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Abstract: In this article, we obtain a very sharp version of some singular perturbation results going back to
Dancer and Hess [Behaviour of a semilinear periodic-parabolic problem when a parameter is small, Lecture
Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp. 12-19] and Daners and Lopez-Gémez [The
singular perturbation problem for the periodic-parabolic logistic equation with indefinite weight functions,
]. Dynam. Differential Equations 6 (1994), 659-670] valid for a general class of semilinear periodic-parabolic
problems of logistic type under general boundary conditions of mixed type. The results of Dancer and
Hess [Behaviour of a semilinear periodic-parabolic problem when a parameter is small, Lecture Notes in
Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp. 12-19] and [The singular perturbation problem for
the periodic-parabolic logistic equation with indefinite weight functions, J. Dynam. Differential Equations 6
(1994), 659-670] were found, respectively, for Neumann and Dirichlet boundary conditions with £ = -A. In
this article, £ stands for a general second-order elliptic operator.
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1 Introduction

In this article, we study the periodic-parabolic problem

ou + dx(t)Zu = m(x, t)u — a(x, HuP, in Q@ x R,
Au(x,t) =0, on 0Q x R, (W]
u(x,0) = u(x, T), in Q,

where p > 1 and d > 0 are the constants, under the following conditions:
(i Qis abounded domain of R¥, N > 1, of class C**? for some 8 € (0, 1), with boundary 0Q = I U I3, where
I, and I; are two disjoint open and closed subsets of dQ. As they are disjoint, I and I are of class C2*9.
(ii) For a given T > 0, ¥ stands for the autonomous linear second-order differential operator

N 62 N F)
= = — . -+ b —,
& =20 i,]z:lal](x)axiax,» le 00 ox;

with a; = a;;, bj € C%Q; R) for all 1 < i,j < N. Moreover, & is uniformly elliptic in @, i.e., there exists
u > 0 such that
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N
Z a;(x)&& = uléP?,  forall (x, &) € Q x RY,
ij=1

where | - | stands for the FEuclidean norm of RV,
(i) x(t) is a T-periodic Holder continuous function in R such that x(t) > 0 for all t € R. Moreover, setting

F=jue ce’?(g‘z xR;R):u(,T+t)=u(,t), forall t € R},

a € F satisfies a(x, t) > 0 for all (x, t) € Q x R, and m € F may change of sign in Q x R.
(iv) % :CIy) ® CYQ U L) = C(0Q) stands for the boundary operator

¢, on TIp,

&= % + BOOE, on T,

for every & € C(Iy) ® CY(Q U Iy), where B € C%I) and
v = (v, ... ,Wy) € C*98Q; RY)

is an outward pointing nowhere tangent vector field.

As it will become apparent in Section 3, though in this article, (x) can change of sign on I3, one can assume,
without loss of generality, that

B(x) >0, forall x€E€ L. (1.2)
Note that since Ij is smooth, it must consist of finitely many components, say I; with j € {1, ...,q} for some
integer q = 1.
Throughout this article, for every continuous T-periodic function V : [0, T] — R, we will denote by

T
1
7= FJO-V(s)ds

the mean of V in [0, T].

Our main goal in this article is to obtain the following singular perturbation result, where 6y, 4 4 stands
for the unique positive solution of the semilinear periodic-parabolic problem (1.1). According to Theorem 5.2,
Oim,q,q) €xists for sufficiently small d > 0 if m(xy) > 0 for some x, € Q.

Theorem 1.1. Assume that there exists x, € Q such that m(xp) > 0, and let K C Q U I be a compact subset.
Then, the following conditions are satisfied:
() Ifm(x) <0 for all x € K, then

lim Ojp,q,0) = 0, uniformly in K x [0, T].
dio

(i) If m(x) > 0 for all x € K and K C Q, then

l}m Oimad = Amap Uniformly in K x [0, T], (1.3)
10

where ap, q) Stands for the unique positive periodic solution of the associated kinetic model

ou = m(x,t)u — alx, H)uP, teER,

u(x, 0) = u(x, T). (1.4)

(iii) If m(x) > 0 for all x € K and there exists a nonempty subset .# C {1, ...,q} such that

KNI = UTy, dist(dKNQ,T) >0,
i€s

and (m, a) = (m(t), a(t)) on a neighborhood of 0K N 1, then (1.3) holds.
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This result is a substantial extension of some not well-known findings of Dancer and Hess [5], and
Theorem 1.3 of Daners and Lopez-Gomez [6], which are very simple counterparts of Theorem 1.1 for £ = -4
and either 0Q = I; with § = 0, or aQ = Ij, respectively. Some very recent elliptic counterparts of Theorem 1.1
valid for general elliptic operators (£, B, Q) have been given by Ferndndez-Rincén and Lépez-Gémez [7].
In this article, it remains an open problem to ascertain whether, or not, the condition that (m, a) = (m(t), a(t))
on a neighborhood of 0K N I in Part (iii) is of a technical nature.

Theorem 1.1 is of a huge interest in population dynamics, where the behavior of the species for small
diffusion coefficients provides us with an idealized behavior of many real systems. A simple glance to the
pioneering article of Hutson et al. [9] will convince the reader of it very easily. Actually, [9] generated a huge
industry in the field under the auspices of Y. Lou, W. M. Ni, and their coworkers. The reader should compare
the results of Section 2 of Hutson et al. [9] with Theorem 1.1 of Lou [13].

The condition a(x, t) > 0 for all (x, t) € Q x R is imperative for the existence of a positive solution of (1.1)
for small d > 0 even for the simplest elliptic counterpart of (1.1)

-dAu = mu - a(x)uP, in Q,

1.5
u=0, on 09, 1.5

where m > 0 is a constant. Indeed, if a(x) vanishes on some nice smooth subdomain of Q, say Qo, with Qg C Q,
then, according to [12, Ch. 4], it is well-known that (1.5) possesses a positive solution if, and only if,

dal[_Aa 0@) Q] <m< dol[_Aa o@a QO]) (16)

where we are denoting 2 = %4 if I[; = &. Since (1.6) can be equivalently expressed as

m m
<d< ,
oi[-4, Z, Q] ai[-4, 2, Q]

it is apparent that (1.5) cannot admit a positive solution for sufficiently small d > 0. Therefore, Theorem 1.1
cannot be applied in the degenerate case when a(x, t) vanishes somewhere in Q@ x R, because (1.1) might not
admit any positive solution for sufficiently small d > 0.

Throughout this article, for any given open bounded subset, D € R, N 2 1, and any continuous function
f: D - R, we denote

fi =minf and f, = maxf,
D D
and, for any compact subset K C D, we set
fix =minf and f;,, = maxf.
: K ’ K

Naturally, we are denoting f; = f; 5 and f;; = fy, 5. Also, for every d > 0, we will consider the periodic-para-
bolic operator

‘% = at + dK(t)g’

and for any subdomain D C Q, we denote by Dy the parabolic cylinder Dy =D x [0, T]. In particular,
Qr=Qx[0,T].

This study is organized as follows. In Section 2, we analyze the associated kinetic problem (1.4). In Section
3, we show that, without loss of generality, one can assume that (1.2) holds in (1.1). In Section 4, we study some
pivotal properties of the underlying principal eigenvalues associated with the periodic-parabolic problem (1.1).
In Section 5, we study the existence and the uniqueness of the positive solution of (1.1) for small d > 0.
In Section 6 we construct some supersolutions for problem (1.1). In Section 7, we construct some subsolutions
of (1.1) in the special case when m(x, t) = m(¢t) and a(x, t) = a(t). The construction of ¢ in the proof of Theorem
7.11is a technical device borrowed from Lépez-Gomez [10]. In Section 8, we deliver an auxiliary result to prove
Theorem 1.1(iii). Finally, in Section 9, the proof of Theorem 1.1 is completed.
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2 Associated kinetic problem

This section analyzes the existence of (T-periodic) positive solutions of

ou=mx, tu - alkx, t)uP, teER, @1
u(x, 0) = u(x, T), '
where x € Q is regarded as a parameter. Its main result can be stated as follows.
Proposition 2.1. For every x € Q, (2.1) possesses a T-periodic positive solution if, and only if,
T
(X) = lJ'm(x t)dt > 0 2.2)
T ’ ' '
0
In such case, it is unique and given through
-1
t p-1
t S
Am,a; x|(0) = e'[o MO A(x) + (p - 1)Ia(x: s)e(p_l)JU moendrgg| 2.3)

0

where

T S
(p B 1).[0 a(X) s)e(!"DJO m(x,7)dzdg
A(X) = . .
oD [y mxs)ds _ 1

If 2.2) fails, i.e., m(x) < 0, then, Q[m,q; x|(t) = 0 is the unique non-negative T-periodic solution of (2.1).

Proof. Since p > 1, for every x € Q, any solution of (2.1) satisfies
o = [m(x, t) - a(x, HuPu,

and hence,

u(t) = ej;[m(x,s)—a(x,s)up'l(x,s)]dsu(o)’

forallt € R. Thus, u(t) > 0 forallt € [0, T]ifu(0) > 0,u(t) = 0 forallt € [0, T]ifu(0) = 0, and u(t) < 0 for all
t € [0, T]if u(0) < 0.

Suppose that u(t) is a positive solution of (2.1) for some x € Q. Then, the change of variable v = u!™?
transforms (2.1) into the linear problem

v+ (p-Dmx, t)v = (p - Dalx,t), tER, 2.4)
v(0) = v(T). '
Solving the linear differential equation of (2.4), we have that
t t S
v(t) = e(l'p).[o ’"("’s)ds‘v(O) + I(p - Da(x, s)e(p_l).[o mx T g . (2.5)
0
Thus, imposing v(0) = v(T), the following identity must be satisfied:
T T s
¥(0) = v(T) = P mx9u(0) + (p - D) fatx, )e® o meigs |
0
and hence,
T S
(p - D[ a(x, s)e®dymx0drgg
v(0) = k = AX). 2.6)

e(0-D fy mxs)ds _ 1
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Consequently, substituting (2.6) into (2.5) and taking into account that u = vﬁ, (2.3) is satisfied.

Now, we will show that ap, q; ) is positive if and only if (2.2) holds. Suppose that m(x) > 0. Then, since
p > 1and a(x, t) > 0 for all (x, t) € Q x R, it follows from (2.6) that v(0) > 0. Consequently, by (2.5), we find
that v(t) > 0 for all ¢t € R. Therefore, u(t) > 0 for all t € R. Conversely, suppose that (2.1) has a T-periodic
positive solution u. Then, u(t) > 0 for all t € [0, T], and v = u'"P satisfies v(t) > 0 for all t € [0, T], as well as
(2.4) and (2.6). As, in particular, v(0) > 0, necessarily, m(x) > 0.

Finally, the uniqueness of the T-periodic positive solution comes from the fact that it must be given by
(2.3). This ends the proof. O

Subsequently, we denote by aj,, 4 the function
a[m,a] 1Q x [0) T] - [0: oo)

2.7
(X) t) = a[m,a; x](t):

where Qpp,q; xj(t) > 0 for all t € [0, T] if M(x) > 0 and @y q; x = 0 if M(x) < 0. The next result collects some
of its properties.

Proposition 2.2. The function amq) defined in (2.7) is continuous in (x,t) € Q x [0, T]. Thus, it satisfies the
following properties:
() If m(xo) > 0 for some xo € Q, then there exists a neighborhood, U, of Xy in Q such that ajm,q(x,t) > 0
forall (x,t) € Uy =U % [0, T].
(iD) If m(xo) < 0 for some X € Q, then there exists a neighborhood, U, of X, in Q such that Ama)(X, £) = 0
for all (x,t) € Uy.
(iii) Let K C Q be a compact subset such that i(x) > 0 for all x € K. Then,

(@)L e = MIN Ay g, ) > 0.
(x,t)EKy

Proof. The continuity of the map (2.7) is a direct consequence of the continuity of agy, q; x(t) with respect to
x € Q and t € R. This follows easily from (2.3) by the continuity of a(x, t) and m(x, t) if m(x) > 0. Similarly,
it follows from our definition of apy 4 if M(x) < 0. However, the case when m(x) = 0 is more delicate.
The continuity in this case relies on the fact that

})iit}l( Um,q; y((1) =0, forall t € [0, T].
(y)>0

(2.8)

Since
}Hr}( A(y) = o,
m(y)>0

Property (2.8) can be also derived from (2.3). The remaining assertions are direct consequences from this

continuity. O
The following result establishes the monotonicity of ap,, ) With respect to m and a.

Proposition 2.3. Let m;, a; € F,i = 1, 2, be such that m; < my and a; 2 a, in Dr, for some open subset D C Q with

my(x) > 0 for all x € D. Then,

a[m1,a1] s a[mz,az]’ in DT' (29)

Proof. By the assumptions,

0 < my(x) < my(x), forall x € D.
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Thus, thanks to Proposition 2.1,
g a; () = Apmgag(x, t) > 0, forall (x,t) € Dy, i=1,2.

Unfortunately, Estimate (2.9) cannot be obtained directly from (2.3), because the character of the integral

t
Ia(x, $)eP™D Jo mooDdrg g
0

is unclear when a decreases and m increases. Thus, to prove (2.9), in this case, we use the following argument.
Setting

W = Oy U = Ay, AN @ = Uy — Uy,
we have that

;_ p p p p
W' =Molly — aglly — (Mqlly — gl ) = Mylly — aglly — (Mally — Aglly)
1

d
= my(uy — W) - ay(uf — uf) = myQuz — w) - az_[g(suz + (1 - Sup)Pds
0
1

=|my - azpj[suz +(1- )P lds|w.
0

In other words, setting
1
Y) = myx, 1) = ay(x, Op [[sw(t) + (@ - suu(OPds, tER,
0
we find that

w'(t) 2 y(w(t), forall t €R. (2.10)

Hence, performing the change of variable

t
w(t) = eh YOS,y t ER,

in (2.10), it readily follows that z’(t) = 0 for all t € R.
On the other hand, since u,(t) > 0 for all t € R, integrating in [0, T'] the identity

u(t) _
up(t)

it follows from the fact that w, is T-periodic that

my(x, £) = ax(x, O (x, t),

T T
Imz(x, tdt = Iaz(x, Hud (x, t)dt. @11)
0 0

Consequently, since u(t) > 0 for all t € R, (2.11) implies that

T T T 1
[v@ae = [myx, e - p [as0x, Oflswae) + @ - Syuacoyp1dsae
0 0 0 0

T T 1
< _O[mz(x, tdt - p{az(x, t)_![suz(t)]p-ldsdt

T

T
= Imz(x, tdt - Iaz(x, Hud " (t)dt = 0.
0 0

Therefore, IOT y(t)dt < 0.
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Next, going back to the change of variable and taking into account that w(t) and y(t) are T-periodic,
it becomes apparent that, for every integer n € Z,

nT T
w(0) = w(nT) = ek VOMsz(nTY = e, VOsz (T,

Thus,

z(nT) = w(O)e‘"I y)s,

T T . . . . . . .
As JO y(s)ds < 0, ey y©)3s jg increasing with respect to n. Moreover, z(nT) is non-decreasing with respect to n,
because z’ = 0. Hence,

w(0) = u(0) - wy(0) 2 0,

and consequently, z(0) = w(0) = 0. So, since z” > 0, we find that z(t) = 0 for all ¢ > 0. Therefore,

w(t) = el B2ty 2 0, forall ¢> 0.
As w(t) is T-periodic, this entails that
w(t) = up(t) — w(t) = 0,

for allt € R, and this ends the proof. ]

3 Pivotal change of variable

When (1.2) fails, one can proceed as follows. Since @ € C%*9, it follows from [11, Le. 2.1] and [7, Th. 1.3] that there
exists ¥ € C**9(RY) such that (x) < 0 for all x € Q, ¥(x) > 0 for all x € RMQ, ¥™(0) = 9Q, and

0
(0vY) = mm l/) = (0v¥)r00 > 0.

Then, setting

h(x) = eﬂw(x)’ X E Q’
for some constant 4 > 0 to be determined later, we have that h € C**%RY) satisfies h(x) > 0 for all x € R¥.
Thus, making the change of variable

u(x, t)
h(x)

w(x, t) = (x,t) € Q xR, (3.1

where

uEE=ue i Q xR;R) : uC-T+t)=u(t), foral t €R|,

it is apparent that w € E and
Lu = ¥(hw) = h%w, 3.2)

where %, stands for the differential operator

N
Z a5 = Z ,h<x) + (), (33)
ij=1 j=1 ]
with
Zh

Zal’ax] Ch = o i€efl, .. N}
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The reader is sent to Section 1.7 of [11] for any further details on the change (3.1), going back to the generalized
maximum principle of Protter and Weinberger [14]. Note that (3.3) satisfies similar properties as .
In particular, its coefficients also belong to F.

Since h(x) does not depend on ¢, by (3.2), the change of variable (3.1) transforms the periodic-parabolic
equation of (1.1) into

ow + dr(t) Lw = m(x, O)w — ap(x, )wP, where ax(x, t) = h?"1(x)a(x, t).

Since a € F and h € C2*9(Q), with h(x) > 0 for all x € Q, the function ay lies in F.
Similarly, one has that

AB(hw) = hBw,

where % is defined through

E: on FO:
Ph
Bré =10 where B, = —. (3.9)
Eo% L o on T, P
ov
Thus, since
10h oy
= + —— = + _
Pu=Fp h av Bru v’
for every
ﬁM it}
> —— > (, (3.5)
: (CRI)AY
where we are denoting
= ma >0,
Bur, = max|foo)
we have that
7] Bur oy
=B+u—>p+ —— > B+ > 0. 3.6)
R R R

Hence, choosing u to satisfy (3.5), we have that §,(x) > 0 for all x € I.
Summarizing, for sufficiently large u, the change of variable (3.1) transforms problem (1.1) into the next
one

ow + dx(t) Lw = m(x, Ow - ap(x, H)w?, in Q x R,
Bpw(x, t) = 0, on 92 x R, 3.7
w(x, 0) = w(x, T), in Q,

where %, and %, are given by (3.3) and (3.4) with B, satisfying (3.6). As the regularity of the several coefficients
involved in the framework of (3.7) is the same as those imposed in (1.1), in this article, we will work with
problem (1.1) assuming, without loss of generality, that condition (1.2) holds.

Suppose, in addition, that IOT m(x, t)dt > 0, for all x € Q, and that
Um,a; x] = Am,a)(X; )

is a C%-function in the variable x € Q, where Q[m,q; x] 1S the unique positive solution of (2.1). Then, thanks to
Proposition 2.1, ajm,q)(x, t) > 0 for all (x, t) € Qr. Moreover, setting

(a[m,a])L,l"l = min a[m,a](xa t)>0,
(x,t)ELX[0,T]
aa[m a
9,0 = ma —(x,t)| 20,
( v [m,a])M,Fl (OEEX[0,T] v ( )
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and enlarging u so that, instead of (3.5), the next (strongest) condition holds

+ (ava[m,a])M.l"l
ﬁM,H

‘u > (a[m,a])L,l"l ’ (38)
(0L
then, besides (3.6), one can also obtain that
0vQma) + Byma; 2 0, on L. 3.9)

Indeed, along I3, one has that
Ovima) + Brima) = 0vAma) + (B + UOVY)Am,q) Z 0vA(m,a) + (B + U(OvY)L,1)Am,a)-

Thus, as soon as u satisfies (3.8), we have that

(ava[m,a])M,l“l

0vQm,a] + BpQm,a1 2 0vAma) + |B * By py *
(a[m,a])L,l"l

A[m,a

Am,a)
————(0vqm,aPm,;
(a[m,a])L,l“l veimal !

2 ava[m,a] + (ava[m,a])M,H 2 0.

2 0\Q[m,a) +

Therefore, (3.8) implies (3.9) if ajm,q) is of class C? in x € Q.
Consequently, throughout this article, besides condition (1.2), we can assume, without loss of gener-
ality, that

0vam,a) + BAm,a) 2 0, on T, (3.10)

when qjp q) if of class C? with respect to x € Q.

4 Auxiliary eigenvalue problem

In this section, we focus our attention into the eigenvalue problem

T+ Vx, )9 =g, in Qr,

41
B =0, on 9 x [0, T]. “D

Thanks to Hess [8] and Antén and Lépez-Gémez [2,3], [4, Sec. 6], problem (4.1) possesses a unique principal
eigenvalue, denoted by 4[% + V, 4, Qr], which is algebraically simple and strictly dominant. To state its main
monotonicity properties, we need to introduce some notation. Subsequently, for any proper subdomain
Qo C Q such that

dist(6Qq N Q, ;) > 0, 4.2)
we will denote by %, the boundary operator defined by

0, on 0Qy N Q,

7. =
%2? =1 20, on 99y N Q.

The next result goes back to Anton and Ldpez-Gomez [4, Sec. 7]. It collects some important monotonicity
properties of [Py + V, %4, Qr] that will be used throughout this article.

Proposition 4.1. Under the general assumptions of this article, the following properties are satisfied:
(i) Let W, V, € F be such that V; < V, in @ x [0, T]. Then,

My + Vi, B,Qr] < [Py + Va, B, Qr].
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(i) Let Qo be a proper subdomain of  of class C**? satisfying (4.2), and V € F. Then,
Al[% + V) g: Q x [0) T]] < /11[% + V: '@ng Q0 X [0: T]]

The main result of this section reads as follows. It ascertains the value of 4j[%; + V, 4, Q7] and finds from
it its asymptotic behavior as d | 0 when V(x, t) = V(t) is independent of x € Q.

Theorem 4.1. Assume that V(x,t) = V(t) € F is independent of x € Q. Then, the principal eigenvalue of
the problem

(Fa + V(OW = Y, in Qr, @3)
B =0, on 3Q x [0, T], ’
is given through
Ma=M[P+ V), B, =V +doy K, 4.4

where 01 = 0[] ¥, %, Q] stands for the principal eigenvalue of the linear elliptic eigenvalue problem

Lo =09, in Q,
29 =0, on 9.

Moreover, up to a positive multiplicative constant, the principal eigenfunction y, ,(x, t) associated with A14
can be expressed through

t t _
P06 ) = o1 0cCo)-R)ds= [ (V(5)-Tds 0,00, 5)

where ¢,(x) is the (unique) principal eigenfunction associated with o; normalized so that maxg, = 1. Thus,

131911[% +V(),%,2r]=V. (4.6)
1

Proof. The existence and the uniqueness of (4,4, ¥; ;) is a direct consequence of Anton and Lopez-Gémez [3, 4].
To prove the theorem, we will search for a T-periodic positive function, y(t), for which

hi(x, ) = p(£)e,(x)
provides us with a principal eigenfunction of (4.3). By the choice of ¢,
BY, = yBp, =0, on oQ.
Moreover, inserting ¥, into the differential equation of (4.3), we are driven to
Y (0p,(x) + y(O)dr() Ze,(x) + V(Op(D)e,(x) = Ay(6)p,(x),
which can be equivalently expressed as
Y (©9,(x) = (A = dak(t) = V(O)y()e,00).
Thus,
y'(©) = A = dow(t) = V()y(),

and hence,

o) = e)Lt—drnIQ K(s)ds—IO Ve, .7

Since y(t) is T-periodic and positive, we have that y(T) = y(0) > 0, and therefore,
T T
AT - doJK(s)ds - [v(s)ds = o.
0 0
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Consequently, by uniqueness,
A=V + dok

provides us with the principal eigenvalue of (4.3), A 4. Substituting it into (4.7), it readily follows that (4.5)
provides us with a principal eigenfunction associated with A 4. Finally, letting d { 0 in (4.4), (4.6) holds.
This ends the proof. O

5 Periodic-parabolic problem

Note that, under the general assumptions of this article, a g, > 0. Thus, since a(x, t) is separated away from
zero, problem (1.1) is non-degenerate, though m(x, t) might change of sign. The main existence result for (1.1)
can be stated as follows. It is Theorem 6.1 of Aleja et al. [1].

Theorem 5.1. problem (1.1) admits a positive solution if, and only if,
M2 - m, #,97] < 0. (5.1)

In such case, the positive solution is unique; throughout this article, it will be denoted by 0y, qq), and the
following holds:

[Py + ae[lrjn_,;,d] -m,%,Qr] = 0.

Next result gives some comparison results that will be used later.

Proposition 5.1. Under condition (5.1), the following properties are satisfied:

()) For every subsolution, u % 0, of (1.1), one has that u < jp q,q) in Q7.
(i) For every supersolution, i 2 0, of (1.1), one has that Oy, q,q) < U In Qr.
(iii) Let my, a; € F,i =1, 2 such that m; £ my and a; = a,. Then,

G[ml,alyd] < e[mz,azyd], in Qr. (5.2)

Proof. By the uniqueness of the positive solution, u = Oy q,q) if u is not a strict subsolution of (11), i.e,,
if u solves (1.1). Thus, we will assume that u 2 0 is a strict subsolution of (1.1). Then,

PO maa — U) 2 MO maa) — U) = O q.q) = UP)

d

1
= MOmaa = W~ af 7 Omaa + A~ wrds
0

1

m = pa [ ($Bpmaa + (1 - WP ds|Omaa - ).
0

Consequently, setting
1
V= paI(Se[m,a,d] + (1 - S)Ll)p_lds:
0
we have that

P+ V-m)O -u)20, in Qr,
l( 1 Y Oma,a) — W T 53)

BOmyaa — U) 20, on 4Q x [0, T,
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with some of these inequalities strict.
On the other hand, since u 2 0, we find that

1
Vz paI(sO[m,a,d])l"ldS = aG[’,’n_,,ll,d].
0

Thus, it follows from Proposition 4.1(i) that
[P+ V= m, B,Qr] > [ + aOfraq - M, B, ] = 0.
Hence, thanks to Theorem 1.1 of Antén and Lopez-Gomez [3], we find from (5.3) that
Om,a,ap — U > 0,

which ends the proof of Part (i). The proof of Part (ii) follows the same general patterns as the proof of Part (i).
Thus, we will omit its technical details here.
We now prove Part (iii). Since

ZiBimy ) = MG OBimyapa) = A OB a1
s mZ(X’ t)e[ml,al,d] - aZ(X: t)e[lr,nlyal,d]y
the function Oy, 4,4 IS @ subsolution of

o + dr(t)Lu = my(x, iu — ay(x, HuP, in Q x R,

Au(x,t) =0, on 92 x R,
u(x,0) = ulx,T), in Q,
whose unique positive solution is Oy, q, 4. Thus, (5.2) follows from Part (i). This ends the proof. O

The following result gives a sufficient condition for the existence of positive solutions of (1.1) for small
diffusions.

Theorem 5.2. If there exists x, € Q such that
T
Im(xo, tydt > 0, (5.4)
0

then there exists dy > 0 such that

A% - m, 5,971 <0, for all d € (0, dy). (5.5)
Thus, thanks to Theorem 5.1, (1.1) has a unique positive solution for all d € (0, dy).
Proof. Thanks to (5.4), m(xg, -) > 0. Pick any € € (0, m(xo, -)). By the uniform continuity of m(x, t) in the
compact set Q x [0, T], there exists § = §(¢) such that

Im(x,t) - mx,t)| <e, if x-X| +|t-{] <6,
with (x, t), (%, f) € Q x [0, T]. Thus,
Im(x, t) - m(xg, t)| <& if |[x-x| <8
for all ¢t € [0, T]. Moreover, § can be shortened, if necessary, so that Bs(x,) C Q. Consequently,
mxp, t) — e <mx,t) <m(xp, t) + & forall (x,t) € Bs(xg) x [0, T].

Hence,

m(xe, t) — €< min m(x,t) < m(xy, t) +¢, forall t €[0,T].
XEBs(xo)



DE GRUYTER A singular perturbation result for a class of periodic-parabolic BVPs == 13

Therefore, integrating in [0, T] shows that

T T T
0 < [m@x, 0)dt - eT < [ min m(x, 0de < [mix, Ode + e, (5.6)
0 OXEBs(Xo) 0

because of the choice of €.
Thanks to Proposition 4.1, we have that

Ml % = mx, 1), B, Q] < 4% - m(x, 1), 7, Bs(xo) * [0, T1]

_ (5.7
< A% - min m(x,t), 2, Bs(xo) x [0, T]|,
X€EBs(xo)
where 2 denotes the Dirichlet boundary operator, i.e, 4 = 2 ifI; = @.
On the other hand, owing to Theorem 4.1, it follows from (5.6) that
1 T
limA|% - min m(x, t), 2, Bs(xg) x [0, T]| = -—=| min m(x, t)dt < 0. (5.8)
dLo XE€Bs(xo) T ) XEBs(X0)

Therefore, due to (5.7) and (5.8), there exists dy > 0 such that (5.5) holds true. This ends the proof. O

Remark 5.1. Under condition (5.4), we already know that there exists § > 0 such that (5.8) is satisfied. On the
other hand, thanks to (4.4), setting

my gs)(t) = min m(x,t), forall ¢t € [0, T],
XEBs(xo)

one has that
M2 = My, 3o (0), 2, Bs(xo) x [0, T]] = d K 1[L, 2, Bs(xo)] = Mgy <0, forall d € (0, do),
with

5 My, Bs(xp)
dy < — = .
K 01lZ, 9, Bs(Xo)]

Note that, thanks to (5.7), 0 < dy < d,.

The following result gives a sufficient condition for the nonexistence of positive solution of (1.1) for small
diffusions.

Proposition 5.2. If; instead of (5.4), the following condition holds

T
I max m(x, t)dt < 0, (5.9)
0 XEQ

then, there exists dy > 0 such that (1.1) cannot admit a positive solution if d € (0, d,].

Proof. To prove it, we will argue by contradiction. Let us assume that there exists a sequence of positive real
numbers {dn}n=1, dn > 0, such that (1.1) possesses a positive solution for each d € {d, : n = 1}. Then, thanks to
Theorem 5.1,

M[Pa, - m(x, t), B,2r] <0, foralln=1. (5.10)

On the other hand, by Proposition 4.1, we have that

M[Zq, - m(x, t), B, Qr] 2 4|24, — maxm(x, t), %, Qr|. (5.11)
XEQ
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Moreover, by Theorem 4.1, it follows from (5.9) that

T
S — 1
lim A4|24, - maxm(x, t), %, Qr| = -maxm(x, t) = ——I max m(x, t)dt > 0. (5.12)
n—oo XEQ XEQ T 0 XEQ
As (5.10) contradicts (5.11) and (5.12), the proof is complete. O

6 Constructing supersolutions

Proposition 6.1. Assume

T
m(x) = [mex, 0)dt >0, for all x € 8. 6.1)
0

Then, for each € > 0, there exists d = d(&) > 0 such that

Omad S Ama + & for all (x,t) € Qr and d € (0, d). (6.2)

Proof. The existence and uniqueness of 6y, q,q) for sufficiently small d > 0 follows from (6.1) and Theorem 5.2.
First, we will show (6.2) in the special case when m(-, t) and a(:, t) are of class C¥Q). Then, we will prove
(6.2) in the general case. So, assume that m(-, t) and a(:, t) are of class CQ).
Thanks to (6.1), it follows from Proposition 2.1 that

Ama(X, t) >0, forall (x,t) € Qx [0, T].

Moreover, since m(:, t), a(-, t) € CAQ) and A(x) > 0 (cf. (2.3)), it follows from (2.3) that ajm ) € CAQ) N CY0, T].
Set

ap = min e, t) >0, a = min a(x,t) >0, (6.3)
(x,t)EQT (x,t)EQT :

pick € > 0 and let 6 = §(¢) > 0 be sufficiently small so that
8ma < € in Qr. (6.4)
Finally, consider the function
s = (1+ &)apmaq > 0.
Then, it follows from (6.4) that
s =1+ 8)maq < Ama + € in Qr. (6.5)
Subsequently, we will prove that @i is a positive strict supersolution of (1.1). Indeed, in Q7, we find that
(Za = m(x, )5 + alx, OFf = (1 + Salx, Oafy (1 + 8P = 1) + dk(t) L apma)] 6.6)
> (1+ &laaf (1 + 8P - 1) + dk(t) L apm,q)-

Note that Zapm ) € C(Qr) because we are assuming that a and m are of class C2 in x € Q. Thus, thanks to (6.3),
it becomes apparent from (6.6) that there exists d = d(g) > 0 such that, for every d € (0, d),

(2 - m(x, O)is(x, t) + alx, OHaf(x,t) >0, forall (x,t) € Qr. 6.7)
As for the boundary conditions, since ajpy q > 0 on Iy,

s=1+ 5)a[m,a] >0, on I (6.8)
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Moreover, thanks to the normalization conditions of Section 3, since ajy, q) is of class C? with respect to x € Q,
besides B(x) > 0 for all x € I, we can assume, without loss of generality, that condition (3.10) is satisfied, i.e.,

OvQma) + PUmq 2 0, on T (6.9)
Thanks to (6.9), we have that

A m,a

Ollg _ 0 ]
W + Bis=(1+6) T + Bapma| 20, on I (6.10)

Thus, by (6.7), (6.8), and (6.10), @is is a positive strict supersolution of (1.1). Therefore, thanks to Proposi-
tion 5.1(ii), (6.5) implies that

Omad < Us < Qua) + & In Qp, forall d € (0, &(8))

This ends the proof in the particular case when m and a are of class CAQ) in x € Q.
We now prove the result in the general case whenm, a € F. In this case, let us take my(:, t), ai(:, t) € CAQ)
such that

m<mpand a=a, in Qr (6.11)
and
£
Am,a] = Amya] < Ama) + E (6.12)

The first estimate of (6.12) follows from (6.11) and Proposition 2.3. The second estimate holds true from the
continuity of agy q with respect to m and a, which is a direct consequence from (2.5) and (2.6). Then, by (6.1),
it follows from (6.11) that

T T
Iml(x, tdt > Im(x, t)dt >0, forall x € Q.
0 0

Thus, by the previous case, there exists &(8) > 0 such that
Omuad) < Qi + 5 i O, i 0 < d < d(e). (6.13)
Moreover, due to Proposition 5.1(iii), it follows from (6.11) that
Omadl < Omyaap I Qr. (6.14)
Then, thanks to (6.12), (6.13), and (6.14), we find that, for every d € (0, d(e)),
Omad £ Ama + &  In Qr.

This shows (6.2) and ends the proof. O

7 Constructing subsolutions for m and a autonomous in x € Q

Theorem 7.1. Assume that
m=m), a=a(t), te€]0,T], (7.1)
with

T
Im(t)dt > 0. (7.2)
0

Let KCQUT, be a compact set. Then, for every € >0, there exists d(e,K) > 0 such that, for every
d € (0, d(e, K)),

G[m,a,d] 2 U[m,a] ~ & in Kr. (7.3)
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Proof. Pick & > 0. The proof will be distributed into four steps. Thanks to (7.2), it follows from Proposition 2.2(iii)
that

(a[m,a])L,KT = min a[m,a](X; t)> 0.
(x,t)EKy

Step 1: In this step, we are going to prove that, for every x, € Q, there exist R, = Ri(xg) > 0 and d = d(xg, €) > 0
such that

Oim,a,dl 2 Ama) — &  forall (x,t) € Bg(xp) x [0,T] and d € (0, d). (7.4)

Indeed, let xo € Q and fix R = R(xp) such that B C Q, where B = Bp(xo). Let (a1[Z, 2, B], 9,) denote the
principal eigenpair of the linear eigenvalue problem

Z¢ =0, in B,
0=0, on 0B,
where ¢, > 0 is assumed to be normalized so that maxz¢, = 1. Now, let us consider the p-neighborhood
of 6B in B,
Ny, ={x € B : 0 <dist(x, dB) < p},

with p = p(xo) > 0 sufficiently small so that
1 _
0<p <5, InA, (7.5

as well as a function of the type

0,00, if x € N,
P(x) = , -
§00), if x € B\N),

where ¢ is any regular extension of ¢,|g, to B such that

% <¢<1,in B\N,, maxe =£&(xo) =1, 0<(x) <1, forall x € B\{xg}. (7.6)
B

Finally, for every § > 0, we consider the function
us(x, t) = 8o(X)aymq (1), (x,t) € By = B x [0, T].

We are going to show that, for every § € (0, 1) and sufficiently small d > 0, us provides us with a positive strict
subsolution of the problem

ou + dk(t)Xu = m(t)u — a(t)uP, in B x R,
u=0, on 0B xR, 7.7)
uC, 0) = u, 7, in B.

Indeed, in the region N, x [0, T], since ¢ = ¢, in Np, p>10(%,%2,B] >0, and § € (0, 1), which implies

p-1
[g <1, it follows from the definition of ajp,)(t) and (7.5) that

(21 - m(O)us + aOUf = 59,00 a(Oa(Oa e (O(Sp )P - 1) + dk(Da[Z, 7, B]]

s 5(P1(X)a[m,a](t) + dk(t)a([ ¥, 9, B]

p-1
a(ap, ;](t)[[g] -1

+ dkyoi[Z, 2, B]

S8y
ar(@m,a)? [5] -1 ,

< 60,0 am,q ()




DE GRUYTER A singular perturbation result for a class of periodic-parabolic BVPs == 17

where we are denoting

ap=mina >0, (Amq)r = MINApq > 0, and Ky = maxk.
[0,T] [0,T] [0,T]

Note that (ajm,q)). > 0 by (7.2) and Proposition 2.1. Thus, since § € (0, 1), p,(x) > 0 for all x € B, and qm,q(t) > 0
for all t € R, there exists d; = d;(§) > 0 such that, for every d € (0, dy),

(21 - m()us + a(t)uf 0, in N,x[0,T]. (7.8)
Similarly, since § € (0,1), p > 1, and, due to (7.6), 9 = ¢ € [%, 1] in B\N,, we find that, in B\N,,
(% - m(O)us + a()uf = 50![m,a](t)[E(X)a(t)tJt[’,’rl}z](t)((&f(X))”‘1 -1 + dr(0)Z¢]
< &Jt[m,a](t)[E(X)a(t)tﬁl[’é{,(11](0(6”‘1 -1 + dr(0)Z¢]

a -
< 80 a0 5 @) (877 = 1) + do| L oy |

Then, since 8771 - 1 < 0, there is d, = dy(8) > 0 such that, for every d € (0, dy),
(% - m()us + a(tuf 0, in (BWW,) x [0, T]. (7.9)
Thus, setting
d = d(8) = min{d\(8), dy(8)},
it follows from (7.8) and (7.9) that, for every d € (0, (2),
(% - m()us + a(®uf £0, in Bx[0,T]. (7.10)
Moreover, since ¢ = ¢, = 0 on 0B, we also have that
us(x, t) = 8am,q(t)o,(x) =0, forall (x,t) € B x [0, T]. (7.11)

Therefore, by (7.10) and (7.11), for every 6 € (0,1) and d € (0, (b)), us provides us with a positive strict
subsolution of (7.7).

Thanks to (7.2) and applying Theorem 5.2 in B = Bg(x), it becomes apparent that there existsd = d(x) > 0
such that, for every d € (0, d), problem (7.7) has a unique positive solution, denoted by 0y, 4,4; 5. Thus, since us
is a positive strict subsolution of (7.7) for each 6§ € (0,1) and d € (0, d(é)), setting

d(xo, 8) = min{d(8), d(xo)},
it follows from Proposition 5.1(i) applied in B that, for every § € (0,1) and d € (0, d(x, 6)),
Us < Opmaa:pp  In B x[0,T]. (7.12)

On the other hand, by construction, there exist §* = §*(xo, €) € (0,1) and R, = Ri(xo) < R such that Bg,(xp) C
B\N, C Q and

U, = 8*(x)) <&, forall (x,t) € Bg(xo) x [0, T]. (7.13)

Indeed, since maxgp = £(Xp) = 1, it suffices to take a sufficiently small R, > 0 and §* sufficiently close to 1.
For these choices, it follows from (7.13) that

Us(X, t) = §*@(X)a[m,q1() > A () — &,  forall (x,t) € Br(xo) x [0, T]. (7.14)
Fix §* € (0,1) and R, < R satisfying (7.13), and hence (7.14), and set
d(xo, €) = d(Xo, §*(x0, €)).
Then, from (7.12) and (7.14), it becomes apparent that, for every d € (0, d(xg, €)),
Um,a() — € £ us(X, ) < Omaa; (X, t)  forall (x,t) € Bg(xo) x [0, T]. (7.15)
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Finally, taking into account that the unique positive solution 0, 4] of (1.1) is a positive strict supersolution
of (7.7), it follows from Proposition 5.1 that, for every d € (0, d(xg, €)),

Om,a,d: Bl < Omaay forall (x,t) € Bg(xp) x [0, T]. (7.16)

As (7.4) follows from (7.15) and (7.16), the proof of Step 1 is completed.
Step 2: In this step, we will prove (7.3) in the particular case when K C Q. In such case, according to Step 1,
for every x € K, there exist Ry(x) > 0 and d(x, €) > 0 such that Brn(x) C Q and

Omad 2 Qma) — & I Bpo(x) x [0, T] and d € (0, d(x, €)). (7.17)

By the compactness of K, there are an integer m > 1 and m points x; € K, i € {1, 2, ...,m}, such that
m
KC ,UlBRl(Xi)(Xi) C Q.
i=

Thus, setting

d(e,K) = Ellninm} d(x; €),

i€{
it follows from (7.17) that, for every d € (0, d(¢, K)),
Oima,d Z Ama — & Torall (x,t) € K.
As this provides us with (7.3), the proof of the theorem is completed if K C Q.

Step 3: Since 0Q is smooth, I consists of finitely many components, say Ii;, i € {1, ...,q}. In this step,
we consider one of these components, say I3 ;, and, for every

R € (0, dist(0Q\{[1,3}, [1,))

and p € (0, R), we denote
Nri={x€Q : 0<dist(x,I})) <R},
Np-pi={x €Q : 0<dist(x,I;;) <R - p},
Tri=0Ngi N Q, Trpi=0Ng-p:iNQ,
Ap-pri={x €Q : R-p <dist(x,I};) <R}.

(7.18)

By construction,
Ar-pri= Ne\los(Nz—p),  0Ar-pri = Tri U Tr-pis
ONgi=Tr; ULy, and ONg-pi = Tr-pi U L
This step shows that there exist R,; € (0, R) and d;(¢) > 0 such that, for every d € (0, d;(¢)),
Omad) Z Ama) — & forall (x,t) € Ng,,; x [0, T]. (7.19)

Indeed, for sufficiently small R > 0, let us denote by (01[.Z, Z, Ng.l, ¢, ;) the principal eigenpair of the linear
eigenvalue problem

L9 =0p, in N
9 =0, on GNR,I' = fR,i U I

with @, ; > 0 normalized so that
max gblyi =1.

Nrii

By construction, for sufficiently small p > 0, we have that

1 ~
0= 0y(x) < forall x € Ar-pr,i. (7.20)

Ea
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Next, we will fix one of those p’s and consider the function

¢,,00, if x € closAg-p ki

@i(x) = , N L
l n(x), if x € Np-pi = Np\Ar-p i

where 1), is a regular extension of ¢, ; from closAg-p i to closNg; such that

1 -
2 ) <1, if x€ Npp;, max g =1, (7.21)
closNg-p,i
and
an;
n(x) =1, forall x € I, E(X) < By, forall x € L. (7.22)

In the same vein as in Step 1, for every § > 0, we consider the function
Us,i(X, t) = 6§,00)ama)(t), (X, t) € closNg; x [0, T).

Similarly, we will show that, for every § € (0,1) and sufficiently small d > 0, the function @is; is a positive
subsolution of the problem

du + dx(t)Lu = m(t)u - a(t)u?, in Ng;* [0, T],

u(x,t) =0, on Ty; x [0, T],

ou +pu=0, on I; x [0, T}, (72)
ov ’

u(x, 0) = u(x, T), in A

Indeed, since @, = gbl,i in ﬁ(R_p,R,i, p>1,656€(0,1), and 64[ ¥, &, NRJ’] > 0, it follows from (7.20) that, in the
annular cylinder ﬁ(R_p,R,i x [0, T], one has that

(4 = m(O)ils i + () = 5§, 00Am,a(DA)y (O(F; )P = 1) + AL, 7, Ngl]

N . s)! N

< 60y {(X)Am,a)(t) a(t)a[fn,,ll](t)uz] - 1| + dx(t)o[ &2, 2, NR,i]] (7.24)
~ p-1 6 p- <

< 6@1,i(x)a[m,a](t) aL(a[m,a])L E - 1| + dkyoi[ &, 2, NR,i] .

Thus, since § € (0, 1), a;, > 0, (@[m,qap)r > 0, and @, (x) > 0 forall x € NR,i, it follows from (7.24) that there exists
dy; = dy(8) > 0 such that, for every d € (0, dy;),

(%1 - m(t)is; + a@®)df; <0, in Ag-pr; x [0, T]. (7.25)

Similarly, since p > 1 and 0 < § < 1, it follows from (7.21) that

1 o~
Py 1 ’ n NR—p,iﬁ

¢i=r)ie 2

and hence,
(P4 - m())ils; + a(O)EL; = 8am a(DINCOAD) Ay e (O(SMEOP ™ = 1) + d(t)Ln;]
< 8apma(OIOAOA (O(EP = 1) + dr(©) L] (7.26)

a “1,op-
< 8apm a0 5 @ma)] (877 = 1) + Q| L0 |

Thus, since § € (0, 1), a; > 0 and (apm,q)); > 0, it follows from (7.26) that there exists dy; = d;,(§) > 0 such that,
for every d € (0, dz,i),

(%1 - m(t))s; + a@®)idf; <0, in Ng_p;* [0, T]. (7.27)
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Thus, choosing
d; = di(6) = min{d, (6), d(6)},
we find from (7.25) and (7.27) that, for every d € (0, d;),
(% - m()is; + a®)df; <0, in Ng;x [0, T]. (7.28)
As to the boundary conditions concerns, by construction, we have that
fisi(X, t) = 80tm,q ()P, (x) =0, forall (x,t) € Iz; x [0, T]. (7.29)
Moreover, thanks to (7.22), on I;; x [0, T], we find that

Olis i
ov

N on;
+ Bilsi = 8m,q) a_vl + Bi| = 8tim,q)

an.
a_?; + ﬁ] < Sayma(~-Byr,, + B) < 0. (7.30)

Thanks to (7.28)-(7.30), it becomes apparent that, for every 6§ € (0,1) and d € (0, di(8)), the function is,;
provides us with a positive subsolution of (7.23).

On the other hand, owing to (7.2), it follows from Theorem 5.2, applied in NR,i, that there exists
d; = di(R) > 0 such that (7.23) possesses a unique positive solution, denoted by 6, q,a; &, 1 for each d € (0, dp).
Thus, since s ; is a positive subsolution of (7.23) for every § € (0,1) and d € (0, di(8)), setting

dy(8) = min{d;, di(5)},
applying Proposition 5.1 in Ng;, it becomes apparent that
G[m,a,d; N 2 11511», in NRJ x[0,T], f 0<§<land 0<d< 51(6) (7.31)

On the other hand, by construction, it follows from (7.22) that there exist §*(¢) € (0,1) and R,; € (0, R) such
that

Uma(OA = §*¢(x)) < g, forall (x,t) € Ng,,i x [0, T]. (7.32)
Therefore,
s (X, 1) = §FG00m,a(t) > Qma(t) — &, forall (x,t) € Ng,,; x [0, T]. (7.33)
Fix 6;*(e) € (0, 1) satisfying (7.32), and consequently, (7.33), and set
di(e) = min{d;, d(S7(e))}.
Then, according to (7.31) and (7.33), for every d € (0, d(¢)), we have that
Oimad; A 1% 1) 2 Tigei(X, ) 2 Quuay(t) — €, forall (x,t) € N, x [0, T]. (7.34)

Moreover, as the unique positive solution 6y q,q 0f (1.1) is a positive strict supersolution of (7.23), it follows
from Proposition 5.1 that, for every d € (0, di(¢)),

Omad Z Omad; Ay N Npy,i % [0, T1. (7.35)
Finally, combining (7.34) with (7.35), (7.19) holds. This ends the proof of Step 3.

Step 4: Finally, we are going to prove (7.3) for every compact subset K of Q U I;. First, we consider

N q . - _
Nt = UNg,i»  d(e) = min d(e).
i=1

i€{l,..,q¢
Then, thanks to Step 3, for every d € (0, d(¢)), we find that

Omad) = Ama) — &  forall (x,t) € closAg x [0, T]. (7.36)
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Now, let K be a compact subset of @ U I3. Then,
6 = dist(K, I) > 0,

and hence,
. é
KCKs={x€QUL : dlSt(X,FO)ZE.

Since
Ks = closNy, U (Ks\Ap),

and Ks\Ng, C Q, (7.3) follows easily by combining (7.36) with the result of Step 2. This ends the proof of the
theorem. O

As a consequence of Theorem 7.1, we obtain the main result of this article in the particular case whenm = m(t)
and a = a(t).

Theorem 7.2. Assume (7.1) and (7.2), and let K C Q U I be a compact set. Then,

lim Ojpm,q,a) = Apmay  Uniformly in Kr.
dio

Proof. The existence and uniqueness of 6y, 4 4] for sufficiently smalld > 0 are guaranteed by (7.2) and Theorem 5.2.
According to (7.1), Qjm,q)(X, t) = Am,q|(t) is autonomous in x € Q. Thus, Zdjm,q = 0. Hence, in Qr, we have that

(Za = m()am,a1(t) + a()(@m,a) ()P = (0r = M(O))Am,a)(t) + A (Apm,a)(D))P = 0.
Moreover, dj,,q) > 0 on Iy, and, due to (1.2),

aa[m,a]
v + ﬁa[m,a] = ﬁa[m,a] >0, onI.

Consequently, gy, q1(t) provides us with a positive supersolution of (1.1) for all d > 0, and, thanks to Proposi-
tion 5.1(i), we find that

Om,a,d] € Amap N Qr. (7.37)

Combining (7.37) with Theorem 7.1, the proof is complete. O

8 General non-autonomous case

Throughout this section, we will assume that condition (6.1) holds, i.e.,

T
Im(x, t)dt >0, forall x € Q. 8.1
0

In this case, our main result reads as follows. Remember that we have already denoted by I3;,i € {1, ...,q}, the
components of I.

Theorem 8.1. Under condition (8.1), for every compact set K C Q U I such that m = m(t) and a = a(t) on a
neighborhood in Q of every component I ; of Ty such that K N Ty; # &, one has that

lgm Oma,d] = Amap  Uniformly in K x R. (8.2)
10
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Proof. Thanks to Proposition 6.1, for any given & > 0, there exists d = d(g) > 0 such that
Omad) < Ama + & forall (x,t) € @ xR and d € (0, d). (8.3)

To obtain a lower estimate for 6y, 4,4) in terms of ajp 4, we will proceed by steps.
Step 1: We claim that, for every x, € Q and € > 0, there exist R = R(Xp) > 0 and d(¢, xo) > 0 such that
Byr(xp) C Q and

Uma) = € < Omaap IN Br(xo) x R, forall d € (0, d(e, xo)). (8.4)

Indeed, pick xy € Q, £ > 0, and R > 0 sufficiently small so that Byz(x) C Q and
£ =
QAm,a) < a[mL,EZR(Xo)’aM,EZR(Xo)] + E, n BZR(X()) x R. (8.5)

Moreover, applying Theorem 7.1 in Q = Byr(Xo), with K = Bp(xp), it becomes apparent that there exists d(e, xg)
such that, for every d € (0, d(e, X)),

e[mL,EZR(XU)JaM,EZR(XU);d; Bar(xp)l» in ER(XO) x R. (8.6)

€
- Z<
A oo szool ~ 5 =

Thus, it follows from (8.5) and (8.6) that, for every d € (0, d(e, xo)),

£
ML, Bar(xo»AM,Barxp)] E

Am,a) — € = < 9[ in ER(X()) x R. 8.7

ML Byp(xo)» @M, B2r(xg) & Bar(X0)]»

On the other hand, since 0y, q,q) is a positive strict supersolution of

o + dr(t)Zu = m(x, t)u — a(x, )uP, in Byp(xy) * R,
u,t) =0, on dByr(Xy) X R, (8.8)
uc, 0) = u(, T), in Bop(Xo),

it follows from Proposition 5.1 that
Oim,a,d; Broxo) < Oma,a) 1N Bar(Xo) % R, (8.9

where O q,4; B,r(x) Stands for the unique positive solution of (8.8), whose existence and uniqueness follow
from Theorem 5.2 applied in Baz(Xp) x R. Moreover, applying Proposition 5.1 in Byg(Xg) yields

O1ms 5o @ oy s BrOo)] S Olmoa,d; By 1N Bar(Xo) X R. (8.10)

Finally, combining (8.7) with (8.10) and (8.9), Estimate (8.4) holds, and the proof of Step 1 is complete.
Step 2: In this step, we will prove that, for every compact subset K C Q and ¢ > 0, there exists &(s, K)>0
such that

Qma) — € < Omaa, N KxR, forall d € (0,d(s K)). (8.11)

Indeed, since

K C U Brpo(x),
XE€EK

where R(x) is the radius associated with x € K constructed in Step 1, by the compactness of K, there is a finite
subset of K, say {x, ...,xp} C K, such that

p
KC ,leBR(Xi)(Xi)' 8.12)
i=

Fix € > 0. Then, thanks to Step 1, we already know that, for every i € {1, ...,p}, there exists d; = di(g, x;) > 0
such that

Uma) ~ € < Opmaap N ER(xi)(Xi) x R. (8.13)
Therefore, setting

d(e,K) = min di(e, X)),
i€, ..., p}
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it follows from (8.12) and (8.13) that (8.11) holds. This ends the proof of Step 2.
Step 3: For every i € {1, ...,q} such that K N Tj; # &, let U; be the neighborhood of I;; in Q such that

m(x, t) and a(x, t) are autonomous in X, and consider the open neighborhood N?.R,i defined in (7.18) for a
sufficiently small R > 0 such that Nuz; C U;, as well as the compact sets

Kl“l,i = ClOSNR’i C NZR}[‘ U rl,i

and

KH = ) U Krbi.
i€fl, .., q} (8.14)
KNI, #@

We claim that, for every ¢ > 0, there exists d = d(¢) > 0 such that
Qma) ~ € < Omaap In Ky x R, forall d € (0, d). (8.15)

Indeed, since a(x, t) and m(x, t) are autonomous in X in U;, also qpy,q) is autonomous in x € NZR,I-. Thus,
applying Theorem 7.1 in the open set NZR,I-, with K = K, ;, it becomes apparent that, for every € > 0, there exists
d;(¢) > 0 such that

ma) = € < Omad; Ay I Kpy, X R, forall d € (0, die)). (8.16)
On the other hand, since 0y, q,4) is a positive strict supersolution of

du + dx(t)Lu = m(x, Hu - a(x, HuP, in Ny x R,

Au(x, t) = 0, on N * R, (8.17)
u(" O) = u(') T)) in NZR,i)

it follows from Proposition 5.1 that
e[m,a,d; Nogiil < G[m,a,d]: in NZR,i xR, (8.18)
where O, q,4; £, 1 Stands for the unique positive solution of (8.17), whose existence and uniqueness follow from
Theorem 5.2 applied in NZRJ- x R. Now, combining (8.16) and (8.18), it is apparent that
Am,a) — € < H[m,a,d], in Kl“1,i x R, forall d € (0, d;(¢)). (8.19)
Finally, setting
d(e) = min di(e),
i€{l,..,q¢}
KNI#@

Estimate (8.15) follows from (8.14) and (8.19). This ends the proof of Step 3.
Step 4: Since K is a compact subset of Q U I3, we have that

6 = dist(K,Ix) >0, where I[x=0Q\ U I
q;

i€, ..,
KNI#J
Thus,
. 6
KCKs=x€QU U TL; : dist(x,Tx) = —
i€{l,...,q} 2
KNI #@
Note that

K5 = KH U (KS\KH): KS\KH cQ,

where K, is the compact set defined in (8.14).
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Applying (8.11) in the compact set clos(Ks\Kp,) C @, there exists d = d(e) > 0 such that
Qma) — € < Omaa, in clos(Ks\Kp) x R, forall d € (0, d). (8.20)
Therefore, combining (8.15) and (8.20), it becomes apparent that
Qma) — € < Omaag, 1IN Ks xR DK xR, forall d € (0, min{d, dy). (8.21)

Finally, thanks to (8.3) and (8.21), (8.2) holds. This ends the proof. O

9 Main result
The main result of this article reads as follows.

Theorem 9.1. Assume that there exists xy € Q such that m(xy) > 0, and let K C Q U Ij be a compact subset.
Then, the following conditions are satisfied:
() Ifm(x) <0, for all x € K, then

1(}%1 Oim,a,q1 = 0, uniformly in Kr. 9.1)
(i) Ifm(x) >0, for all x € K and K C Q, then
lim Bm,q.4) = ma).  uniformly in K. 9.2)

(ii)) If m(x) > 0 for all x € K and there exists a nonempty subset .# C {1, ...,q} such that
OKNTL1= ULy, dist(bKN Q, L) >0,
ies

and (m, a) = (m(t), a(t)) on a neighborhood of 6K N I, then (9.2) holds.

Proof. The existence and uniqueness of O, ) for sufficiently small d > 0 follow from m(x,) > 0 and Theorem
5.2. Next, we will prove Part (i). Assume m(x) < 0 for all x € K, and consider the auxiliary functions

my(x, t) = m(x, t) + |m(x)].
and, for every 6 > 0,

ms(x, t) = m(x, t) + (1 + §)|m(x)| + 6.
Then,
ms(x) = m(x) + (1 + 8)mx)| + 6,
and, since § > 0, it is apparent that
ms>m, in Qr. 9.3

Moreover,

ms(x) >0, forall x € Q. 9.9
Indeed, (9.4) is obvious if m(x) > 0. Suppose m(x) < 0. Then, by definition,

msx)=mx)+ A +8mx)|+s§=mkx)-A+&mkx)+6=>0-mx))s§ > 0.

Thus, (9.4) holds.
On the other hand, thanks to (9.3), it follows from Proposition 5.1(iii) that

Omad < Omgaap,  iN Qr, (9.5)
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and, owing to (9.4), Proposition 6.1 guarantees that, for every ¢ > 0, there exists d(s) > (0 such that
Omsad) < Amga) + & forall (x,t) € Qr and d € (0, d(¢)).
Thus, combining (9.5) with (9.6), it becomes apparent that, for every § > 0,
0 < Opmadl < Ompad) S Amya + € in Qr, forall d € (0, d(e)).
Hence, letting d ! 0 in (9.7), we find that

0 < limsupBym,q,a) € Amga) + & in Qr, forall §> 0.
dio

On the other hand, since

lim [|mg = mol| = |1 + [m]||lim & = 0,
510 510

letting 6 | 0 in (9.8) yields

0< limsupH[m,a,d] < lim Amg,a] t € = Amga) T & in Q.
dio S0

As

() = m(x) + [MO)| = m(x) - m(x) =0, forall x €K,

- 25

(9.6)

9.7

9.8)

(9.9)

it follows from Proposition 2.1 and (2.7) that djp, e = 0 in Kr. Thus, (9.9) implies that, for every € > 0,

0 < limsupblm,qq < & in Kr.
Lo

Therefore, (9.1) holds.

Now, we will prove Part (ii). Suppose that K C Q and m(x) > 0 for all x € K. By the continuity of m(x),

there exist open neighborhoods ¢ and V of K with smooth boundaries such that

KcUcUcCcvcQ and mkx)>0, forallxe V.
Now, let n € C{(Q) be such that

n=0indU, n=1inQ\V, and nk) € (0,1), forall x € V\U,
and, for every y > 0, consider the function
my(x, t) = m(x, t) + yn(x).
By construction,
my(x, t) = m(x, t), forall (x,t) € Ur,
and
m, 2 m, in Qr.
Note that (9.11) entails that
A{my,a] = Am,a}s in Kr.
Moreover, according to (9.10), we have that, for every x € V,
m,(x) = m(x) + yn(x) 2 m(x) >0, foral xe€ V.

Similarly, if x € Q\V, then, for sufficiently large y > 0, we have that

m,(x) = m(x) + ynp(x) = m(x) +y >0, forall x € Q\V.
Therefore, for sufficiently large y > 0, say y = y,, we have that

m,(x) >0, forall x € Q.

(9.10)

9.11)

(9.12)

(9.13)

(9.149)
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Fix y = y,. Then, due to (9.12), Proposition 5.1(iii) implies that
Omad) S Ompaap N Q. (9.15)
Moreover, owing to (9.14), it follows from Proposition 6.1 that, for every € > 0, there exists &1(8) > (0 such that
Otm,.a.dl < Amya) + &  in Qr, forall d € (0, dy(e)). (9.16)
Consequently, by (9.13), (9.15), and (9.16), we find that
Omad S Ama + & in K, forall d € (0, dy(e)). (9.17)
On the other hand, since ¢ C Q, the solution Oim,q,a) 1S a positive strict supersolution of

o:u + dx(t)Lu = m(x, iu - alx, t)u?, in U xR,
u,t) =0, on 0U xR, (9.18)
uC, 0) =u(, T), in U,

and hence, shortening &1(8), if necessary, it follows from Proposition 5.1(ii) that
Omad 1) < Opmaay 0 U x [0, T], forall d € (0, di(e)), (9.19)

where 0y, 4,424 Stands for the unique positive solution of (9.18), whose existence and uniqueness follow from
Theorem 5.2 applied in ¢ * R. Also, by (9.10), it follows from Theorem 8.1 (or Step 2 of Theorem 8.1) applied to
(9.18) that there exists dy(¢, K) > 0 such that

Qma) ~ € < Omagup 0 Kr,forall d € (0, dy(e, K)). (9.20)
Thus, setting
d(e) = min{di(e), dy(e, K)} > 0,
it follows from (9.19) and (9.20) that
Qma) — € < Omaq, in K, forall d € (0, d(e)). (9.21)
Since (9.17) and (9.21) imply that
Qma] — € < Omad) < Ama + & in Ky, forall d € (0, d(¢)),

the proof of Part (ii) is completed in case K C Q.
The proof of Part (iii) follows the same general patterns as in Part (ii), but choosing ¢ and V to satisfy

KCUCUCVYCQU@BKNT) and KNI, COKNIU N V.
Now, one should use that 0}, 4, is a positive strict supersolution of

ou + dx(t)Lu = m(x, tiu - a(x, Hyu?, in U xR,
Au(-,t) =0, on 0U xR,
u(,0) = uC.,1), in U,

and apply Step 4 of Theorem 8.1. So, the technical details will be omitted by repetitive. This ends the proof. [
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