021-03.02 176
282021-03-02 17.09
29/2021-03-02 1683
30 2021-03-02 1667
3120210302 1691
32 20210302 213
33 2021-03-02 4715
34 2021-03.02 519
35 2021-03-0 35,56
362021-03-02 2.9
37 20210302 29,16
382021-03-02 2627
39 2021-03-02 25
2021-03-02 1869
412021030 1791
42 20210302 .72
43 20210302 1863
44 2021-03-02 2891
45 2021-03-02 55,01
46 20210302 30,27
47 2021-03.02 2681
48 2021-03-02 2095
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ANNEX VI. BATTERY VALUATION PYTHON CODE DISPATCH

import os

import pandas as pd

from openpyxl import load_workbook
import win32com.client

# Define the directory containing the CSV files
directory = r'C:\Users\isang\Desktop\SOLEA POWER CORP\LMPs_March2021 now'

# Define the path to the Excel file containing the name to filter by
input_excel path = r'C:\Users\isang\Desktop\SOLEA POWER
CORP\2HR_BatteryValuation_ LMP.xlsm'

# Check if the input Excel file exists
if not os.path.exists(input_excel path):
raise FileNotFoundError(f"The file {input_excel path} does not exist.")

# Read the node name from the Excel sheet
try:
input_df = pd.read _excel(input_excel path, sheet_name='Input Sheet',
engine="openpyxl') # Adjust the sheet name as necessary
name_to_filter = input_df.iloc[@, 1] # Assuming the name is in cell B2
except Exception as e:
raise Exception(f"An error occurred while reading the Excel file: {e}")

# Initialize an empty DataFrame to hold the merged data
merged_df = pd.DataFrame()

# Loop through all files in the directory
for filename in os.listdir(directory):
if filename.endswith(".csv"):
# Construct the full file path
file_path = os.path.join(directory, filename)

# Read the CSV file into a DataFrame

try:
df = pd.read csv(file path)

except Exception as e:
print(f"Error reading {file_path}: {e}")
continue

# Filter rows where the third column matches the specified name
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filtered_df = df[df.iloc[:, 2] == name_to_filter]

# Append the filtered rows to the merged DataFrame
merged_df = pd.concat([merged_df, filtered df], ignore_index=True)

# Create a temporary Excel file with the filtered data

temp_excel path = r'C:\Users\isang\Desktop\SOLEA POWER
CORP\temp_filtered data.xlsx'

merged_df.to excel(temp_excel path, index=False, sheet name='FilteredData')

# Load the existing macro-enabled workbook

try:

book = load workbook(input excel path, keep links=True, keep_vba=True)

# Copy data from "Input Sheet" to "SummarySheet"
input_sheet = book['Input Sheet']

summary_sheet = book['SummarySheet']
summary_sheet['B1'] = input_sheet['B2'].value
summary_sheet[ 'B2"] input_sheet['B3'].value

# Remove the "Input Sheet"
del book['Input Sheet']

# Remove the existing sheet if it exists
if 'FilteredData’ in book.sheetnames:
del book['FilteredData’]

# Load the filtered data from the temporary file
temp_book = load workbook(temp_excel path, data only=True)
temp_sheet = temp_book[ 'FilteredData']

# Create a new sheet in the existing workbook for the filtered data
target_sheet = book.create sheet('FilteredData')

# Copy the data from the temporary sheet to the new sheet in the existing

workbook

for row in temp_sheet.iter rows(values _only=True):
target_sheet.append(row)

# Define the path for the new macro-enabled workbook
new_excel path = os.path.join(os.path.dirname(input_excel path),

f"{name_to_ filter}.xlsm")
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# Save the updated workbook as a new macro-enabled workbook
book.save(new_excel path)
print(f"Filtered data written to the new Excel file at {new_excel path}")

# Run the macros in the new workbook

x1 = win32com.client.Dispatch("Excel.Application™)

x1l.Visible = False

wb = x1.Workbooks.Open(Filename=new excel path, ReadOnly=False)

# Run the specified macros
x1.Application.Run(f'{wb.Name}!DispatchCalculator")
x1.Application.Run(f'{wb.Name}!RefreshAllData")

# Save the workbook after running the macros
wb.Save()
wb.Close(SaveChanges=True)

print(f"Macros DispatchCalculator, RefreshAllData, and

DispatchCalculatorHub have been executed and the workbook has been saved.")
except Exception as e:

raise Exception(f"An error occurred while writing to the Excel file or
running macros: {e}")
finally:

# Ensure the Excel application is properly closed and quit

if "x1' in locals():

x1.Quit()

# Delete the temporary file
try:
if os.path.exists(temp_excel path):
os.remove(temp_excel path)
print(f"Temporary file {temp_excel path} has been deleted.")
except Exception as e:
print(f"An error occurred while deleting the temporary file: {e}")
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ANNEX VII. CURTAILMENT ANALYSIS PYTHON CODE DISPATCH

import os

import pandas as pd

from openpyxl import load_workbook
import win32com.client

# Define the directory containing the CSV files
directory = r'C:\Users\isang\Desktop\SOLEA POWER CORP\LMPs_March2021 now'

# Define the path to the Excel file containing the name to filter by
input_excel path = r'C:\Users\isang\Desktop\SOLEA POWER CORP\Curtailment
Analysis Base LMP.xlsm'

# Check if the input Excel file exists
if not os.path.exists(input_excel path):
raise FileNotFoundError(f"The file {input_excel path} does not exist.")

# Read the node name from the Excel sheet
try:
input_df = pd.read _excel(input_excel path, sheet_name='Input Sheet',
engine="openpyxl') # Adjust the sheet name as necessary
name_to_filter = input_df.iloc[@, 1] # Assuming the name is in cell B2
except Exception as e:
raise Exception(f"An error occurred while reading the Excel file: {e}")

# Initialize an empty DataFrame to hold the merged data
merged_df = pd.DataFrame()

# Loop through all files in the directory
for filename in os.listdir(directory):
if filename.endswith(".csv"):
# Construct the full file path
file_path = os.path.join(directory, filename)

# Read the CSV file into a DataFrame

try:
df = pd.read csv(file path)

except Exception as e:
print(f"Error reading {file_path}: {e}")
continue

# Filter rows where the third column matches the specified name
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filtered_df = df[df.iloc[:, 2] == name_to_filter]

# Append the filtered rows to the merged DataFrame
merged_df = pd.concat([merged_df, filtered df], ignore_index=True)

# Create a temporary Excel file with the filtered data

temp_excel path = r'C:\Users\isang\Desktop\SOLEA POWER
CORP\temp_filtered data.xlsx'

merged_df.to excel(temp_excel path, index=False, sheet name='FilteredData')

# Load the existing macro-enabled workbook

try:

book = load workbook(input excel path, keep links=False, keep_vba=True)

# Copy data from "Input Sheet" to "SummarySheet"
input_sheet = book['Input Sheet']

summary_sheet = book[ 'Node of Interest']
summary_sheet['C3'] = input_sheet['B2'].value
summary_sheet['I17'] = input_sheet['B3'].value

# Remove the "Input Sheet"
del book['Input Sheet']

# Remove the existing sheet if it exists
if 'FilteredData’ in book.sheetnames:
del book['FilteredData’]

# Load the filtered data from the temporary file
temp_book = load workbook(temp_excel path, data only=True)
temp_sheet = temp_book[ 'FilteredData']

# Create a new sheet in the existing workbook for the filtered data
target_sheet = book.create sheet('FilteredData')

# Copy the data from the temporary sheet to the new sheet in the existing

workbook

for row in temp_sheet.iter rows(values _only=True):
target_sheet.append(row)

# Define the path for the new macro-enabled workbook
new_excel path = os.path.join(os.path.dirname(input_excel path),

f"{name_to_filter}Curtail.xlsm")
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# Save the updated workbook as a new macro-enabled workbook
book.save(new_excel path)
print(f"Filtered data written to the new Excel file at {new_excel path}")

# Run the macros in the new workbook

x1 = win32com.client.Dispatch("Excel.Application™)

x1l.Visible = False

wb = x1.Workbooks.Open(Filename=new excel path, ReadOnly=False)

# Run the specified macros
x1.Application.Run(f'{wb.Name}!RefreshAllData")

# Save the workbook after running the macros
wb.Save()
wb.Close(SaveChanges=True)

print(f"Macros RefreshAllData have been executed and the workbook has
been saved.")
except Exception as e:

raise Exception(f"An error occurred while writing to the Excel file or
running macros: {e}")
finally:

# Ensure the Excel application is properly closed and quit

if 'x1'" in locals():

x1.Quit()

# Delete the temporary file
try:
if os.path.exists(temp_excel path):
os.remove(temp_excel path)
print(f"Temporary file {temp_excel path} has been deleted.")
except Exception as e:
print(f"An error occurred while deleting the temporary file: {e}")
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