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DE BESS EN EL MERCADO ERCOT 
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RESUMEN DEL PROYECTO  

Los Battery Energy Storage Systems (BESS) se están consolidando rápidamente como 
tecnologías fundamentales en los sistemas eléctricos modernos, especialmente en mercados 
con alta penetración renovable y gran volatilidad de precios. Un ejemplo óptimo es el de 
Electric Reliability Council of Texas (ERCOT), que gestiona uno de los mercados eléctricos 
más dinámicos y singulares del mundo. ERCOT opera bajo un esquema “energy-only”, sin 
mercado de capacidad centralizado y con mínima interconexión con redes vecinas. Este 
diseño intensifica el papel de las señales de precio para equilibrar oferta y demanda, 
generando elevada volatilidad, frecuentes episodios de curtailment en la generación 
renovable y exposición a eventos extremos como la tormenta invernal de 2021. En este 
contexto, los BESS ofrecen un doble beneficio: proporcionan a los inversores oportunidades 
de arbitraje energético y servicios de red, al tiempo que refuerzan la resiliencia de ERCOT 
absorbiendo excedentes renovables y cubriendo picos de demanda. Para desarrolladores 
como Solea Power Corp., una startup con sede en Houston que busca expandirse del solar al 
almacenamiento, estas oportunidades se ven matizadas por la elevada incertidumbre y los 
costes prohibitivos de los estudios preliminares. De allí surge la motivación de esta tesis: 
crear un modelo tecno-económico sólido y eficiente en recursos que permita evaluar la 
viabilidad de BESS a nivel nodal en ERCOT y guiar decisiones de inversión antes de 
comprometerse a estudios de interconexión completos. 

 

Figura A1. Mezcla de generación en ERCOT 2025 

El objetivo principal de este trabajo es diseñar y aplicar un marco de modelado tecno-
económico capaz de simular el rendimiento y la rentabilidad de un BESS de 2 horas de ion-
litio en los más de 17,000 nodos de precios de ERCOT. El modelo integra tres dimensiones 
clave: 

I. Parámetros técnicos como “depth of discharge” (DoD), “state of charge” (SoC), 
“round-trip efficiency” (RTE) y tasas de degradación anual. 



II. Lógica de despacho basada en diferenciales del “Day-Ahead Market” (DAM), con 
extensión a estrategias híbridas DAM-RTM. 

III. Una capa financiera de “project finance” que incluye CAPEX, OPEX, el “Investment 
Tax Credit” (ITC) del 30% para almacenamiento independiente, depreciación 
acelerada MACRS, y estructura deuda-capital. 

De forma paralela, se desarrolló un modelo de curtailment para evaluar el valor añadido de 
la hibridación solar + almacenamiento, particularmente en regiones como el oeste de Texas 
donde los niveles de curtailment son elevados. En conjunto, estos componentes conforman 
una herramienta escalable y de nivel inversor para apoyar el desarrollo de proyectos de 
almacenamiento. 

El modelo se implementó mediante una arquitectura híbrida de datos y simulación. El 
conjunto de precios DAM de ERCOT (más de 3.9 millones de valores horarios entre marzo 
de 2021 y septiembre de 2024) fue estructurado en una base de datos SQL para lograr una 
eficiencia óptima. Python actuó como intermediario, recuperando precios nodales y 
transfiriéndolos a un motor de despacho en Excel/VBA, donde se simularon ciclos de 
carga/descarga diarios bajo supuestos estacionales (1 ciclo/día en verano, 2 ciclos/día en 
invierno). La degradación se aplicó externamente para mantener modularidad, y la capa 
financiera se integró directamente en Excel, asegurando accesibilidad para usuarios no 
técnicos. Este flujo SQL–Python–Excel redujo tiempos de simulación de más de 5 minutos 
por nodo a menos de 1, permitiendo un benchmarking completo de ERCOT de forma 
transparente y simple. 

 

Figura A2. Arquitectura del modelo tecno-económico de BESS 

En la sección de resultados, el modelo se aplicó primero a dos casos de estudio: Pamplona 
(Houston Hub) y Santa Monica (North Hub). Pamplona se benefició de mayor volatilidad y 
“spreads”, generando ingresos del primer año de $89,412/MW y IRRs de 4.9% (proyecto) y 
6.0% (accionistas). Santa Monica, en contraste, alcanzó $85,247/MW y retornos más débiles 
(3.9% aprox. en ambos IRRs), reflejando spreads menos pronunciados pese a precios solares 
competitivos. Estos casos subrayan la necesidad de análisis a nivel nodal, ya que los 
promedios de hub ocultan diferencias relevantes en rentabilidad. 



 

Figura A3. Ingresos anuales promedio por hub principal de ERCOT (excluyendo Coastal y Panhandle) 

A escala de hub, el West Hub lideró con $90,497/MW-año, impulsado por volatilidad, pero 
limitado por curtailment y congestión. Houston siguió con $87,505/MW-año, atractivo para 
arbitraje, pero con desafíos de interconexión y suelo disponible. Los hubs Norte y Sur 
ofrecieron menores ingresos absolutos, pero con más estabilidad (Norte) o mayor potencial 
de hibridación (Sur). Estos resultados refuerzan el papel decisivo de la ubicación en la 
viabilidad de proyectos BESS. 

El análisis de sensibilidad mostró que la estrategia de despacho y el CAPEX son los factores 
dominantes. Pasar de una estrategia solo DAM a un escenario DAM-RT casi duplicó los 
ingresos del primer año (+64%) y triplicó el IRR de los inversores (de 6.0% a 31.7%), 
reduciendo el payback de 10-12 años a 3-5. El CAPEX también resultó determinante: en el 
escenario optimista de NREL ($473/kW) los IRRs subieron a +15%, mientras que en el 
conservador ($844/kW) cayeron a <3%. Los parámetros técnicos como DoD y RTE tuvieron 
un impacto secundario, aunque importante: reducir DoD de 95% a 80% bajó ingresos un 
16%, mientras que variar RTE entre 91% y 95% movió IRRs en menos de 1%. 

Tabla A1. Resumen de análisis de sensibilidad para el nodo Pamplona 

Scenario Y1 Revenue 
($m) 

Project IRR 
(%) 

Base Case (DAM, 93% RTE, 95% DoD, Mid 
CAPEX $756/kW) 

8.9 4.9 

DAM–RT Dispatch 14.7 16.1 
Optimistic CAPEX ($473/kW) 8.9 15.5 
Conservative CAPEX ($844/kW) 8.9 2.7 
1 Cycle/Day 7.1 3.8 
80% DoD 7.5 3.8 
65% DoD 6.1 2.7 
95% RTE 9.1 5.4 
91% RTE 8.7 4.5 

 

Desde una perspectiva práctica, este modelo ya ha aportado valor a Solea Power Corp., al 
servir como herramienta de filtrado preliminar para priorizar nodos antes de encargar 
estudios de interconexión con un alto coste asociado (Screening Study y Full Interconnection 
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Study). Al reducir tiempos y costes, el modelo permitió conservar recursos, acelerar 
decisiones y responder a las expectativas de stakeholders que buscan alta rentabilidad con 
bajo capital inicial. Para una startup compitiendo contra empresas con mayor respaldo, esta 
eficiencia representa una ventaja decisiva. 

En conclusión, este trabajo demuestra que el almacenamiento en ERCOT representa tanto 
una oportunidad como un reto. Las oportunidades se maximizan cuando los proyectos están 
bien ubicados, se benefician de estrategias predictivas de despacho y de reducciones en 
CAPEX. Los riesgos derivan de la saturación en mercados de servicios complementarios, la 
incertidumbre regulatoria y la degradación tecnológica. El modelo aquí desarrollado, al 
combinar rigor técnico con realismo financiero y facilidad de uso, no solo contribuye 
académicamente, sino que también proporciona a la industria una herramienta práctica de 
apoyo a decisiones. Futuras extensiones del modelo deberían integrar despacho en tiempo 
real, modelado probabilístico de Monte Carlo y algoritmos de predicción de precios nodales 
basados en IA. En última instancia, este trabajo muestra que los BESS, correctamente 
modelados y desplegados, pueden pasar de ser activos dependientes del mercado a 
convertirse en pilares de rentabilidad para inversores y de resiliencia para la red de ERCOT. 
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ABSTRACT  

Battery Energy Storage Systems (BESS) are rapidly emerging as cornerstone technologies 
for modern power systems, especially in markets with high renewable penetration and 
extreme price volatility. Nowhere is this more evident than in the Electric Reliability Council 
of Texas (ERCOT), which operates one of the world’s most dynamic and unique electricity 
markets. ERCOT is an energy-only system without a centralized capacity market and with 
minimal interconnection to neighboring grids. This design amplifies the role of price signals 
in balancing supply and demand, resulting in high volatility, frequent curtailment of 
renewable output, and exposure to extreme events such as the 2021 winter storm. In this 
context, BESS offer a dual benefit: providing investors with opportunities for energy 
arbitrage and grid services while supporting ERCOT’s resilience by absorbing surplus 
renewable generation and supplying peak demand. For developers like Solea Power Corp., 
a Houston-based startup expanding from solar into storage, these opportunities are tempered 
by high uncertainty and the prohibitive cost of early-stage studies. This thesis was motivated 
by the industrial need to create a robust, resource-efficient techno-economic model that can 
evaluate BESS feasibility at ERCOT’s nodal level and guide investment decisions before 
committing resources to full interconnection studies. 

 

Figure A2. Fuel mix ERCOT market 

The objective of this work is to design and apply a techno-economic modeling framework 
capable of simulating the performance and profitability of a 2-hour lithium-ion BESS across 
ERCOT’s 17,000+ pricing nodes. Specifically, the model integrates three core dimensions: 
 

I. Technical assumptions such as depth of discharge (DoD), state of charge (SoC), 
round-trip efficiency (RTE), and annual degradation.  

II. Dispatch logic based on Day-Ahead Market (DAM) price spreads, with extensions 
to Day-Ahead/Real-Time (DAM–RT) hybrid strategies. 

III. A project finance layer that includes capital expenditure (CAPEX), operating 
expenditure (OPEX), 30% standalone storage Investment Tax Credit (ITC), 
accelerated MACRS depreciation, and debt–equity structuring.  



 
A parallel curtailment model was also developed to evaluate the added value of solar + 
storage co-location, particularly in regions such as West Texas where curtailment levels are 
high. Together, these components form a scalable and investor-grade decision-support tool 
for storage development. 
The model was implemented through a hybrid data and simulation architecture. ERCOT’s 
DAM price dataset, comprising over 3.9 million hourly nodal values between March 2021 
and September 2024, was structured into a SQL database to enable efficient querying. Python 
acted as the intermediary, retrieving node-level prices and feeding them into an Excel/VBA 
dispatch engine where daily charge–discharge cycles were simulated under seasonal 
assumptions (1 cycle/day in summer, 2 cycles/day in winter). Degradation was applied 
externally to maintain modularity. The financial layer was embedded directly in Excel, 
ensuring accessibility for non-technical users. This SQL–Python–Excel pipeline reduced 
simulation runtime from over 5 minutes per node to under one minute, enabling full ERCOT 
benchmarking while remaining transparent and user-friendly. 
 

 

Figure A2. Workflow architecture of BESS techno-economic model 

The results section first applied the model to two case studies: Pamplona (Houston Hub) and 
Santa Monica (North Hub). Pamplona benefited from high volatility and spreads, yielding 
Year 1 revenues of $89,412 per MW installation and project IRRs of 4.9% (unlevered) and 
6.0% (levered). Santa Monica, by contrast, delivered lower revenues, $85,247 per MW, and 
weaker returns (3.9% for both IRRs), reflecting thinner spreads despite competitive solar 
pricing. These case studies highlight the necessity of nodal-level analysis, as hub averages 
alone obscure meaningful differences in profitability.  
Expanding to the hub scale, results showed the West Hub leading with $90,497/MW-year, 
driven by volatility but constrained by curtailment and congestion. Houston followed at 
$87,505/MW-year, attractive for arbitrage but challenged by land and interconnection 
bottlenecks. North and South hubs underperformed in absolute terms but offered either 
stability (North) or strong co-location value (South). These findings underscore the decisive 
influence of location in ERCOT’s BESS market. 



 

Figure A3. Average annual revenues across ERCOT Main Hubs, excluding Coastal and Panhandle 

The sensitivity analysis revealed dispatch strategy and capital costs as the dominant levers 
of feasibility. Transitioning from a DAM-only strategy to an idealized DAM-RT scenario 
nearly doubled Year 1 revenues (+64%) and tripled shareholder IRR (from 6.0% to 31.7%), 
cutting payback from 10-12 years to 3-5. CAPEX proved equally decisive: under NREL’s 
optimistic trajectory ($473/kW), IRRs rose to +15%, while conservative assumptions 
($844/kW) reduced returns to <3%, close to unviability. Technical parameters such as DoD 
and RTE acted as secondary refinements, though still very important: lowering DoD from 
95% to 80% cut revenues by 16% approximately, while adjusting RTE between 91% and 
95% shifted IRRs by less than 1%. These results confirm that while technical optimization 
enhances margins, structural factors such as cost reductions and real-time trading strategies 
define project viability. 
 

Table A1. Sensitivity Analysis summary table 

Scenario Y1 Revenue 
($m) 

Project IRR 
(%) 

Base Case (DAM, 93% RTE, 95% DoD, Mid 
CAPEX $756/kW) 

8.9 4.9 

DAM–RT Dispatch 14.7 16.1 
Optimistic CAPEX ($473/kW) 8.9 15.5 
Conservative CAPEX ($844/kW) 8.9 2.7 
1 Cycle/Day 7.1 3.8 
80% DoD 7.5 3.8 
65% DoD 6.1 2.7 
95% RTE 9.1 5.4 
91% RTE 8.7 4.5 

 
From a practical perspective, this model has already delivered value to Solea Power Corp. 
by serving as a low-cost screening tool to prioritize nodes before commissioning costly 
interconnection studies. These studies, which include Screening Studies and Full 
Interconnection Studies, represent significant expenses in both time and consultant fees. By 
filtering nodes upfront, the model enabled Solea to conserve resources, accelerate decision-
making, and align with the expectations of stakeholders seeking high-return, low-investment 
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opportunities. For a startup competing against larger firms with deeper pockets, this 
efficiency represents a decisive advantage. 
In conclusion, this thesis demonstrates that battery storage in ERCOT is both an opportunity 
and a challenge. Opportunities are greatest when projects are strategically sited, leverage 
predictive dispatch, and benefit from declining capital costs. Risks stem from market 
saturation in ancillary services, policy uncertainties, and degradation dynamics, all of which 
require careful modeling. The model developed here, by combining technical rigor with 
financial realism and operational usability, not only advances academic understanding but 
also equips industry practitioners with a practical decision-support tool. Future extensions 
could include real-time dispatch integration, probabilistic Monte Carlo modeling, and AI-
based forecasting of nodal prices. Ultimately, this thesis shows that BESS, when properly 
modeled and deployed, can evolve from market dependent assets into cornerstones of both 
investor profitability and ERCOT grid resilience. 
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ACRONYM’S LIST 

ERCOT – Electric Reliability Council of Texas 

ISO – Independent System Operator 

DAM – Day Ahead Market 

RTM – Real Time Market 

BESS – Battery Energy Storage Systems 

LMP – Locational Marginal Price 

IEA – International Energy Agency 

HVAC – Heating, Ventilation, and Air Conditioning 

OMIE – Operador del Mercado Ibérico de Energía (Iberian Day-Ahead Market Operator) 

CAPEX – Capital Expenditure 

OPEX – Operational Expenditure 

IRR – Internal Rate of Return 

AS – Ancillary Services 

FRRS – Fast Response Reserve Service 

CRR – Congestion Revenue Rights 

QSE – Qualified Scheduling Entity 

PPA – Power Purchase Agreement 

RUC – Reliability Unit Commitment 

ECRS – ERCOT Contingency Reserve Service 

ITC – Investment Tax Credit 

IRA – Inflation Reduction Act 

LDES – Long Duration Energy Storage 

BMS – Battery Management System 

SCADA – Supervisory Control and Data Acquisition 

PCS – Power Conversion System 

PV – Photovoltaic 
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EMS – Energy Management System 

HVC – High Voltage Customer 

FEMA – Federal Emergency Management Agency 

SEI – Solid Electrolyte Interphase 

SoC – State of Charge 

Mid-SoC – Mid-State of Charge 

DoD – Depth of Discharge 

FCE – Full Cycle Equivalent 

RTE – Round-Trip Efficiency 

SoH – State of Health 

LCOS – Levelized Cost of Storage 

RRS – Responsive Reserve Service 

FFR – Fast Frequency Response 

PFR – Primary Frequency Response 

PTC – Production Tax Credit 

AI – Artificial Intelligence 

ML – Machine Learning 

SQL – Structured Query Language 

SSMS – SQL Server Management Studio 

CSV – Comma-Separated Values 

API – Application Programming Interface 

VBA – Visual Basic for Applications 

KPI – Key Performance Indicator 

NREL – National Renewable Energy Laboratory 

SPV – Special Purpose Vehicle 

LLC – Limited Liability Company 

MACRS – Modified Accelerated Cost Recovery System 

EBIT – Earnings Before Interest and Taxes 

DSRA – Debt Service Reserve Account 

MRA – Major Maintenance Reserve Account 
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NPV – Net Present Value 

WACC – Weighted Average Cost of Capital 

BOS – Balance of System 

EPE – Electric Power Engineers 

SPP – Settlement Point Price 

EPC – Engineering, Procurement and Construction 

 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING 
 

Document 1. Project Report 

10 

DOCUMENT 1. PROJECT REPORT 

1. INTRODUCTION AND PROJECT APPROACH 

1.1 BACKGROUND AND CONTEXT 

The Electric Reliability Council of Texas (ERCOT) manages the electricity grid for around 

26 million people, covering approximately 90% of the state’s total electricity demand. As an 

independent system operator (ISO), ERCOT is responsible for maintaining grid reliability 

and operating a unique energy-only market. In this system, power generators are paid only 

for the electricity they produce and sell, rather than receiving additional payments for simply 

being available, which is included in the ancillary services market working in parallel to the 

day-ahead and real-time markets. This structure makes ERCOT’s market more dependent 

on price fluctuations to encourage supply, especially during periods of high demand or grid 

stress. 

Over the past decade, Texas has experienced a rapid expansion in renewable energy capacity, 

primarily in wind and solar. By early 2025, according to ERCOT, installed wind capacity 

has almost reached 40 GW, while solar capacity has surged past 30 GW, with projections 

indicating continuous growth. This rapid influx of intermittent renewable generation has 

introduced significant challenges related to energy price volatility, particularly in the Day-

Ahead Market (DAM) and the Real-Time Market (RTM). HVAC 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING 
 

Document 1. Project Report 

11 

 

Figure 3. Fuel mix ERCOT market 

ERCOT’s operational structure differs notably from other U.S. electricity markets due to its 

energy-only market design and limited interconnection to external grids. This means that 

ERCOT does not rely on capacity payments to ensure generation adequacy; instead, it uses 

real-time price signals to incentivize both supply and demand behavior. The market operates 

primarily through three core mechanisms: the Day-Ahead Market (DAM), the Real-Time 

Market (RTM), and the Ancillary Services markets. In the DAM, market participants submit 

bids and offers for electricity supply and demand on an hourly basis for the next day, very 

similar to OMIE’s day ahead market in the Iberian Peninsula. Accepted bids set binding 

schedules and prices, offering price certainty and early visibility into system conditions. The 

RTM, by contrast, settles imbalances between DAM schedules and actual real-time 

conditions through 5-minute price intervals (publishes in 15-minute price intervals in 

ERCOT’s official website), capturing short-term fluctuations in demand and generation. 

These fluctuations are often driven by factors such as renewable output variability, forced 

outages, and load forecast errors, with a significant % coming from forced outages due to 

several external reasons, such as the malfunction of equipment due to severe meteorological 

conditions, something especially common in the southeast region, around Houston. 

To maintain grid stability, ERCOT also procures ancillary services. There are 5 main 

ancillary services, which BESS (Battery Energy Storage Systems) assets are increasingly 

well-positioned to provide thanks to their fast response capabilities. These services are 

Regulation Up, Regulation Down, Responsive Reserve, Non-Spin Reserve, and the 2023 
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newly added Contingency Reserve, acting as an emergency buffer of the rest of reserves. 

Particularly, the latter has been very relevant to large proportion of battery reserves recently, 

something that will be discussed in later topics. 

These 3 mechanisms are co-optimized within the broader market and cleared based on both 

price and system needs. Importantly, the lack of interconnection to other markets means 

ERCOT must always manage supply and demand balance internally, leading to higher levels 

of price volatility than in other ISOs. This market structure creates favorable conditions for 

BESS operators to pursue energy arbitrage strategies and capture high-value revenue streams 

from ancillary services. By maintaining available capacity for frequency regulation, BESS 

units can participate in grid stability services, while also charging during low-price periods, 

typically driven by renewable generation surpluses, and discharging during high-price 

intervals, such as during peak demand or supply shortfalls. 

Price spreads between specific hours in a day in DAM and RTM, as well as the differences 

between DAM and RTM themselves, have widened due to increased renewable penetration, 

with instances of negative pricing during periods of excess supply and price spikes during 

peak demand. For example, in 2023, ERCOT recorded multiple instances of extreme price 

fluctuations exceeding $5,000/MWh due to supply-demand imbalances exacerbated by 

extreme weather events. These fluctuations have been seen in the past as well, so there’s 

validity to believe it will continue occurring in the upcoming years. 
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Figure 4. Price spikes in Houston Hub 2019-2022 

To address these challenges, BESS have emerged as a critical technology to provide grid 

stability, optimize market participation, and enhance revenue streams for energy traders and 

project developers. BESS can store energy when prices are low and discharge when prices 

peak, capitalizing on arbitrage opportunities while improving grid resiliency. In addition, 

BESS also can capitalize as co-located installations to solar or wind farms, capitalizing on 

curtailment periods of high renewable energy generation with negative market prices, by 

storing the renewable energy and selling it at a higher price at a later time. 

1.2 MOTIVATION 

The increasing economic viability of battery storage projects has created a compelling case 

for expanding beyond standalone solar developments into hybrid solar-plus-storage systems. 

At Solea Power Corp, my primary role has been to drive this expansion by integrating BESS 

into our project pipeline, capitalizing on the growing investor interest in energy storage 

solutions. 

This transition aligns with the broader market trend where energy developers seek to 

maximize returns by leveraging price arbitrage opportunities and ancillary service revenues 

in the ERCOT market. As price volatility intensifies due to renewable penetration, the ability 

to store and dispatch energy at optimal times has become a critical factor in project success. 
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Beyond financial incentives, the implementation of BESS contributes to grid stability by 

mitigating extreme price fluctuations and alleviating supply-demand imbalances. By 

reducing curtailment of renewable energy and optimizing dispatch strategies, storage 

solutions play a crucial role in enhancing market efficiency. This project not only supports 

Solea’s strategic objectives but also aligns with broader industry efforts to accelerate the 

energy transition, positioning battery storage as a cornerstone of future electricity markets. 

Having seen recent needs of grid stability on an international scope, the use of BESS is in 

its peak momentum to ensure a correct energy transition, as it’s seen that a massive amount 

of intermittent renewable energy output across the day doesn’t completely replace fossil 

fuels unless energy storage can control when to inject this energy into the grid or not. 

On a personal and professional development level, this thesis also seeks to reflect the 

extensive work behind the modeling and market research efforts, with the goal of helping 

expand Solea Power Corp.’s project scope by opening a new line of business focused on 

BESS development and identifying new revenue opportunities  

1.3 PROJECT OBJECTIVES 

The aim of this study is to develop a techno-economic model for optimizing BESS 

deployment within ERCOT. The model is based on DAM price data from March 2021 to 

September 2024, analyzing historical trends across more than 17,000 pricing nodes in the 

ERCOT network. By simulating the operation of a 2-hour lithium-ion battery facility, the 

model evaluates revenue generation potential under varying market conditions. Key 

parameters include: 

 Charging during the two consecutive cheapest hours per day 

 Discharging during the two most expensive hours per day 

 Considering seasonal variations in charge-discharge cycles (1 or 1.5 cycles/day) 

 Incorporating degradation factors and financial considerations (CAPEX, OPEX, tax 
incentives, and financing structure) 
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In turn, this thesis aims to enhance the development and deployment of BESS within the 

ERCOT market by leveraging advanced techno-economic modeling and optimized dispatch 

strategies. The primary objectives of the project are outlined below: 

Optimize BESS dispatch strategies for profit maximization 

The project seeks to develop and refine dispatch strategies that maximize the profitability 

of BESS installations in ERCOT. By simulating historical Day-Ahead market data, the 

model identifies optimal charge and discharge windows, charging during periods of low 

prices and discharging when prices peak. This approach is intended to improve financial 

returns while promoting efficient operational planning. 

Deliver a scalable model for BESS across ERCOT’s 17,000+ nodes, identifying 

biggest opportunities 

A core component of this project is the development of a flexible techno-economic model 

designed to assess the feasibility of BESS deployment across ERCOT’s expansive nodal 

network. By integrating location-specific price dynamics, including specific locational 

marginal prices (LMPs) across the nodes and infrastructure characteristics, the model 

enables developers and investors to identify high-return sites and evaluate the trade-offs 

between standalone and co-located configurations with renewable assets. To put into 

business context, if a landowner is willing to sell/rent their land, this model could analyze 

the land’s projection of revenues for the next 15 years and analyze that specific location’s 

financial metrics, such as project IRR. 

Assess the Technological Viability of Utility-Scale Lithium-Ion Batteries 

A key goal is to evaluate the technical and economic suitability of lithium-ion batteries for 

utility-scale storage applications. The analysis focuses on configurations such as 1-hour, 2-

hour, and 4-hour batteries, deep diving into 2-hour batteries for this thesis, considering 

round-trip efficiency, degradation profiles, and lifecycle performance. This objective 

ensures that the system design is aligned with realistic operational and investment 

horizons. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING 
 

Document 1. Project Report 

16 

Evaluate the Impact of Market Price Volatility on BESS Performance 

To address market uncertainties, the project analyzes the sensitivity of BESS revenues to 

price fluctuations over multi-year periods. By modeling exposure to volatility in both the 

DAM and RTM, this objective assesses potential financial risks and informs more resilient 

investment decisions. 

Support Renewable Integration by Enhancing Market Stability 

The thesis explores how strategically deployed BESS can contribute to greater grid 

reliability and price stability amid increasing renewable penetration. By absorbing excess 

generation and releasing stored energy during supply deficits, batteries can reduce price 

spikes and curtailment, ultimately supporting broader decarbonization efforts. 
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2. STATE OF THE ART: ERCOT MARKET AND BATTERY 

STORAGE TECHNOLOGIES 

2.1 ERCOT MARKET OPERATIONS 

The ERCOT grid operates a nodal system independently from the Eastern and Western 

interconnections, making it a unique and self-contained power market in the United States. 

With over 17,000 pricing nodes, ERCOT relies on locational marginal pricing (LMP) to 

reflect real-time supply and demand conditions at each node. This structure promotes 

geographically optimized development, as generators, and increasingly battery storage 

systems, are incentivized to locate in areas with high price volatility or congestion. Within 

this framework, short-term electricity trading takes place across two primary markets: the 

Day-Ahead Market (DAM), where participants can hedge against price fluctuations by 

scheduling energy deliveries a day in advance; and the Real-Time Market (RTM), which 

settles every five minutes based on actual system conditions. Both markets are supported by 

the Ancillary Services Market, which ensures system stability through frequency regulation, 

spinning reserves, and fast-response products like the FRRS (Fast Response Reserve 

Service). 

In addition to these short-term markets, ERCOT also supports longer-term mechanisms such 

as the Congestion Revenue Rights (CRR) Auction and bilateral trading, where Qualified 

Scheduling Entities (QSEs) engage in contracts ranging from monthly to multi-year 

durations. One common form of long-term agreement is the Power Purchase Agreement 

(PPA), a contract between a generator and an QSE that locks in energy prices over time to 

shield both parties from short-term market volatility. While ERCOT does not operate a 

traditional capacity market like those found in the UK or Iberian Peninsula, it does maintain 

a Reliability Unit Commitment (RUC) mechanism to ensure adequate generation is available 

during periods of tight supply. As a result, strategic coordination between ERCOT and 

market participants is essential to maintain both system reliability and economic efficiency. 

The following figure illustrates how the ERCOT electricity market is structured across 
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timeframes.

 

Figure 5. Market Information System Summary (ERCOT) 

Out of this whole market, BESS gains a significant role in the short-term markets, where 

volatility comes in to play and BESS could act as a solution to decrease this effect. The Day-

Ahead Market (DAM) allows generators and storage operators to lock in prices a day in 

advance based on forecasted demand and supply conditions. BESS can leverage DAM 

participation to optimize dispatch schedules, commit capacity, and hedge against volatility 

in the Real-Time Market, although DAM also experiences high levels of volatility, 

especially in extreme weather events. In contrast, the Real-Time Market (RTM) clears every 

five minutes and reflects the most immediate supply-demand imbalances. This is where the 

highest volatility can occur, paired with the high risk of trading in this market. This market 

volatility is translated sometimes into hundreds or even thousands of dollars per MWh of 

difference in a single day, difference that can be capitalized by BESS facilities if modeled 

properly.  
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The Ancillary Services Market provides payments for maintaining system reliability through 

the 5 ancillary services markets there are: Regulation Up, Regulation Down, Responsive 

Reserve, Non-Spin Reserve and the ERCOT Contingency Reserve Service (ECRS), which 

recently came into play as of June 2023.  Offers on ancillary services are submitted in a MW 

basis and are paid in $ / MW. According to ModoEnergy, from January to June 2023, 87% 

of BESS revenues in ERCOT came from ancillary services, signaling a clear opportunity for 

BESS to make consistent revenues at that time. 

 

Figure 6. BESS revenue breakdown in 2023’s first semester (ModoEnergy, 2023)  

The integration of renewable energy has transformed Texas’s electricity landscape, with 

wind and solar generation now accounting for more than 40% of total generation (U.S. 

Energy Information Administration [EIA], 2024), a share expected to continue growing 

steadily in the coming years. This shift, however, has introduced even more volatility into 

the market, with frequent occurrences of negative pricing (curtailment) when renewable 

generation outstrips demand, and extreme price spikes during peak consumption periods. 

The widening spread between DAM hourly prices in the same day has heightened the 

importance of energy storage solutions, as they offer a means of mitigating these fluctuations 

while enhancing system reliability. One of the defining features of ERCOT as already 

mentioned is its nodal pricing system, which contains over 17,000 unique LMPs across the 
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grid. This granular pricing mechanism reflects local congestion, losses, and supply-demand 

mismatches in real time, and introduces both risk and opportunity for battery operators. 

Strategically sited BESS assets can capitalize on locational price volatility, charging when 

local prices dip due to excess solar or wind generation, and discharging when congestion 

spikes prices at nearby nodes, especially during evening hours where no renewable energy 

generation is present, and people get back from work. This makes site selection and nodal 

modeling especially important for standalone storage developers seeking to maximize 

revenue.  

As of 2025, ERCOT has over 90GW of battery storage projects in its interconnection queue, 

reflecting the growing interest in storage as a solution to market inefficiencies. However, it 

has to be pointed out that this large queue doesn’t reflect reality as of now, as less than 30% 

of BESS projects in the queue actually get to the construction phase, highlighting the fierce 

competition and still lack of full knowledge on when and where to build a project. This 

growth has been further stimulated by regulatory incentives, particularly the extension of the 

30% Investment Tax Credit (ITC) for standalone storage projects under the Inflation 

Reduction Act (IRA), which, although a controversial theme as of now, will keep being 

available until 2032.  
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Figure 7. ERCOT’s BESS interconnection queue by location and capacity 

A well-known example of market volatility in ERCOT came in the winter storm in February 

2021, which led to prolonged outages and extreme price spikes across Texas. This event 

highlighted the vulnerability of thermal generation and the importance of dispatchable 

energy reserves. Similarly, daily solar oversupply in regions like West Texas now causes 

frequent midday price drops, followed by sharp ramps during evening demand peaks, ideal 

conditions for two-hour lithium-ion systems to perform arbitrage. According to an expert 

interview conducted from a local engineering company, “During that storm, we almost paid 

for all our BESS’ projects CAPEX through energy arbitrage, as prices spiked enormously.” 

To back this claim, the EIA published, “In February 2021, wholesale prices held at or near 

the $9,000/MWh ERCOT price cap for approximately 77 hours, from midnight on February 

15 to the morning of February 19.” This ultimately shows that volatility can happen at any 

given time, and both BESS and the grid can benefit economically from a profound BESS 

integration, bearing in mind this was a very uncommon occurrence, although with increased 

probability in recent times as observed in recent years, where the occurrence of extreme 

weather events has increased significantly. 
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In addition, while these seasonal patterns have remained relatively stable in recent years, 

long-term climate projections for Texas suggest potential shifts that could alter electricity 

demand peaks and renewable generation profiles. Average summer temperatures are 

expected to rise, increasing cooling loads and potentially extending the duration of daily 

price spikes into late evenings. Conversely, more variable winter weather, including extreme 

cold storms similar to the 2021 case, could create additional intraday peaks beyond the 

current two-cycle winter profile. Such changes, driven by both climate change and evolving 

consumption behavior, may influence the optimal seasonal dispatch strategies for BESS in 

the future. As a result, models that hard-code seasonal cycles based solely on historical data 

should be periodically revisited to ensure alignment with emerging climatic and market 

conditions. 

 

Figure 8. Projected temperature increases in different emissions scenarios in Texas (North Carolina Institute 

for Climate Studies, 2022) 

2.2 UTILITY-SCALE BATTERY ENERGY STORAGE TECHNOLOGIES 

BESS have emerged as a fundamental component of modern grid infrastructure, driven by 

rapid technological advancements and cost reductions. The global energy storage market has 

experienced unprecedented growth. According to IEA, “Storage installations in 2024 beat 
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expectations with 205GWh installed globally, a staggering y-o-y increase of 53%. The grid 

market has once again been the driver of growth, with more than 160GWh deployed 

globally, of which 98% was lithium-ion.” In the United States, the sector is expanding at an 

annual growth rate exceeding 30%, with ERCOT at the forefront of this transition due to its 

dynamic pricing structure and increasing reliance on renewable energy sources. 

 

Figure 9. Standalone and co-located BESS facilities in ERCOT market 

Now, how does a battery energy storage system work exactly? Battery energy storage 

systems (BESS) are electrochemical technologies that allow energy to be stored and 

discharged later, playing a key role in enhancing grid flexibility and reliability. These 

systems can charge from the grid or directly from generation assets, like solar installations, 

and later release stored energy to supply electricity or provide ancillary services during 

periods of high demand or reduced supply. Various battery chemistries exist for grid-scale 

applications, including lithium-ion, lead-acid, redox flow, and molten salt technologies, each 

with distinct performance characteristics and trade-offs. Among them, lithium-ion batteries 

currently dominate the utility-scale market in the United States and globally, driven by rapid 

technological advancements and significant cost reductions. 
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Lithium-ion batteries are divided as of now into 4 types, each playing a completely different 

role in market operations, and having completely different levels of technology maturity: 

one-hour, two-hour, four-hour and eight-hour batteries. One-hour batteries primarily serve 

ancillary service markets, where rapid response times are crucial for frequency regulation. 

Two-hour batteries, which are the focus of this study, are particularly suited for energy 

arbitrage, capitalizing on the price differentials between low-price charging periods and 

high-price discharge periods, although it has been seen that many benefit from ancillary 

services regulation as well. Meanwhile, four-hour batteries are increasingly utilized for peak 

shaving and capacity firming, offering extended discharge durations to stabilize grid 

fluctuations, although its level of technological maturity and costs are still a short-term 

barrier for a clear entry. On the other hand, eight-hour BESS systems are gaining attraction 

on the market to possibly replace CCGT’s as a long-term ancillary services response, but it’s 

still being studied and on a pre-implementation phase. 

 

2.2.1 System Architecture and Core Components 

There are several crucial components for an optimal functioning of BESS systems. These 

are:  

 Battery cells: This is the main storage component which can vary in type, including 

lithium-ion and lead-acid batteries, as well as several others discussed. 

 Battery Management System (BMS): Serves as a SCADA (Supervisory Control and 

Data Acquisition) solely focused on monitoring battery health and functionality to 

ensure safe operations. 

 Power Conversion System (PCS): Controls the bidirectional flow of power (charge 

and discharge cycles) and converts DC power from the battery to AC power at an 

appropriate voltage level required by the network, using an inverter and a set up 

transformer, similar components to a PV (Photovoltaic) installation. This is crucial 

to couple BESS to the electrical grid, so it can properly function. 
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 Energy Management System (EMS) and SCADA: Serve as the general SCADA and 

performance optimization component. These components work simultaneously 

together to optimize the performance and integration of BESS into the broader power 

system 

 

Figure 10. Key components of BESS interconnected at the transmission substation level (Denholm, 2019) 

 

Once the key technical components are discussed, there are also auxiliary components 

that are necessary for the BESS system to function optimally to be mentioned. This 

equipment/infrastructure includes: 

o Auxiliary Services Room: This subsystem is responsible for supplying low-voltage 

power to various auxiliary equipment throughout the BESS installation. This 

includes internal lighting, HVAC and cooling systems, the later integrated in the 

battery enclosure, control systems, and safety mechanisms such as fire detection. It 

ensures the continuous operation of non-power-conversion elements, especially 

during low-demand or stand-by periods. One of the key components in terms of 

energy consumption costs is included in this room, which is the HVAC and cooling 

systems, as they are expected to work all year round to maintain the batteries’ optimal 

functional temperature. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING 
 

Document 1. Project Report 

26 

o Storage Room: Also known as a warehouse. This room is designated for housing 

spare parts and essential equipment required for the preventive, predictive and 

corrective maintenance of the BESS. By keeping critical components on-site, 

operators can reduce system downtime in case of minor faults or failures. These 

critical components include spare battery modules (key component in OPEX, as 

several modules are replaced each year to maintain the BESS at peak power 

performance), replacement fuses and sensors, as well as specific tools for battery 

servicing used by on-site operators if needed. 

o Control Room: This is the central node for the monitoring and management of the 

BESS. It hosts the SCADA systems, battery management platforms, and data 

acquisition servers that collect real-time system metrics and performance indicators. 

From this room, operators can visualize, control, and optimize system operation. 

o Metering Cabinet: The metering cabinet is used to measure and transmit active and 

reactive power flows at the point of interconnection. It ensures compliance with 

market and grid operator requirements, such as those mandated by ERCOT, by 

providing accurate import/export data for billing, dispatch validation, and 

operational records. 

o High Voltage Customer (HVC) Kiosk: This kiosk is a must for all energy systems 

functioning on the grid. It serves as a safety and isolation interface between the BESS 

facility and the utility grid. It enables operators to disconnect the system during 

planned maintenance or automatically during fault conditions. The HVC kiosk 

contains switchgear and circuit breakers designed to handle high voltage levels 

(typically 11kV to 33kV) used in grid interconnection. 

o Battery Container: The battery container is the structural and functional unit that 

houses the core energy storage elements. Typically built from reinforced steel or 

shipping container shells, it is engineered for thermal management, safety, and 

modularity. Each container includes its own fire suppression system, local battery 

management units, and environmental controls. These fire suppression systems have 

been an ongoing work in progress due to the high toxicity of gases emitted in a BESS 

fire in Arizona, which raised the concern of the Federal Emergency Management 
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Agency (FEMA), which conducted R&D studies in the University of Texas at Austin 

to develop standard operating procedures in the case of a BESS fire. 

 

2.2.2 Lithium-ion batteries  

Lithium-ion batteries are electrochemical energy storage systems that store and release 

electrical energy through controlled chemical reactions, redox reactions to be specific. At 

their core, they consist of two electrodes, a negative electrode (called the anode) and a 

positive electrode (called the cathode), separated by an electrolyte and a porous separator. 

Two current collectors, positive and negative, finish up the initial setup of a lithium-ion 

battery. During operation, lithium ions (Li⁺) shuttle back and forth between the two 

electrodes, which is what enables the battery to charge and discharge repeatedly. 

 

Figure 11. Lithium-ion cell composition (Source: Octopart) 

When the battery is charging, an external electrical current is applied, which forces lithium 

ions to leave the cathode and move through the electrolyte toward the anode. At the same 

time, electrons travel through the external circuit (since they cannot pass through the 

electrolyte) and reach the anode, where they combine with the lithium ions. These ions are 
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then stored in the anode’s material structure, commonly made of graphite, through a process 

called intercalation. In this state, the battery is storing energy in chemical form. During 

discharge, the process is reversed. Lithium ions leave the anode and migrate back through 

the electrolyte toward the cathode, releasing energy in the process. As they move, electrons 

flow again through the external circuit to power a load (such as the grid), meeting the lithium 

ions at the cathode where they are reabsorbed into its structure, often made from lithium 

metal oxides like Lithium iron phosphate (LFP). This movement of ions inside the battery 

and electrons through the external circuit is what delivers electrical power to the system. The 

separator placed between the anode and cathode serves a critical safety role by physically 

preventing the electrodes from touching and causing a short circuit, while still allowing 

lithium ions to pass through. Meanwhile, the electrolyte, typically a solvent with lithium salt, 

facilitates ionic conductivity between electrodes without allowing electron flow internally.  

These charging and discharging cycles are highly reversible under proper conditions, which 

is what allows lithium-ion batteries to be used for thousands of cycles. However, over time, 

side reactions such as solid electrolyte interphase (SEI) formation, lithium plating, or loss of 

active lithium can reduce the efficiency of ion movement and ultimately degrade the 

battery’s performance and its State of Health, which will be discussed further along the 

document. 

In the context of utility-scale battery energy storage systems, lithium-ion technology is 

implemented by combining thousands of individual cells into modules, racks, and 

containerized systems. These are then integrated with power electronics, thermal 

management, and control systems to form a grid-connected solution capable of charging 

from or discharging to the grid. Although the principle of operation remains the same as in 

consumer-scale batteries, the complexity increases significantly due to scale, safety, and 

thermal uniformity requirements. 
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Advantages 

Lithium-ion batteries have become the preferred choice for utility-scale energy storage 

systems due to their combination of high performance, scalability, and commercial maturity. 

One of their most notable advantages is their high energy density, which allows a large 

amount of energy to be stored in a relatively small footprint, being a critical factor for grid-

scale installations where land use may be constrained. To make a fair comparison, 1MW of 

solar occupies around 2.5-3 acres, whereas 100MW of a 2-hour lithium-ion BESS occupies 

around 5 acres, so roughly 50 times less space, hence a reduction in environmental impact. 

On top of their small footprint, their modular architecture allows flexibility in system sizing 

and deployment, from small commercial units to multi-megawatt grid-connected plants, 

meaning a BESS can be the exact size needed for a project without having to over dimension 

or under dimension the installation. 

In addition, lithium-ion systems offer fast response times and high-power capabilities, 

enabling them to react within milliseconds to grid signals. This makes them ideal for 

applications such as frequency regulation, voltage support, and energy arbitrage in dynamic 

markets like ERCOT. Another key strength is their round-trip efficiency, typically ranging 

from 85% to 93%, which means that most of the energy stored can be recovered during 

discharge. Their ability to complete thousands of cycles before significant degradation also 

contributes to strong long-term performance. These advantages, combined with rapidly 

falling battery costs driven by EV-sector demand (refer to chapter 2.3), have positioned 

lithium-ion technology as the dominant solution in today’s energy storage landscape. 

Disadvantages 

Despite their widespread adoption, lithium-ion batteries also present several technical and 

economic challenges, especially in long-duration or harsh operating environments. First, 

they are sensitive to extreme temperatures: high heat accelerates degradation exponentially 

and may lead to thermal runaway, while low temperatures increase internal resistance and 

reduce performance. This translates into needing complex thermal management systems, 
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particularly in hot climates like Texas, adding to both OPEX and auxiliary consumption, 

meaning location is also an important factor when it comes to operational costs. Another 

limitation is their duration capacity; Lithium-ion batteries are typically optimized for 1 to 4 

hours of discharge, which makes them less suitable for long-duration energy shifting or 

seasonal storage needs. However, there are optimistic advancements regarding 8-hour 

BESS, which is crucial in longer term ancillary services. Furthermore, these batteries require 

careful charge/discharge management to avoid deep cycling or overcharging, both of which 

accelerate degradation and reduce system life, acting as a barrier to overwork the battery as 

much as desired. 

On the economic side, concerns remain around the availability and ethical sourcing of 

critical materials such as lithium, cobalt, and nickel, especially as global demand rises and 

these resources are scarce, especially lithium, which is the core component of the batteries. 

Safety is also a key issue: while modern systems include advanced Battery Management 

Systems (BMS), there is still an inherent risk of fire due to the flammable organic electrolyte 

used in most lithium-ion chemistries. “In April 2019, an unexpected explosion of batteries 

on fire in an Arizona energy storage facility injured eight firefighters.” (FEMA, 2020) 

 

2.2.3 Operational and Degradation Characteristics of Lithium-Ion Batteries 

To develop an accurate techno-economic BESS model, it had to be understood what 

technicalities make a BESS function one way or another and find the optimal point to 

maximize revenue and useful life of battery modules in the installation. Technical 

specifications such as state of charge, depth of discharge, functioning temperature, and 

round-trip efficiency are not only essential for evaluating the performance of the system, but 

also critical for designing strategies that preserve long-term functionality and financial 

viability. 
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State of Charge (SoC) 

State of Charge (SoC) refers to the percentage of a battery’s total capacity currently stored 

and available for use. Maintaining a high SoC over extended periods, particularly above 

80%, has been shown to accelerate calendar ageing due to increased chemical instability and 

higher rates of reactions. Conversely, persistently low SoC levels can result in reduced power 

availability and faster internal resistance buildup. To mitigate both forms of degradation, 

operational strategies typically define an optimal SoC window, often between 20% and 80%, 

within which the system cycles during regular operation. This practice helps to extend the 

usable life of the battery while maintaining adequate flexibility for energy dispatch. As an 

example of what this means in a practical case, if a battery is fully charged for 12 hours in a 

day and fully discharged for the remaining 12 hours (assuming ramp up charge and ramp up 

discharge time is negligible), the state of charge of the battery would be 50% on average, 

which is also called the mid-state of charge (Mid-SoC). To back this claim, the European 

Union funded a project named “Batteries 2020”, which united nine battery experts to study 

the effect, along a few other effects, of SoC on battery ageing. Figure 12 shows the capacity 

of a battery at different SoC levels throughout its lifetime, in storage days. 
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Figure 12. Capacity over battery cell lifetime at different SoC levels (Timmermans et al., 2016) 

It can be observed that as SoC increases, the decrease in capacity over time is exponential, 

therefore the model has to carefully follow a path where the battery is not full for long 

periods of time, so that degradation doesn’t become exponential. 

Depth of Discharge (DoD) 

DoD measures the portion of a battery’s capacity that is discharged in a single cycle. The 

severity of DoD is a primary factor in cycle ageing, with deeper discharges inducing greater 

mechanical and chemical stress on battery materials. Lithium-ion cells exhibit significantly 

longer lifetimes when operated with shallower DoD; for instance, reducing DoD from 100% 

to 50% can nearly double the number of achievable full cycle equivalents (FCE). FCE are 

defined as number of complete cycles, from 100% of the energy rated capacity to 0%, 

without meaning it does that in one go, rather in a set of lower rated cycles to not overwork 

the battery. This correlation between DoD and number of FCE is due to the reduced strain 

on the electrode-electrolyte interfaces and lower thermal stress within the cell. As such, 

managing DoD is a key operational lever for maximizing lifetime energy throughput and 

should be taken into account when designing the model, as choosing between one DoD or 
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another can make a project feasible or not. Figure 13 shows the capacity curves at different 

DoD levels for a battery working at 50% Mid SoC and 25ºC, which are criteria close to an 

optimal level of functioning. 

 

Figure 13. Capacity curves of battery cell at 25ºC and 50% Mid-SoC at different DoDs (Timmermans et al., 

2016) 

Following a similar trend as SoC, the higher the Depth of Discharge used in a BESS system, 

the more exponential the capacity degradation becomes. This has to be carefully considered 

for the model, as lower DoDs mean lower energy storage on average, hence less revenues, 

but higher DoDs means higher battery replacement costs, so an optimal DoD shall be picked 

for the model. To further acknowledge the importance of DoD in capacity degradation, 

Figure 14 shows 2D and 3D cell degradation models, which show the importance of not 

overloading a battery cell. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING 
 

Document 1. Project Report 

34 

 

Figure 14. Capacity degradation curves at 25ºC and 50% Mid-SoC at different DoDs throughout the cell’s 

lifecycle, measured in FCEs. The figure shows extrapolated 2D and 3D degradation models tested. 

(Timmermans et al., 2016) 

Temperature 

Temperature is also a key factor to be considered when ensuring optimal system 

performance. When temperatures are too low, typically below 15 °C, the internal resistance 

of the battery increases, which reduces power output and slows down the chemical reactions 

inside the cells. In addition, charging at low temperatures also raises the risk of lithium 

plating, a condition where lithium metal deposits on the anode instead of intercalating 

properly, potentially leading to faster degradation and even safety risks.  

 

Figure 15. Example of lithium plating due to low temperatures (Liu et al., 2020) 
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On the other hand, high temperatures above 35–40 °C accelerate chemical ageing. This 

includes faster breakdown of the electrolyte, which in turn reduces the battery’s capacity and 

efficiency. Long-term exposure to heat can also damage the battery’s internal structure and 

raise impedance. As a result, most lithium-ion BESS installations are designed to operate 

within an ideal range of 20 °C to 30 °C. To stay within this range, utility-scale systems rely 

on active cooling and HVAC systems that manage container temperatures and help extend 

the life of the batteries, even when they are cycled intensively or exposed to extreme weather 

conditions. This HVAC system in locations like West Texas, known for long periods of dry 

heat, is key to ensure an optimal performance, and is also a large component of energy 

consumption in the installation. The following figure, from the Batteries 2020 study, shows 

the difference between battery ageing at different temperature levels, combined with SoC 

levels mentioned earlier. 

 

Figure 16. Capacity curves at different temperature levels and different SoC levels 

It can be observed that ageing accelerates at higher temperature levels, backing up the 

importance of a constant battery container temperature of around 25ºC to maintain optimal 

BESS conditions. Not only that, but a correct and optimal combination of these 3 variables 
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is crucial for battery operators to conserve batteries and maximize revenues throughout all 

the batteries’ lifetime. 

Round-Trip Efficiency (RTE) 

RTE is defined as the ratio between the energy discharged by the battery and the energy 

initially used to charge it, taking into account it can be measured at different points of the 

installation (BESS to transformer, BESS to inverter terminals, etc.). For lithium-ion systems, 

measured at the inverter terminals, this efficiency typically ranges from 85% to 93% 

depending on technology, ambient conditions, and power conversion losses. RTE naturally 

declines over time because of internal resistance buildup and degradation of electrode 

materials, chemical reactions that can be accelerated depending on the 3 variables discussed 

earlier. Maintaining a high RTE is essential for ensuring that a significant portion of the 

energy cycled through the system can be monetized or delivered to the grid. RTE is 

essentially what can increment IRR within BESS projects, ultimately increasing the positive 

gradient movement of investors into these projects. Not only that, but as more projects go 

underway, demand will increase significantly, hence technology will develop and BESS 

projects will increasingly have better RTE’s and lower costs, increasing even further investor 

movement. This metric will be discussed further down in the model as a key assumption to 

achieve accuracy in the model. 

Capacity Fade and State of Health (SoH) 

Capacity fade/degradation is a natural process that reduces the maximum charge a battery 

can hold over time. It is influenced by two main degradation pathways: calendar ageing and 

cycle ageing. 

Equation 1. Total capacity degradation as a sum of the two degradation pathways (Journal of Energy 

Storage, Vol. 65) 

𝐶ௗ௘௚ =  𝐶ௗ௘௚
௖௔௟௘௡ௗ௔௥ + 𝐶ௗ௘௚

௖௬௖௟௘
 [%] 
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 Calendar ageing occurs passively due to chemical instability at the electrode-

electrolyte interface, even when the battery is idle or in standby mode. It’s influenced 

significantly by high temperatures and prolonged storage at high SoC, 2 of the key 

variables described earlier.  

 Cycle ageing results from mechanical and electrochemical stress induced by 

repetitive charging and discharging, particularly at high DoD, high C-rates 

(charge/discharge speeds), or in extreme temperatures. This ageing as mentioned is 

due to the other key variable missing, DoD, as well as temperature. 

The cumulative effect of both types of degradation leads to a gradual reduction in usable 

capacity and energy efficiency. Empirical studies, as the ones mentioned earlier in this 

section, show that under moderate usage conditions and controlled DoD profiles, lithium-

ion batteries may experience annual capacity losses between 1.8% and 2.5%.  

The State of Health (SoH) is directly related to the capacity degradation. SoH provides an 

indication of the battery’s current performance relative to its original, nominal capacity. It 

encapsulates all forms of degradation, both calendar and cycle-related, and is used to track 

the effective ageing of the system. As the battery degrades, its SoH decreases, reflecting 

reductions in energy capacity, power output, and efficiency. A typical utility-scale battery 

may be considered to reach its end of life when SoH falls below 70–75%, although this 

threshold can vary depending on project economics and performance requirements. Accurate 

SoH monitoring is crucial for lifecycle management and planning reinvestment or 

repowering decisions. 
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Figure 17. SoH and Cycle degradation throughout a 3-year test (Journal of Energy Storage, Vol. 65) 

Overall, utility-scale lithium-ion batteries typically offer a calendar lifetime of 10 to 15 years 

or 4000 to 6000 full equivalent cycles, depending on the specific chemistry and operational 

regime. 

Auxiliary Consumption and Internal Loads 

In addition to the core energy cycling process, BESS installations incur internal energy 

consumption from auxiliary systems, including thermal management (HVAC), fire 

suppression, lighting, and the operation of battery management and control systems. These 

loads are essential for maintaining safe and efficient operation, especially in regions with 

high ambient temperatures. Cooling systems can consume a meaningful share of the total 

input energy, especially during peak summer months in Texas. Auxiliary consumption must 

be factored into the net energy output of the system, as it directly reduces the effective round-

trip efficiency and impacts both operational costs and revenue projections in the model. 

System Availability and Operational Hours 

The expected availability of a utility-scale BESS system typically exceeds 95% and, in 

modern installations, can approach or surpass 99%. This figure accounts for scheduled 

maintenance, unexpected downtime, and limitations due to thermal derating or grid 

constraints. High availability is crucial for reliable participation in market services such as 
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frequency regulation, and energy arbitrage, the two main sources of revenue for BESS 

projects in ERCOT. To maintain such performance, predictive maintenance and real-time 

diagnostics are often integrated into supervisory control systems. 

Table 1 shows an executive summary of the key parameters discussed: 
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Table 1. Summary of Key Operational Parameters in Utility-Scale BESS 

Parameter Definition Optimal Range/ Target Impact on System Performance 

State of Charge (SoC) 

Percentage of total energy stored in 

the battery, reflecting available 

capacity at a given moment 

20%–80%; Mid-SoC of 50% is ideal 

for degradation control 

Avoids accelerated calendar aging 

from high SoC or resistance buildup 

from low SoC; helps extend battery 

life 

Depth of Discharge (DoD) 

Percentage of total capacity 

discharged during a single cycle, 

influencing wear on battery 

components 

≤70% per cycle; balance needed 

between usable energy and longevity 

High DoD accelerates cycle aging; 

lower DoD improves lifetime but 

may reduce energy throughput 

Temperature 

Ambient or internal battery 

temperature, which affects 

electrochemical reaction rates and 

safety 

20–30 ºC container environment for 

best efficiency and aging mitigation 

Low temps increase resistance and 

lithium plating risk; high temps speed 

up degradation and reduce life span 

Round-Trip Efficiency (RTE) 

Efficiency ratio of discharged energy 

to charged energy, including losses 

from conversion and heat 

85%–93% depending on system 

design and ambient conditions 

Higher RTE improves economic 

viability and increases usable output; 

key for IRR and profitability 

Capacity Fade / State of Health 

(SoH) 

Capacity fade is the gradual loss of 

energy-holding ability; SoH indicates 

performance relative to original 

capacity 

SoH ≥ 70–75% is considered 

operational; fade rate ~1.8%–2.5% 

annually 

Declining SoH reduces effective 

capacity and may trigger end-of-life 

replacement; drives maintenance 

planning 

Auxiliary Consumption 

Internal energy use for cooling, 

monitoring, lighting, and other 

support systems within the 

installation 

Minimize HVAC share through 

efficient thermal design; varies with 

climate 

Reduces net energy output and 

affects cost-efficiency; critical for 

OPEX and financial modeling 

System Availability 

Proportion of time the system is fully 

operational and available for dispatch 

and revenue-generating services 

≥95% typical; modern systems aim 

for >99% uptime 

High availability ensures revenue 

stability in energy and ancillary 

markets; critical for investor 

confidence 
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Understanding the technical characteristics of lithium-ion battery performance is essential 

not only from an engineering perspective but also as a foundational input for financial 

modeling, as it will later be shown on Chapter 3: Description of the Developed Model. 

Each parameter, whether round-trip efficiency, degradation rate, or auxiliary load, directly 

impacts the economic viability of a utility-scale BESS installation. A high-efficiency system 

with low degradation will yield greater usable energy over time, reducing levelized cost of 

storage (LCOS) and improving long-term returns. Conversely, systems subject to aggressive 

cycling, thermal stress, or suboptimal operating windows may face premature capacity loss, 

higher maintenance costs, and compressed financial performance. 

2.3 ECONOMICS AND MARKET VIABILITY OF BESS IN ERCOT 

Lithium-ion currently comprises 98% of grid-scale deployments, driven by its superior 

energy density, cost profile, and widespread manufacturing base. According to the 

International Energy Agency (IEA, 2022), lithium-ion batteries have decreased in costs from 

approximately $1,100/kWh in 2010 to below $150/kWh in 2024. Alternative chemistries 

such as sodium-ion, solid-state, flow batteries and iron-air batteries are emerging as potential 

competitors, offering promising advantages in longevity, safety, and cost-effectiveness, 

which in turn will continue developing the BESS market in favor of developers. 

Nevertheless, lithium-ion technology continues to lead in utility-scale applications due to its 

established supply chain and performance reliability. 

Looking ahead, technological advancements are expected to further enhance the 

performance and cost-effectiveness of battery storage solutions. Emerging developments in 

artificial intelligence-driven dispatch optimization, grid-forming inverter technologies, and 

long-duration energy storage (LDES) systems are likely to redefine the role of BESS in the 

energy transition. The integration of solid-state and flow battery technologies could provide 

alternatives with improved safety and extended cycle life, while the adoption of machine 

learning algorithms for predictive analytics may further refine trading strategies. Moreover, 

the potential deployment of iron-air and liquid metal batteries, which offer discharge 

durations exceeding ten hours, could significantly expand storage applications beyond 
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current market capabilities, as they could play a key role in non-spining reserve services, 

which must be sustainable for 4 hours, replacing power plants completely. 

The financial viability of BESS projects is contingent upon multiple factors, including 

revenue stacking strategies, degradation rates, and operational costs. By leveraging multiple 

revenue streams, such as energy arbitrage, frequency regulation, and ECRS regulation, 

storage operators can optimize financial returns. However, battery degradation remains a 

critical consideration, necessitating advanced battery management systems (BMS) to extend 

asset lifespans and maintain efficiency levels. Economic projections for BESS projects in 

ERCOT suggest a CAPEX of approximately $750,000 per megawatt under moderate cost 

assumptions by 2027. These CAPEX projections come from NREL and will play a key role 

in the financial model of this project.  

 

Figure 18. Utility-Scale Battery Storage costs projections based on 3 scenarios: Conservative, moderate, and 

advanced. (NREL, 2023) 

The ERCOT market is uniquely structured among U.S. grid operators, as it operates under a 

fully deregulated framework with real-time nodal pricing and no centralized capacity 
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market. This design has created favorable conditions for merchant battery storage developers 

who can capture value directly from price volatility, ancillary services, and arbitrage 

opportunities. ERCOT has also introduced specific mechanisms such as the Responsive 

Reserve Services (RRS), (comprising of Fast Frequency Response, Primary Frequency 

Response and Load Resource on Under-Frequency Relay, the latter not being well suited for 

batteries) which provides a tailored market product for high-speed resources like lithium-ion 

BESS, allowing them to participate more efficiently in frequency regulation. On the policy 

side, the Inflation Reduction Act (IRA) introduced a 30% standalone Investment Tax Credit 

(ITC) for energy storage projects beginning in 2023, a key financial enabler that has 

significantly improved project bankability across the U.S. (IEA, 2022). 

As of 2025, ERCOT’s battery storage interconnection queue has surpassed 90GW, 

highlighting rapid growth in developer interest. In parallel, firms like NextEra or ENGIE 

have announced multi-hundred-megawatt projects in the ERCOT pipeline, many designed 

to operate without Power Purchase Agreements (PPAs), relying instead on spot market 

signals and flexible dispatch strategies. This wave of investor-led development reflects both 

the revenue potential of storage in ERCOT and a growing appetite for merchant risk, 

supported by data-driven optimization and real-time analytics. The following table shows 

biggest BESS developers (or companies that have bought developed projects) in the 

interconnection queue as of late 2024. 
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Table 2. Companies, by size, that have BESS projects in ERCOT’s interconnection queue 

Type of Developer Companies Sum of MW Min Project size 

Big ENGIE, Iberdrola, 

NextEra, etc 

> 500 MW 150 MW 

Medium Gransolar, PineGate, 

Abei 

> 500 MW < 150 MW 

Small Terra-Gen, Ignis 

Group, Redeux Energy 

< 500 MW 10MW 

 

Despite this positive momentum, merchant BESS projects in ERCOT also face operational 

and financial risks that must be carefully considered. In recent years, ancillary services have 

played a key role in BESS revenue generation within ERCOT, particularly through 

frequency regulation products such as Regulation Up (Reg-Up), Regulation Down (Reg-

Down), and the more recently introduced Enhanced Contingency Reserve Service (ECRS). 

Since its launch in June 2023, ECRS has delivered some of the highest revenues per 

megawatt for storage resources, with BESS comprising approximately 20-30% of its 

awarded capacity. However, market data from sources such as ModoEnergy indicate that the 

total ancillary services capacity is nearing saturation, with full saturation projected by 

December 2024. As auction competition intensifies, clearing prices are expected to decline, 

especially for short-duration systems competing against 4- to 8-hour installations better 

suited for ECRS requirements. This fierce competition in the ancillary services market may 

lead to price cannibalization, particularly for one-hour systems that rely heavily on 

regulation revenues. These trends reinforce the rationale for this thesis’s focus on energy 

arbitrage as the primary revenue stream for modelling purposes, while treating ancillary 

service revenues as an upside potential rather than a base-case assumption. 
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Figure 19. Projected ancillary services capacity saturation by the end of 2024 (ModoEnergy, 2024) 

Additionally, real-time market volatility, while offering upside, can expose projects to 

unpredictable dispatch and revenue fluctuations, especially in nodes with limited congestion 

relief. These factors underscore the importance of location-specific modeling, degradation-

aware dispatch strategies, and robust financial structuring to ensure long-term viability in 

ERCOT’s fast-evolving energy landscape. 

2.4 LIMITATIONS OF CURRENT PRACTICES IN ERCOT 

As the ERCOT grid continues to evolve, battery storage systems are becoming an 

increasingly important tool to manage variability in renewable generation, relieve local 

congestion, and capture price arbitrage opportunities. However, despite the growing number 

of BESS installations, many current operational practices remain underdeveloped or overly 

simplistic, resulting in missed revenue potential and unnecessary technical degradation.  

One of the most important and underexplored areas is the lack of locational dispatch 

optimization. In ERCOT, as mentioned above, prices are determined on a nodal basis, with 

over 17,000 unique settlement points, each influenced by local transmission constraints, 

supply-demand balances, and congestion. Despite this, many commercial BESS systems are 
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developed and operated using average zonal or hub-level price assumptions, neglecting the 

significant variability between neighboring nodes. This oversight can lead to poor siting 

decisions, suboptimal arbitrage strategies, and ultimately diminished project economics. By 

contrast, a nodal-level optimization model, like the one presented in this thesis, enables 

developers and operators to anticipate locational price spreads and tailor dispatch behavior 

to the revenue potential of each individual node. 

Another limitation lies in the underutilization of curtailment opportunities, especially in co-

located solar + storage configurations in West Texas, where the region is known for its high 

levels of curtailment due to wind farms’ PTC (Production Tax Credit), which leads to 

negative LMPs. Not only the negative pricing influence is caused by wind farms, with solar 

penetration growing rapidly in Texas, particularly in West and South ERCOT, the grid 

increasingly experiences midday price collapses and periods of negative LMPs when solar 

output exceeds demand or transmission capacity. While these conditions present ideal 

charging windows for BESS systems, many are either unaware of curtailment trends or fail 

to integrate them into their dispatch logic. The absence of curtailment-aware strategies 

means that valuable energy is left untapped, and developers are unable to fully monetize 

their generation. Incorporating historical curtailment patterns and real-time congestion 

signals into operational planning can unlock significant value, especially for two-hour 

batteries aimed at capturing peak ramping periods after solar drop-off. 

In addition, current market practices often overlook the strategic potential of alternative 

storage technologies that could complement or eventually surpass lithium-ion systems. Flow 

batteries offer compelling advantages for long-duration applications, especially during 

periods of extended renewable surplus, thanks to their ability to discharge for 6+ hours, 

sustained cycle life, and inherently safer aqueous electrolytes. Unlike lithium-ion systems, 

where energy storage is fixed by cell capacity, flow batteries store energy in external 

electrolyte tanks, which allows independent scaling of power and energy capacity to suit 

specific use cases, making dimensioning even more precise than it is with lithium-ion 

batteries. According to the BCC Research blog, global flow-battery systems are well suited 

for grid-level, multi-hour storage and are seeing rapid advancements in both electrolyte 
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chemistry and stack design. These systems also boast lower fire risk and longer operational 

lifespans, often between 25-30 years compared to approximately 15-20 years in typical 

lithium-ion deployments. One of the most key aspects of flow batteries are the different 

material battery types there are: All-vanadium, Zinc-bromine, lithium-ion flow batteries, etc. 

This in turn could decongest the massive demand there is for lithium-ion now, which could 

reduce a possible future shortage of said material. 

 

Figure 20. Flow battery schematic (Infinite Power, 2024) 

As the ERCOT market approaches saturation in short-duration services, the economic case 

for LDES is gaining traction. In nodes experiencing frequent renewable oversupply and 

extended ramp events, flow batteries could provide value that lithium-ion systems struggle 

to capture, primarily through extended energy shifting without undue degradation or safety 

risk. While lithium-ion remains the backbone of current deployments, advancements in flow-

battery economics and performance may soon present a viable alternative for selected 

ERCOT applications. Moreover, the flow-battery market is projected to grow from roughly 

US $417 million in 2024 to over $1 billion by 2029, representing a compound annual growth 

rate of 21.7%. 
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Figure 21. Outlook of Flow batteries market growth 2024-2029 (BCC Research, 2023) 

However, despite these advantages, flow batteries currently face three main challenges that 

limit their immediate competitiveness in the utility-scale market. First, they tend to have 

higher upfront capital costs, largely due to the need for specialized stacks, tanks, and 

supporting infrastructure. Second, their lower energy density compared to lithium-ion means 

that more space is required to store the same amount of energy, making them less practical 

in land-constrained sites or compact installations. Lastly, the systems themselves are more 

mechanically complex, relying on pumps, valves, and continuous liquid circulation, which 

introduces additional points of failure and can increase both maintenance demands and 

operational oversight. 

Moreover, most current BESS systems do not incorporate degradation-aware dispatch, a 

factor that has growing relevance as battery cycling frequency increases. Traditional 

dispatch algorithms often rely on simple threshold rules based on price signals or SoC 

targets, without considering long-term wear, thermal stress, or internal resistance growth. 

This leads to overly aggressive cycling, especially during periods of high price volatility, 

accelerating calendar and cycle degradation. In contrast, more advanced dispatch strategies 

adjust behavior based on real-time SoH indicators, ambient temperature, and historical 
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degradation trends. These strategies may include limiting full charge/discharge cycles or 

shifting charging windows during extreme heat. While AI- and Machine-Learning based 

control logic is starting to gain traction in research environments, it is still rare in utility-

scale commercial deployments, leaving significant performance gains unrealized.  

These limitations, ranging from locational blindness to oversimplified dispatch logic, 

underscore the need for more sophisticated BESS project design and operational planning in 

ERCOT. By integrating site-specific price dynamics, curtailment behavior, degradation-

aware control, and long-duration alternatives, the industry can move toward more resilient, 

efficient, and profitable storage deployments. The following chapter presents a modeling 

approach that seeks to address many of these gaps, offering a techno-economic framework 

for evaluating nodal battery performance in a highly granular and realistic ERCOT 

environment. 
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3. DESCRIPTION OF THE DEVELOPED MODEL 

This chapter presents the development of a techno-economic model designed to evaluate and 

optimize battery energy storage system (BESS) deployment within the ERCOT market. 

Building on the research objectives introduced earlier, the model is technically framed to 

simulate the daily operation of a 2-hour lithium-ion battery under realistic market conditions, 

using historical Day-Ahead Market (DAM) pricing data across ERCOT’s 17,000+ nodes 

from March 2021 to September 2024. The model integrates dispatch logic based on price-

driven cycling behavior, seasonal charging strategies, battery degradation mechanisms, and 

core financial metrics, including capital and operating expenditures, tax incentives, and cash 

flow analysis. By identifying high-value nodes and optimizing dispatch performance at a 

granular level, this modeling framework supports more informed investment decisions and 

promotes smarter BESS development across the ERCOT network. 

3.1 DATA ARCHITECTURE 

To simulate battery performance under real market conditions, a robust and scalable data 

architecture was essential. This model relies on ERCOT Day-Ahead Market (DAM) 

locational marginal pricing (LMP) data from March 2021 to September 2024, covering 

thousands of pricing nodes across the Texas grid. Given the scale and granularity of this 

dataset, roughly 16GB of structured price information stored across daily CSV files, building 

an efficient and automated pipeline was critical for both model accuracy and usability. In 

addition to historical price data, the model development benefited from access to detailed 

transmission capacity information provided by EPE (Electric Power Engineers). This 

included N-0 and N-1 ratings for ERCOT’s transmission lines, which indicate the network’s 

ability to handle additional generation or storage capacity under normal and contingency 

conditions. These data were cross-referenced with ERCOT’s 2024 interconnection queue for 

BESS and solar projects, then georeferenced and converted into shapefile and .kmz formats 

for integration into EPE’s Google Earth Pro platform. This mapping enables rapid visual 

assessment of both market attractiveness, through nodal price overlays, and physical 

interconnection feasibility. While these spatial datasets are not embedded within the 
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financial model itself, they form a valuable complement to the techno-economic analysis, 

particularly for early-stage site screening and stakeholder discussions. 

 

Figure 22. Mapped BESS 2024 interconnection queue into Google Earth Pro (white markers = projects) 

The initial phase of model development focused on a subset of several thousand of the most 

relevant ERCOT nodes, specifically those for which Settlement Point Prices (SPPs) were 

available and consistent, mounting up to a total of around 1GB of price information across 

daily CSV files. DAM pricing data for each of these nodes was downloaded in .csv format 

from ercot.com, which was organized by separate day files, therefore an API was necessary 

to extract around 1,300 different .csv files from the website. To automate early-stage testing, 

a Python script using pandas and openpyxl was developed to sweep through daily price files, 

extract values corresponding to specific node names, and paste them into a centralized Excel 

spreadsheet. The user could input a desired node name into the Excel interface, and Python 

would extract its price history, enabling a simplified version of the dispatch simulation. 
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Figure 23. Initial template of data collection from .csv files located in separate folder 

As the project evolved, the availability of complete daily ERCOT LMP datasets for all 

pricing nodes unlocked the potential for full-system simulations across the entire network. 

This allowed the model to scale from a few thousand SPPs to over 17,000 ERCOT nodes, 

covering the full set of LMPs published in the DAM. However, this expansion significantly 

increased the data load, making the Python-Excel pipeline inefficient for repeated queries. 

With over 3.9 million data points covering the full period, extracting data from raw CSVs 

became time-consuming, leading to the integration of a structured SQL solution. 

This new architecture was built in SQL Server Management Studio (SSMS), where LMP 

data was organized into separate databases by year (LMP_2022, LMP_2023, etc.), for which 

each database had a table where all data from that specific year was included. Each table 

within each database was indexed by node name, date, and hour to enable rapid filtering and 

retrieval. This greatly enhanced performance: the Python script was modified to connect 

directly to the SQL database, fetch price data for a selected node, and forward it to the Excel 

model automatically. Now when the user entered a node ID in the Excel interface and pressed 

a macro button, Python executed a real-time query to SQL, retrieved the relevant pricing 

data, and populated the Excel sheet with historical hourly prices. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING 
 

Document 1. Project Report 

53 

 

Figure 24. Separate LMP databases by year, with a .dbo LMP table located in each database containing 

yearly data 

This SQL–Python–Excel structure not only increased the model’s responsiveness, from 

several minutes down to roughly one minute per node simulation, but also made the system 

fully scalable to cover the entire ERCOT network. The automated pipeline allows users to 

simulate BESS dispatch strategies for any known ERCOT node, with outputs linked directly 

to both the techno-economic and financial calculations. By combining open-source tools and 

structured data handling, the model balances computational efficiency with transparency and 

user control. Not only that, but this code updating lead to the model in Excel running in a 

more smooth way, as now the data was loaded into a separate input sheet within the model, 

where data was referenced directly into the model, aiding in tables and figures being updated 

automatically. 
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Figure 25. Data pipeline stored in SQL SSMS for the LMP_2024 database 

 

Figure 26. Closeup on data pipeline 

Now, to achieve this data recollection from a specific node without having to write the node 

down in the code and execute the code, a macro button was inserted in a new ‘Input sheet’ 

within the model to run the economic dispatch once the specific node and the hub against 

which the node wanted to be compared to were selected. Pressing the ‘Calculate Economic 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING 
 

Document 1. Project Report 

55 

Dispatch’ button would link the excel to the python code to execute it, running down the 

whole modeling process in a button click: 

Equation 2. Flow Diagram explaining modeling process through its data architecture  

𝐵𝑢𝑡𝑡𝑜𝑛 𝑝𝑟𝑒𝑠𝑠 → 𝑃𝑦𝑡ℎ𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐸𝑥𝑐𝑒𝑙 𝑀𝑎𝑐𝑟𝑜 

→ 𝑆𝑄𝐿 𝐷𝑎𝑡𝑎 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑝𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 

→ 𝐷𝑎𝑡𝑎 𝑙𝑜𝑎𝑑 𝑖𝑛𝑡𝑜 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 → 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

→ 𝑁𝑒𝑤 𝐸𝑥𝑐𝑒𝑙 𝑠𝑎𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑎𝑚𝑒 ′"𝑁𝑜𝑑𝑒"_𝐵𝐸𝑆𝑆′  

3.2 MODELING ASSUMPTIONS 

To ensure realistic and scalable simulation of BESS performance under ERCOT market 

conditions, the model incorporates a comprehensive set of technical, operational, and 

financial assumptions. These are based on industry standards for utility-scale lithium-ion 

batteries and tailored to ERCOT’s nodal pricing environment and dispatch volatility. 

Technical Parameters and Operational Strategy 

Battery size is a configurable input, allowing project developers to tailor simulations to 

specific site constraints or land availability. Most of the simulations in this thesis are based 

on a 100 MW / 200 MWh configuration, but the model is flexible across sizes. The round-

trip efficiency is set at 93%, consistent with current technology performance and aligned 

with expectations for near-future improvements. Base DoD is modeled at 95%, 

acknowledging more aggressive cycling to maximize economic value, while accounting for 

higher degradation rates in the financial outputs. State of Charge (SoC) is implicitly modeled 

assuming the battery is fully charged for the same number of hours as it is discharged, 

maintaining symmetry over long-term operation, leaving a modeled Mid-SoC of 50%. 

The thermal environment is set at a constant 25 °C operational temperature, which aligns 

with optimal thermal control strategies for lithium-ion installations. This helps minimize 

thermal stress, stabilize internal resistance, and reduce the risk of accelerated aging. HVAC 

and auxiliary energy consumption are modeled as a flat 6% of potential annual energy 

revenues, serving as a proxy for SCADA, temperature control, and balance-of-plant 
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operations. While this figure could fluctuate seasonally, it is conservatively kept constant 

across all simulation runs. 

Battery lifetime is assumed to be 15 years for systems operating at 1.5 cycles per day and 20 

years for systems constrained to one full cycle per day. Degradation is modeled as a 

combination of calendar aging and cycle aging, with an annual round-trip efficiency loss of 

1% and a capacity fade of 1.95% per year at 95% DoD. The model allows users to vary DoD 

assumptions (e.g. 100%, 95%, 80%, 65%, or 50%) to evaluate trade-offs between energy 

throughput and degradation. These rates were benchmarked using findings from the 

Batteries 2020 study and serve as the technical backbone for projecting system performance 

over time. 

 

Figure 27. Technical parameters input in Excel, including degradation curves from scientific study used 

The dispatch logic is seasonally adjusted based on historical ERCOT price behavior. As 

observed in the monthly average price profiles, May to September typically display a single 

peak around evening hours, while January to April and November–December show two clear 

peaks per day. The model integrates this variation by assigning 1 cycle/day in summer 

months and 2 cycles/day in winter months, with each daily strategy simulated using hourly 

average DAM prices over the full historical range. Simulations are conducted on a day-by-

day basis, with price data pulled directly from SQL and used to dynamically assign charging 

(lowest price hours) and discharging (highest price hours) windows. 
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Figure 28. Average hourly LMP for a sample node in one-cycle modeled months 

 

Figure 29. Average hourly LMP for a sample node in two-cycle modeled months 

An additional feature of the model allows for an optional hybrid DAM–RT strategy. In this 

configuration, energy is acquired during the DAM’s cheapest two hours, providing 

scheduling certainty, and discharged during the RTM’s highest two price hours of the same 

day. While this approach assumes ideal foresight, being very optimistic to forecast with 

exactitude the two highest consecutive hours of the day, it serves as an upper-bound scenario 

for evaluating the potential benefits of integrating predictive machine learning models or 
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day-ahead price forecasting engines into BESS control systems. This functionality is referred 

to in the model as the DAM-RT dispatch mode, and helps estimate the upside of future smart 

dispatch optimization tools. 

 

Figure 30. DAM-RT modeling column example 

Curtailment and Co-location Opportunity Estimation 

To evaluate the value-add of BESS in co-located solar + storage scenarios, the model 

estimates economic curtailment using historical curtailment hour counts and ERCOT hourly 

DAM price profiles. This is done by calculating the sum-product of curtailed energy hours 

(in MWh) with the average DAM price at that same hour and month. This method provides 

a reasonable approximation of revenue lost per MW per year due to curtailment events in 

solar-only installations. 

It’s important to note that this figure represents only the value of lost energy at the time of 

generation. To put this into an example, if a specific hour of a day of a specific month the 

LMP where a solar installation is located experiences curtailment, the curtailment model 

values that “economic loss”, or missed revenue, as the average LMP at which energy is sold 

at that hour in that month. This means that a BESS co-located at the same site can not only 

capture that curtailed energy, but shift it to higher-value hours later in the day, unlocking 

further upside not fully captured in this baseline. Therefore, this model treats economic 
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curtailment as a lower bound on co-location opportunity, recognizing that real operational 

strategies may yield higher arbitrage value. 

 

Figure 31. Curtailment heatmap by number of hours vs. Average hourly price in a month for that specific 

hour 

To contextualize the co-location analysis, a standard hourly solar generation profile for a 

100 MW plant in the ERCOT North Hub is applied. This region has seen the most solar 

development activity in Texas over the last decade and provides a representative benchmark 

for solar output patterns and overlap with curtailment-prone hours. 

 

Figure 32. Generic 100MW ERCOT North Hub hourly solar profile in a given year 

As a way of summarizing the modeling assumptions, the following summary table is shown 

to show all modeling assumptions in an organized and brief way: 
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Table 3. Modeling assumptions executive summary used in the Excel model presented 

Category Parameter Value / Assumption 

System Size 

Battery size (MW/MWh) User-defined; typically, 100 MW / 200 MWh 

Project lifetime 15 years (1.5 cycles/day) or 20 years (1 cycle/day) 

Efficiency & 

Losses 

Round-trip efficiency 

(initial) 

93% 

Annual RTE degradation 1% 

Auxiliary/HVAC loss 6% of potential annual energy revenue 

Battery operating 

temperature 

Fixed at 25 °C for thermal stability 

Battery 

Degradation 

Depth of Discharge (DoD) 95% (configurable down to 50%) 

Capacity fade rate 1.95% per year (at 95% DoD) 

End of life SoH threshold 70% 

Aging factors considered Both calendar and cycling aging 

State of Charge 

(SoC) 

SoC modeling approach Balanced daily charge/discharge (50% average SoC) 

Dispatch Strategy 

Seasonal cycling approach 1 cycle/day (summer), 1.5 cycles/day (winter 

months) 

Price data granularity Daily average hourly DAM prices 

Dispatch rule Charge during 2 cheapest hours, discharge during 2 

peak hours 

DAM–RT hybrid option Optional: DAM purchase + RTM discharge using 

ideal foresight 
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Financial Inputs 

CAPEX & OPEX Based on NREL cost curves (scenario-specific), 

OPEX = 3.5% CAPEX 

Tax incentives 30% ITC deducted from CAPEX 

Depreciation model U.S. MACRS-style depreciation 

Co-location 

Modeling 

Curtailment value estimation Sum-product of curtailed hours × DAM price 

(hour/month) 

Additional value from time-

shifting 

Recognized as upside beyond base curtailment 

revenue 

Solar generation profile Hourly profile for 100 MW system in ERCOT North 

Hub 

 

3.3 ALGORITHMIC LOGIC 

The core of the model lies in its ability to emulate real-world battery dispatch behavior using 

historical ERCOT price signals while ensuring technical realism and computational 

efficiency. The algorithm is designed to simulate daily charge–discharge cycles based on 

actual hourly LMP data, apply seasonal dispatch logic, and integrate degradation and 

financial outputs in a modular, scalable way. 

At its foundation, the model scans hourly Day-Ahead Market (DAM) prices for each node 

across a historical period ranging from March 2021 to September 2024. This data is stored 

as 24 rows per day, with each row representing a single hour’s LMP. The VBA macro, 

triggered via an Excel button, processes this data row by row to simulate BESS operation 

over time. For each 24-hour block, the macro identifies the two consecutive cheapest hours 

as the charging window, and the two consecutive most expensive hours as the discharging 

window. This pattern reflects a value-maximizing arbitrage strategy, initially constrained to 

one charge and one discharge cycle per day to reflect battery symmetry and avoid overuse, 

which was later seen to lack full optimality, where the seasonal one-cycle and two-cycle 

mentioned earlier came into place. 
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Figure 33. Output average example for two cheapest and two most expensive hours a day per month 

To enforce technical realism, the algorithm guarantees that charging and discharging blocks 

are symmetrical (i.e., two hours in and two hours out), and that no simultaneous 

charging/discharging occurs. Once the battery has charged for its designated window, it is 

locked from further charging until discharge is completed. This rule-based structure 

maintains a Mid SoC of approximately 50%, consistent with long-term operation and the 

assumptions defined in Section 3.2. 
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For each day in historical LMP dataset: 

1. Scan 24 hourly prices (one row = one hour) 

2. Identify 2 consecutive lowest prices → Charge Window 

3. Identify 2 consecutive highest prices → Discharge Window 

4. If in winter month: 

Repeat steps 2–3 for second cycle (1.5 cycles/day total) 

5. Store charge/discharge hours and associated price spread 

6. Calculate energy arbitrage revenue for the day 

End loop 

Aggregate daily results → Monthly averages → Annual revenue 

Apply annual degradation and round-trip efficiency losses 

Export KPIs to Excel output file 

Figure 34. Simplified Pseudocode of the Daily BESS Dispatch Simulation Input  
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After all daily cycles for selected node are simulated: 

     1. Aggregate charge and discharge windows → Monthly averages 

     2. Calculate daily revenue per MW from price spreads 

     3. Aggregate daily revenues → Monthly and Annual revenue 

     4. Apply annual degradation (capacity + RTE reduction) 

     5. Compute average energy throughput and SoC pattern 

     6. Compare node KPIs vs. selected ERCOT hub 

     7. Optionally run DAM–RT scenario and log separate outputs 

     8. Export all KPIs and revenue summaries to: 

        "NodeName_BESS.xlsx" 

Figure 35. Output Generation Logic for BESS Node Simulation 

Seasonal variability in price patterns is handled via hard-coded month-by-month logic. 

Based on consistent trends observed in multi-year ERCOT data, the model assumes 1 full 

cycle per day in May through October, and 2 full cycles per day in January through April 

and November–December. This corresponds to typical system stress and solar ramp-down 

dynamics across ERCOT, where single-peak and dual-peak price patterns alternate 

seasonally. Accordingly, the VBA macro applies either one or two charge–discharge blocks 

per 24-hour period, depending on the month being processed. All dispatch windows are 

stored in monthly vectors, which are used to calculate daily and monthly average revenue 

per MW of installed capacity. 

Each simulation is run one node at a time, as defined by the user in a central Excel interface 

file called 2HR_BatteryValuation_LMP_SQL.xlsm. The user selects a node of interest, e.g., 

to assess a specific project lead in Houston, and specifies a hub for benchmarking. Once the 

button is pressed, Python first retrieves the node’s full historical LMP profile from the SQL 

database and populates the Excel interface. Immediately after, the VBA logic is triggered, 
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and the simulation begins. The system evaluates each day’s prices, applies the cycle logic, 

and stores calculated monthly metrics. After the run is complete, the model generates a new 

output file containing the full set of BESS valuation results, titled according to the selected 

node (e.g., HoustonWestNode_BESS.xlsx). This output includes KPIs such as average daily 

revenues, monthly earnings, and financial indicators used in Section 3.6. 

 

Figure 36. AI generated workflow architecture of BESS techno-economic model 

The model applies degradation logic on an annual basis, which avoids unnecessary 

complexity while preserving realism in long-term financial projections. Degradation is 

modeled externally as an annual reduction in round-trip efficiency and usable capacity (as 

explained in Section 3.2), and these effects are applied after the revenue simulation. In this 

way, the model retains a clear separation between dispatch behavior and performance decay, 

which simplifies sensitivity analysis and allows for repeatable tests across nodes and 

configuration scenarios. 

The logic also supports an optional DAM–RT hybrid dispatch mode, which can be toggled 

to explore upside from price forecasting and machine-learning-enabled dispatch strategies. 

In this configuration, the battery charges based on the two cheapest hours in the DAM, while 
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discharging based on the two most expensive hours in the RTM of the same day. While this 

approach assumes perfect foresight and ideal execution, it serves as a theoretical upper 

bound for what could be achieved using advanced forecasting tools. The results from this 

mode are included in the financial analysis as a comparative benchmark to the base-case 

DAM-only dispatch. 

Importantly, solar curtailment logic, solar curtailment, known as solar hours where the DAM 

price is below zero, is modeled independently from battery dispatch. The curtailment 

simulation, when activated, estimates the economic value of solar energy lost due to local 

transmission constraints, although unable to see exactly where those constraints come from 

in this model, or oversupply by summing curtailed hours against hourly prices. This allows 

users to explore co-location potential by comparing solar losses with BESS revenues at a 

given node. However, curtailment values are not treated as mandatory charging signals for 

the BESS; rather, they serve to assess whether co-located development makes sense based 

on independent performance of both subsystems. 

 

Figure 37. AI generated workflow architecture of curtailment model  
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3.4 TECH STACK 

The developed model is built on an integrated architecture combining Excel/VBA, Python, 

and SQL, with each component performing a specific and complementary role. This 

configuration was reached through a process of trial and error, balancing technical 

capability, runtime efficiency, and ease of use for non-technical stakeholders. While Python 

and SQL handle large-scale data retrieval and processing, Excel and VBA remain the core 

environment for model execution, parameter adjustment, and results visualization, making 

the tool accessible to project developers and decision-makers without programming 

expertise. 

Excel and VBA – Core Model Environment 

Excel serves as the primary workspace, providing parameter input sheets, results dashboards, 

and graphical summaries of key performance indicators. The heart of the model — the daily 

dispatch simulation — is written entirely in VBA. This approach was initially chosen for its 

directness and readability: anyone opening the model for the first time can follow the logic 

without needing to understand an external programming environment. Once the VBA engine 

calculates annual revenue predictions based on energy arbitrage, embedded Excel formulas 

automatically populate the financial model, generating IRR, NPV, payback period, and other 

economic outputs. The user interface is designed for simplicity: a single button runs the 

entire workflow, and all tables and charts refresh automatically when a new node is 

simulated. 
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Figure 38. Excel interface with node selector and macro button 

Python – Data Retrieval and Validation Layer 

Python’s role in the architecture is focused on the efficient extraction of historical price data 

from the SQL database. Using pandas, pyodbc, and openpyxl, the script retrieves the full 

hourly DAM price profile for the selected ERCOT node and passes it into the Excel interface. 

To ensure data integrity, the script includes security checks that verify the node exists in the 

database and that the expected number of hourly records per year (8,760) is present. If either 

condition fails, the process halts before any dispatch simulation begins. While Python’s 

function is deliberately narrow in scope, this separation of tasks keeps the workflow modular 

and easier to maintain. 
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Figure 39. Battery Valuation Python Script Extract 

 

SQL – Large-Scale Data Management 

The SQL database, hosted locally on a company workstation, contains more than 16GB of 

ERCOT locational marginal price data, covering over 17,000 nodes across approximately 

3.5 years. Data is organized into annual tables (e.g., LMP_2022, LMP_2023) to optimize 

query performance. Before SQL integration, the model relied on CSV extraction and 

processing in Python, which required 5–10 minutes per node and placed a heavy load on 

RAM. SQL reduced retrieval times to roughly one minute per node, with minimal memory 

overhead, enabling faster iteration and making it feasible to run large numbers of simulations 

without overloading hardware, leading to close to a 90% runtime decrease. 
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Figure 40. Comparison of average model runtime before (CSV Based) and after (SQL Integration) 

Integration Workflow 

The sequence is fully automated from the Excel interface. When the user selects a node and 

clicks the “Run Model” button, Python connects to SQL, retrieves the relevant dataset, and 

writes it into the Excel model. VBA then executes the dispatch algorithm, calculates daily 

and monthly revenues, and applies technical and financial assumptions such as degradation 

rates, round-trip efficiency losses, and cycle patterns. The complete results, including tables, 

charts, and a financial summary, are then saved as a separate Excel file named after the node 

(e.g., HoustonWestNode_BESS.xlsx). The same workflow structure is also used for the 

curtailment model, enabling seamless evaluation of co-location opportunities. 

Scalability, Reproducibility, and Adaptability 

The architecture was designed for both scalability and reproducibility. Adding a new year of 

data involves importing it into SQL under a new table and updating a single query in the 

Python script, without modifying the VBA dispatch engine. Similarly, the model can easily 

be adapted to work with Real-Time Market (RTM) data or to apply alternative dispatch 

strategies. For reproducibility, the system’s design allows another analyst to operate it with 

minimal training: open the master Excel file, select a node and hub for comparison, press 
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the run button, and retrieve results. By maintaining consistent output file naming and 

structure, simulations remain traceable and easy to archive. 

 

Figure 41. VBA Code extract showing automatization of model dispatch, adapting to new data to be included 

in the future 

3.5 FINANCIAL MODELING 

The financial model in this study is designed to translate the technical and market 

performance outputs of the VBA-SQL-Python dispatch framework into a comprehensive, 

investment-grade cash flow projection. Its scope extends beyond simple revenue estimation, 

incorporating capital expenditure (CAPEX), operating expenditure (OPEX), tax incentives, 

depreciation, financing terms, and degradation assumptions into a single analytical 

environment. The model is structured as a project finance special purpose vehicle (SPV), in 

line with the prevalent practice in Texas where each large-scale renewable or storage project 

is developed under a separate legal entity, typically a limited liability company (LLC). By 

doing so, the model reflects real-world financing conditions, where lenders evaluate the 
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project on its own merits and cash flows, without recourse to the parent company’s balance 

sheet. 

The primary objective of this financial layer is to determine the feasibility of a 2-hour 

lithium-ion BESS deployment under ERCOT market conditions, based on actual nodal Day-

Ahead Market (DAM) price data. It evaluates both unlevered project internal rate of return 

(IRR), assuming 100% equity funding, and levered shareholder IRR, where cash flows 

account for debt service obligations. This dual-IRR approach allows for a more realistic 

assessment of investment attractiveness from both a total capital and equity investor 

perspective. The model also incorporates the 30% standalone storage Investment Tax Credit 

(ITC) and accelerated MACRS five-year depreciation schedule, both of which are critical in 

improving early-year cash flows and shortening the payback period. 

 

Figure 42. Extract of Financial model 

System & Cost Assumptions 

The base case assumes a 100 MW / 200 MWh utility-scale lithium-ion BESS, although the 

model is fully parameterized to accept any capacity size. CAPEX assumptions are sourced 

from the NREL BESS cost database under three scenarios, Conservative, Moderate, and 
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Optimistic, with Moderate being used as the default. These baseline costs have recently been 

adjusted in this thesis’ model from 2026 onwards to reflect the U.S. tariff increases on 

Chinese imports announced in May 2024, which affect battery parts and non-EV lithium-ion 

batteries. The CAPEX breakdown, drawn from the NREL dataset, is presented to provide 

developers with visibility into the primary cost drivers, highlighting the proportion 

attributable to the battery system itself compared to the electrical balance of system (BOS), 

installation labor, EPC overhead, and other soft costs. 

OPEX is modelled as 3.5% of total CAPEX per year, with 2.5% allocated to maintenance, 

covering routine servicing, corrective repairs, and minor component replacements, and 1% 

to insurance, which also includes provisions for battery module replacement in the event of 

premature degradation within the warranty period. Augmentation is not explicitly scheduled; 

instead, the system is operated until it reaches a reasonable state of health (SoH), at which 

point refinancing or capacity restoration could be considered. The model therefore reflects a 

“run-to-floor” operational approach rather than pre-programmed augmentation milestones, 

keeping early-stage cash flows as high as possible to front-load returns. 

 

Figure 43. NREL-based Utility-Scale BESS Projections included in model (NREL ATB, 2020) 
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Figure 44. US Tariff Modifications on Chinese imports (US International Trade Administration, May 2024) 

Policy, Tax, and Depreciation Assumptions 

The financial model integrates the key policy mechanisms currently shaping the U.S. energy 

storage sector. A 30% standalone storage Investment Tax Credit (ITC) is applied directly to 

eligible CAPEX in the project’s first year, significantly improving equity returns and 

reducing the required capital outlay. Accelerated depreciation is modelled using the 

Modified Accelerated Cost Recovery System (MACRS) five-year schedule, which front-

loads depreciation benefits to the first half of the asset’s life, used mainly in the US. This 

schedule allocates 20% in Year 1, 32% in Year 2, 19.2% in Year 3, 11.52% in Years 4 and 

5, and 5.76% in Year 6, aligning with Internal Revenue Service guidelines for energy assets. 

Federal corporate income tax is set at 28%, applied on earnings before interest and taxes 

(EBIT). In addition, two local property tax scenarios are modelled: a high-tax case at 2.25% 

of property book value per year when no tax abatement is given and a low-tax case at 1.5% 

with tax abatement. Property tax abatements are granted in certain Texas counties where the 

local governing authority deems the project beneficial to the regional economy, providing a 

meaningful boost to after-tax cash flows. Sales tax on equipment is accounted for within the 

CAPEX breakdown, and no separate recurring sales/use taxes are assumed during 

operations. 
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Financing Structure and Debt Assumptions 

The model adopts a project finance special purpose vehicle (SPV) structure, with capital 

sourced from a combination of debt and equity at a 65% / 35% ratio, although with a dynamic 

option to change this debt-to-equity ratio. This mirrors common practice in the Texas 

renewable sector, where each project is ring-fenced under a dedicated LLC to limit investor 

exposure and enable debt to be secured solely against the project’s own cash flows. The 

financing horizon is set to match the operational lifetime of the BESS, 15 years for the 1.5-

cycle scenario and 20 years for the 1-cycle scenario, although debt is conservatively 

structured with a 10-year tenor. This shorter tenor reflects the potential reluctance of lenders 

to commit for the full life of the asset in the merchant-heavy ERCOT market. 

Debt service is modelled at a fixed 5.5% interest rate with straight-line amortization, and no 

upfront financing fees are assumed. Reserve accounts such as a Debt Service Reserve 

Account (DSRA) or Major Maintenance Reserve Account (MRA) are considered implicit 

within the project’s CAPEX, with no separate cash trapping in the base case. This approach 

maximizes distributable cash flow to equity in the early years, which is aligned with the 

model’s strategy of capturing maximum value during the period of highest performance 

before degradation meaningfully impacts throughput. Both unlevered (project-level) IRR 

and levered (shareholder-level) IRR are calculated, allowing investors to assess returns with 

and without debt gearing effects. 

Revenue Streams and Price Treatment 

The financial model’s revenue inputs are sourced directly from the VBA-based dispatch 

algorithm described in previous sections, ensuring a seamless link between nodal market 

performance and financial outputs. The base case assumes energy arbitrage solely within the 

Day-Ahead Market (DAM), where the battery charges during the two cheapest consecutive 

hours and discharges during the two most expensive consecutive hours each day. An optional 

Day-Ahead/Real-Time (DAM-RT) hybrid scenario is also included, in which charging is 

scheduled in DAM and discharging occurs in Real-Time during the two highest-priced hours 
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of the day. While this DAM-RT approach is not used for the primary feasibility analysis, it 

serves as a useful “upside” test case, particularly if predictive analytics or machine learning 

algorithms are integrated in the future to anticipate high-price events in the Real-Time 

Market. 

No ancillary services revenues are included in the base case, ensuring that the outputs reflect 

purely energy arbitrage potential. This conservative approach is deliberate, given that 

frequency regulation and reserve markets in ERCOT are becoming increasingly competitive, 

with revenue cannibalization already observed for short-duration assets. Price escalation is 

modelled at a nominal 1.5% per year for both energy prices and O&M costs, maintaining 

purchasing power parity over the life of the project. Revenues are inherently nodal in nature, 

with basis differences between hub and node already embedded in the VBA model output. 

 

Figure 45. Example of revenue uplift /MW/yr from base DAM case to RT-DAM case 

Performance, Degradation, and Availability Assumptions 

Operational performance parameters in the model are calibrated to reflect their direct impact 

on annual energy throughput and, consequently, on project revenues and lifetime economics. 

The initial round-trip efficiency is set at 87% in Year 1, with a 1% annual decline factored 

into the revenue stream to reflect average conversion losses cited in different studies. This 
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efficiency decay compounds with the 1.95% annual battery capacity fade, a function of the 

model’s high depth-of-discharge assumption, reducing the energy available for sale over 

time. These losses directly erode gross revenues and, in later years, narrow debt service 

coverage ratios, making early-year cash generation critical to the project’s financial 

resilience. 

An HVAC load equivalent to 6% of annual revenue is modelled as a fixed OPEX deduction, 

capturing the cost of maintaining optimal operating temperatures. Availability is set at 99%, 

with the residual 1% downtime assumed for scheduled maintenance and unforeseen outages. 

While these operational metrics may appear modest in isolation, their cumulative effect over 

a 15- or 20-year horizon materially impacts both unlevered and levered IRR, as well as the 

net present value (NPV) of equity cash flows. By embedding degradation and availability 

directly in the annual cash flow calculation, the model ensures that payback profiles and 

sensitivity tests account for the inevitable decline in asset performance over time. 

 

Figure 46. Example of impact on yearly revenues per MW with and without losses 
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Outputs, KPIs, and Sensitivities 

The financial model produces a consolidated summary of project viability through a focused 

set of key performance indicators (KPIs). These include unlevered project IRR, levered 

shareholder IRR, net present value (NPV) at a weighted average cost of capital (WACC) 

consistent with market norms, and simple payback period. While the model runs on annual 

cash flows, Year 1 results also include a monthly revenue breakdown to provide seasonal 

insight into spread volatility. Equity cash flows are presented as a net of debt service for the 

levered case, allowing for direct comparison between project and shareholder returns. 

Visual outputs are designed to make the financial implications of operational and market 

assumptions intuitive for decision-makers. A dynamic waterfall chart illustrates the path 

from gross revenues to equity cash flows, highlighting the proportional impact of OPEX, 

taxes, debt service, and policy incentives. A cumulative cash flow graph shows the 

breakeven year and total equity returns over the project life. Finally, a sensitivity “tornado” 

chart evaluates the effect of key variables, such as CAPEX, degradation rate, price 

escalation, and property tax scenario, on levered IRR, providing a quick diagnostic of which 

factors most influence bankability. Together, these outputs enable a comprehensive 

assessment of project economics that can be adapted to different nodes, system sizes, and 

financing scenarios at the push of a button. 

 

Figure 47. Example of cumulative pay-back within BESS model 

By integrating granular nodal price data with detailed cost, policy, and financing 

assumptions, the financial model bridges the gap between technical performance and 
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investment decision-making. Its flexibility allows developers and investors to rapidly test 

site-specific economics, financing strategies, and operational parameters, producing results 

that are both market-reflective and investment-grade. The use of ERCOT’s nodal Day-

Ahead pricing ensures that location-specific value is captured, while optional DAM-RT and 

co-location scenarios provide a pathway to explore upside potential without overstating the 

base case. Ultimately, this modelling framework serves not only as a valuation tool, but as a 

decision support system, enabling stakeholders to prioritize high-return opportunities, 

mitigate financial risks, and align project development with long-term market trends in 

Texas’s evolving energy storage landscape. 

3.6 MODELING LIMITATIONS 

While the developed techno-economic model is designed to provide a robust and location-

specific valuation of BESS projects within ERCOT, several limitations must be 

acknowledged to ensure the correct interpretation of results. These limitations arise both 

from deliberate scoping choices, made to maintain model clarity and processing efficiency, 

and from external factors that could materially influence project economics but are not yet 

integrated into the framework. 

The most significant limitation is the exclusion of ancillary services revenues, despite their 

historical importance in ERCOT’s storage market. As of 2024, the total available ancillary 

services capacity is approaching full saturation, with projections from ModoEnergy 

suggesting this will occur by December 2024. In saturated conditions, auction competition 

forces participating BESS assets to bid lower to secure contracts, eroding the profitability of 

ancillary-only dispatch strategies. Enhanced Contingency Reserve Service (ECRS), 

introduced in June 2023, remains the most lucrative service on a $/MW basis, with BESS 

comprising 20–30% of its capacity. However, ECRS also favors longer-duration systems, 

typically 4- to 8-hour batteries, which fall outside the 2-hour lithium-ion scope of this thesis. 

By focusing on pure energy arbitrage, the model avoids overestimating revenues in a market 

segment where long-term sustainability is uncertain. 
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Figure 48. ModoEnergy study showing phase II of battery revenues, now focusing on energy arbitrage 

(ModoEnergy, 2025) 

The model also does not account for transmission congestion management costs or potential 

transmission upgrades, which can be material in ERCOT’s nodal market. On the other hand, 

recent news suggests important resource allocation in ERCOT to new 345kV and new 765kV 

lines to be built across Texas, with additional line capacity upgrades for 138kV and 69kV 

lines as well. While project viability inherently depends on interconnection capacity, these 

costs are excluded from the financial layer, as it will be assumed that no project will be 

placed in lines which need a self-financed line upgrade. However, through collaboration with 

EPE, nodal transmission capacity (N-0 and N-1 ratings) is known for each line in the ERCOT 

network. This information has been mapped against the 2024 interconnection queue of BESS 

and solar projects, with each line identified and converted into shapefile and .kmz formats 

for integration into Google Earth Pro, as shown in Figure 22 for BESS projects and the 

following figure for PV projects. This geospatial resource allows developers to visually 

assess both network capacity and market attractiveness when scouting potential project sites, 

an asset that complements, but is not directly embedded within, the techno-economic model.  
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Figure 49. Mapped PV 2024 interconnection queue into Google Earth Pro (yellow markers = projects) 

Technology scope is another limiting factor. The model is calibrated exclusively for utility-

scale lithium-ion batteries, leveraging their current dominance in ERCOT’s storage mix. 

Technical parameters such as round-trip efficiency, degradation, and HVAC loads are based 

on lithium-ion performance profiles at an optimal operating temperature of 25°C. HVAC 

energy consumption is fixed at 6% of annual revenues, contrasted once again with industry 

experts, assumed sufficient to maintain this temperature across all ERCOT climate zones 

when paired with proper insulation and CAPEX-allocated environmental controls. This 

assumption removes seasonal variability from the model, meaning that real-world deviations 

in auxiliary loads, especially during extreme Texas summers, are not reflected in cash flows. 

Price data and dispatch logic also impose boundaries on the model’s predictive capability. 

Revenues are based solely on historical Day-Ahead Market (DAM) price data (with optional 

Real-Time discharge in the DAM-RT scenario), without any forward-looking price 

forecasting. Seasonal cycle patterns, one cycle in summer months and two in winter, are hard 

coded by month based on observed historical trends, which may shift in future due to factors 

such as climate change. Projections for Texas suggest that average summer temperatures are 
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rising, and winter peak demand patterns may change, which could alter the optimal seasonal 

dispatch profile in the coming decades. 

Finally, the co-location and curtailment analysis is run separately from the BESS dispatch 

model. While this tool evaluates the economic value of lost solar output and potential battery 

capture, it does not integrate co-location revenues directly into the financial outputs. 

Moreover, the solar generation profile used in curtailment modelling is generic for the North 

Hub, ERCOT’s most active solar development region in the last decade, and not node-

specific or weather-year specific. This approach provides a reasonable baseline but may 

understate or overstate curtailment opportunities at individual sites. 

Overall, these limitations underscore that the model is intended as a decision-support tool 

rather than a definitive profitability guarantee. Its value lies in identifying attractive nodes, 

testing operational strategies, and quantifying the impact of key technical and financial 

parameters, all while recognizing that broader market forces, evolving policy, and 

technological advancements will influence actual project performance. 
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4. RESULTS ANALYSIS 

The results chapter applies the developed techno-economic model to real ERCOT nodes, 

illustrating how nodal conditions, solar resources, and market volatility shape the financial 

viability of BESS projects. To contextualize model behavior, two representative case studies 

are analyzed: Pamplona, located in the Houston Hub, and Santa Monica, located in the North 

Hub. These sites were selected because they align with strategic interests in ongoing project 

development, while also offering contrasting market conditions. Houston is characterized by 

higher price volatility and stronger solar resources, albeit within a land-constrained 

development environment. In contrast, the North Hub provides a more established region for 

solar and storage projects, with relatively stable nodal dynamics and lower solar yields. 

 

Figure 50. Pampona project location, West from Houston 

Together, these case studies highlight how the same BESS configuration can yield differing 

outcomes depending on local market conditions, thereby reinforcing the importance of 

location-specific analysis. Following the node-level results, Section 4.2 expands the scope 

to a system-wide benchmarking across ERCOT’s 17,000+ nodes, while Section 4.3 
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introduces sensitivity testing to assess robustness under varying technical and financial 

assumptions. 

4.1 BASE CASE NODE ANALYSIS 

This section evaluates the financial outcomes of the developed model at the node level for 

the two mentioned nodes. For each selected site, annual revenues, project and shareholder 

IRRs, and payback periods are presented. Results are then compared across nodes to 

illustrate how location-specific market conditions drive project feasibility. 

4.1.1 Pamplona (Houston Hub) 

Pamplona presents one of the strongest profiles in this study due to its high price volatility 

and spreads, which translate directly into enhanced arbitrage revenues. Under the base case 

assumptions, the model estimates annual revenues of $89,412 per MW / 2 MWh installation, 

yielding a project IRR of 4.93% (unlevered) and a shareholder IRR of 6.0% (levered). 

Payback periods are 10 years at the project level and 12 years at the shareholder level, 

making Pamplona one of the more financially robust nodes evaluated. Although these 

numbers don’t look very attractive for investors, it has to be taken into account that this base 

model doesn’t account for intraday trading and ancillary services revenue, so only with 

DAM-DAM dispatch those numbers look very interesting compared to the whole of 

ERCOT, giving a positive KPI comparison vs. ERCOT, which will be discussed later. 

 

Figure 51. Pamplona Node (GEB_138A) Summary Sheet Results 

From a solar perspective, Pamplona records an average solar price of $49.71/MWh, slightly 

below the Houston hub average of $50.06/MWh. Curtailment is negligible, at only 2 hours 

per year, far below the levels observed in West Texas nodes. Although this means co-
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location would not be driven by curtailment avoidance, there is a case for it if the available 

land exceeds BESS requirements. Under such conditions, EPC and interconnection 

synergies could make a combined solar + storage development economically compelling. 

 

Figure 52. 2 Curtailment hours seen in Pamplona node, at a given day at 1PM and 3PM 

4.1.2 Santa Monica (North Hub) 

Santa Monica provides an instructive counterpoint. Annual revenues were $85,247 per MW 

/ 2MWh, almost $4,200 lower than Pamplona per MW per year, leading to weaker financial 

returns: project IRR of 3.95% and shareholder IRR of 3.9%. Payback periods extended to 

11 years (project) and 13 years (shareholders), reflecting thinner margins and higher relative 

risk. While technically feasible, the project’s economics highlight the importance of node 

selection in ERCOT’s volatile market. 

0

10

20

30

40

50

60

70

80

90

Cu
rt

ai
lm

en
t  

($
/M

W
h)

JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

UNIVERSITY MASTER’S DEGREE IN INDUSTRIAL ENGINEERING 
 

Document 1. Project Report 

86 

 

Figure 53. Santa Monica Node (Navarro_Bus1) Summary Sheet Results 

Interestingly, Santa Monica’s average solar price of $45.84/MWh is slightly above the North 

Hub average ($45.49/MWh). This made the site attractive for solar development, even if 

BESS economics were weaker. In practice, the node ultimately supported a solar-only 

project, illustrating how nodal conditions may favor different technologies. Curtailment at 

Santa Monica is negligible, meaning co-location would not provide significant incremental 

value beyond EPC or grid interconnection synergies. 

4.1.3 Comparative Insights 

The comparison between Pamplona and Santa Monica underlines how location-specific 

conditions shape feasibility. Pamplona’s higher spreads and volatility support stronger BESS 

returns, while Santa Monica, despite a slightly more favorable solar price, produces weaker 

storage economics. This difference in economic viability is graphically seen by looking at 

monthly average daily revenues seen in both nodes. 
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Figure 54. Pamplona vs Santa Monica average daily revenues per month ($/MWh) 

It can be observed that Pamplona’s node average revenues is higher for most months in 

comparison to Santa Monica, being one of the only exceptions the month of August, where 

intense heat waves are experienced more in the North Hub and volatility increases due to 

spikes in demand. 

In addition, both nodes exhibit very low curtailment, meaning co-location decisions here are 

more a matter of synergies and land availability than curtailment relief. However, this is not 

the case system wide. In West Texas, curtailment can reach hundreds of hours annually due 

to high renewable penetration and transmission congestion, creating stronger incentives for 

co-located storage to capture otherwise lost revenues. While not the focus of this study, this 

contrast demonstrates why co-location potential must always be assessed in nodal context, 

and why a node-by-node analysis is crucial for developers. 
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Figure 55. Example of Curtailment in an average West node (DUBLIN_8) 

The following table acts as a summary of different financial and technical metrics between 

Santa Monica and Pamplona, which consolidate that in this case, Pamplona outperforms in 

this model to Santa Monica, and so it should be the main focus if an investor was to choose 

between the two. 
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Table 4. Metric Comparison Summary between Pamplona and Santa Monica nodes 

Metric Pamplona (Houston Hub) Santa Monica (North Hub) 

Annual Revenues Y1 ($/yr, 

100 MW / 200 MWh) 

$894,127 $852,470 

Project IRR (Unlevered) 4.93% 3.95% 

Shareholder IRR (Levered) 6.0% 3.9% 

Payback Period (Project) 10 years 11 years 

Payback Period 

(Shareholders) 

12 years 13 years 

Average Solar Price ($/MWh) 49.71 (slightly < hub avg. 50.06) 45.84 (slightly > hub avg. 

45.49) 

Curtailment Hours (per year) 2 0 

Solar Feasibility Strong but secondary; 

EPC/interconnection synergies matter 

Attractive solar-only; ultimately 

developed as solar 

Co-location Potential Conditional (if excess land & EPC 

synergies) 

Minimal (curtailment too low, 

better as standalone solar) 

Volatility Profile High, strong spreads Moderate, thinner spreads 

 

4.2 SYSTEM-WIDE INSIGHTS FROM ERCOT BENCHMARKING 

The comparative analysis between Pamplona and Santa Monica underscores the decisive 

role of nodal conditions in shaping BESS project outcomes. While both sites display low 

curtailment, their revenue profiles and IRRs diverge significantly due to differences in 

volatility and hub-specific dynamics. To move beyond individual case studies, the next 

section benchmarks result across ERCOT’s 17,000+ nodes, providing a system-wide view 

of storage economics and highlighting where opportunities are concentrated. 
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4.2.1 Hub-Level Benchmarking 

ERCOT is divided into 6 main hubs: North, South, Houston, West, Coastal and Panhandle. 

In this thesis, the main focus is on the first 4 hubs mentioned, as they’re the most common 

hubs where projects are developed. Each hub generates has different price volatilities for 

each month of the year, with some hubs benefiting from winter daily revenues against the 

others (West Hub) whilst others benefit more on summer periods (Houston and North Hubs). 

The following figure shows average daily revenues per month for North, South, Houston 

and West Hub. 

At the ERCOT-wide level, the average revenue across all 17,000+ nodes is $84,971/MW-

year, which serves as a baseline reference for identifying above- and below-average hubs. 

However, hub-level conditions create meaningful divergences in BESS profitability, shaped 

by volatility, congestion, and curtailment dynamics. 

 

Figure 56. Average annual revenues across ERCOT Main Hubs, excluding Coastal and Panhandle 

The West Hub records the highest benchmark at $90,497/MW-year, surpassing the system-

wide mean by more than 6%. This reflects strong price volatility and arbitrage spreads, 

largely driven by high solar penetration and frequent congestion. Something also important 

to mention is the West’s high level of curtailment due to the massive wind energy penetration 

through PTC, which lowers prices drastically in days of high renewable energy penetration. 
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This in turn means that not only BESS is interesting in the West Hub, rather that it could 

help existing solar installation to not stop production at any time due to curtailment, as BESS 

could absorb energy in periods of curtailment if co-located to a solar installation. 

The Houston Hub follows with $87,505/MW-year, supported by high demand concentration 

and frequent scarcity pricing, as well as being a hub known for its frequent extreme weather 

events, especially frequent tornado appearance in the coast of Houston. While consistently 

above the ERCOT average, the hub faces significant land and interconnection constraints, 

making development more challenging. For developers who can secure land and 

transmission rights, however, Houston offers some of the strongest arbitrage opportunities. 

The North Hub averages $85,290/MW-year, placing it close to the ERCOT-wide mean. 

Compared to Houston and West, its spreads are thinner, but its market is also less volatile, 

offering more predictable (though slightly lower) returns, which adds security to 

investments. This relative stability may appeal to more risk-averse investors, even if headline 

revenues are lower, meaning looking for an over the average arbitrage revenue node in the 

North Hub would be one of the most interesting projects in terms of low risk for investors. 

Finally, the South Hub posts the weakest performance at $81,906/MW-year, roughly 3.6% 

below the ERCOT mean. Moderate spreads, combined with growing renewable congestion, 

reduce arbitrage margins, as well as the South Hub disposing of less industry and 

concentrated population, which lowers demand in the hub compared to other Hubs like the 

North Hub. On the other hand, for this hub, co-location with solar appears more promising 

than standalone projects, as BESS can capture value by storing otherwise curtailed 

generation. 

Taken together, these benchmarks confirm that location is decisive for BESS feasibility in 

ERCOT. While West and Houston present the highest standalone revenues, they are 

constrained by high scale market uncertainty and grid bottlenecks. By contrast, North and 

South hubs trade profitability for greater predictability, for the North Hub or co-location 
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potential for the South Hub. Developers must therefore balance revenue opportunity against 

operational challenges when selecting project sites. 

4.2.2 Node Ranking & Relative KPIs 

To complement the hub-level analysis, node-level KPIs provide a more granular perspective 

on project feasibility. To obtain a full node-level KPI, the KPI had to be split into 2 separate 

KPIs: Marginal Hub revenue, and Marginal Node revenue. The Marginal Hub revenue 

expresses how the hub where the project analyzed is located differentiates in revenue level 

to the global hub average, giving a KPI at hub level. For example, for this case, the West 

hub leads this KPI, with a +6.5%. On the other hand, to obtain the final node level, it has to 

be compared how the node’s revenues differ from the hub’s average it’s located in. The 

following figure compares Pamplona and Santa Monica’s node to demonstrate the difference 

in node quality for energy arbitrage between the two. 

 

Figure 57. KPI value difference between Pamplona and Santa Monica, split into the two sub-KPIs 

Pamplona demonstrates a clear competitive advantage, generating $89,412/MW-year, which 

is 2.2% above the Houston Hub average and 5.2% higher than the ERCOT-wide benchmark. 

This reinforces Houston’s node overall attractiveness for BESS despite land constraints 
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present, while also highlighting Pamplona as a strong outperformer even within its own hub, 

showing Pamplona as a very attractive target for BESS development. 

By contrast, Santa Monica sits almost exactly at the North Hub average ($85,290/MW-year), 

showing virtually no deviation from its hub peers and only a marginal +0.4% above ERCOT 

average. Although this makes Santa Monica less of a standout performer, its relative stability 

and higher solar price compared to the hub average still mark it as an attractive site for solar-

only or hybrid development, which is a separate theme from this thesis. 

This comparison underscores three key takeaways. First, location matters: node-level 

dynamics can shift profitability by several percentage points even within the same hub, so 

it’s important to analyze any node of interest separately, even if it’s present in a hub in 

principle not as attractive as the other hubs. This leads into the second takeaway, that hub 

averages conceal wide dispersion; strong nodes like Pamplona can significantly outperform 

their hub peers, while others barely match averages. Finally, competitiveness must always 

be measured against the ERCOT system-wide average, as this establishes a consistent 

benchmark for BESS projects throughout ERCOT as a whole. 

Together, these results show how ERCOT’s nodal system rewards developers who optimize 

site selection at the most granular level. These KPIs intend to show a direct comparison 

between all 17,000+ nodes in ERCOT without having to deep-dive into project economics 

accurately. What this means is, that even if some assumptions are too conservative in the 

financial model, as long as a project in a node has seen to be viable in practice, this model 

can directly compare that node to any other node of interest, showing that if the node 

comparison results in a positive outcome vs the existing viable node, then there’s a high 

chance the node analyzed might be profitable as well. To transition forward, it is important 

to note that while node KPIs highlight location-specific strengths, financial performance 

remains highly sensitive to technical and economic assumptions such as CAPEX, cycle 

depth, and market volatility. These sensitivities are addressed in the next section. 
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4.3 SENSITIVITY ANALYSIS (PAMPLONA CASE STUDY) 

To better understand how operational and financial assumptions influence project outcomes, 

a sensitivity analysis was conducted on the Pamplona node in the Houston Hub. Pamplona 

was chosen as the reference point because it showed the most promising economics in the 

base case. By isolating this node, sensitivities can be clearly illustrated without duplicating 

analysis across multiple sites. 

The analysis varies individual parameters while holding all others constant, to identify the 

drivers that most strongly affect project viability. Results are reported in terms of changes to 

IRR, payback period, and cumulative revenues relative to the Pamplona base case.  

 

Figure 58. Pamplona Base Case Scenario 

4.3.1 DAM vs. DAM–RT Dispatch 

The most influential sensitivity factor was the choice of market participation strategy. Under 

a Day-Ahead Market only (DAM) scenario, Year 1 revenues for a 100 MW / 200 MWh 

installation at Pamplona reached approximately $8.94 million, as shown in the previous 

figure. However, when simulating an ideal DAM–RT strategy, revenues jumped to $14.68 

million, an increase of 64%. 
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Figure 59. Pamplona ideal DAM-RT Dispatch Scenario 

This revenue uplift translated into a project IRR increase from 4.9% to 16.1%, and a 

shareholder IRR increase from 6.0% to 31.7%, cutting payback times nearly in half (from 

10–12 years to 3–5 years). These results illustrate the transformative role of predictive 

dispatch optimization. While the simulation assumes perfect foresight of real-time price 

peaks, advances in machine learning and AI forecasting suggest that ERCOT operators could 

realistically capture part of this upside in future years, exponentially increasing project 

viability. 

4.3.2 CAPEX Scenarios (NREL Cost Paths) 

In addition, Capital expenditure assumptions represent another critical driver of feasibility. 

Using NREL’s 2019 projections, there are three CAPEX projection tiers to be analyzed. 

These are Optimistic, Moderate and Conservative. Bear in mind the base case used for past 

results display show the moderate case for an initial construction date of 2027. The other 

two scenarios give opposite results and differ heavily from the moderate scenario: 

Both cases-maintained Year 1 revenues per an 100MW installation to $8.94 million. 

However, on one hand, Optimistic CAPEX (473 $/kW) increased the project IRR to 15.5% 

and the shareholder IRR to 30.1%, with payback shortened to six and three years, 

respectively. On the other hand, Conservative CAPEX (844 $/kW) sharply reduced 

feasibility, with IRRs falling to 2.7% (project) and 1.3% (shareholders). These results 

demonstrate that CAPEX reductions remain a structural enabler for BESS projects, much 

like the solar PV industry in its early growth phase. Without continued technological cost 

declines or federal incentives, BESS projects face difficulty achieving investment-grade 
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returns. In fact, without the 30% ITC, the Pamplona project, and almost any node project as 

of now, would fall into negative NPV territory, making energy arbitrage alone insufficient 

to sustain viability. 

 

Figure 60. IRR shifts under different CAPEX scenarios 

4.3.3 Technical Parameters 

Although dispatch strategy and capital costs remain the dominant factors in determining 

project feasibility, the technical configuration of the battery also has a meaningful influence 

on financial performance. The analysis highlights how changes in cycle count, depth of 

discharge (DoD), and round-trip efficiency (RTE) affect revenues and investment metrics. 

A first comparison was made between 1 and 1.5 cycles per day, using the winter period for 

2 cycles and the summer period for 1 cycle as mentioned before in the model explanation. 

Moving from 1.5 cycles/day (associated with a 15-year project life) to 1 cycle/day (extending 

lifetime to 20 years) led to a sharp decline in Year 1 revenues, from $8.94 million to $7.07 

million per 100 MW installation, equivalent to a 21% reduction and a significant reduction 

in IRR. While the longer horizon of a single-cycle strategy partly compensates, investors 

generally favor the higher near-term cash flows associated with 1.5 cycles/day, as these 

shorten the payback period and reduce exposure to long-term market uncertainties. Not only 
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that, but that 21% reduction is very significant and shows the upside potential of taking 

advantage of the two daily peaks and two daily troughs in winter periods. 

Depth of discharge (DoD) was also shown to materially affect project economics. At a high 

DoD of 95%, the battery captures maximum revenue potential. Reducing the DoD to 80% 

decreases Year 1 revenues to $7.53 million, a 15.8% decline relative to the base case, while 

project IRR falls to 3.8% and shareholder IRR to 3.6%. Further lowering the DoD to 65% 

reduces revenues to $6.11 million (–31.7%), driving IRRs below 3%. Although lower DoD 

settings extend technical lifetime by mitigating degradation, the associated reduction in 

usable capacity imposes a significant economic penalty, outweighing the long-term benefit. 

RTE demonstrates a smaller, but still notable, influence on profitability. Improving RTE 

from 93% to 95% raises Year 1 revenues to $9.15 million, boosting IRRs to 5.4% (project) 

and 7.0% (shareholders). Conversely, reducing RTE to 91% results in revenues of $8.74 

million (–2.2% compared to the base case), with a subsequent reduction in IRR as well. 

While these shifts are less dramatic than those produced by CAPEX or cycle settings, they 

underline the importance of incremental technical improvements in maximizing returns. 

Taken together, these results suggest that technical refinements act more as value optimizers 

than as primary drivers of project feasibility. Higher RTE and carefully optimized cycle 

scheduling can enhance margins and accelerate payback, but they do not fundamentally alter 

the project’s economic outlook. Instead, they are most effective when combined with 

stronger revenue levers such as DAM–RT arbitrage strategies or lower capital costs, where 

they serve to amplify already favorable conditions. 
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Figure 61. Revenue for Y1 per 100MW installation for different technical scenarios 

4.3.4 Synthesis 

This sensitivity analysis confirms that location and dispatch strategy are the decisive factors 

in ERCOT’s BESS market. Dispatch tactics, CAPEX reductions and ITC support are 

necessary to lift projects from marginal to attractive status, while technical assumptions such 

as DoD and RTE provide fine-tuning rather than structural changes. In particular, the 

transition from DAM-only to DAM–RT dispatch represents the most powerful lever, capable 

of tripling shareholder IRR and halving payback times. The following table summarizes the 

sensitivity analysis, starting from the base case and working down from most to less 

impactful parameter changes. 
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Table 5. Sensitivity Analysis summary table 

Scenario Y1 Revenue 

($) 

Project 

IRR (%) 

Shareholder 

IRR (%) 

Project 

Payback 

(Years) 

Base Case (DAM, 93% RTE, 95% 

DoD, Mid CAPEX of 756 $/kW) 

8,941,265 4.93 6.0 10 

DAM–RT Dispatch 14,682,303 16.12 31.7 5 

Optimistic CAPEX (473 $/kW) 8,941,265 15.46 30.1 6 

Conservative CAPEX (844 $/kW) 8,941,265 2.69 1.3 12 

1 Cycle/Day 7,071,878 3.80 3.8 12 

80% DoD 7,529,487 3.78 3.6 13 

65% DoD 6,117,708 2.70 2.0 16 

95% RTE 9,146,811 5.40 7.0 10 

91% RTE 8,735,719 4.45 5.0 11 

 

The sensitivity analysis highlights that market strategy and capital costs are the dominant 

levers of feasibility. Shifting from a DAM-only strategy to DAM–RT dispatch close to 

doubles annual revenues and raises project IRR above 16%, confirming the central role of 

real-time optimization for future models. Similarly, CAPEX assumptions critically shape 

outcomes: an optimistic cost trajectory brings IRRs to 15–30%, while conservative costs 

push the project close to unviability. By contrast, technical parameters such as DoD or 

round-trip efficiency affect results in smaller increments, extending or shortening asset life 

but not fundamentally altering feasibility.  
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5. CONCLUSIONS 

Battery Energy Storage Systems (BESS) have emerged as one of the most critical 

technologies to ensure grid reliability and accelerate the energy transition. In ERCOT, where 

extreme volatility, renewable penetration, and the absence of a centralized capacity market 

create unique challenges, storage represents a clear pathway toward greater stability and 

efficiency in the grid. The market outlook is highly promising: cost declines, regulatory 

support such as the IRA, and continued investment in advanced chemistries and dispatch 

optimization all point toward accelerated growth in the coming decade, apart from the 

increase market participation from developers on BESS projects, and increase high demand 

growth that allows for higher BESS penetration with a lower risk associated to it. 

At the same time, however, risks remain. Increasing competition in the ancillary services 

market close to full saturation, potential price cannibalization from oversupply of short-

duration systems, and uncertainties around long-term policy design could affect the 

profitability of individual projects. These factors highlight that while the opportunity is 

significant, careful modeling and site-specific analysis remain essential to de-risk investment 

decisions, as done and analyzed in this thesis.  

This thesis was motivated by two key drivers. First, the recognition that BESS has the 

potential to reshape ERCOT’s market dynamics by reducing price volatility, mitigating 

curtailment, and enabling higher shares of renewable integration. Second, the strategic 

ambition to position Solea Power Corp. at the forefront of this transition by developing a 

robust business branch dedicated to storage projects, extending its existing well known solar 

development reputation. By creating a techno-economic model capable of capturing node-

level revenues, this work seeks not only to quantify opportunity but also to provide a 

practical decision-support tool for developers, investors, and policymakers navigating 

ERCOT’s rapidly evolving market. 
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5.1 METHODOLOGY REVIEW 

The methodology developed in this thesis successfully integrated large-scale market data 

with a techno-economic modeling framework tailored to ERCOT’s unique conditions. By 

combining SQL for data storage, Python for efficient extraction, and Excel with VBA for 

dispatch simulation and financial modeling, the system achieved both depth and 

accessibility. This hybrid design allowed complex nodal data from over 17,000 nodes to be 

processed while remaining usable for stakeholders without programming expertise. 

𝐸𝑅𝐶𝑂𝑇 𝐷𝑎𝑡𝑎 →  𝑆𝑄𝐿 →  𝑃𝑦𝑡ℎ𝑜𝑛 →  𝐸𝑥𝑐𝑒𝑙/𝑉𝐵𝐴 →  𝑅𝑒𝑠𝑢𝑙𝑡𝑠 & 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝑠 

Key modeling assumptions, including conservative values for depth of discharge, round-trip 

efficiency, and system lifetime, were deliberately chosen, and contrasted with industry 

experts at the time, to reflect realistic project risk and functionality. The decision to simulate 

seasonal cycle strategies and incorporate degradation factors ensured the outputs were 

technically and financially accurate. At the same time, the use of node-level granularity 

provided a distinctive advantage, enabling project feasibility to be evaluated at a resolution 

rarely attempted in industry studies in this sector so far. 

Nevertheless, several challenges emerged. The initial Excel CSV file processing speed 

limited scalability when compared to an SQL environment, having to add complexity to the 

model that directly translated into efficiency, going from a close to 1GB database to a 16GB 

database leading to this change to be necessary. In addition, the model excluded real-time 

trading and ancillary service participation in its base case, restricting revenue representation 

to DAM-DAM energy arbitrage only. While this was intentional to maintain analytical 

clarity, it highlights the need for more advanced dispatch approaches in future iterations. 

However, the real time trading combination with DAM energy purchase was also included 

later in the model to give an indicative measure of potential revenue growth. 
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5.2 KEY INSIGHTS FROM RESULTS 

The analysis of ERCOT’s nodal landscape showed that West Texas hubs remained the most 

profitable for energy arbitrage, with average revenues of nearly 90,500 $/MW-year, 

outperforming Houston (87,500 $/MW-year) and North (85,300 $/MW-year), hubs 

containing the two nodes analyzed in this thesis, Pamplona and Santa Monica. However, 

these gains are tempered by practical challenges, as West Texas is geographically remote, 

sparsely populated, and has a history of community resistance to new renewable projects. 

Houston, by contrast, faces tighter land availability and congestion, but its price volatility 

and higher average price levels still make it one of the most attractive regions for developers. 

At the node level, the Pamplona project in Houston emerged as the most feasible of the 

studied cases, yielding close to 894,000 $ in Year 1 revenues for a 100 MW system, with a 

10-year projected project payback. The Santa Monica project in the North Hub, while 

slightly less profitable, still highlighted the importance of solar pricing dynamics and co-

location potential, showing that land-rich nodes with competitive solar pricing can still 

represent viable investment opportunities there, although this wasn’t the main focus of the 

study.  

Regarding co-location, results confirm that its value is secondary in low-curtailment hubs 

such as Houston and North. The real opportunity lies in West Texas, where solar generation 

frequently exceeds transmission capacity and curtailment levels are higher, especially due 

to the fact of high wind energy generation supported by Production Tax Credit, or PTC as 

mentioned earlier in this thesis. In such nodes, a BESS can meaningfully capture lost solar 

output and shift it to higher-priced hours, creating a dual benefit for project economics. 

Finally, the study underscores the conditions under which BESS projects thrive or struggle. 

High-viability conditions include DAM-RT optimized dispatch and lower CAPEX 

scenarios, both of which can lift IRRs to investor-attractive levels above 15%. Conversely, 

conservative CAPEX, removal of the ITC, or restrictive operational parameters (e.g., 

shallow DoD, lower RTE) significantly erode feasibility, in some cases pushing IRRs below 
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3% and extending payback beyond acceptable ranges. This dual perspective illustrates the 

fine balance between market opportunity and financial risk in ERCOT’s market. 

5.3 LIMITATIONS OF THE STUDY 

Like any techno-economic analysis, this study is built on a series of assumptions and 

simplifications that, while carefully chosen, inevitably introduce certain limitations to the 

whole scope of the study. These limitations reflect both the scope of the model design and 

the broader uncertainties that characterize ERCOT’s evolving market environment. That 

being said, they should not be interpreted as flaws but rather as boundaries that frame the 

practical insights of this thesis, boundaries that could be developed in the future if a practical 

team can get behind this study. 

At a technical level, the model deliberately excludes ancillary service participation, weather 

forecasting, and real-time dispatch adjustments. These were omitted to avoid 

overcomplicating the core structure and to maintain a clear focus on energy arbitrage, the 

most transparent and location-dependent revenue stream in ERCOT, also with the biggest 

growth to come in upcoming years. Assumptions such as fixed temperature operation 

(25°C), constant HVAC consumption (6%), and annualized degradation steps are 

simplifications that strike a balance between technical realism and computational and 

operational efficiency. While more granular modeling could capture marginal effects, the 

expected deviations in long-term outputs are minor compared to the broader trends 

highlighted by the model. On the data side, the study relies on March 2021 to September 

2024 ERCOT DAM prices, as well as RT Hub prices outside the base case scenario. This 

window provides sufficient coverage of recent market dynamics, including the extreme 

summer of 2023, which saw very significant volatility. However, events such as Winter 

Storm Uri (Feb 2021) were excluded, as they represent rare outliers that would skew long-

term feasibility assessments, even though as stated earlier in this thesis “almost payed off 

the CAPEX of the whole BESS project we had”, stated by an industry expert. By focusing 

on “typical” high-volatility periods rather than one-off crises, the model produces results 

that are more representative of future project economics, rather than expecting that to happen 

within the project’s lifetime. 
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Financial assumptions also carry inherent simplifications. OPEX was modeled as 3.5% 

(2.5% for maintenance and 1% for insurance) of CAPEX, with a fixed debt-to-equity 

structure and standardized tax brackets. While these reflect realistic averages from NREL 

and industry benchmarks, they do not account for project-specific variations such as site-

specific insurance premiums. These exclusions were intentional, given that such details can 

be highly case-specific and would obscure the generalizable insights the thesis aims to 

deliver. 

Ultimately, these limitations underline the purpose of the model: not to provide a 

deterministic forecast of project revenues, but to deliver an indicative framework for 

assessing the relative attractiveness of nodes across ERCOT. By focusing on arbitrage and 

scalable assumptions, the model serves as a decision-support tool that helps developers, 

investors, and policymakers to identify promising locations and understand the trade-offs 

involved in BESS deployment. Its results should therefore be read as directional guidance 

rather than exact predictions, highlighting where opportunity is most likely to materialize 

while acknowledging the inherent uncertainty of ERCOT’s competitive market. 

5.4 RECOMMENDATIONS FOR FUTURE WORK 

The most immediate step forward lies in extending the current model from a DAM-only 

framework into a fully integrated DAM–RT dispatch tool. While this thesis has already 

demonstrated the theoretical upside of perfectly switching between DAM and RT’s most 

profitable hours, this assumption represents an idealized scenario in which operators know 

future prices with certainty, which is technically impossible. The logical next phase, 

therefore, is to couple DAM–RT logic with predictive analytics, where machine learning or 

AI-based algorithms forecast nodal price movements based on patterns in demand, 

renewable generation, and system conditions, something that’s been done before in several 

other markets and energy trading tactics. Even a moderately accurate predictive model could 

unlock significant additional value, transforming BESS operations from reactive to proactive 

and making BESS projects far more resilient to market volatility. Complementing this 

possibly, a probabilistic Monte Carlo modeling approach should be explored, although this 

should be treated as a phase II from future works. Monte Carlo would mean running 
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thousands of dispatch scenarios under different stochastic inputs, where developers could 

not only refine the predictive model but also quantify the probability of achieving a certain 

revenue outcome under uncertainty. Such probabilistic insights would bridge the gap 

between theoretical optimization and bankable project risk assessments, directly supporting 

investment decision-making. 

On a different note, despite signs of market saturation, the integration of ancillary services 

revenues remains a relevant lever. Products such as regulation up/down and, occasionally, 

ECRS, can provide valuable incremental revenues during specific system conditions, 

especially when energy arbitrage margins tighten at some point in time. Incorporating these 

services into the modeling framework would therefore broaden the spectrum of dispatch 

opportunities, ensuring BESS assets remain adaptable across changing market dynamics. 

Another avenue for future refinement involves the integration of ERCOT’s interconnection 

queue and transmission pipeline dynamically, and not statically as its integrated now. By 

automatically accounting for new projects under development, the model could anticipate 

localized congestion effects and revenue cannibalization risks from additional storage 

capacity. While complex, combining such a module with AI-driven DAM–RT dispatch 

would move the model closer to a full predictive model of ERCOT’s evolving market 

landscape, capable of guiding real-world project siting and investment. 

In conclusion, this thesis demonstrates that battery energy storage has a promising future in 

ERCOT. While challenges remain, ranging from volatility and market saturation to 

technological degradation, the upside is undeniable. By strategically deploying storage at the 

right nodes, optimizing dispatch between DAM and RT, and embracing predictive analytics, 

batteries can evolve from margin-dependent assets into cornerstone resources for both 

profitability and system stability. This is not only an opportunity for developers like Solea 

Power Corp., but also for the broader ERCOT grid, which increasingly relies on flexibility 

to integrate renewable energy generation and manage constant uncertainty, mainly due to 

extreme weather events and unexpected transmission system congestions. Importantly, the 

modeling framework presented here has already proven its practical value for Solea Power 
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Corp., enabling the company to streamline project evaluation by identifying viable nodes 

before committing to costly Screening and Full Interconnection Studies. By reducing both 

working hours and upfront costs, the model has become a critical decision-support tool for 

a startup with ambitious stakeholders seeking to maximize impact with limited resources. 

Ultimately, the work presented here is both a reflection of current possibilities and a call to 

action, as the models built today will shape not only the projects of tomorrow but also the 

strategic pathways of companies driving the energy transition forward. 
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ANNEX I: ALIGNMENT WITH THE SUSTAINABLE DEVELOPMENT GOALS 

(SDGS) 

The optimization of BESS projects and dispatch strategies in the ERCOT market aligns with 

several key Sustainable Development Goals (SDGs) established by the United Nations. By 

enhancing energy storage efficiency and supporting a more resilient and sustainable power 

grid, this project contributes to global sustainability efforts in the following ways: 

SDG 7: Affordable and Clean Energy – The project directly addresses the need for 

reliable, clean, and affordable energy by optimizing the economic viability of battery storage 

systems. By facilitating the integration of renewable energy sources such as wind and solar, 

BESS reduces curtailment and ensures that clean electricity is available even during periods 

of low generation. This improves grid stability and promotes a more sustainable energy mix. 

SDG 9: Industry, Innovation, and Infrastructure – The increasing adoption of battery 

storage in ERCOT represents a shift in energy infrastructure, enabling a smarter and more 

flexible grid. The project contributes to technological innovation by developing a techno-

economic model that enhances decision-making for BESS deployment. This supports 

investment in resilient energy infrastructure, fostering long-term sustainability in the power 

sector. 

SDG 11: Sustainable Cities and Communities – A more stable and efficient electricity 

grid leads to reduced power outages and greater energy reliability, benefiting urban and rural 

communities alike. By improving the ability to store and dispatch electricity efficiently, the 

project helps mitigate the effects of energy shortages, which is particularly relevant in 

extreme weather events such as those experienced in Texas in recent years. 

SDG 12: Responsible Consumption and Production – The project promotes efficient 

energy use by optimizing battery charging and discharging cycles to minimize waste. By 

leveraging data-driven strategies, it ensures that energy is used more effectively, reducing 

reliance on inefficient fossil-fuel-based peaker plants and decreasing overall energy losses 

in the system. 
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SDG 13: Climate Action – The role of battery storage in reducing greenhouse gas emissions 

is fundamental to combating climate change. By enabling better utilization of renewable 

energy and decreasing dependence on carbon-intensive backup power generation, this 

project contributes to lowering the grid’s carbon footprint. Furthermore, by optimizing 

dispatch strategies, it helps reduce market volatility and the need for expensive, high-

emission power generation during peak hours. 

Through these contributions, the project not only advances the energy transition within 

ERCOT but also serves as a model for sustainable energy development in deregulated 

electricity markets worldwide. 
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ANNEX II: 2-HOUR BATTERY VALUATION BESS BASE MODEL 
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ANNEX III: CURTAILMENT ANALYSIS BASE MODEL 
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ANNEX IV. BATTERY VALUATION VBA CODE DISPATCH 
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ANNEX V. CURTAILMENT ANALYSIS VBA CODE DISPATCH 
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ANNEX VI. BATTERY VALUATION PYTHON CODE DISPATCH 

import os 
import pandas as pd 
from openpyxl import load_workbook 
import win32com.client 
 
# Define the directory containing the CSV files 
directory = r'C:\Users\isang\Desktop\SOLEA POWER CORP\LMPs_March2021_now' 
 
# Define the path to the Excel file containing the name to filter by 
input_excel_path = r'C:\Users\isang\Desktop\SOLEA POWER 
CORP\2HR_BatteryValuation_LMP.xlsm' 
 
# Check if the input Excel file exists 
if not os.path.exists(input_excel_path): 
    raise FileNotFoundError(f"The file {input_excel_path} does not exist.") 
 
# Read the node name from the Excel sheet 
try: 
    input_df = pd.read_excel(input_excel_path, sheet_name='Input Sheet', 
engine='openpyxl')  # Adjust the sheet name as necessary 
    name_to_filter = input_df.iloc[0, 1]  # Assuming the name is in cell B2 
except Exception as e: 
    raise Exception(f"An error occurred while reading the Excel file: {e}") 
 
# Initialize an empty DataFrame to hold the merged data 
merged_df = pd.DataFrame() 
 
# Loop through all files in the directory 
for filename in os.listdir(directory): 
    if filename.endswith(".csv"): 
        # Construct the full file path 
        file_path = os.path.join(directory, filename) 
         
        # Read the CSV file into a DataFrame 
        try: 
            df = pd.read_csv(file_path) 
        except Exception as e: 
            print(f"Error reading {file_path}: {e}") 
            continue 
         
        # Filter rows where the third column matches the specified name 
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        filtered_df = df[df.iloc[:, 2] == name_to_filter] 
         
        # Append the filtered rows to the merged DataFrame 
        merged_df = pd.concat([merged_df, filtered_df], ignore_index=True) 
 
# Create a temporary Excel file with the filtered data 
temp_excel_path = r'C:\Users\isang\Desktop\SOLEA POWER 
CORP\temp_filtered_data.xlsx' 
merged_df.to_excel(temp_excel_path, index=False, sheet_name='FilteredData') 
 
# Load the existing macro-enabled workbook 
try: 
    book = load_workbook(input_excel_path, keep_links=True, keep_vba=True) 
     
    # Copy data from "Input Sheet" to "SummarySheet" 
    input_sheet = book['Input Sheet'] 
    summary_sheet = book['SummarySheet'] 
    summary_sheet['B1'] = input_sheet['B2'].value 
    summary_sheet['B2'] = input_sheet['B3'].value 
 
    # Remove the "Input Sheet" 
    del book['Input Sheet'] 
     
    # Remove the existing sheet if it exists 
    if 'FilteredData' in book.sheetnames: 
        del book['FilteredData'] 
     
    # Load the filtered data from the temporary file 
    temp_book = load_workbook(temp_excel_path, data_only=True) 
    temp_sheet = temp_book['FilteredData'] 
     
    # Create a new sheet in the existing workbook for the filtered data 
    target_sheet = book.create_sheet('FilteredData') 
     
    # Copy the data from the temporary sheet to the new sheet in the existing 
workbook 
    for row in temp_sheet.iter_rows(values_only=True): 
        target_sheet.append(row) 
     
    # Define the path for the new macro-enabled workbook 
    new_excel_path = os.path.join(os.path.dirname(input_excel_path), 
f"{name_to_filter}.xlsm") 
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    # Save the updated workbook as a new macro-enabled workbook 
    book.save(new_excel_path) 
    print(f"Filtered data written to the new Excel file at {new_excel_path}") 
     
    # Run the macros in the new workbook 
    xl = win32com.client.Dispatch("Excel.Application") 
    xl.Visible = False 
    wb = xl.Workbooks.Open(Filename=new_excel_path, ReadOnly=False) 
     
    # Run the specified macros 
    xl.Application.Run(f'{wb.Name}!DispatchCalculator') 
    xl.Application.Run(f'{wb.Name}!RefreshAllData') 
     
    # Save the workbook after running the macros 
    wb.Save() 
    wb.Close(SaveChanges=True) 
     
    print(f"Macros DispatchCalculator, RefreshAllData, and 
DispatchCalculatorHub have been executed and the workbook has been saved.") 
except Exception as e: 
    raise Exception(f"An error occurred while writing to the Excel file or 
running macros: {e}") 
finally: 
    # Ensure the Excel application is properly closed and quit 
    if 'xl' in locals(): 
        xl.Quit() 
     
    # Delete the temporary file 
    try: 
        if os.path.exists(temp_excel_path): 
            os.remove(temp_excel_path) 
            print(f"Temporary file {temp_excel_path} has been deleted.") 
    except Exception as e: 
        print(f"An error occurred while deleting the temporary file: {e}") 
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ANNEX VII. CURTAILMENT ANALYSIS PYTHON CODE DISPATCH 

import os 
import pandas as pd 
from openpyxl import load_workbook 
import win32com.client 
 
# Define the directory containing the CSV files 
directory = r'C:\Users\isang\Desktop\SOLEA POWER CORP\LMPs_March2021_now' 
 
# Define the path to the Excel file containing the name to filter by 
input_excel_path = r'C:\Users\isang\Desktop\SOLEA POWER CORP\Curtailment 
Analysis Base LMP.xlsm' 
 
# Check if the input Excel file exists 
if not os.path.exists(input_excel_path): 
    raise FileNotFoundError(f"The file {input_excel_path} does not exist.") 
 
# Read the node name from the Excel sheet 
try: 
    input_df = pd.read_excel(input_excel_path, sheet_name='Input Sheet', 
engine='openpyxl')  # Adjust the sheet name as necessary 
    name_to_filter = input_df.iloc[0, 1]  # Assuming the name is in cell B2 
except Exception as e: 
    raise Exception(f"An error occurred while reading the Excel file: {e}") 
 
# Initialize an empty DataFrame to hold the merged data 
merged_df = pd.DataFrame() 
 
# Loop through all files in the directory 
for filename in os.listdir(directory): 
    if filename.endswith(".csv"): 
        # Construct the full file path 
        file_path = os.path.join(directory, filename) 
         
        # Read the CSV file into a DataFrame 
        try: 
            df = pd.read_csv(file_path) 
        except Exception as e: 
            print(f"Error reading {file_path}: {e}") 
            continue 
         
        # Filter rows where the third column matches the specified name 
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        filtered_df = df[df.iloc[:, 2] == name_to_filter] 
         
        # Append the filtered rows to the merged DataFrame 
        merged_df = pd.concat([merged_df, filtered_df], ignore_index=True) 
 
# Create a temporary Excel file with the filtered data 
temp_excel_path = r'C:\Users\isang\Desktop\SOLEA POWER 
CORP\temp_filtered_data.xlsx' 
merged_df.to_excel(temp_excel_path, index=False, sheet_name='FilteredData') 
 
# Load the existing macro-enabled workbook 
try: 
    book = load_workbook(input_excel_path, keep_links=False, keep_vba=True) 
     
    # Copy data from "Input Sheet" to "SummarySheet" 
    input_sheet = book['Input Sheet'] 
    summary_sheet = book['Node of Interest'] 
    summary_sheet['C3'] = input_sheet['B2'].value 
    summary_sheet['I17'] = input_sheet['B3'].value 
 
    # Remove the "Input Sheet" 
    del book['Input Sheet'] 
     
    # Remove the existing sheet if it exists 
    if 'FilteredData' in book.sheetnames: 
        del book['FilteredData'] 
     
    # Load the filtered data from the temporary file 
    temp_book = load_workbook(temp_excel_path, data_only=True) 
    temp_sheet = temp_book['FilteredData'] 
     
    # Create a new sheet in the existing workbook for the filtered data 
    target_sheet = book.create_sheet('FilteredData') 
     
    # Copy the data from the temporary sheet to the new sheet in the existing 
workbook 
    for row in temp_sheet.iter_rows(values_only=True): 
        target_sheet.append(row) 
     
    # Define the path for the new macro-enabled workbook 
    new_excel_path = os.path.join(os.path.dirname(input_excel_path), 
f"{name_to_filter}Curtail.xlsm") 
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    # Save the updated workbook as a new macro-enabled workbook 
    book.save(new_excel_path) 
    print(f"Filtered data written to the new Excel file at {new_excel_path}") 
     
    # Run the macros in the new workbook 
    xl = win32com.client.Dispatch("Excel.Application") 
    xl.Visible = False 
    wb = xl.Workbooks.Open(Filename=new_excel_path, ReadOnly=False) 
     
    # Run the specified macros 
    xl.Application.Run(f'{wb.Name}!RefreshAllData') 
     
    # Save the workbook after running the macros 
    wb.Save() 
    wb.Close(SaveChanges=True) 
     
    print(f"Macros RefreshAllData have been executed and the workbook has 
been saved.") 
except Exception as e: 
    raise Exception(f"An error occurred while writing to the Excel file or 
running macros: {e}") 
finally: 
    # Ensure the Excel application is properly closed and quit 
    if 'xl' in locals(): 
        xl.Quit() 
     
    # Delete the temporary file 
    try: 
        if os.path.exists(temp_excel_path): 
            os.remove(temp_excel_path) 
            print(f"Temporary file {temp_excel_path} has been deleted.") 
    except Exception as e: 
        print(f"An error occurred while deleting the temporary file: {e}") 
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