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ABSTRACT

Accurate analysis of railway infrastructure is very important for ensuring safety,
reliability, and efficient operation of transportation systems, as it provides essential
information for monitoring the condition of critical components, detecting changes
over time, and anomalies. Aditionally, it allows engineers and operators to evaluate
structural irregularities, assess the overall state of the infrastructure, and guide
preventive interventions with precision.

This research paper presents a comprehensive study focused on the segmen-
tation and classification of railway infrastructure components from LiDAR point
clouds, and to automate the identification of structural elements, such as cables,
posts, and tracks, exploring the potential of Deep Learning techniques to do so.

Three complementary approaches are investigated in this study. Firstly, a
binary classification model is used to distinguish railway infrastructure from non-
infrastructure elements within the LiDAR point clouds. Secondly, a semantic seg-
mentation framework is developed to separate the main structural components.
Finally, an anomaly detection module is designed to specifically identify irregu-
larities in overhead cables. The study evaluates and compares the performance of
these approaches in terms of accuracy, effectiveness, and practical applicability for
intelligent infrastructure monitoring.

Beyond the specific application to the railway sector, the methodologies de-
veloped in this study can be used in other sectors involving LiDAR point cloud
analysis, like different types of civil infrastructure, such as bridges, roads, or power
lines, offering a broader range of applications.

Keywords: LiDAR, railway infrastructure, Deep Learning, anomaly detection,
semantic segmentation



1. Introduction

Railway transport has always been important for industrial and social devel-
opment, offering an efficient and sustainable alternative to other modes of trans-
portation. Its lower environmental impact compared to road and air travel[20] has
established the goal for expansion of high-speed and freight traffic across Europe.
However, the ability to achieve these goals depends critically on the reliability and
safety of the railway infrastructure, emerging technologies such as LiDAR map-
ping, drone-based surveys, and machine learning are transforming this traditional
inspections by enabling faster, more accurate, and more cost-efficient monitoring
of railway assets.

The main purpose of this project is to use deep learning techniques on 3D
point cloud data for developing models capable of processing point clouds, clas-
sifying infrastructure components, and detect anomalies. The project also lays
the groundwork for predictive maintenance applications, anticipating failures be-
fore they occur. Following these objectives, it contributes to the modernization of
railway management and supports the transition toward a more digitalized sector.

Early works demonstrated the feasibility of automated classification of tracks,
catenaries, and masts using mobile LiDAR data|5], while later studies introduced
larger datasets and segmentation frameworks that improved scalability [16] 411
14]. The adoption of neural network architectures such as PointNet++, KPConv,
and SPVConv, consolidated deep learning as the state of the art for semantic
segmentation in complex railway environments[30, [67]. Anomaly detection has
followed a similar trajectory, integrating convolutional neural networks to detect
fastener defects[I3], while GANs and meta-learning have reduced inspection time
and effort[I1]. Together, these approaches show the growing role of AI for the
continuous and reliable monitoring of railway systems.

2. Methodology

The methodology of this project is structured into four main stages. The first
phase, data exploration, consists of analyzing the raw LiDAR dataset to assess
its quality, identify irregularities, and evaluate class balance, producing a complete
exploratory report. The second phase, data processing, applies normalization,
filtering, splitting, and resampling to prepare reliable and balanced datasets for
model training.



The third phase, modelling, integrates classification, segmentation, and anomaly
detection. It begins with a binary classification distinguishing infrastructure from
non-infrastructure, followed by a semantic segmentation of components using a
PointNet-based deep learning model, and concludes with a dedicated anomaly de-
tection system focused on overhead cables. Finally, the fourth phase, testing
and results, evaluates model performance through quantitative metrics and vi-
sual 3D representations, allowing both accurate validation and intuitive inspection
of detected anomalies.

STAGE 1: STSS; % STAGE 3: TSth‘GE 4’d
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preprocessing results

Figure 1: Project workflow

3. Description of the models
Railway presence classification

This stage changes the original multi-class dataset into a binary problem:
distinguishing between infrastructure points (rails, poles, cables) and non-
infrastructure points (ground, vegetation, other objects), to filter irrelevant
data at an early stage and reducing complexity. The features include LiDAR
coordinates, intensity, and colors.

XGBoost

XGBoost is a gradient-boosted decision tree algorithm that builds an additive
ensemble of weak learners. At iteration M, the prediction is given by:

M

Fy(r) = Z nfm(2),

m=1

The main hyperparameters include n_ estimators, learning rate, mazx_ depth,
man_ child_weight, subsample, colsample bytree, and regularization terms « and
A. Class imbalance is corrected using scale_pos_weight. Models were compared
using Precision—Recall AUC as the primary metric, with F1-score and Balanced
Accuracy as secondary criteria, and decision thresholds were optimized on the
validation folds to maximize F1.



The final configuration balanced tree achieved the best trade-off across PR-
AUC and F1-score among the XGBoost candidates. On the validation split, results
were consistent with training, confirming good generalization.

Model depth learning rate estimators ‘ Threshold
MODEL 4 4 0.10 500 | 0.37

Table 1: Final model with all the parameters

LightGBM

Light GBM is also a gradient-boosted decision tree algorithm but employs
histogram-based split finding and a leaf-wise growth strategy with depth con-
straints. The optimization problem is similar to XGBoost:

L= Zé(yu i) + QU fm)s

=1

but training is accelerated by techniques such as Gradient-based One-Side Sam-
pling (GOSS) and Exclusive Feature Bundling (EFB), which approximate gradient
distributions and reduce feature dimensionality. This allows Light GBM to scale
efficiently to large, sparse datasets.

Key hyperparameters include num_ leaves, maz_ depth, min_ data_in_leaf, fea-
ture_ fraction, bagging _fraction, bagging freq, and learning ratem and to handle
imbalance,scale_pos weight parameter was used. Validation with early stopping
was applied, and models were selected according to PR-AUC and F1-score [£.5]

The selected Light GBM configuration produced the best PR-AUC and F1-score
for the validation, confirming generalization and fast inference capability.

Model learning depth  estimators leaves min Threshold
rate child
sam-
ples
Model 3 0.10 9 200 - 200 | 0.39

Table 2: Final Light GBM model and threshold applied

Railway component segmentation: PointNet



The goal of this stage is to segment the structural components of the railway
infrastructure at point level, each point must now be assigned to one of three
categories: rails, poles, or wires. PointNet was selected as the model because it
directly processes raw point clouds without voxelization or projection, preserving
geometric fidelity. The network applies shared multilayer perceptrons (MLPs) to
each point independently, aggregates global features through symmetric functions,
and outputs per-point class scores.

In this project, the original PointNet model was adapted to the specific charac-
teristics of railway data. First, the input representation was extended from coordi-
nates (x,y, z) to a seven-dimensional feature vector including spatial coordinates,
RGB color, and intensity: p; = [4, i, 2i, 73, G, 0, Li], i=1,..., N,

Moreover, the architecture was designed to accept variable-size point clouds
(N, 7), making it fully point-wise and flexible across diverse railway scenes. A 3x3
T-Net was applied only to the coordinate subset to normalize spatial variations,
while the feature-transform block of the original PointNet was omitted to avoid
distortions when combining geometric and non-geometric attributes.

The model was trained using the Adam optimizer, which adapts learning rates
for each parameter through first and second moment estimates of the gradients:

my = Bime—1 + (1 — B1) g, vy = Povp_1 + (1 — 52)91527

with bias correction and parameter updates. A learning rate of 0.001 and Ly weight
decay of 10~* were adopted, and to address class imbalance, class-specific weights
were incorporated into the weighted cross-entropy loss, ensuring that minority
classes such as poles and wires contributed proportionally to the optimization.

Training was organized into sessions of 100 epochs each. After every epoch,
the validation mean Intersection-over-Union (mloU) was computed:

TP ] —
IoU, = c IoU=—) IoU,,
(0] mio m;o

~ TP.+ FP.+ FN,’

and the model with the highest validation mIoU was checkpointed. Two main
training rounds (0-100 and 100-200 epochs) were performed, yielding models with
comparable performance, with the best-performing configuration achieved a vali-
dation accuracy above 0.88, a balanced accuracy of 0.86, and a mean IoU of 0.77.



Best epoch Train accuracy Train mIoU Validation mIoU

146 0.8631 0.7239 0.7703

Table 3: Training and validation performance of the best model from epoch 100
to 200.

Cable anomalies detection

This stage automatically identifies irregularities in the catenary system, one
of the most critical elements of railway infrastructure. Detecting anomalies in
cables is essential for a safe and reliable operation. This task is performed only on
validation and test datasets to simulate real-world unseen data.

Before anomalies can be detected, it is necessary to isolate each cable from the
overall set of points classified as cable in the segmentation step. To achieve this,
DBSCAN clustering is applied to the 3D coordinates:

K
PZ{pl,...,pN}CRS, P:UCk, CiﬂCjZQ.

k=1

Each cluster Cy corresponds to a single cable, while noise points are labeled as —1.
Parameters ¢ = 0.045 and minPts = 10 were tuned on validation data and fixed
for testing, ensuring generalization.

Several anomaly detectors were designed, operating either at the global or point
level of each cable:

Cable alignment: To check whether a cable follows a straight trajectory, PCA is
applied to its points {p;} to extract the dominant axis vi. The explained variance
ratio

2
O axis
2
Oiotal

R =
measures alignment. If R < 7 = 0.9, the cable is considered anomalous.

Cable inclination: The orientation vector e..,. is compared to the reference
axis or plane. An anomaly is detected if the inclination angle

0 = arccos(|ecqpic - €refl)

exceeds a threshold 7 = 5, indicating collapse or abnormal tilt.



Point deviation: Each point p; is projected onto the cable’s main axis, produc-
ing p;. The orthogonal distance

d; = ||pi — Pill2

is computed, and the point is anomalous if d; > o = 0.05.

Segment change in direction: Cables are split into segments Sp. PCA gives
each segment orientation e;. The angle between consecutive segments

0y = arccos(|ey, - exy1])
is compared to a threshold 7 = 30.

Space between points: After projecting all points onto the main axis, the gaps

Aj =i —m;

are computed. If A; > ¢ = 0.02, the gap is marked anomalous, as it may corre-
spond to a break or missing cable section.

4. Results
Railway presence classification
XGBoost

The XGBoost model achieved a global accuracy of 0.7579 and a balanced
accuracy of 0.7304 on the test dataset, with ROC AUC and PR AUC scores of
0.8399 and 0.7962, respectively. While Class 0 (non-infrastructure) maintained
stable performance (F1-score = 0.8114), the Class 1 (railway presence) had a F1-
score to 0.6621.

Class Precision Recall Fl-score IoU
Class 0 0.7618 0.8678 0.8114 0.6826
Class 1 0.7494 0.5931 0.6621 0.4949

Table 4: Class-specific evaluation metrics on the test set for XGBoost model

Light GBM



The Light GBM model obtained higher overall accuracy on the test set (0.7618)
but a similar balanced accuracy (0.7298), with ROC AUC and PR AUC values
of 0.8300 and 0.7875. Class 0 reached strong results (Fl-score = 0.8177), while
Class 1 had a F1l-score of 0.6567.

Class Precision Recall Fl-score IoU
Class 0 0.7562 0.8901 0.8177 0.6916
Class 1 0.7755 0.5694 0.6567 0.4889

Table 5: Class-specific evaluation metrics on the test set for the Light GBM model

Railway component segmentation: PointNet

Epochs 0-100: The PointNet model trained during the first 100 epochs achieved
strong segmentation performance on the test set, with a global accuracy of
0.8687, balanced accuracy of 0.8347, and mean IoU of 0.7344. At the class
level, rails (Class 3) were segmented with excellent reliability (F1 = 0.9738, IoU =
0.9489), while cables (Class 5) also reached competitive values (F1 = 0.8299, IoU
= 0.7093). In contrast, posts (Class 4) remained the most challenging, with F1 =
0.7055 and IoU = 0.5450 due to frequent confusion with cables.

Class Precision Recall Fl-score IoU

Class 3 0.9564 0.9918 0.9738  0.9489
Class 4 0.8119 0.6237 0.7055  0.5450
Class 5 0.7784 0.8887 0.8299  0.7093

Table 6: Class-specific evaluation metrics for the PointNet model on the test set
from epoch 0 to 100.

Epochs 100-200: In the second training phase, the best model achieved a
global accuracy of 0.8242, balanced accuracy of 0.8001, and mean IoU of
0.6782, showing a noticeable drop compared to the earlier epoch group. Rails
(Class 3) remained the best-performing category (F1 = 0.9320, IoU = 0.8727),
while cables (Class 5) maintained reasonable values (F1 = 0.8137, IoU = 0.6859).
However, posts (Class 4) had F1 = 0.6449 and IoU = 0.4759, reflecting a high rate
of misclassification into the cable class.




Class Precision Recall Fl-score IoU

Class 3 0.9458 0.9992 0.9717  0.9450
(Class 4 0.8455 0.6704 0.7478  0.5972
Class 5 0.8204 0.9034 0.8599  0.7543

Table 7: Class-specific evaluation metrics for the best model on the validation
subset from epoch 0 to 100.

Cable anomalies detection

The evaluation of cable anomalies combined quantitative indicators with qual-
itative visual inspection. For each detector, numerical outputs were stored in
structured dataframes, while visualizations with a green/red code confirmed the
presence of an anomaly:.

Cable Alignment: The dataframe records, for each cable, the file of origin, cable
identifier, number of points, explained variance ratio of the first principal axis, and
a binary flag indicating whether alignment falls below the threshold 0.90.

Cable Inclination: Each row includes the file, cable identifier, number of points,
the measured inclination angle (in degrees) relative to a dominant axis or plane,
and a binary anomaly flag. Angles above the 5° threshold are flagged as abnormal
orientations.

Point Deviation: The output dataframe contains the mean, maximum, and
standard deviation of orthogonal deviations per cable, together with the number
and indices of points exceeding the deviation threshold 0.05.

Segment Change in Direction: For each pair of consecutive segments, the re-
sults show the file, cable ID, point range of the segments, the computed angle
between their dominant axes, and a flag if it exceeds 30°.

Space Between Points: This detector reports only anomalous cases, recording
the file, cable ID, indices of the two points forming the gap, the gap size, and an
anomaly flag if distance is greater than the threshold 0.02.
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(a) Cable separation (b) Cable alignment (c) Cable inclination
(d) Point per point devia- (¢) Segment change direc- (f) Distance between points
tion tion

Figure 2: Cable anomalies detection results

5. Conclusions

The project combined PointNet-based segmentation, gradient-boosted tree clas-
sifiers, and custom anomaly detection models for analyzing railway infrastruc-
ture from LiDAR point clouds. Results confirmed consistent quantitative perfor-
mance, supported by visual inspections that facilitated interpretability, making
the methodology applicable even for non-specialized users in operational contexts.

Beyond the methodological contributions, the work shows the potential to
strengthen predictive maintenance in the railway sector by reducing inspection
costs, increasing safety, and supporting the digitalization of infrastructure man-
agement. Moreover, it is transferable to other industries where anomaly detection
is critical, such as energy, civil engineering, telecommunications, and aerospace.
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RESUMEN

El analisis preciso de la infraestructura ferroviaria es de gran importancia para
garantizar la seguridad, la fiabilidad y la eficiencia en los sistemas de transporte,
ya que proporciona informacién para el monitoreo del estado de sus componentes,
y la deteccion de cambios a lo largo del tiempo y anomalias. Ademas, permite
a los ingenieros y operadores evaluar irregularidades estructurales para orientar
intervenciones preventivas con precision.

Este trabajo presenta un estudio exhaustivo centrado en la segmentacion y
clasificacion de los componentes de la infraestructura ferroviaria a partir de nubes
de puntos LiDAR, con el objetivo de automatizar la identificacién de elementos
estructurales, explorando las técnicas de Deep Learning.

En este estudio se investigan tres enfoques. Primero, se emplea un modelo
de clasificacién binaria para distinguir los elementos de infraestructura ferroviaria
de aquellos que no lo son. En segundo lugar, se desarrolla una segmentacion
semantica para separar los principales componentes estructurales. Finalmente, se
disena un modulo de deteccion de anomalias para identificar irregularidades en los
cables aéreos. El estudio evaliia y compara el rendimiento de estos enfoques en
términos de precision, eficacia y aplicabilidad para el monitoreo inteligente de la
infraestructura.

Mas all& de la aplicacion en este sector, las metodologias desarrolladas en este
estudio pueden aplicarse en los que se analicen nubes de puntos LiDAR, como
diferentes infraestructuras civiles, como puentes o tuneles, ofreciendo un abanico
més amplio de aplicaciones.

Palabras clave: LiDAR, infraestructura ferroviaria, Deep Learning, deteccion
de anomalias, segmentacion semdantica



1. Introduccién

El transporte ferroviario siempre ha desempenado un papel fundamental en
el desarrollo industrial y social, al ser una alternativa eficiente y sostenible para
transportarse. Su menor impacto ambiental en comparacion con el transporte por
carretera y aéreo|20] ha impulsado el objetivo de expandir las redes de alta veloci-
dad y el trafico de mercancias en toda Europa. No obstante, la consecucion de es-
tos objetivos depende de la fiabilidad y seguridad de la infraestructura ferroviaria.
Tecnologias emergentes como el mapeo LiDAR, las inspecciones con drones y el
aprendizaje automatico estan transformando las inspecciones tradicionales, al per-
mitir una monitorizacién mas rapida, precisa y rentable de los activos ferroviarios.

El proposito principal de este proyecto es aplicar técnicas de Deep Learning
sobre datos de nubes de puntos 3D para desarrollar modelos capaces de procesar
dichas nubes, clasificar componentes de la infraestructura y detectar anomalias. El
proyecto también sienta las bases para aplicaciones de mantenimiento predictivo,
anticipando fallos antes de que ocurran. En linea con estos objetivos, contribuye a
la modernizacion de la gestion ferroviaria y respalda la transicion hacia un sector
mas digitalizado.

Los primeros trabajos demostraron la viabilidad de la clasificacion automética
de vias, catenarias y postes empleando datos LiDAR moviles[5], mientras que
estudios posteriores introdujeron conjuntos de datos mas amplios y marcos de seg-
mentacion que mejoraron la escalabilidad [16, 4], [T4]. Con la adopcion de arquitec-
turas de redes neuronales como PointNet++, KPConv y SPVConv, el aprendizaje
profundo se consolidé como el estado del arte en segmentacion seméantica de en-
tornos ferroviarios complejos|30] [67]. La deteccion de anomalias ha seguido una
trayectoria similar, integrando redes convolucionales para identificar defectos en
fijaciones[13], mientras que técnicas como GANs y meta-learning han reducido los
tiempos y esfuerzos de inspeccion|[I1]. En conjunto, estos enfoques evidencian el
creciente papel de la inteligencia artificial en la monitorizaciéon continua y fiable
de los sistemas ferroviarios.

2. Metodologia

La metodologia de este proyecto se estructura en cuatro etapas principales. La
primera fase, exploracién de datos, consiste en analizar el conjunto de datos
LiDAR en bruto para evaluar su calidad, identificar posibles irregularidades y ex-
aminar el equilibrio de clases, generando un informe exploratorio completo. La



segunda fase, procesamiento de datos, aplica técnicas de normalizacion, fil-
trado, particion y remuestreo con el fin de preparar conjuntos de datos fiables y
balanceados para el entrenamiento de los modelos.

La tercera fase, modelado, integra clasificacién, segmentacion y deteccion de
anomalias. Comienza con una clasificacion binaria que distingue entre infraestruc-
tura y no-infraestructura, contintia con una segmentacion seméntica de compo-
nentes mediante un modelo de aprendizaje profundo basado en PointNet, y fi-
naliza con un sistema especifico de detecciéon de anomalias centrado en los cables
aéreos. Finalmente, la cuarta fase, pruebas y resultados, evalia el rendimiento
de los modelos a través de métricas cuantitativas y representaciones visuales en
3D, lo que permite tanto una validaciéon precisa como una inspeccién intuitiva de
las anomalias detectadas.

STAGE 1: STS;E\ % STAGE 3: TST:‘GE 4‘d
Data exploration . Modelling SIS ElR
preprocessing results

Figure 3: Flujo de trabajo del proyecto

3. Descripciéon de los modelos
Clasificaciéon de la presencia de infraestructura ferroviaria

Esta etapa transforma el conjunto de datos original de multiples clases en un
problema binario: distinguir entre puntos de infraestructura (railes, postes,
cables) y puntos de no-infraestructura (suelo, vegetacion, otros objetos). De
esta manera, se filtran datos irrelevantes en una fase temprana, reduciendo la
complejidad del problema. Las caracteristicas empleadas incluyen las coordenadas
LiDAR, la intensidad y los valores de color.

XGBoost

XGBoost es un algoritmo de arboles de decision potenciados por gradiente que
construye un ensamble aditivo de clasificadores débiles. En la iteracion M, la
prediccion se define como:

M

Fy(x) = Z nfm(2),

m=1



Los principales hiperparametros incluyen n_ estimators, learning rate, max_ depth,

man_ child _weight, subsample, colsample bytree, asi como los términos de reg-
ularizacion o y A. El desbalance de clases se corrige mediante el pardmetro
scale _pos_weight. Los modelos fueron comparados utilizando el &rea bajo
la curva Precision—Recall (PR-AUC) como métrica principal, y el Fl-score y la
Precision Balanceada como criterios secundarios. Los umbrales de decision fueron
optimizados en las particiones de validaciéon para maximizar el F1.

La configuracion final del arbol balanceado alcanzé el mejor compromiso entre
PR-AUC y Fl-score entre los candidatos de XGBoost. En el conjunto de vali-
dacion, los resultados fueron consistentes con los de entrenamiento, confirmando
una buena capacidad de generalizacion.

Modelo depth learning rate estimators ‘ Threshold

MODELO 4 4 0.10 500 ‘ 0.37

Table 8: Modelo final con todos los pardmetros

Light GBM

LightGBM es también un algoritmo de &rboles de decision potenciados por
gradiente, pero emplea una estrategia de bisqueda de particiones basada en his-
togramas y un crecimiento por hojas con restricciones de profundidad. El problema
de optimizacion es similar al de XGBoost:

L= Zﬁ(yi,?)i) + Q(fm)7

=1

pero el entrenamiento se acelera mediante técnicas como Gradient-based One-Side
Sampling (GOSS) y Exclusive Feature Bundling (EFB), que aproximan las dis-
tribuciones de gradiente y reducen la dimensionalidad de las caracteristicas. Esto
permite que Light GBM escale de manera eficiente en conjuntos de datos grandes
y dispersos.

Los hiperparametros clave incluyen num_ leaves, max_ depth, min_ data_in_ leaf,
feature_ fraction, bagging fraction, bagging freq y learning rate. Para manejar el
desbalance de clases se utiliz6 el pardmetro scale pos weight. Se aplico validacion
con early stopping, v los modelos fueron seleccionados segin las métricas PR-AUC

y Fl-score [£.5]



La configuracion seleccionada de LightGBM produjo el mejor PR-AUC y F1-
score en la validacion, confirmando su capacidad de generalizacion y rapidez de
inferencia.

Modelo learning depth  estimators leaves  Min. Threshold
rate child
sam-
ples
Modelo 3 0.10 9 200 - 200 | 0.39

Table 9: Modelo final de Light GBM y umbral aplicado

Segmentacion de los componentes ferroviarios: PointNet

El objetivo de esta etapa es segmentar los componentes estructurales de la in-
fraestructura ferroviaria a nivel de punto, de modo que cada punto de la nube de
datos debe ser asignado a una de tres categorias: railes, postes o cables. Se se-
leccion6 PointNet como modelo porque procesa directamente nubes de puntos sin
necesidad de voxelizacion ni proyeccion, preservando asi la fidelidad geométrica.
La red aplica perceptrones multicapa compartidos (MLPs) a cada punto de forma
independiente, agrega caracteristicas globales mediante funciones simétricas y gen-
era puntuaciones de clase por punto.

En este proyecto, el modelo original PointNet fue adaptado a las caracteristicas
especificas de los datos ferroviarios. En primer lugar, la representacion de entrada
se amplio desde las coordenadas (x,y,z) a un vector de caracteristicas de siete
dimensiones que incluye coordenadas espaciales, color RGB e intensidad: p; =
(i, Yis 25705 9y Uiy L), i=1,..., N,

Ademas, la arquitectura fue disenada para aceptar nubes de puntos de tamano
variable (N, 7), lo que la hace completamente punto a punto y flexible en diferentes
escenas ferroviarias. Se aplic6 un T-Net de 3x3 tnicamente al subconjunto de
coordenadas para normalizar las variaciones espaciales, mientras que el bloque de
transformacion de caracteristicas del PointNet original fue omitido con el fin de
evitar distorsiones al combinar atributos geométricos y no geométricos.

El modelo fue entrenado utilizando el optimizador Adam, que adapta las tasas
de aprendizaje de cada parametro mediante estimaciones de primer y segundo
momento de los gradientes:

my = Bimi—1 + (1 — B1) g, vy = Povp_1 + (1 — 52)937



con correcciéon de sesgo y actualizacion de pardmetros. Se adopt6é una tasa de
aprendizaje de 0.001 y un decaimiento L, de 1074, y para abordar el desbalance
de clases, se incorporaron pesos especificos en la funcién de pérdida de entropia
cruzada ponderada, garantizando que las clases minoritarias como postes y cables
contribuyeran proporcionalmente al proceso de optimizacion.

El entrenamiento se organiz6 en sesiones de 100 épocas cada una. Después de
cada época, se calcul6 el valor de la métrica Intersection-over-Union media (mloU)
en validacion:

TP ] —
IoU, = c , IoU = — S IoU,,
© TP, + FP,+ FN, o m;O

y se almacend el modelo con mayor mloU de validacion. Se realizaron dos ron-
das principales de entrenamiento (0-100 y 100-200 épocas), obteniéndose modelos
con desempenos comparables. La mejor configuracion alcanzé una precision en
validacion superior a 0.88, una precision balanceada de 0.86 y un mloU de 0.77.

Mejor época Precision entrenamiento mloU entrenamiento mloU validacion

146 0.8631 0.7239 0.7703

Table 10: Rendimiento en entrenamiento y validacién del mejor modelo entre las
épocas 100 y 200.

Deteccion de anomalias en cables

Esta etapa identifica de manera automaética las irregularidades en el sistema de
catenarias, uno de los elementos mas criticos de la infraestructura ferroviaria. La
deteccion de anomalias en los cables es esencial para garantizar un funcionamiento
seguro y fiable. Esta tarea se realiza iinicamente sobre los conjuntos de datos de
validacion y prueba, con el objetivo de simular escenarios reales con datos no vistos
previamente.

Antes de proceder con la deteccién de anomalias, es necesario aislar cada cable
del conjunto total de puntos clasificados como cable en la etapa de segmentacion.
Para ello, se aplica el algoritmo de clustering DBSCAN a las coordenadas tridi-
mensionales:

K
P:{p177pN}CR37 P:UCkH CimCJZQ

k=1



Cada cluster C, corresponde a un cable individual, mientras que los puntos de
ruido son etiquetados como —1. Los pardmetros € = 0.045 y minPts = 10 fueron
ajustados en el conjunto de validacién y posteriormente fijados en el de prueba,
garantizando asi la capacidad de generalizacion.

Se disenaron varios detectores de anomalias, operando tanto a nivel global como
a nivel puntual de cada cable:

Alineacion del cable: Para verificar si un cable sigue una trayectoria recta, se
aplica PCA a sus puntos {p;} con el fin de extraer el eje dominante vy. El cociente

de varianza explicada

o2
axis
2

Ototal

R—
mide el grado de alineacion. Si R < 7 = 0.9, el cable se considera anémalo.

Inclinacién del cable: El vector de orientacion e.q,. se compara con el eje o
plano de referencia. Se detecta una anomalia si el angulo de inclinacién

0 = arccos(|ecapie - €rerl)

supera un umbral 7 = 5, lo que indica colapso o inclinaciéon anormal.

Desviacion puntual: Cada punto p; se proyecta sobre el eje principal del cable,
generando p;. La distancia ortogonal

d; = ||pi — Pill2
se calcula, y el punto se considera anémalo si d; > 6 = 0.05.
Cambio de direccién por segmentos: Los cables se dividen en segmentos S.

PCA proporciona la orientacion de cada segmento e;. El dngulo entre segmentos
consecutivos

0y = arccos(|ey, - ex41])

se compara con un umbral 7 = 30.

Espacio entre puntos: Tras proyectar todos los puntos sobre el eje principal, se
calculan las separaciones

Aj=mj1 —

Si A; > 6 = 0.02, la separaciéon se marca como anémala, ya que podria correspon-
der a una rotura o a una seccion faltante del cable.



4. Resultados
Clasificaciéon de la presencia de infraestructura ferroviaria
XGBoost

El modelo XGBoost alcanz6 una exactitud global de 0.7579 y una exactitud
balanceada de (.7304 en el conjunto de prueba, con valores de ROC AUC y
PR AUC de 0.8399 y 0.7962, respectivamente. Mientras que la Clase 0 (no-
infraestructura) mantuvo un rendimiento estable (Fl-score = 0.8114), la Clase 1
(presencia ferroviaria) obtuvo un Fl-score de 0.6621.

Clase Precision Recall Fl-score IoU
Clase 0 0.7618 0.8678 0.8114 0.6826
Clase 1 0.7494 0.5931 0.6621 0.4949

Table 11: Meétricas de evaluacion especificas por clase en el conjunto de prueba
para el modelo XGBoost

LightGBM

El modelo Light GBM obtuvo una mayor exactitud global en el conjunto de
prueba (0.7618) pero una exactitud balanceada similar (0.7298), con valores de
ROC AUC y PR AUC de 0.8300 y 0.7875, respectivamente. La Clase 0 alcanzo
resultados solidos (Fl-score = 0.8177), mientras que la Clase 1 presenté un F1-
score de 0.6567.

Clase Precision Recall Fl-score IoU
Clase 0 0.7562 0.8901 0.8177 0.6916
Clase 1 0.7755 0.5694 0.6567 0.4889

Table 12: Métricas de evaluacion especificas por clase en el conjunto de prueba
para el modelo Light GBM

Segmentacion de los componentes ferroviarios: PointNet

Epocas 0-100: El modelo PointNet entrenado durante las primeras 100 épocas
alcanz6é un soélido rendimiento en la segmentacion sobre el conjunto de prueba,
con una exactitud global de 0.8687, exactitud balanceada de 0.83/7 y un



IoU medio de 0.7344. A nivel de clase, los railes (Clase 3) fueron segmentados
con una fiabilidad excelente (F1 = 0.9738, IoU = 0.9489), mientras que los cables
(Clase 5) también alcanzaron valores competitivos (F1 = 0.8299, IoU = 0.7093).
En contraste, los postes (Clase 4) resultaron ser la categoria mas desafiante, con
F1 = 0.7055 e ToU = 0.5450, debido a la frecuente confusiéon con los cables.

Clase Precision Recall Fl-score IoU

Clase 3 0.9564 0.9918 0.9738  0.9489
Clase 4 0.8119 0.6237 0.7055  0.5450
Clase 5 0.7784 0.8887 0.8299  0.7093

Table 13: Métricas de evaluacion especificas por clase para el modelo PointNet en
el conjunto de prueba de la época 0 a 100.

Epocas 100-200: En la segunda fase de entrenamiento, el mejor modelo alcanzé
una exactitud global de 0.82/2, exactitud balanceada de 0.8001 y un IoU
medio de 0.6782, mostrando una caida significativa en comparaciéon con el grupo
de épocas anterior. Los railes (Clase 3) se mantuvieron como la categoria con
mejor desempenio (F1 = 0.9320, IoU = 0.8727), mientras que los cables (Clase
5) conservaron valores razonables (F1 = 0.8137, IoU = 0.6859). Sin embargo, los
postes (Clase 4) obtuvieron un F1 = 0.6449 e IoU = 0.4759, reflejando una elevada
tasa de errores de clasificacion en la categoria de cables.

Clase Precision Recall Fl-score IoU

Class 3 0.9458 0.9992 0.9717  0.9450
Class 4 0.8455 0.6704 0.7478  0.5972
Class 5 0.8204 0.9034 0.8599  0.7543

Table 14: Meétricas de evaluaciéon especificas por clase para el PointNet en el con-
junto de pruebas de la época 100 a 200.

Deteccion de anomalias en cables

La evaluacion de anomalias en los cables combiné indicadores cuantitativos con
una inspecciéon visual cualitativa. Para cada detector, los resultados numéricos
fueron almacenados en dataframes estructurados, mientras que las visualizaciones
con un c6digo de color verde/rojo confirmaron la presencia de una anomalia.



Alineacion del cable: El dataframe registra, para cada cable, el archivo de
origen, el identificador del cable, el nimero de puntos, el ratio de varianza explicada
por el primer eje principal y una bandera binaria que indica si la alineaciéon esta
por debajo del umbral 0.90.

Inclinacién del cable: Cada fila incluye el archivo, el identificador del cable, el
nimero de puntos, el angulo de inclinacion medido (en grados) con respecto a un
eje o plano dominante, y una bandera binaria de anomalia. Los angulos superiores
al umbral de 5° se marcan como orientaciones anormales.

Desviacion puntual: El dataframe de salida contiene la desviaciéon ortogonal
media, maxima y desviacion estandar por cable, junto con el nimero e indices de
puntos que superan el umbral de desviacion 0.05.

Cambio de direccién por segmentos: Para cada par de segmentos consecutivos,
los resultados muestran el archivo, el identificador del cable, el rango de puntos de
los segmentos, el dngulo calculado entre sus ejes dominantes y una bandera que
indica si supera los 30°.

Espacio entre puntos: Este detector informa tinicamente de los casos anémalos,
registrando el archivo, el identificador del cable, los indices de los dos puntos que
forman la discontinuidad, el tamano del hueco y una bandera de anomalia si la
distancia es mayor al umbral 0.02.




JJ )
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punto segmentos

Figure 4: Resultados de la detecciéon de anomalias en cables

5. Conclusiones

El proyecto combina la segmentacion basada en PointNet, clasificadores de
arboles potenciados mediante gradiente y modelos personalizados de deteccion de
anomalias para el analisis de infraestructuras ferroviarias a partir de nubes de pun-
tos LiDAR. Los resultados confirmaron un rendimiento cuantitativo consistente,
respaldado por inspecciones visuales que facilitaron la interpretabilidad, lo que
hace que la metodologia sea aplicable incluso para usuarios no especializados en
contextos operativos.

Més alla de las contribuciones metodologicas, este trabajo demuestra el poten-
cial para fortalecer el mantenimiento predictivo en el sector ferroviario, al reducir
los costos de inspeccion, aumentar la seguridad y apoyar la digitalizacion de la
gestion de infraestructuras. Asimismo, su aplicabilidad puede extenderse a otras
industrias donde la deteccion de anomalias es critica, como la energia, la ingenieria
civil, las telecomunicaciones y la industria aeroespacial.






Abstract

Accurate analysis of railway infrastructure is very important for ensuring safety,
reliability, and efficient operation of transportation systems, as it provides essential
information for monitoring the condition of critical components, detecting changes
over time, and anomalies. Aditionally, it allows engineers and operators to evaluate
structural irregularities, assess the overall state of the infrastructure, and guide
preventive interventions with precision.

This research paper presents a comprehensive study focused on the segmen-
tation and classification of railway infrastructure components from LiDAR point
clouds, and to automate the identification of structural elements, such as cables,
posts, and tracks, exploring the potential of Deep Learning techniques to do so.

Three complementary approaches are investigated in this study. Firstly, a
binary classification model is used to distinguish railway infrastructure from non-
infrastructure elements within the LiDAR point clouds. Secondly, a semantic seg-
mentation framework is developed to separate the main structural components.
Finally, an anomaly detection module is designed to specifically identify irregu-
larities in overhead cables. The study evaluates and compares the performance of
these approaches in terms of accuracy, effectiveness, and practical applicability for
intelligent infrastructure monitoring.

Beyond the specific application to the railway sector, the methodologies de-
veloped in this study can be used in other sectors involving LiDAR point cloud
analysis, like different types of civil infrastructure, such as bridges, roads, or power
lines, offering a broader range of applications.

Keywords: LiDAR, railway infrastructure, Deep Learning, anomaly detection,
semantic segmentation






Resumen

El analisis preciso de la infraestructura ferroviaria es de gran importancia para
garantizar la seguridad, la fiabilidad y la eficiencia en los sistemas de transporte,
ya que proporciona informacion para el monitoreo del estado de sus componentes,
y la deteccion de cambios a lo largo del tiempo y anomalias. Ademas, permite
a los ingenieros y operadores evaluar irregularidades estructurales para orientar
intervenciones preventivas con precision.

Este trabajo presenta un estudio exhaustivo centrado en la segmentacion y
clasificacion de los componentes de la infraestructura ferroviaria a partir de nubes
de puntos LiDAR, con el objetivo de automatizar la identificacién de elementos
estructurales, explorando las técnicas de Deep Learning.

En este estudio se investigan tres enfoques. Primero, se emplea un modelo
de clasificacion binaria para distinguir los elementos de infraestructura ferroviaria
de aquellos que no lo son. En segundo lugar, se desarrolla una segmentacion
seméantica para separar los principales componentes estructurales. Finalmente, se
disena un modulo de deteccion de anomalias para identificar irregularidades en los
cables aéreos. El estudio evaliia y compara el rendimiento de estos enfoques en
términos de precision, eficacia y aplicabilidad para el monitoreo inteligente de la
infraestructura.

Mas alla de la aplicacion en este sector, las metodologias desarrolladas en este
estudio pueden aplicarse en los que se analicen nubes de puntos LiDAR, como
diferentes infraestructuras civiles, como puentes o tuneles, ofreciendo un abanico
mas amplio de aplicaciones.

Palabras clave: LiDAR, infraestructura ferroviaria, Deep Learning, deteccion
de anomalias, segmentacion semdntica
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Chapter 1

Introduction

Rail transport has been, since its beginnings, a key factor in economic and social
development, promoting the growth of the industrial sector by making it easier to
move goods and people from one place to another. However, its usage is still far
from reaching its full potential, accounting for around 7% of all passenger transport
and approximately 18% of goods transport in the European Unién, according to
Eurostat and the European Commission [37].

Unlike other transport systems, the train has a significantly lower environmen-
tal footprint: data from the European Environment Agency dated back to 2018
[20], show that it emits only 33 g C'O, per passenger-kilometer, compared to 143
g for cars and 160 g for planes. In freight, the advantage is even greater: the rail
generates roughly 24 g of C'Oy compared to 1036 g for air cargo.
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Figure 1.1: Average GHG emissions by motorised mode of passenger transport,
EU-27, 2014-2018
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Figure 1.2: Average GHG emissions by motorised mode of freight transport, EU-
27, 2014-2018

Consequently, the train has been established as one of the key factors in achiev-
ing climate neutrality, according to the European transport policy, doubling the
traffic of high-speed trains by 2030 and triple it by 2050[50]. In order to be able
to triple the traffic, it is essential to maintain rail safety and reliability,which are
highly dependent on the quality of its infrastructure and the regularity of inspec-
tions, performed on the thousands of kilometers of Europe’s railroads. Failures in
the tracks, switches, poles and cables, can result in high economic losses, opera-
tional disruptions, and, in the most severe cases, deadly accidents.
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Figure 1.3: Eurail network map of Europe

For decades, traditional inspections such as visual assesments done by trained
staff and inspection trains, have been used to monitor the condition of the rail-
way infrastructure. While these methods have been proven reliable, they require
significant resources and highly trained professionals. Recent innovations such as
non-destructive testing (NDT), drone-based aerial surveys, high-resolution LiDAR
mapping, and computer vision systems make it posible to reduce the dependance
on manual field inspections, increase the frequency of inspections and improve the
early detection of defects by gathering precise and high-quality data [§].

Additionaly, the latest advances in predictive manintenance are transforming
how railway infrastructure is inspected, combining real-time sensor networks with
3D point cloud analysis and machine learning algorithms to detect faults that
require further inspection, before they become more severe. Studies [26] 60 [86]
have shown that integrating these technologies can enable a continuous, data-
driven analysis that improves the accuracy and speed of defect detection. Their
use also contribute to cost reduction by prioritising inspections where they are
most needed.

1.1 Motivation for the study

The main motivation of this project is to address the current challenges arising
from the application of Artificial Intelligence techniques to the railway sector,
a field that is expected to undergo a big digital transformation in the future,
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especially considering the Furopean Union’s goal of tripling rail traffic by the
year 2050 [50]. This goal needs to be achieved not only with the expansion of
railway infrastructure, but also with the introduction of advanced technologies
that optimize the inspections of the already installed infrastructure.

In this context, research work becomes crucial to automatize and digitalize how
and when inspections take place. This project aims to create automatic models
that require minimal human intervention, making use of deep learning algorithms
on multidimensional point cloud data, adapting to datasets collected from different
countries and different surface types.

In addition, this project has a big ethical and social component, contributing
to several of the Sustainable Development Goals (SDGs) established by the United
Nations (UN) (see Appendix |A]) in 2015 as target goals for the year 2030:

e Industry, Innovation and Infrastructure (9). Addressed in this project
by promoting the use of artificial intelligence to optimize inspection, main-
tenance, and repairing tasks in critical infrastructure. The main goal is to
reduce reliance on manual interventions while advancing the digitalization
of this industry. This vision is in line with initiatives led by the European
Union Agency for Railways (ERA) and the Europe’s Rail Joint Undertak-
ing [I7], which encourage the development of more resilient, intelligent, and
sustainable infrastructures, as outlined in the EU’s common transport policy.

¢ Reduced inequalities (10). This project develops tools that can be adopted

by countries regardless of their level of technological resources. Because the
methodology is based on reproducible models and open-access datasets, it
can be adapted to different national contexts, from highly industrialized rail-
way networks to less developed regional systems. This promotes equal access
to advanced digital solutions, reducing dependence on costly technologies and
enabling wider adoption, contributing to narrow the technological gap within
and among countries, while fostering more inclusive and sustainable mobility
on a global scale.

e Sustainable cities and communities (11). Promoting rail transport as
an efficient, safe, and low-emission type of mobility directly supports urban
sustainability. Strengthening the role of railways helps reduce dependence
on private cars, alleviate congestion in cities, and lowers both noise and
air pollution levels. Beyond these immediate benefits, it also contributes to
encouraging more integrated and sustainable urban models.
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e Climate Action (13). Sustainability is closely connected to the railway
sector, as trains are one of the most sustainable modes of transport avail-
able today. Compared to road and air travel, the train has significantly
lower greenhouse gas emissions, consumes less energy per passenger or ton
of goods transported. This project reinforces the long-term sustainability
of rail transport, helping it to remain a safe, efficient, and environmentally
friendly alternative.

e Partnerships for the goals (17). This project is framed within the con-
text of international cooperation to build a common, interoperable, and dig-
ital railway network. This goal is to create the Trans-European Transport
Network (TEN-T)[2I], which aims to connect rail systems across European
Union’s member countries and to ensure seamless cross-border mobility. Eu-
ropean transport policy [I7] emphasizes the importance of interoperability,
standardization, and shared digital platforms so that national networks can
operate as part of a single system. In doing so, it reinforces the idea that
the modernization of the railway sector is a collective effort, where shared
knowledge, common standards, and joint strategies are essential to achieving
sustainable, efficient, and resilient transport across Europe.

1.1.1 Main objectives

e Development of models capable of processing 3D point clouds. A
central objective of this project is the design of models able to process 3D
point cloud data, which is the format in which LiDAR captures information
about the railway environment. Building robust tools to handle this type
of data is essential, as point clouds provide a highly detailed and accurate
digital representation of infrastructure elements, enabling advanced analysis
and automation.

e Automatic classification of railway infrastructure elements Another
key goal is to achieve the automatic classification of different components of
the railway infrastructure, such as tracks, masts, vegetation, and signaling
devices. The purpose is to create a pipeline in which the model learns to
distinguish these elements without manual intervention, ensuring that the
workflow extends seamlessly from the acquisition of raw point cloud data to
the final analysis of anomalies.

e Automatic anomaly detection in railway infrastructure This project
also seeks to contribute to the automation of failure and anomaly detec-
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tion in railway networks. By reducing reliance on manual inspections, the
proposed methods support the development of safer and more efficient in-
frastructures. This objective is strongly aligned with Furopean initiatives
that aim to modernize railway management by lowering maintenance costs
and increasing reliability through digital technologies.

e Creation of a foundation for predictive maintenance applications
Finally, the project is intended to lay the groundwork for future predictive
maintenance systems. The models developed here could be integrated into
decision-support tools capable of issuing early warnings about potential in-
frastructure problems. Establishing this foundation is an important step
toward more proactive and sustainable asset management, ultimately con-
tributing to the resilience and long-term sustainability of railway transport.

1.1.2 Secondary objectives

e Comparison of different classification methodologies A complemen-
tary objective of this project is to compare different classification approaches,
ranging from traditional machine learning methods to advanced deep learn-
ing techniques. This comparison allows for a better understanding of the
strengths and limitations of each methodology when applied to diverse rail-
way environments.

e Evaluation of the generalization capability of the models Another
important secondary objective is to assess the ability of the developed models
to generalize beyond the specific environments in which they were trained.
This involves testing whether models trained with point cloud data from one
country or type of railway system can also perform effectively in other regions
with different infrastructure characteristics. Such evaluation is crucial to
determine the robustness and transferability of the proposed methods, paving
the way for their adoption in a wider range of real-world applications.

1.2 Methodology

This project develops a complete workflow for the automatic analysis of railway
infrastructure based on 3D point cloud data. The methodology follows four main
phases: first, an exploration of the raw dataset to understand its structure and
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quality; second, a processing stage where the data is normalized, filtered, resam-
pled, and split to create balanced subsets; third, the modelling phase, which in-
cludes a classification, segmentation, and anomaly detection tasks using both tra-
ditional machine learning and deep learning techniques; and finally, a testing and
visualization stage, where the results are evaluated and interpreted.

STAGE 1: DATA EXPLORATION
STAGE 2: DATA PROCESSING
STAGE 3: MODELLING

STAGE 4: TESTING AND RESULTS

STAGE 1: STS:; 2 STAGE 3: TST:,‘GE 4’d
Data exploration . Modelling SR
preprocessing results

Figure 1.4: Project workflow

STAGE 1: Data exploration

The first phase consists of an exploratory analysis of the raw LiDAR dataset.
This stage is very important because raw point cloud data usually presents a
high level of complexity: it contains millions of points with diverse attributes,
irregular densities, and heterogeneous distributions depending on the scene. The
main objective of this phase is to detect irregularities that may affect the processing
or modelling stages. Moreover, the EDA allows us to evaluate class balance across
the infrastructure categories, a key factor for avoiding biased models in subsequent
training.

The output of this phase is a comprehensive Exploratory Data Analysis (EDA)
report that includes summary statistics, graphical visualizations, and descriptive
insights.

STAGE 2: Data processing

The second phase applies a transformation to the raw data which is crucial to
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guarantee that the models trained in the subsequent phase are reliable and robust.

Data normalization, ensures that all numerical features are scaled to a consis-
tent range, preventing certain variables with naturally larger ranges, such as co-
ordinates to dominate. Next, the data split divides the dataset into three subsets:
train, validation, and test. The training subset is used to fit the parameters of the
models, the validation subset allows for tuning hyperparameters and preventing
overfitting, and the testing subset provides a final and independent evaluation of
model performance. In parallel, data resampling techniques are applied to correct
imbalances in the dataset, ensuring that all classes are represented in a balanced
way, which improves the ability of the models to correctly recognize minority in-
frastructure elements. Finally, the data filtering stage removes irrelevant points
that do not belong to the target classes of interest. Since the focus of this project
is on railway infrastructure, points outside the desired categories (cables, poles,
and rails) are excluded.

The result of this processing phase is a collection of normalized, balanced, and
filtered datasets, organized into train, validation, and test subsets.

STAGE 3: Modelling

The modelling phase represents the core of this project, as it integrates all the
previous steps into a series of predictive tasks that enable the automatic classi-
fication and analysis of railway infrastructure. This stage is divided into three
consecutive subphases, each addressing a specific task in the interpretation of the
point cloud data.

The first subphase, railway presence classification, simplifies the original multi-
class dataset into a binary problem: infrastructure points (classes corresponding
to poles, rails, and cables) versus non-infrastructure points (such as vegetation,
ground, or other objects).

The second subphase, railway components segmentation, separates the differ-
ent elements of the infrastructure. At this stage, a custom deep learning model
based on the PointNet architecture is employed. This model classifies each point
into one of three categories: rails, poles, or cables.

The final subphase, cable anomalies detection, focuses exclusively on the points
classified as cables in the previous step. Cables play a critical role in railway sys-
tems, as they are responsible for power transmission and signaling, and their failure
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can lead to significant disruptions in railway operation. For this reason, a dedicated
anomaly detection system is developed to identify five types of anomalies.

From the initial binary filtering to the anomaly detection system, each step
is designed to build upon the previous one. The outcome is a structured and
automated methodology capable of detecting not only the presence of railway
infrastructure but also its detailed components and potential defects.

STAGE 4: Testing and results

The final phase focuses on testing, visualization, and interpretation of results.
The trained models are applied to validation and test subsets, generating color-
coded 3D visualizations. These visual outputs highlight infrastructure elements
classified as normal or anomalous. This stage provides not only a quantitative
evaluation of the models but also an intuitive and visual representation of the
anomalies detected, supporting decision-making in railway maintenance workflows.
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Chapter 2

State of art

2.1 Evolution of railway transport

The origins of rail transport [51] date back much earlier than commonly assumed.
Since ancient times, humans have sought ways to make the movement of heavy
loads easier, and one of the earliest examples of guided transport can be traced
to the Diolkos in Ancient Greece during the 6th century BC. This construction
consisted of a stone-paved track with carved grooves that enabled carts to carry
ships over land. Although it was far from what we now recognize as a railway,
it already introduced the fundamental concept of vehicles following a fixed path,
which is one of the key principles of the modern railway systems.

Later on, during the 18th century, the real foundations of modern railways
were established with the invention of the steam engine by James Watt between
1763 and 1775. At the beginning, rail-like systems were mainly used in the mining
industry, where wagons carrying minerals were placed on wooden rails to reduce
friction and make transportation easier. This was a very simple idea, but it showed
how combining rails with mechanical power could completely revolutionize the way
big loads were transported from one place to another reducing the amount of effort
needed.

The first major breakthrough took place in 1802, when Richard Trevithick
built the very first prototype of a steam-powered locomotive. Although the ma-
chine was still limited and mainly experimental, it demonstrated that steam en-
gines could successfully move vehicles along rails. A little more than twenty
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years later, in 1825, George Stephenson inaugurated the world’s first commer-
cial railway line, connecting Stockton and Darlington in England. This milestone
was a turning point, proving that railways
were not only technically possible but also
a practical solution for transporting goods
across the country. Just five years later,
in 1830, Stephenson expanded this vision
with the Liverpool-Manchester line, the
first railway specifically designed to carry
both passengers and freight, opening the

door to the modern railway era. Figure 2.1: A steam locomotive
from the mid-20th century.

After its success in the United Kingdom,
railways quickly spread across Europe. Belgium and Germany built their first
lines in 1835, France followed in 1837, Spain in 1848 with the Matar6—Barcelona
route, and Italy in 1861. This expansion was a clear sign that railways were
becoming one of the most important technological innovations of the 19th century,
fundamentally transforming transport and commerce. By the end of that century,
steam locomotives were already being replaced by electric ones, which were cleaner
and more efficient.

The 20th century brought another rev-
olution with the development of high-speed
trains [62]. Japan was the pioneer in this
field with the launch of the Shinkansen in
1964, capable of reaching speeds of 300 kilo-
meters per hour. This idea quickly in-
spired other countries: France introduced
the TGV (Train a Grande Vitesse) in 1981,
and Spain followed with the AVE (Alta
Velocidad Espanola) in 1992, connecting
Madrid and Seville just in time for the Uni-

Figure 2.2: The inauguration
versal Exposition. High-speed trains com- of the first Shinkansen high-

pletely changed the way people traveled
across countries, making these trains a real
competitor to road and even air transport.

speed train in Japan (1964)

Today, Europe has become a world leader in railway transport, with exten-
sive national and international networks that offer strong connectivity across the
continent. High-speed rail has been a key factor in this development, positioning
Europe as a leader in sustainable and efficient mobility. Spain, for example, stands
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out as the country with the second largest high-speed rail network in the world,
covering 4,327 kilometers, only behind China. France follows closely in third place,
with Germany and Italy also ranking among the countries with the most developed
high-speed infrastructures.

2.2 Railway infrastructure inspections

The railway infrastructure (see Figure [2.3|[61]) is formed by several interconnected
subsystems, each of which plays an important role in guaranteeing operational
safety and efficiency. The track system, made up of rails, sleepers, ballast, and
fastening elements, provides the physical guidance for trains, but, it is subject to
deterioration mechanisms such as rail head wear, rolling contact fatigue, cracks,
and misalignment caused by big loads and environmental factors. The supporting
structures, such as poles and masts, ensure the mechanical stability of the electri-
fication system, but over time they may experience corrosion, loss of verticality,
or structural weakening due to material fatigue.

Power supply

Pantograph 1> IR |

Airflow
__> | L 1] [ ]
H Train
QO S8 (] Q)
“Wheel-rail Track

Figure 2.3: Schematic representation of the main compo-
nents of an electrified railway system

A particularly sensitive component the catenary system, which is the overhead
contact line (OCL), supplies electrical energy to the trains through continuous
contact with the pantograph. Failures in this subsystem [31] can have a very
severe impact, as they can lead to service disruptions or even accidents. The
most common defects include loss of tension, wire wear at the pantograph contact
points, mechanical oscillations, displacement or sagging of the contact wire, and, in
the most extreme cases, wire breakage. For this reason, inspection protocols place
special emphasis on the verification of catenary geometry (height and stagger),
measurement of contact wire wear, and detection of anomalies in the mechanical
tension systems.
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Incidents like the one in the Netherlands in September of 2023 [36], where a
freight train caught fire after a defective temporary repair on the overhead line,
demonstrates the risks of inadequate infrastructure interventions. More recently, in
June of 2025 [64], Eurostar services between France and the United Kingdom were
severely disrupted following the theft of power supply cables in northern France,
demonstrating how both technical failures and external factors can have a very big
impact in the maintenance of the infrastructure. Shortly after, on June 30, a major
breakdown occurred on the Spanish high-speed network [68] between Madrid and
Andalucia, when a contact wire melted due to an electrical overload caused by
multiple trains accumulating on the line. This incident led to the suspension of
AVE and Avant services, leaving hundreds of passengers overnight and emphasizing
the vulnerability of high-speed networks to failures in their catenary systems

2.2.1 Visual inspection and specialized equipment

Visual inspections[22] remain one of the most traditional and widely applied meth-
ods for assessing the condition of railway infrastructure. These inspections are
generally carried out either on foot or using hi-rail vehicles.

¢ On-foot inspections. Specialized personnel walk along the track to identify
surface defects such as cracks in the rail head, misalignments, deteriorated
sleepers, or loose fastenings. It usually requires one or two inspectors and is
highly labor-intensive, which increases its operational costs. The frequency
of such inspections depends on the type of line and its usage: high-speed and
heavily trafficked lines may require weekly examinations, whereas secondary
lines are inspected monthly.

e Hi-rail vehicles. More efficient alternative, consisting on road vehicles
adapted with retractable rail wheels that allow inspectors to travel along
the tracks while conducting visual assessments. This reduces the physical
demands of walking long stretches of railway and enables faster coverage
of larger distances, although it still requires one or two trained operators.
The costs of hi-rail inspections are lower than those of on-foot inspections in
terms of labor, but they continue to depend on track access schedules and
the availability of specialized vehicles, and are usually conducted weekly.

Specialized inspection trains [52] represent a more advanced alternative to man-
ual visual inspections, providing continuous and automated monitoring of railway

Anomaly detection in railway infrastructure based on 3D Point Cloud data 13
using neural networks
Lucia Hernandez Fernandez



infrastructure across long distances, and can be divided into two main categories
depending on their function:

e Track geometry measurement trains. Dedicated to the evaluation of
rail and track geometry parameters such as alignment, gauge, curvature, and
surface wear. These trains are typically equipped with laser sensors, inertial
systems, and high-speed cameras that allow precise detection of deviations
that could compromise safety. The frequency of these inspections depends
on the traffic of the tracks, going from biweekly inspections in high-speed
lines to annual in low-used rails.

e Overhead line monitoring trains. Specifically designed to inspect the
state of catenaries and electrical supply systems. Using thermal cameras,
laser scanners, and high-resolution video equipment, they are able to identify
problems such as irregular contact wire height, excessive inclination, or wear
in the pantograph—catenary interface. The inspections are usually conducted
every four weeks, but could have a higher or lower frequency depending on
the traffic of the rails inspected.

Both types of trains cover long distances in a single run, which makes them
highly efficient for national and international networks. However, they require a
very high investment to produce and use them, additionally needing teams of spe-
cialized engineers and technicians to operate the onboard instruments and interpret
the data collected.

2.2.2 Non-destructive testing (NDT) methods

Non-Destructive Testing (NDT) [2] methods represent one of the most reliable
approaches for ensuring the safety and durability of railway infrastructure, as they
allow the early detection of defects without causing any physical damage to rails
or components.

e Ultrasonic Testing (UT). This is the most widely applied in railway in-
spection and relies on the transmission of high-frequency sound waves into
the rail material to identify internal flaws. A transducer emits ultrasonic
pulses that travel through the steel, and any discontinuities, such as cracks,
voids, or inclusions, cause reflections that are captured and analyzed by the
device. The method is typically carried out at regular intervals ranging from
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every few weeks to several months, depending on traffic density and rail
category. This technique generally requires a team of two to three trained
technicians and involves moderate costs associated with both equipment and
specialized labor.

e Eddy Current Testing (ET). This method uses electromagnetic induction
to detect surface and near-surface flaws in rails and metallic components. A
probe induces alternating currents (eddy currents) in the conductive mate-
rial, and any disruption caused by cracks, corrosion, or material loss modifies
the flow, which is detected by the instrument. ET is highly effective for iden-
tifying head checks and surface defects that are often missed by ultrasonic
techniques. Usually performed in shorter cycles and can also be deployed
on inspection trains equipped with automated sensors, reducing the need for
manual operators.

e Electromagnetic Acoustic Transducers (EMAT). This technique is a
variation of ultrasonic testing that does not require direct contact with the
material or the use of coupling gels, making it highly practical for railway
applications. They generate ultrasonic waves within the material through
electromagnetic induction, which makes them particularly effective for in-
specting rails that are dirty, oxidized, or coated, where traditional ultrasonic
probes lose efficiency.
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METHOD PERSONNEL COST FREQUENCY

On-Foot Visual Inspec- 1-2 inspectors Medium—High Weekly/Monthly

tion

Hi-Rail Vehicle 1-2 inspectors Medium Weekly/Monthly

Track Geometry Car 3 operators Very High Annual/Biweekly

Overhead Line Inspect 3 operators Very High FEvery 4 Weeks

Trains

Ultrasonic Testing (UT)  2-8 trained techni- Moderate Few weeks/Months
cians

Electromagnetic Testing 2 technicians Moderate 1-3 months

(ET)

Electromagnetic Acous- 2-3 skilled techni- High 2-6 months

tic Transducers (EMAT)  cians

Table 2.1: Combined overview of traditional and NDT inspection methods.

2.3 Technological innovations in railway monitor-
ing

2.3.1 LiDAR and point cloud technologies

LiDAR technology and point cloud data has become one of the most advanced
approaches for the inspection and digitalization of railway infrastructures [76],
including airborne scanners, vehicle-mounted systems, and UAV-based platforms,
and has been very important for the efficient acquisition of three-dimensional data
in railway infrastructure, enabling applications that range from the creation of
digital twins to high-precision inspections.

Building on this line of research, Dekker et al.[19] demonstrated how the inte-
gration of LIDAR with Mobile Laser Scanning (MLS) makes it easier to create a
digital representation of railway assets, called digital twins, allowing both detailed
modeling and near real-time monitoring, thus constituting a decisive step toward
full digitalization of the sector. From an aerial perspective, Yarroudh et al. [80]
showed that UAV platforms equipped with LiDAR can effectively monitor catenary
systems in areas that are otherwise difficult to access, offering a safer and more ef-
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ficient alternative to traditional methods. In addition, non-intrusive systems have
been developed to measure track geometry irregularities (such as gauge, curvature,
and profile)[4] using UAV-LiDAR platforms capable of operating without service
disruption, achieving sub-inch accuracy.

In addition, techniques for the automatic extraction of overhead contact lines
from MLS data have also been explored: Zhang et al. [29] successfully extracted
support structures with an accuracy exceeding 97% by employing algorithms such
as RANSAC and DBSCAN. These contributions, together with recent reviews on
UAV-LiDAR applications for railway monitoring [7§], illustrate the transition of
LiDAR from its initial use in basic recognition and classification tasks to its in-
tegration into advanced solutions for inspection, digital modeling, and automated
asset analysis, consolidating its role as a central technology in the modern man-
agement of railway infrastructure.

A recent study titled A Railway LiDAR Point Cloud Reconstruction Based
on Target Detection and Trajectory Filtering [46] presents an advanced method
for reconstructing railway point clouds based on mobile LiDAR. In this work,
odometer information is corrected through the automatic identification of charac-
teristic points in the railway environment using deep learning techniques, followed
by trajectory optimization with a Rauch—-Tung—Striebel (RTS) filter. Applied
to experimental railway data, the method successfully constrained the maximum
East-North coordinate difference to within 7 ¢cm and achieved a mean altitude
error of only 2.39 cm. This approach represents a big step forward, improving the
geometric precision of the generated 3D models and enhancing the spatial fidelity
of representations derived from mobile platforms.

2.3.2 Deep learning applications in railway inspection

The classification of railway infrastructure elements in LiDAR point clouds has
changed a lot over the past decade, going from heuristic and geometric methods to
advanced data-driven frameworks. In a pioneering study, Arastounial5] introduced
automated approaches for recognizing tracks, catenary and return wires, masts,
and cantilevers using mobile mapping LiDAR data, achieving 100% precision and
accuracy at the object level, with mean per-point accuracy and precision of 96.4%
and 97.1%, respectively. Two years later, this author made refinements of the ini-
tial study[6], demonstrating >95% accuracy and precision even in complex urban
environments.

Similarly, the study Classification of railway assets in mobile mapping point
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clouds|16] advanced the automated processing of point clouds through Mobile
Mapping by developing algorithms for the classification of railway assets directly
from LiDAR data, thereby demonstrating the potential of these technologies for
automated inventory generation. Building on this, Lamas et al. [4I] designed a
heuristic segmentation model for a 90 km dataset, successfully classifying rails,
droppers, wiring, masts, and signals, and reporting Fl-scores above 85% overall
and greater than 99% for rails, confirming the scalability of such approaches.

Multi-Scale Hierarchical CRF for Railway Electrification Asset Classification
from Mobile Laser Scanning Data[14] introduced a step forward in classification
by proposing a multi-scale Hierarchical Conditional Random Field (HiCRF) model
for railway electrification asset classification from Mobile Laser Scanning data,
reaching an overall accuracy of 99.67%, which outperformed previously used local
methods.

Figure 2.4: Classification of railway infrastructure from LiDAR
data. Automated recognition of railroad infrastructure in rural
areas from LiDAR data. Remote Sensing|0]

Since then, deep learning models have been used to classify the different parts
of the infrastructure, like in the work of Grandio et al.[30], who applied Point-
Net++ and KPConv to semantic segmentation of complex railway environments,
obtaining 90% accuracy, a mean IoU of 74.89%, and Fl-scores above 90%. In
a complementary study, Ton et al[67]compared PointNet++, SuperPoint Graph,
and Point Transformer for the semantic segmentation of catenary arches using
terrestrial laser scans, where PointNet++ achieved the best results with an IoU
exceeding 71%.

More recently, in 2024, UAV-Based LiDAR and Semantic Segmentation for
Railway Catenary Infrastructure Reconstruction|81] combined KPConv-based se-
mantic segmentation with parametric modeling for reconstructing elements such
as rails, wires, and poles, achieving a mean IoU of 84%.

Benchmarking efforts culminated in the introduction of the Rail3D dataset
by Kharroubi et al[39], which comprises 288 million annotated points across nine
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classes gathered in Hungary, France, and Belgium. Their evaluation demonstrated
that KPConv achieved approximately an 86% mloU, while Light GBM reached
nearly a 71%, demonstrating the superior performance of deep learning archi-
tectures and the value of multi-context datasets for generalizable segmentation.
Complementing these works, Learning Behaviour of SPVConv Models for Seman-
tic Segmentation of Railway Infrastructure|70] analyzed the learning behavior of
SPVConv-based models, providing insights into their scalability when trained on
limited data.

In addition, Yu et al.[82] introduced a voxel-based, multi-scale neural network
for real-time rail recognition, effectively handling straight, curved, and complex
geometries, and the Active Learning for Semantic Segmentation of Railway Point
Clouds|3] study applied active learning techniques and reported a mean IoU of
71.48% across nine classes, confirming the feasibility of scalable and automated
semantic segmentation frameworks for railway infrastructure.

Taken together, these studies demonstrate a clear evolution from early heuristic
and probabilistic approaches, such as HICRF, to deep learning-based architectures,
consistently improving performance metrics and consolidating semantic segmenta-
tion as a possible technology for the accurate and efficient management of modern
railway infrastructure.

2.3.3 Anomaly detection in catenaries systems

Research on anomaly detection in railway infrastructure can be done in several
parts of the infrastructure, each with distinct sensing and algorithmic approaches.
For example, Ghiasi et al.[28] explored in their study Unsupervised anomaly detec-
tion in railway track geometry using One-Class SVMs unsupervised methods who
applied One-Class SVMs to vibration data collected on SNCF networks, improving
defect detection accuracy by 12% compared with raw accelerometer signals, and
outperforming baselines like Isolation Forest and LOF.

Expanding this line, Cao et al.[11] introduced a meta-learning framework com-
bined with GANSs to detect anomalies in high-speed railway inspections, reporting
a 99.7% reduction in inspection effort and 96.7% reduction in inspection time.
UAV-based measurement has also been applied[59], with Qiu et al. (UNLV) de-
veloping a multi-rotor platform integrating LiDAR and vision for real-time track
geometry monitoring, achieving high accuracy in gauge and curvature without
service disruption.
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In catenary systems, deep learning and sensing methods dominate. Chen et
al.[I3] employed convolutional neural networks to detect fastener defects on sup-
port devices, achieving high detection accuracy across large image datasets. Inspec-
tion of railway catenary systems using machine learning with domain knowledge
integration|[84] further advanced this by integrating domain knowledge into ma-
chine learning models, improving interpretability and defect classification, and Cao
et al.[T0] created a systematic mapping reviewing recent sensing and monitoring
approaches for catenary condition assessment.

Complementary to this, Zhou et al.|87] proposed a vibration-based defect di-
agnosis method for rigid catenary systems, analyzing pantograph response signals
to detect issues such as wear and poor contact with high reliability. Unsupervised
strategies have also been used for catenary anomalies detection like in Defect Di-
agnosis of Rigid Catenary System Based on Pantograph Vibration Performance
Actuators where the authors Wu et al.[77] developed an anomaly detection system
for split pins in catenary assemblies using clustering-based methods without exten-
sive labeled data. Beyond tracks and catenaries, anomaly detection has extended

Figure 2.5: Catenary anomaly detection. Defect Diagno-
sis of Rigid Catenary System Based on Pantograph Vibra-
tion Performance Actuators|TT]

to signaling cables, where Wang et al.[72] proposed a measurement-based moni-
toring framework to detect early degradation of signaling cables through electrical
and operational parameter analysis. Meanwhile, computer vision continues to ex-
pand the scope of inspection: a systematic review in A systematic literature review
of defect detection in railways using machine vision-based inspection methods|27]
established that deep learning methods consistently outperform traditional rule-
based image analysis for detecting defects in rails, sleepers, and fasteners, although
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progress is constrained by the limited availability of annotated datasets.

Finally, advances in multi-modal and unsupervised methods broaden anomaly
detection. DHT-CL: Multi-modal Contrastive Learning for Obstacle Detection in
Railways under Adverse Weather Electronics[5] introduced the DHT-CL model,
combining LiDAR and camera data via multi-modal contrastive learning for ob-
stacle detection under adverse weather, achieving mloU of 87.38%.

Self-supervised strategies have also been tasted: Li et al.[44] proposed MAE-
STRO, a reconstruction-only anomaly detection framework for 3D point clouds
that outperformed previous benchmarks in industrial settings, while Li[43] released
Anomaly-ShapeNet and introduced IMRNet, reaching 66.1% I-AUC and 72.5% on
Real3D-AD benchmarks, confirming the value of large-scale synthetic datasets for
anomaly detection research.

2.4 Datasets for railway infrastructure

A growing number of datasets have been developed to support research in rail-
way infrastructure monitoring and semantic segmentation, each addressing spe-
cific components of the system. The RailSem19 dataset|83] provides over 8,500
annotated sequences of railway and tramway scenes from a train’s perspective, en-
abling semantic understanding of rail environments including crossings and urban
interactions.

Focusing on railway signaling, the FRSign dataset|34] compiles more than
100,000 annotated images of French railway traffic lights, capturing temporal, spa-
tial, and sensor-related metadata to support signal recognition tasks. In terms of
safety, the RAWPED dataset[48] introduces annotated data of pedestrians in rail-
way environments, while a complementary study by the same authors employed a
proprietary dataset to evaluate ensemble methods for pedestrian detection in driver
support systems. For signalization in different contexts, the GERALD dataset[42]
focuses on German mainline railway signals, providing over 5,000 images annotated
for signal detection.

In addition to 2D images, several high-resolution 3D datasets have been re-
leased. Ton[66] introduced a labeled terrestrial laser scanning dataset covering
15 catenary arches in the Netherlands, annotated into 14 distinct classes, which
can be used as a reference benchmark for overhead line segmentation. Expand-
ing in scale, the WHU-Railway3D dataset[58] offers over 4 billion points covering
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30 km of railway infrastructure across rural, urban, and plateau environments in
China, divided into 11 annotated classes, and has become one of the largest and
most diverse benchmarks for point cloud segmentation. Similarly, the OSDaR23

{a) urban railway dataset (h) rural railway datasct () plateau railway dataset

I Rails I Traclis [ M I ol Ricsie I Fences I Poles  Vegetation I Buildings | Ground  Others
bed devices lines

Figure 2.6: WHU Dataset. [58]

dataset[65] provides a multi-sensor dataset collected in Hamburg, Germany, com-
bining LiDAR, RGB, infrared cameras, and radar, with annotations spanning 20
semantic classes including trains, catenary poles, and vegetation. For localization
and mapping, Wang|74] released the Railway SLAM dataset, which consists of
LiDAR and inertial data supporting the development of simultaneous localization
and mapping algorithms for railway environments.

Finally, Kharroubi et al.[40] introduced the Rail3D dataset, a multi-context
annotated point cloud dataset with 288 million points across nine universal classes
(rails, poles, wires, vegetation, signals, fences, installations, buildings, and ground),
collected in Hungary, France, and Belgium. This dataset represents a key step to-
ward generalizable models, as it provides cross-context benchmarks for semantic
segmentation under varying acquisition conditions.

Collectively, these datasets constitute the foundation for advancing perception
and monitoring in railway research, offering a range of resources from annotated 2D
images to large-scale 3D point clouds that enable both semantic understanding and
the development of deep learning models for railway infrastructure management.
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Study Elements Model Used Performance
Classified Metrics
Ton et al. (2023) 14 catenary PointNet++, PointNet++:
Semantic Segmentation  arch SuperPoint IoU (as
of Terrestrial Laser components Graph, Point reported)
Scans of Railway Transformer
Catenary Arches
Yarroudh et al. (2024) Ruails, wires, KPConv + mloU = 84%
UAV—-Based LiDAR for  poles parametric
Railway Catenary modeling
Reconstruction
Kharroubi et al. (2024) 9 universal KPConv, KPConv: ~86%
Rail3D Dataset and classes LightGBM, mloU;
Benchmarks Random Forest  LightGBM:
lower mloU
Werf (2023) Learning Multiple SPVConv Scalability
Behaviour of SPVConv  railway asset under limited
Models classes data
Yu et al. (2022) Rails Voxel-based, Robust
Real-Time Rail multi-scale detection across
Recognition neural network  diverse
geometries
arXiv (2024) Active 9 semantic Active mloU =
Learning for Semantic railway classes  learning-based 71.48%
Segmentation of 3D
Railway Point Clouds segmentation
Arastounia (2015) Tracks, Rule-based 100%
Automated Recognition — catenary wires,  segmentation object-level
of Railroad return wires, with geometric  accuracy &
Infrastructure in Rural — masts, & spatial Precision;
Areas from LiDAR cantilevers relations 96.4%
Data (KD-tree, point-level
FLANN) accuracy

Table 2.2: State of the art studies for infrastructure classification (part I).
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Study

Elements
Classified

Model Used

Performance
Metrics

Corongiu et al. (2020)
Classification of Railway
Assets in Mobile
Mapping Point Clouds

Rails, poles,
cables, signals

Handcrafted
geometric
descriptors +
classifiers

Reliable asset
classification
(no exact %
reported)

Lamas et al. (2021)
Automatic Point Cloud
Semantic Segmentation
of Complexr Railway

Environments

Rails, droppers,
wiring, masts,

Heuristic
pipeline
segmentation

F1 > 85%
overall; >99%
for rails

Chen et al. (2019)
Multi-Scale Hierarchical
CRF for Railway
Electrification Asset

Classification

Electrification
assets (10

Multi-scale
Hierarchical

CRFs (HiCRF)

99.67% owverall
accuracy

Grandjo et al. (2022)
Point Cloud Semantic
Segmentation of
Complex Railway
Environments Using

Deep Learning

Rails, signals,

vegetation,
lighting, etc.

PointNet++
and KPConv

Accuracy =
90%; mloU =
74.89%; F1 ~
90%

Table 2.3: State of the art studies for infrastructure classification (part II).
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Chapter 3

Theoretical foundations

3.1 Traditional Machine Learning techniques

3.1.1 XGBoost

The XGBoost algorithm, short for Extreme Gradient Boosting, was intro-
duced in the study XGBoost: A Scalable Tree Boosting System by Tiangi Chen
and Carlos Guestrin in 2016[15]. Its name is a reflection of both, the family of
boosting algorithms and the fact that it is an optimized and extended version of
gradient boosting.

Boosting

Boosting|23] is an ensemble learning technique. Its fundamental principle lies
in sequential training: each new model is fitted to correct the errors of its pre-
decessors, so that misclassified observations receive greater weight in subsequent
iterations. Boosting focuses on reducing bias by progressively correcting mistakes.

Gradient boosting

Friedman|24] and Mason et al.[49] extended this framework by introducing
gradient boosting. Instead of merely reweighting or reclassifying mispredicted
examples, each new model f;(x) is trained to approximate the negative gradient
of a differentiable loss function. The resulting model takes an additive form:

A

Fy(x) = Ft,l(az) + v fi(x)
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v denotes the learning rate. In this way, boosting becomes a flexible method that
can adapt to a variety of tasks simply by choosing the appropriate loss function.

XGBoost

Although XGBoost is grounded in the principles of gradient boosting, it intro-
duces several innovations that distinguish it from traditional boosting frameworks
and standard gradient boosting implementations. The most relevant properties|15]
include:

1 Explicit regularization. Incorporates both L1 and L2 penalties in the
objective function, directly controlling tree complexity and reducing overfit-
ting.

2 Second-order optimization. Uses not only gradients but also Hessians
(second derivatives), improving convergence speed and stability.

3 Histogram-based split finding. Accelerates the process of identifying
optimal split points in trees, reducing computational cost.

4 Cache-aware and parallel computation. Employs memory-efficient strate-
gies and supports parallelization, enabling fast training even on large-scale
datasets.

5 Distributed learning. Provides support for training on distributed sys-
tems, making the algorithm highly scalable.

6 Sparsity-aware handling of missing data. Automatically learns default
split directions for missing values, eliminating explicit imputation.

7 Shrinkage (learning rate scaling). Reduces the contribution of each tree,
improving generalization and preventing overfitting.

8 Row and column subsampling. Randomly samples data and features,
further enhancing robustness and reducing variance.

MATHEMATICAL FORMULATION
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XGBoost is based on an objective function[I5], which defines the optimization
problem to be solved during training:

K

£(8) =D Uy 3i) + > U fi)

k=1

This objective function consists of two components. The first term: Y., 1(y;, 7:),
corresponds to the loss function, which measures the discrepancy between the
predicted values haty; and the true labels y;. Depending on the task, different loss
functions can be employed, such as the mean squared error for regression or the
logistic loss for binary classification.

The second term: S5 Q(fi) represents the regularization component, which
penalizes the complexity of the individual trees. This penalty is determined by
factors such as the number of leaves or the magnitude of the leaf weights, ensuring
that the model does not become unnecessarily complex.

The objective function is used as the guiding criterion for optimization. At
each boosting iteration, a new tree is added only if it contributes to minimizing
this function. Trees that explain the data very well but are overly complex receive
a penalty, while simpler trees that achieve a good trade-off between accuracy and
complexity are favored.

TREE CONSTRUCTION

XGBoost trees are specifically designed to reduce the residual errors of the
previous ones.

The split criterion quantifies the improvement in the objective function that
would result from dividing a node into two branches, left L and right R:

1< G2 G2, (GL+GR)2)_7

Gain = = —
=S \H, A T Hp+ A H, + A\

(3.1)

Here, G; and Gp represent the sums of the gradients of the loss function for
the samples assigned to the left and right branches, while H; and Hp are the
corresponding sums of the Hessians (second derivatives). The parameter \ provides
L2 regularization, and v imposes a penalty for introducing a new leaf. A split is
only performed if the Gain is positive, avoiding unnecessary splits.

The quality of the entire tree is measured using the tree structure score, defined
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as:
T 2

1 G?
g — T 2
*Ctree 2 Z Hj + )\ + 7 (3 )

Jj=1

where 7" denotes the total number of leaves, G; and H; are the sums of gradients
and Hessians for the samples in leaf j, and A\ and v are the regularization parame-
ters. A higher score indicates a better trade-off between accuracy and complexity:
the first term analyzes accurate splits, while the second penalizes trees with ex-
cessive leaves.

REGULARIZATION AND PRUNING

A distinctive feature of XGBoost compared to earlier boosting implementations
is the integration of an explicit regularization framework that directly influences
the growth and pruning of decision trees to prevent overfitting and to improve
generalization.

The regularization term penalizes both the number of leaves and the magnitude
of their weights:

T
Q(f,) =~T + %AZUJ? (3.3)
j=1

where 7" is the number of leaves in the tree, w; represents the weight assigned
to the leaf j, ~ is a complexity penalty for each additional leaf, and X is the
L2 regularization parameter. This formulation ensures that trees do not grow
excessively deep and that leaf predictions remain bounded, promoting simpler and
more interpretable structures.

Building upon this, XGBoost determines the optimal weight for each leaf by
minimizing the regularized objective. The optimal value is obtained in closed form
as: o

* J

I H;+ X (34)
where G; = >, L9 Hj= Y ic 1, i denote the sum of gradients and Hessians
for the samples in leaf j respectively. Nodes are split only if the gain in objective
reduction exceeds the penalty v; otherwise, the split is discarded. This means
that tree growth is not limited by a predefined depth but by the trade-off between
predictive improvement and structural complexity.
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Figure 3.1: XGBoost training workflow

3.1.2 LightGBM

LightGBM, short for Light Gradient Boosting Machine, is an open-source
framework introduced in LightGBM: A Highly Efficient Gradient Boosting Deci-
sion Tree. In Advances in Neural Information Processing Systems by Microsoft in
2017|38] as part of the gradient boosting family of algorithms. Like other models
such as XGBoost, it builds ensembles of decision trees using the principle of gra-
dient boosting, where trees are sequentially added to correct the residual errors of
their predecessors.

This algorithm is particularly useful for handling large-scale datasets with high-
dimensional features. Unlike traditional gradient boosting methods that grow trees
level-wise, LightGBM employs a leaf-wise growth strategy, which splits the leaf
with the largest loss reduction at each step.

The most relevant properties|38| include:

1 Histogram-based split finding. Continuous features are discretized into
bins, reducing memory usage and accelerating split calculations without loss
of accuracy.

2 Leaf-wise growth strategy with depth constraints. Trees grow by
splitting the leaf with the largest potential loss reduction, often yielding
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higher accuracy than level-wise growth, while depth constraints mitigate
overfitting.

3 Gradient-based One-Side Sampling (GOSS). Light GBM maintains in-
stances with large gradients and randomly samples those with smaller gra-
dients, reducing training data size.

4 Exclusive Feature Bundling (EFB). High-dimensional sparse features
that rarely take non-zero values simultaneously are bundled together, effec-
tively reducing dimensionality.

5 Efficient handling of categorical features. The algorithm supports cat-
egorical variables natively by finding optimal split points without needing
one-hot encoding.

6 Parallel and distributed learning. LightGBM can scale across CPUs
and GPUs, and supports distributed training for very large datasets.

7 GPU acceleration. A dedicated GPU implementation speeds up histogram
construction and split finding, making Light GBM particularly suitable for
high-dimensional data.

8 Optimization for sparse data. The framework is designed to skip zero
entries directly, making it efficient for tasks with sparse input matrices (e.g.,
text mining, click prediction).

9 Early stopping. Built-in mechanisms allow training to end once validation
error stops improving, reducing computational cost and preventing overfit-
ting.

10 Compatibility with multiple loss functions. LightGBM supports a
wide range of differentiable loss functions (regression, classification, ranking,
etc.) and allows users to define custom objectives.

MATHEMATICAL FORMULATION

LightGBM, as other gradient boosting frameworks, is based on an objective
function|38], which combines the prediction loss with a regularization term to
balance accuracy and model complexity. The general form is expressed as:

L(6) = lynin)+ > QS
i=1 k=1
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Here, [(y;,y;) represents a differentiable loss function that measures the discrep-
ancy between the true label y; and the predicted value haty;, while Omega( f;) is a
regularization term applied to each tree in the ensemble. This formulation allows
Light GBM to adapt to a wide range of tasks—using squared error for regression,
log-loss for classification, or pairwise ranking losses for learning-to-rank problems.

The regularization component ensures that model complexity is penalized, pre-
venting overfitting and encouraging generalizable solutions. Each new tree added
to the model is constructed with the objective of minimizing this function, thereby
reducing prediction error while keeping the overall structure compact.

TREE CONSTRUCTION

The construction of decision trees in Light GBM is guided by the principle of
functional gradient boosting. The optimization relies on the second-order Tay-
lor expansion of the loss function, which incorporates both gradients and
Hessians to approximate the objective more accurately and ensure stable conver-
gence:

L0 %37 gifuws) + Shifulws)?] + Q)
i=1
Similarly, the tree structure score (see Equation and the split gain (see
Equation formulas are equivalent to those in XGBoost, quantifying respec-
tively the overall quality of the tree and the improvement obtained from each
potential split. These ensure that splits are performed only when they reduce the
objective, balancing predictive power and structural complexity.

Where Light GBM innovates is in the way it accelerates split finding and reduces
the cost of tree construction. The first major contribution is the Histogram-
based approximation. Instead of evaluating continuous feature values directly
when searching for splits, Light GBM discretizes them into a finite number of bins:

x; — bin(z;)

This transformation allows the algorithm to accumulate gradient and Hessian
statistics per bin rather than per sample. The computational complexity is thereby
reduced from O(numsamplesznum eatures) to O(numyinsznum reatures), accel-
erating training while maintaining nearly identical predictive performance, making
Light GBM particularly effective for large datasets.
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Figure 3.2: Light GBM histogram based approximation

The second key innovation is Gradient-based One-Side Sampling (GOSS).
The idea is that not all samples contribute equally to gradient-based optimization:
instances with large gradients correspond to poorly predicted examples and thus
contain more information for reducing loss. GOSS retains all instances with large
gradients and only samples a proportion of those with smaller gradients:

D = Digrge U Sample(Dyppan, a)

where Dj4rge are the high-gradient instances, Dgqy the low-gradient ones, and a is
the sampling ratio applied. By emphasizing informative samples while discarding
redundant ones, GOSS reduces the dataset’s size considered during split evaluation
without compromising accuracy. This innovation also accelerates training and
reduces computational overhead.

Together, these two innovations improve the efficiency in tree construction,
which is the most important feature for Light GBM, enabling this model to scale
to much larger datasets then XGBoost, making it highly suitable for industrial
applications.

REGULARIZATION

An essential component of Light GBM is the introduction of regularization to
balance predictive accuracy with model complexity. This regularization strategy
operates on two levels: explicit, through penalties on tree complexity and leaf
weights, and implicit, via dimensionality reduction with EFB. This dual mech-
anism ensures that models remain compact, generalizable, and efficient, setting
Light GBM apart from earlier gradient boosting implementations.

The explicit regularization is done using the regularization term (see
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Equation and the optimal leaf weight (see Equation [3.4), that follow the
same formulas as other algorithms like XGBoost, encouraging compact tree struc-
tures by explicitly constraining the number of leaves and their output values and
penalizing large leaf weights.

The implicit regularization, a distinctive innovation of Light GBM is Exclusive
Feature Bundling (EFB), which acts as a form of implicit regularization by
reducing the dimensionality of sparse, high-dimensional feature spaces. Features
that are mutually exclusive are combined into a single bundled feature:

X’ = Bundle(X)

This decreases the effective number of features d — d’, where d < d, while
maintaining the complete predictive information. By simplifying the input space,
EFB reduces the risk of overfitting in high-dimensional datasets and improves
computational efficiency without loss of accuracy.

3.2 3D Deep learning models: PointNet

PointNet is a machine learning algorithm developed in the study PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation|56] that belongs
to the family of deep learning architectures for 3D data processing, specifically
designed to operate directly on point clouds.

A major challenge addressed by PointNet is the limitations associated to ap-
plying traditional convolutional neural networks (CNNs) to 3D data|33|, because
CNNss rely on regular grid-like structures like pixels in images, but point clouds are
inherently irregular, unordered, and sparse. PointNet directly operates on the raw
point set, without intermediate representations, obtaining a strong performance in
applications related to 3D objects.

INPUT REPRESENTATION AND PERMUTATION INVARIANCE

A 3D object or scene in PointNet is represented as an unordered set of points:
P = {p1,p2,...,pn}, pi € R? where each p; is a point in d-dimensional space
(normally d=3 for XYZ coordinates, but it may include other features). Permuting
the order of points in P should not change the representation or prediction of the

model. For any permutation m: f({p1,p2,...,0n}) = [({P=1): Pr2),- - -+ Pr(n) })
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To guarantee this permutation invariance, PointNet applies shared functions
to each point and then aggregates them using a symmetric function, the most
common one being max pooling. This process can be expressed as:

F(P) =+ (SYM h(py))

piEP

where h(p;) is a shared transformation function applied to each point, SY M is
a symmetric aggregation function such as max pooling, and gamma is a final
function that maps the aggregated feature vector to the desired output.

NETWORK ARQUITECTURE

Classification Network

inpﬁ{ m]p(6464) feamre . mlp(64,128,1024) R max I mlp
g transform transform pool 1024 (512,256,k)
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Segmentation Network

output scores

Figure 3.3: Point Net network arquitecture

The input to PointNet is a set of n points in 3D space, each described by
its coordinates (xyz), but could also include other features available in the point
clouds: P = {p;}7,, p; € R3

X=|:]|er
Py
INPUT TRANSFORM (T-NET): A T-Net predicts a 3z3 transformation matrix
that aligns the input point cloud to a canonical space. This enables rotations and
translations in the data, ensuring the network learns features that are invariant to
pose.

T, € R3X3, X(O) — XT’m
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MLP(64,64): Each point is independently passed through two fully connected lay-
ers (Multi-Layer Perceptrons) with 64 units. These shared MLPs extract features
for each point, like local geometric descriptors, while maintaining permutation
invariance.
Po16 1 R> — R, HY = [¢64,64(37§0)> |, e R

FEATURE TRANSFORM (T-NET): A second T-Net predicts a 64264 transfor-
mation matrix, which aligns the feature space instead of the raw coordinates,
making it invariance to different geometric configurations and normalizes feature
embeddings across points.

Tfeat € R64X647 H(l,) = H(l) T%eat

MLP(64, 128, 1024): Points are further processed with deeper shared MLPs, in-
creasing the feature dimension up to 1024. This allows the network to capture
complex and high-level geometric information at the individual point level

Poa,128.1024 : R¥ — RO, H® = [ ¢64,128,1024(h'z(‘1 )) }?:1 e R0
MAX POOL & GLOBAL FEATURE (1024): A symmetric max pooling operation
aggregates point-wise features into a single global feature vector of dimension 1024.
This vector is a compact, order-invariant representation of the entire point cloud,
summarizing its most discriminative features.

g=MAX,_, , H? eR"

This algorithm is designed to perform two separated networks: classification
network and segmentation network. Depending on the desired result of the model,
the next steps are different:

CLASSIFICATION NETWORK:

MLP (512, 256, k) & OUTPUT SCORES: The global feature is passed
through fully connected layers of size 512 and 256, before reaching a final layer of
dimension k corresponding to the number of object categories. A softmax function
is then applied to produce class probabilities for object classification.

g = Softmax(W3o(Woo(Wig +by1) +bg) +b3), ¢€ R*
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SEGMENTATION NETWORK:

POINT FEATURES n x 1088: The global feature vector (1024) is con-
catenated with the original per-point features (64), yielding a per-point descriptor
of size 1088, so each point prediction is created by both its local properties and
the global context of the cloud.

- [h(l) | g] € RO+10e=1088 7 _ [Z.T]n o RUX1088
Z ' ’ i iz

MLP(512, 256, 128): These shared MLPs refine the concatenated per-
point features, progressively reducing dimensionality while extracting relevant rep-
resentations for segmentation.

U= [¢512,256,128(Zz') ]?:1 e Rx128

MLP(128, m) & OUTPUT SCORES: Finally, a per-point classifier out-
puts predictions of dimension m, which is the number of segmentation classes. A
softmax is applied independently to each point, assigning each point to a specific
class

Y = [ Softmax(W, U +b,) ||, € R™™

REGULARIZATION

A critical component of PointNet’s design is the introduction of explicit mech-
anisms to ensure regularization and stability during training[56]. Since the archi-
tecture relies on T-Nets to predict transformation matrices, an additional loss term
is incorporated to constrain these matrices to be close to orthogonal. This avoids
degenerate transformations and encourages geometrically meaningful mappings.

The penalty is defined as:

g = 1 =772

where T is the predicted transformation matrix, [ is the identity matrix of the
appropiate size and applying the Frobenius norm. By minimizing this term, the
network enforces approximate orthogonality, stabilizing learning.
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PointNet also integrates standard deep learning techniques to improve gener-
alization, like Dropout, which is applied in all the layers to prevent overfitting by
randomly deactivating neurons during training, which can be expressed as:

hy =m; - hi, m; ~ Bernoulli(p),
where p is the keep probability.
Similarly, Batch Normalization (BN) is used after MLP layers to stabilize

the distribution of activations and accelerate convergence, normalizing inputs to
zero mean and unit variance:

N r — UpB N
r = e Yy=" + B?
\Vogte€
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Chapter 4

Development of the railway anomaly
detection algorithm

4.1 Data exploration

The dataset employed in this project originates from the Rail3D benchmark dataset,
an open-access repository specifically designed for the semantic segmentation and
analysis of railway infrastructure in 3D point clouds. Rail3D[25] compiles several
sub-datasets acquired through LiDAR scanning technologies in different railway
environments.

Each file in the dataset is provided in .PLY format, containing a 3D point
cloud representation of the railway environment. Each point is characterized by a
set of attributes:

e Spatial coordinates (X, y, z). Defining the 3D geometry of the environ-
ment.

e Color information (R, G, B). capturing the visual appearance of the
scanned scene.

e Intensity values. reflecting the return strength of the LiDAR signal, which
is correlated with the material properties of the surface.

e Classification labels. categorical annotations that assign each point to a
specific element of the railway infrastructure.
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The Rail3D dataset defines a set of nine semantic classes that cover the most
relevant components of railway infrastructure:

Ground. Track bed and surrounding terrain not belonging to above-ground
structures.

Vegetation. Trees, shrubs, grass, and other foliage in the scene.

Rail. Steel tracks and directly attached metallic rail components.

Poles. Vertical support structures unrelated to buildings (e.g., masts, posts).
Wires. Overhead and side wires, including catenary and auxiliary wiring.

Signaling. Railway signaling devices and supports (e.g., signal heads, indi-
cators).

Fences. Barriers and guardrails delimiting the railway right-of-way.
Installation. Technical installations and equipment cabinets near the track.

Building. Architectural structures such as stations, sheds, or nearby build-

ings.

In this project, only the SNCF and HMLS sub-datasets were used, and they will
be analyzed separately to have a better understanding of each of the datasets.

SNCF

The SNCF subset was collected on
operational railway tracks managed by
the French National Railway Company
(Société Nationale des Chemins de fer
Frangais), and acquired using terres-
trial LIDAR scanning technologies, en-
abling a dense and highly accurate
3D representation of the track envi-
ronment. This subset covers approxi-
mately 1,6 kilometers of railway infras-
tructure and is composed of 16 individ-
ual point cloud files, amounting to a
total of 143.313.588 3D points.

Figure 4.1: Visual representation
of the original data (sncf 05)
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FEATURE ANALYSIS

The descriptive statistics of the SNCF dataset show the scale and variability
of the features(see Figure [4.2)).

X y z red green blue intensity classification

count 143313588.000000 143313588.000000 143313588.000000 143313588.000000 143313588.000000 143313588.000000 143313588.000000 143313588.000000
mean 1701994.179032 3112133.662065 9.047610 55.419612 66.174563 52.028624 13.489364 1.740503
std 275.237262 351.890116 2.699474 35.635228 42.365972 40.104309 11.131396 1.023435

min 1701501.466003 3111510.298004 2.274000 0.000000 0.000000 0.000000 0.000000 1.000000

25% 1701764.276978 3111845.849976 7.537000 30.000000 36.000000 27.000000 6.000000 1.000000
50% 1701976.596008 3112112.880005 7.716000 50.000000 59.000000 44.000000 10.000000 2.000000
75% 1702227.198975 3112430.187012 10.253000 71.000000 84.000000 63.000000 19.000000 2.000000
max 1702511.680054 3112792.452026 27.650000 255.000000 255.000000 255.000000 255.000000 8.000000

Figure 4.2: Descriptive statistics for the SNCF database

The x and y coordinates reflect the longitudinal and lateral coverage of
the scans, with a very high range of values, while z values are much more limited,
ranging from 2.27 to 27.65, which matches the expected elevation of railway tracks.

The RGB channels remain within the expected 0-255 range, with averages
around red = 55, green = 66, and blue = 52. These values confirm the predom-
inance of darker tones in the data, while the relatively high standard deviations
point to the variability introduced by different elements of the infrastructure. In-
tensity values also range from 0 to 255 but show a low mean (13.49) and median
(10.00), indicating a strong skew toward weaker reflections, and the presence of
occasional high values suggests the influence of reflective materials.

The distribution plots(see Figure complement the descriptive statistics by
illustrating the shape of each feature’s variability. The spatial coordinates x
and y follow almost uniform distributions, reflecting the continuous coverage of
the LiDAR scans along the track. By contrast, z shows a highly concentrated peak
at ground level decreasing towards higher values, corresponding to high structures
such as poles and wires. The RGB histograms are right-skewed, maintaining the
prevalence of darker tones. Similarly, the intensity distribution is heavily skewed
toward the lower end, with most points concentrated below 50, but with some
outliers. These patterns show the heterogeneity of the dataset and justify feature
preprocessing before modelling.

Anomaly detection in railway infrastructure based on 3D Point Cloud data 40
using neural networks
Lucia Hernandez Fernandez



1e6 Distribution of x 1es Distribution of y 107 Distribution of z

Frequency

17016 17018 17020 17022 17024 31116 31118 31120 31122 31124 3.1126 31128 5 10 15 20 25
x 1es y 1e6 z

1e6 Distribution of red 1e8 Distribution of green 106 Distribution of blue

Frequency
Frequency

o 50 100 150 200 250 o 50 100 150 200 250 o 50 100 150 200 250
red qreen blue

167 Distribution of intensity

Frequency

o 50 100 150 200 250
intensity

Figure 4.3: Distribution of the features from the SNCF
database

The correlation matrix (see Figure confirms that the spatial coordinates
are largely independent from both color and intensity features, with near-zero
correlations between x, y and the remaining variables. This reinforces their role
as purely geometric descriptors of the scene.

Among the color channels, very strong positive correlations are observed
(red—green = 0.94, green—blue = 0.92), which reflects the natural coupling of RGB
values in real-world surfaces, making the color features valuable to detect if a point
is part of infrastructure materials or vegetation. The z coordinate shows moderate
positive correlations with color values (0.33-0.42) and with the classification label
(0.41), which suggests that elevation helps distinguish classes such as poles, wires,
and ground. Intensity exhibits very very low correlation with all other features,
underlining its importance as an independent attribute that complements both
geometry and color in the dataset.
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Figure 4.4: Correlation features from the SNCF database

CLASSIFICATION ANALYSIS

The global class distribution of the entire database reveals a strong imbal-
ance among the nine semantic categories defined in Rail3D. The two dominant
classes are Class 1 (Ground) with 51.2 million points (35.74%) and Class 2 (Veg-
etation) with 85.5 million points (59.66%), together, these categories account for
more than 95% of the dataset.

Infrastructure-related elements are far less represented: Class 3 (Rail) con-
tributes only 2.59 million points (1.81%), while Class 4 (Poles) and Class 5 (Wires)
account for 0.97% and 1.53% of the dataset, respectively. The remaining categories
appear only marginally. Class 6 (Signaling), Class 7 (Fences), and Class 8 (Instal-
lation) represent 0.08%, 0.16%, and 0.06% of all points, respectively. Notably,
Class 9 (Building) is entirely absent from the SNCF subset, despite being part of
the Rail3D taxonomy.

The global class distribution shows the dominance of environmental features
over railway infrastructure components, so class imbalance must be addressed.

When the class distribution is examined at individual per-file level rather than
the full dataset, the imbalance becomes even more pronounced. While Ground
(Class 1) and Vegetation (Class 2) are consistently present and remain the domi-
nant categories in every scan, many infrastructure-related classes are either absent
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or appear in very small proportions. For example, Rail (Class 3), Poles (Class 4),
and Wires (Class 5) are present across all files but never exceed a few percent of
the total points. Minority classes such as Signaling (Class 6), Fences (Class 7), and
Installation (Class 8) are often missing altogether, specifically, Class 6 is absent in
69% of the files, Class 7 in 31%, and Class 8 in 50%. Finally, Buildings (Class 9)
are completely absent from the SNCF subset.

The per-file analysis reports the difficulty of modeling minority classes: not
only are they underrepresented globally, but they are also missing in a substantial

fraction of the files.

HMLS:

The HMLS subset was generated
through mobile LiDAR acquisitions
conducted at high speed along rail-
way corridors in Hungary, obtaining
wide coverage and diversity of operat-
ing conditions, capturing long stretches
of track with varying surrounding envi-

ronments.

This subset represents ap-

proximately 2,14 kilometers of railway
lines and consists of 29 point cloud files,
with a total of 104.958.796 points.

FEATURE ANALYSIS

Figure 4.5: Visual representation
of the original data (hmis_01)

The statistical examination of the HMLS dataset provides a comprehensive
analysis of the characteristics of its features (see Figure [4.6)).

X

y

z

red

count 104958796.000000 104958796.000000 104958796.000000 104958796.000000

mean
std
min
25%
50%
75%

max

543037.918757
112676.219672
439040.000000
439606.407227
440257.913086
665803.299072

666390.666504

173978.778468

10670.773434
159100.000000
162888.603760
183532.873047
183800.725098

183862.999023

164.022542
61.785419
93.031502
96.266998

218.649002

220.162003

237.899994

85.988699
61.991550
0.000000
45.000000
67.000000
104.000000

255.000000

green
104958796.000000
82.936384
60.524784
0.000000
46.000000
65.000000
92.000000

255.000000

blue
104958796.000000
73.649465
62.290590
0.000000
37.000000
55.000000
83.000000

255.000000

intensity
104958796.000000
8968.754883
10716.478516
0.000000
70.000000
116.000000
17399.000000
65535.000000

classification
104958796.000000
1.414304

1.025413

1.000000

1.000000

1.000000

2.000000

9.000000

Figure 4.6: Descriptive statistics for the HMLS database
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The x and y coordinates cover very large ranges, with mean values around
543,038 and 173,978 respectively, and standard deviations in the order of tens
of thousands, reflecting the broad horizontal and lateral coverage of the LiDAR
acquisition. However, the z dimension ranges from approximately 93 to 238, with a
mean of 164, which is consistent with the representation of the elevation of railway
elements, a ot of them being at ground level.

The RGB channels are all three within the 0-255 range, with average values
of red = 86, green = 83, and blue = 74, indicating a predominance of darker or mid-
range tones across the dataset. The intensity feature is particularly distinctive.
While values theoretically extend up to 65,535, the median intensity is only 116,
far below the mean of = 8,969, which can cause a strong skew in the distribution,
and confirm the presence of outliers.

The histograms (see Figure 4.7)) provide a more detailed perspective on these
trends.

Both x and y show clear peaks and gaps, reflecting the scanning trajectory and
the segmentation of the LiDAR acquisitions into separate files. The z distribution
shows two strong groups: one that could be interpreted as near ground level,
and another at higher values, associated with higher elements like poles, wires,
and signaling infrastructure. The RGB histograms are right-skewed, with the
majority of points concentrated below 100, also showing that their are a lot of
darker colors in the images. The intensity histogram is the most extreme, with
a massive peak at very low values and a long, thin tail extending towards the
maximum.
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Figure 4.7: Distribution of features in the HMLS database

The correlation matrix (see Figure[4.8)) adds another dimension to this analysis.
The xyz coordinates are very independent from both color and intensity, showing
that they represent the spacial distribution. By contrast, the RGB channels are
very strongly correlated (red—green = 0.96, green—blue = 0.95), which is typical
because colors tend to be a combination of the three features. Intensity remains
weakly correlated with other features.

Correlation Matrix

I =

~ -
--0.75

oo L R - I

green blue intensity classification

Figure 4.8: Correlation between features in the HMLS
database
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CLASSIFICATION ANALYSIS

The global distribution of semantic classes in the HMLS dataset is strongly
imbalanced. The two dominant categories are Ground (Class 1) and Vegetation
(Class 2), which account for 66.42% and 30.69% of all points respectively. To-
gether, these classes represent more than 97% of the dataset, showing that the
images obtained of the infrastructure contain more of other elements.

Infrastructure-related elements are represented only marginally. Rail (Class 3)
contributes 1.10%, Poles (Class 4) 0.64%, and Wires (Class 5) 0.41%, and while
these classes are critical for the semantic understanding of railway infrastructure,
the low percentage of points from these classes makes it very difficult for models
to train properly. Even more problematic are the minority categories: Signaling
(Class 6) accounts for only 0.07%, Fences (Class 7) for 0.34%, and Installation
(Class 8) for 0.07%. Buildings (Class 9) represent only 0.26%, and are present in
very few files, making them particularly challenging for segmentation.

A per-file analysis has a much more severe class imbalance, where only
Classes 1, 2, 3, and 5 appear consistently across all 29 files. Many other cate-
gories are missing in a big fraction of the dataset: Class 4 (Poles) is absent in one
file (3.45%), Class 6 (Signaling) is missing in 41% of the files, Class 7 (Fences)
in 72%, and Class 8 (Installation) in 21%. Most critically, Class 9 (Buildings) is
missing in nearly 90% of the files, which leaves only 3 files with all the classes.

The abundance of points that are part of Classes 1 and 2 make it difficult to
obtain images with the classes that are really needed for our algorithm, which
are the points from railway infrastructure (class 3, 4, 5), limiting the creation
of models and risking those models to only interpret everything as part of the
majority classes.

4.2 Data processing

After the exploratory analysis carried out in the previous section, important dif-
ferences were observed in the scale and range of the variables, and an unbalanced
distribution of the classes within the dataset. This is the main reason for applying
a data processing in the raw data, in order to reduce the bias towards the majority
classes, and dividing the whole dataset into different subsets: train, validation and
test, to design and train the best possible model. To this end, the data processing
stage includes normalization procedures, dataset splitting, resampling strategies to
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handle class imbalance, and filtering techniques aimed at refining the information
before its use in the modeling phase.

4.2.1 Data normalization

In contrast to the exploratory analysis, where both datasets were studied inde-
pendently in order to identify their specific statistical characteristics, in this stage
the two datasets Will be processed together. This choice is motivated by the fact
that both sources will be joined in the modelling stage, so the normalization of
features needs to be consistent between both databases. Since each variable rep-
resents a different characteristic of the data, with distinct numerical ranges and
distributions,it is necessary to apply separate normalization techniques to each of
them:

SPATIAL COORDINATES (x, y, z): The chosen normalization method
for the spatial coordinates is centroid normalization, also referred to as unit sphere
normalization. This approach was applied because the spatial ranges of the data
are unbalanced: the longitudinal and lateral dimensions (x, y) have much larger
values compared to the vertical axis (z). Without this adjustment, the horizontal
dimensions would dominate the learning process, reducing the contribution of the
height information.

Centroid normalization ensures that all points are fit within a unit sphere,
consisting of two consecutive steps: centering and scaling. First, each point cloud
is translated so that its centroid lies at the origin, which given a set of N points
pi = (x;, i, i), the centroid is computed as:

1 N
N_N;pi

Each point is then shifted by the centroid and rescaled using the maximum Eu-
clidean distance of any point to the centroid:

- Pi— 1

- max; [[p; —

This transformation maps the point cloud into a unit sphere centered at the origin,
constraining the new coordinate range approximately to [—1, 1].

This type of normalization is particularly suitable for spatial coordinates since
it removes variations due to translation and scale, while preserving the relative
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geometry of the structures. Its effectiveness has been demonstrated in point cloud
deep learning literature, starting from the seminal PointNet architecture[55] and
continuing in more recent benchmark studies [69, 85]. These works consistently
recommend centroid-based unit sphere normalization as a reliable preprocessing
step for 3D point clouds.

In the statistical summary obtained, it can be observed that the normalized
coordinates (x,y,z) are ranged between [—1, 1], however, this does not imply that
the minimum and maximum values of each coordinate exactly reach —1 and 1.
The normalization procedure ensures that the Euclidean distance of all points to
the centroid remains smaller than or equal to one, expressed as:

Vit P+ 22 <1
COLORS (red, green, blue): The RGB channels show the original color
captured by the scan for each point, originally stored as integer values within
the range [0,255]. If left unprocessed, these magnitudes would not be directly
comparable to the rest of the variables. To address this, a min-max scaling|2]
was applied, standardizing the three color dimensions of both databases to a [0, 1]

range:
&

255’
INTENSITY: The intensity attribute encodes the reflectance of each laser re-
turn, and unlike the spatial coordinates or the RGB values, its numerical range
strongly depends on the characteristics of the acquisition system and the scanning
conditions. In the SNCF dataset, the raw intensity values range from 0t0255, but
in the HMLS dataset the observed values go from 0t065535. These differences are
substantial: while SNCF intensities are confined to a single byte representation
28 = 255, HMLS intensities are stored in two bytes 216 = 65535.

¢ = ¢; € {red, green, blue}

If the two datasets were directly merged without normalization, the disparity
in ranges would cause the HMLS values to dominate the learning process, making
the contribution of SNCF intensities negligible. To avoid this, a min—-max normal-
ization was applied independently to each dataset, so that both are rescaled into
a common range [0,1].

For the SNCF dataset:

7SNCF __ I — [SNCF SNCF SNCF
min
] [SNCF JSNCF? ]mln 0 ]max = 259
max min
For the HMLS dataset:
THMLS __ [ — ]HMLS HMLS HMLS
min
IS = s mse T = 46, IS = 32767
max min
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The adoption of dataset-specific normalization is particularly justified in multi-
modal or multi-source scenarios such as this one, where acquisition protocols are
different. Comparable strategies have been reported in LiDAR processing liter-
ature, where min—max scaling per sensor ensures consistent feature ranges and
prevents model bias towards datasets with broader raw distributions|5|.

CLASSIFICATION: This variable will not be normalized because it is our
target variable, and the classes represented are consistent between both databases.

The analysis of the histograms (see Figures before and after nor-
malization shows that, with the exception of the spatial coordinates, the distribu-
tions of the variables remain unchanged apart from a rescaling of their minimum
and maximum values, except the xyz coordinates that follow the shape of a normal
distribution,

Regarding the correlation matrix (see Figures the normalization
of the spatial coordinates has an impact in the final result. In the xyz coordinates,
the centroid normalization is a non-linear transformation, but the correlation only
measures linear dependencies, so their values are affected by the normalization.
For the rest of the features, the normalization min-max is a linear transformation
so it maintains the same values as before.
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Figure 4.9: Analysis of features after normalization from the SNCF database
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Figure 4.10: Analysis of features after normalization from the HMLS database

4.2.2 Data splitting

For the training of the models, the dataset must be divided into three different
subsets: a training set, used for fitting the parameters of the model, a validation
set, used for hyperparameter tuning and early stopping, and a test set, reserved
exclusively for the final evaluation of generalization performance. In this project,
the data was divided according to an 80/10/10 split|6]. For the SNCF database:

TRAIN: 0.8-16 = 12.8 ~ 12 files

VALIDATION: 0.1-16 = 1.6 ~ 2 files
TEST: 0.1-16 =1.6 ~ 2 files
For the HMLS database:

TRAIN: 0.8 -29 = 23.2 ~ 23 files

VALIDATION: 0.1-29 =2.9 ~ 3 files
TEST: 0.1-29 =29 ~ 3files

Due to the significant class imbalance present in the point clouds, a random al-
location of files could result in subsets without the presence of some classes, or with
highly skewed distributions, to address this, a custom algorithm was implemented
to optimize the allocation of files across the three sets.
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The algorithm generates multiple candidate splits by randomly shuffling the
files and evaluates each split by computing the class distribution in terms of point
counts, an assigning a score to each candidate based on the imbalance between
sets, defined as the deviation of each class count from the average across train,
validation, and test. The split with the lowest imbalance score is selected. Impor-
tantly, the algorithm ensures that all classes are represented in each subset, which
would not be guaranteed in a purely random distribution.

Finally, the normalized data from both SNCF and HMLS were merged into
the same directories (see Appendix , allowing the model to be trained jointly
on both datasets. The resulting class distributions in terms of point counts are
shown below:

Train: Validation: Test:

- Class 1: 90,411,317 pts (50.59%) - Class 1: 14,047,774 pts (43.78%) - Class 1: 16,467,934 pts (43.94%)
- Class 2: 81,278,904 pts (45.48%) - Class 2: 16,845,382 pts (52.50%) - Class 2: 19,591,092 pts (52.28%)
- Class 3: 2,845,499 pts (1.59%) - Class 3: 398,290 pts (1.24%) - Class 3: 505,866 pts (1.35%)

- Class 4: 1,495,879 pts (0.84%) - Class 4: 281,273 pts (0.88%) - Class 4: 280,724 pts (0.75%)

- Class 5: 1,937,580 pts (1.08%) - Class 5: 353,436 pts (1.10%) - Class 5: 327,232 pts (0.87%)

- Class 6: 108,056 pts (0.06%) - Class 6: 12,176 pts (0.04%) - Class 6: 64,922 pts (0.17%)

- Class 7: 428,718 pts (0.24%) - Class 7: 41,886 pts (0.13%) - Class 7: 113,879 pts (0.30%)

- Class 8: 87,233 pts (0.05%) - Class 8: 4,725 pts (0.01%) - Class 8: 69,670 pts (0.19%)

- Class 9: 116,435 pts (0.07%) - Class 9: 102,596 pts (0.32%) - Class 9: 53,906 pts (0.14%)

Figure 4.11: Final distribution of classes in each subset

The final distribution is relatively balanced across the three subsets, with each
class represented in all partitions. Minor differences remain, which are explained
by the file-based splitting procedure: since files are not subdivided at the point
level, some subsets contain files with slightly higher prevalence of certain classes,
but the resulting distribution achieves the necessary balance to train and evaluate
the model reliably.

4.2.3 Data resampling

One of the main challenges encountered during the preparation of the datasets is
the class imbalance. Such imbalance would inevitably bias the learning process
towards the majority classes, limiting the model’s capacity to correctly recognize
underrepresented categories. To mitigate this issue, a resampling strategy was
applied, aimed both at amplifying the representation of minority classes and at
reducing the dominance of the majority ones.

The absolute number of points in the final distribution was chosen like the orig-
inal dataset sizes, thereby preserving the overall scale of the data while modifying
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only the relative proportions among classes.

The resampling was designed to enforce a target distribution of 60/40 between
classes representing railway infrastructure (Classes 3, 4, and 5) and classes not
directly associated with the train (Classes 1, 2, 6, 7, 8, and 9). After resampling,
the non-train classes account for a total of 84,765,934 points (60.00%), while the
train-related classes amount to 56,510,622 points (40.00%).

Within the non-train group, an additional adjustment was introduced in order
to further balance the contribution of different infrastructure elements. Specifi-
cally, a 95/5 split was applied between Classes 1-2, which dominate the dataset,
and Classes 6-9, which are less frequent. As a result, Classes 1 and 2 jointly
contain 80,323,282 points (94.76%), while Classes 6-9 together comprise 4,442,652
points (5.24%).

In order to obtain this distribution, it is necessary to apply sampling techniques
to each of the classes:

e Class 1,2: Undersampling

e (Class 3,4,5: Oversampling

e (lass 6,7,8,9: Oversampling

UNDERSAMPLING:

Random undersampling|7] is a common approach to address class imbal-
ance by reducing the number of samples in overrepresented classes. Instead of
replicating minority classes, this method randomly removes samples from major-
ity classes until the desired distribution is achieved. In this way, the dataset size
is reduced while having the class proportions match the predefined target.

Formally, let N = Zgzl ng be the total number of points in the dataset. The
goal of undersampling is to transform n, into ny, such that

nE=apng, 0<a,<1

where alphay, is the undersampling multiplier applied to the class. For majority
classes, the multiplier is chosen smaller than 1, while for minority classes, the
multiplier is equal to 1.
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The multipliers are determined such that
Ny,

—C ~

Zj:l 1

where py is the target proportion of class. It is calculated using the following
equation: The multiplier is then

~ Dk

target
M

g

A =

The main drawback is the loss of information from discarded samples, which may
negatively affect the model if the removed points contained relevant variability.

For this project, class 1 and class 2 need to be reduced, so it is necessary to
obtain the multiplier needed to reduce them:

111,600,000
1.9

=——~04
’ 238,642,403 0.4678

OVERSAMPLING:

To mitigate the imbalance of minority classes, an oversampling strategy based
on the Synthetic Minority Over-sampling Technique (SMOTE)[I2] was
implemented. Unlike random duplication of samples, SMOTE generates synthetic
data points by interpolating between existing samples of the same class. This ap-
proach increases the representativeness of the minority classes without artificially
inflating the dataset with repeated instances, thereby improving generalization.

Let be the feature vector of a minority-class sample. For each z; its k-nearest
neighbors from the same class are first identified using the Euclidean distance:

s —alls = | Y (@ie — 250)”.

d
(=1

From these neighbors, one sample is randomly selected, and a new synthetic
point is then generated as a combination of both points:

v =ai M) =) = (1= Nz + Aa)”.
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This interpolation guarantees that the new point lies on the line segment between
the original point and its neighbor, preserving the structure of the feature space
after normalization. Repeating this process for multiple neighbors and values of A
allows for generating as many synthetic points as required.

The number of synthetic points to be created can be defined in two ways. The
first option is to specify a multiplicative factor

tgt orig
Nk —Oszk s

where N°rig is the original number of points in class and N'gt is the desired
number after oversampling. The number of new synthetic samples is then:

NEY = NB' — NP™ = (ay, — 1) N;"%.

Alternatively, it is possible to define the absolute number of desired points per

class, which gives: .
NP = max (0, N& — NJ™8).

Both methods are equivalent in practice. For this project, the multiplicative factor
approach was chosen, establishing the multiplier as:

tgt
Na% 5 53,612,886 9
N E T 5,953,922 ~

For classes 3,4,5: ag45 =

tgt
Ne¥so 4238297 6

For classes 6,7,8,9: ag789 = o = amioT

As we can see, for this method the multiplier needs to be a number greater
than 1 in order to create more points than the original ones.

The final distribution of the classes after applying both methods for the differ-
ent elements:

Original Distribution: Resampled Distribution:

- Class 1: 90,411,317 pts (50.59%) - Class 1: 42,297,886 pts (29.94%)

- Class 2: 81,278,904 pts (45.48%) - Class 2: 38,025,396 pts (26.92%)

- Class 3: 2,845,499 pts (1.59%) - Class 3: 25,609,491 pts (18.13%)

- Class 4: 1,495,879 pts (0.84%) - Class 4: 13,462,911 pts (9.53%)

- Class 5: 1,937,580 pts (1.08%) - Class 5: 17,438,220 pts (12.34%)

- Class 6: 108,056 pts (0.06%) - Class 6: 648,336 pts (0.46%)

- Class 7: 428,718 pts (0.24%) - Class 7: 2,572,308 pts (1.82%)

- Class 8: 87,233 pts (0.05%) - Class 8: 523,398 pts (0.37%)

- Class 9: 116,435 pts (0.87%) - Class 9: 698,610 pts (0.49%)
Figure 4.12: Final distribution of classes after resampling
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4.2.4 Data filtering

As a final step in the preprocessing process, a filtering procedure was implemented
to limit the dataset to the structural elements of the railway infrastructure, in
particular, only the points associated with Classes 3, 4, and 5 were maintained,
since these correspond to rails, poles, and catenary cables.

This selection enables the construction of a database that will be used as input
for the segmentation model, that will use this information to classify the different
elements in the rail infrastructure, so the models can be trained more efficiently
and without interference from non-infrastructure elements.

The filtering can be formally expressed as the following subset of the original
point cloud:

Rnfra - {pl er | Yi € {374a5}}

where P denotes the full set of points, p; represents each point and y; its corre-
sponding class label.

4.3 Modelling

STAGE 3.1: STAGE 3.2: STAGE 3.3:
Railway Railway Cable
presence components anomalies
classification segmentation detection

Figure 4.13: Stages of the modelling

4.3.1 Railway presence classification

The first stage of the modelling process (see Figure focuses on railway
presence classification, which aims to separate points belonging to the railway
infrastructure and those corresponding to external or irrelevant elements. This
step changes the original multi-class classification task into a binary problem, sim-
plifying the data while preserving the essential distinction required for subsequent
analysis.
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The input to this stage consists of preprocessed point cloud data, where each
point is characterized by its spatial coordinates, color channels, and intensity val-
ues. The output, in contrast, is a binary label that indicates whether a point
belongs to the railway infrastructure (such as rails, poles, or catenary cables) or
to non-infrastructure elements (including vegetation, ground, and surrounding ob-
jects).

This reduction to a binary classification problem is very important in the
pipeline because, it creates a first filter for the 3D point clouds obtained in the raw
data, making it possible to use the algorithm for new, non-classified data. It also
improves the computational effort required in the complete model by reducing the
size of the original database, eliminating more than half the points, which are not
relevant in the anomaly detection.

MULTI-CLASS TO BINARY CLASS CONVERSION

The dataset initially contains nine semantic classes, so in order to adapt the
data to the binary setting required for railway presence classification, a custom
conversion was implemented, performed through a dedicated function, which sys-
tematically maps the original class labels into two categories: infrastructure points
(Positive class), corresponding to rails, poles, and cables, and non-infrastructure
points (Negative class), containing the rest of the classes. The mapping is achieved
by verifying whether the label of each point belongs to a user-defined set of target
classes, allowing for a flexible and reusable model.

The conversion starts by extracting the features (coordinates, color channels,
and intensity), and reassigning the labels into the binary format by applying a
logical test:

o 17 if ¢ € Ctarget
v 07 1f & ¢ Ctarget

Following the conversion, the binary dataset was analyzed in terms of class
distribution. As expected after the resampling done in the preprocessing stage,
approximately 60% of the points belong to Class 0 (non-infrastructure) and 40%
to Class 1 (infrastructure). This distribution avoids the severe imbalance that the
raw dataset had, reducing the bias in the modelling.

The definition of infrastructure in the design is not restricted to a fixed sub-
set of classes, so the target classes parameter can be easily modified, making the
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framework suitable for alternative configurations or future datasets. By allowing
the redefinition of the target classes, the method extends beyond the current appli-
cation to rails, poles, and cables, and could be readily adapted to other domains.

XGBoost

The XGBoost model was trained using the Google Colab environment with an
NVIDIA A100 GPU, which can handle large-scale point cloud datasets. The model
was implemented with the XGBClassifier interface, and its hyperparameters were
carefully selected to balance predictive accuracy with generalization capacity.

The hyperparameters used in the training of the model were the following:

e objective="binary:logistic’: Specifies that it is a binary classification prob-
lem, with logistic regression applied at the output layer to produce proba-
bilities between 0 and 1.

o tree_ method=’'gpu_ hist’ and predictor="gpu_predictor’: Uses GPU-
accelerated histogram-based algorithms for tree construction and prediction,
reducing training time and allows the model to scale to millions of points
efficiently.

e eval metric="aucpr’: Sets the area under the precision-recall curve as
the evaluation metric during training. This choice is particularly appropriate
for imbalanced datasets, as it emphasizes the ability to correctly identify the
positive (infrastructure) class.

e scale pos weight: Compensates for class imbalance by scaling the con-
tribution of positive samples in the loss function, so that misclassifications
of the minority class (infrastructure) are penalized more heavily, improving
sensitivity. It is defined as the ratio between the number of negative and
positive samples in the validation set:

N, class 0

scale pos_ weight =
class 1
e mazx_depth: Limits the maximum depth of each tree. A relatively small
value prevents the model from overfitting by restricting overly complex tree
structures, favoring generalization instead.
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e learning rate: Controls the contribution of each new tree to the overall
ensemble. A smaller learning rate stabilizes training but requires more trees
to achieve optimal performance.

e n estimators: Defines the maximum number of boosting rounds.

e subsample=0.8: Randomly samples a percentage of the training data for
each boosting round, reducing overfitting, established in 0.8 for all of our
models.

e n_jobs=-1: Uses all available CPU threads for parallelization of non-GPU
tasks, accelerating data preprocessing and auxiliary computations.

e random_ state=42: Fixes the random seed to ensure reproducibility of
results.

During training, a validation subset was used to monitor the model’s perfor-
mance on unseen data. This separation is essential to detect overfitting: while the
training accuracy may continue to improve, if the validation performance is not
improved it may indicate that the model is the losing generalization ability.

o early stopping=>50: If no improvement in the evaluation metric (aucpr)
was observed over a number of consecutive boosting rounds, 50 for our model,
the training process is stopped prematurely, preventing unnecessary com-
putations and choosing the final model that achieved the best validation
performance, rather than the maximum number of estimators.

This parameter ensures that the maximum number of estimators is equal to
the n__estimators parameter, but could be less than this number if the early
stopping is activated:

Nfinal S Testimators

HYPERPARAMETER SELECTION:

To identify the best configuration for the model, experimental models were
trained using different sets of hyperparameters, to see how variations in depth,
learning rate and number of estimators affect the performance of the classifier.
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Model depth learning estimators Best itera- AUC AUC PR
rate tion PR Validation
Train
MODEL 1 3 0.07 700 \ 697 0.9515 0.8692
MODEL 2 5 0.10 500 \ 459 0.9772 0.8692
MODEL 3 8 0.10 500 \ 177 0.9828  0.8394
MODEL 4 4 0.10 500 \ 338 0.9607  0.8734
MODEL 5 2 0.10 500 ‘ 490 0.9232 0.8504
MODEL 6 3 0.10 500 \ 489 0.9519  0.8695

Table 4.1: Comparison of different XGBoost model configurations and their per-

formance on training and validation sets.

Out of these combinations, Model 4 was the best model for the binary classifi-
cation, based on the model’s balance between training and validation performance:

Model depth  learning estimators Best itera- AUC AUC PR
rate tion PR Validation
Train
MODEL 4 4 0.10 500 \ 338 0.9607  0.8734

Table 4.2: Selected model with the best performance

While deeper models such as Model 3 achieved slightly higher training scores
(AUC PR Train = 0.9828), they exhibited a notable drop in validation accuracy
(AUC PR Train =0.839/4), suggesting signs of overfitting. In contrast, Model 4
reached a competitive training performance (AUC PR Train = 0.9607) while also
obtaining the highest validation score across all models (AUC PR Train =0.87534).

The best iteration was 338, a low value compared to the rest of the models,
indicating that this model converged earlier and needed fewer rounds to reach the
best performance, reducing the risk of overfitting and improving computational

efficiency.
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THRESHOLD SELECTION

In binary classification, the decision threshold is the value that establishes how
the probabilities turn into discrete class labels. By default, a threshold of 0.5 is
often used, meaning that points with a predicted probability greater than or equal
to 0.5 are assigned to the positive class, while the rest are assigned to the negative
class.

The choice of threshold is critical because it directly influences the trade-off
between precision and recall, and consequently affects the resulting values of met-
rics such as the Fl-score or Intersection over Union (IoU). A higher threshold
reduces false positives, increasing precision but often lowering recall, while a lower
threshold increases recall at the expense of precision.

After obtaining predicted probabilities for the validation set, a range of thresh-
olds between 0.01 and 0.99 is tested, and for each one, evaluation metrics including
F1-score, recall, precision, and IoU are computed to determine the best threshold.

The optimal threshold selected depends on the metric used, because different
metrics have different optimal thresholds. The threshold that maximizes the F1-
score may not be the same as the one that maximizes recall or IoU. This means
that the optimal threshold needs to be chosen based on the metric that will be
used to evaluate the final model, obtaining the best results for the desired metric.

EVALUATION METRICS

During training, the evaluation metric employed was the Area Under the Pre-
cision-Recall Curve (AUC-PR). This metric summarizes the trade-off between
precision and recall across all possible threshold values. Unlike the more common
ROC-AUC, which can sometimes provide overly optimistic results in the pres-
ence of imbalanced datasets, AUC-PR is more informative when the positive class
represents a minority, because it quantifies the model’s ability to maintain high
precision and high recall.

For this project, the metric that was chosen for the evaluation of the model and
the threshold selection is the Fl-score. The Fl-score is a widely used evaluation
metric in binary classification tasks, particularly when class imbalance is present,
as it defines the harmonic mean of precision and recall, which minimises false
positives (precision) and increases the correctly identification of positive samples
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(recall):
Precision - Recall B 2-TP

" Precision + Recall 2-TP + FP+ FN

F1:2

For railway presence classification, it is important that the model identifies
infrastructure points reliably, which requires maintaining a sufficiently high re-
call. On the other hand, excessively increasing recall without considering precision
would result in a large number of false positives, which undermines the objective
of filtering non-infrastructure data. If too many points from Class 0 are misclassi-
fied as infrastructure, the dataset remains contaminated with irrelevant elements,
negating the benefits of the binary reduction.

By evaluating based on the F'1-score, it balances the two requirements: ensuring
a strong detection rate of infrastructure points while simultaneously effectively
filtering non-infrastructure points. This balance is the best way of obtaining an
accurate and clean dataset.

EVALUATION OF THE MODEL WITH THE VALIDATION SUBSET:

The selected threshold based on the F1-score for the Class 1 in the validation
subset is 0.37. A higher threshold would have improved precision at the expense
of recall, leading to a greater loss of infrastructure points, whereas the chosen value
maintains a more equitable trade-off.

The evaluation of the model on the validation data has a global accuracy
of 0.8270 and a balanced accuracy of 0.8183, indicating that the classifier
performs consistently across both classes. The ROC AUC of 0.8946 confirms
the model’s ability to discriminate effectively between infrastructure and non-
infrastructure points, while the PR AUC of 0.873/ confirms the balance between
precision and recall for all the different thresholds.

Class Precision Recall Fl-score IoU
Class 0 0.8516 0.8618 0.8567 0.7493
Class 1 0.7889 0.7748 0.7818 0.6418

Table 4.3: Class-specific evaluation metrics on the validation set.

For Class 0 (non-infrastructure), the model achieved high precision (0.8516)
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and recall (0.8618), resulting in a F1-score of 0.8567 and an IoU of 0.7493, filtering
irrelevant points effectively. However, the performance for Class 1 (infrastructure)
was slightly lower, with precision = 0.7889, recall = 0.7748, and an F1-score of
0.7818, showing that some misclassifications persist, particularly false negatives,
which reduce recall. Even with these misclassifications, the results are very good,
filtering the non-infrastructure elements but also correctly identifying the infras-
tructure points.

True \ Predicted | Class 0 | Class 1
Class 0 | 12,017,740 | 1,927,745
Class 1 | 2,093,460 | 7,203,531

Table 4.4: Confusion matrix on the validation set.

The confusion matrix shows that out of more than 14 million Class 0 points,
only 1.9 million were misclassified as infrastructure, while for Class 1 points, ap-
proximately 2.1 million were incorrectly labeled as non-infrastructure.

Light GBM

The LightGBM model was trained in the Google Colab environment using an
NVIDIA A100 GPU, which ensured efficient handling of the large-scale point cloud
dataset. The model was implemented with the LGBMClassifier interface, and its
hyperparameters were carefully selected to provide a trade-off between predictive
accuracy, generalization, and computational efficiency.

The configuration of the model was defined as follows:

e objective="binary’: Specifies that the task is a binary classification prob-
lem, returning the probability of each point belonging to the positive class.

o class weight="balanced’: Adjusts the weight of each class based on its
frequency, compensating for the imbalance.

e learning rate: Regulates the contribution of each new tree to the ensemble
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e maxr depth: Maximum depth of the trees, prevents excessive complexity
and reducing overfitting risk.

e n_ estimators: Maximum number of boosting rounds
e random_ state=42: Ensures reproducibility by fixing the random seed.

e n_jobs=-1: Uses all available CPU cores for parallel execution of non-GPU
operations.

e num_ leaves: Restricts the maximum number of terminal leaves per tree,
controlling model complexity and balancing between capturing non-linear
patterns and avoiding overfitting.

e device_ type="gpu’: Enforces GPU acceleration for faster training on large
datasets.

e miun_ child_samples: Number of samples required to form a new leaf node,
reducing the risk of very small data partitions.

As in XGBoost, a validation subset was used to monitor the model’s perfor-
mance on unseen data, but in the Light GBM, this parameter is added during the
fitting of the model, not in the model creation.

o callbacks=[early stopping(stopping rounds=20)]: If no improvement
in the model was observed after 20 rounds, the training is interrupted, so the
number of estimators for the model is:

Nfinal S Testimators

HYPERPARAMETER SELECTION:

It is important to select the parameters to design and create the model, using
different sets of them to see how variations affect the performance of the model:

Anomaly detection in railway infrastructure based on 3D Point Cloud data 63
using neural networks
Lucia Hernandez Fernandez



Model learning depth estimators leaves min Best Train Validation
rate child itera- Log Log

sam- tion Loss Loss

ples
Model 1 0.10 7 200 20 — \ 138 0.231168 0.4175
Model 2 0.10 7 200 — - \ 168 0.197668 0.4095
Model 3 0.10 9 200 — 200 \ 200 0.174528 0.414523
Model 4 0.15 9 200 — 200 ‘ 49 0.251793 0.446101
Model 5 0.07 9 200 — 200 \ 200 0.199436 0.427404
Model 6  0.07 10 200 - 200 \ 200 0.197803 0.415143

Table 4.5: Comparison of different Light GBM model configurations and their per-
formance on training and validation sets.

For LightGBM, using binary log loss as the training metric includes certain
limitations when selecting the final model. Although log loss provides valuable
information about how well the predicted probabilities align with the true labels,
it is not the metric used to evaluate the effectiveness of the classifier in this project.

This is the reason why the selection of the best Light GBM configuration cannot
be based solely on the reported log loss values. Instead, the comparative results
obtained on the validation set provide a more reliable criteria, as they directly
reflect the model’s capacity to generalize and to perform for new unseen data.
Nevertheless, the log loss values remain useful as a preliminary indicator, offering
an overview of which configurations may perform better or worse, but the decisive
factor in the selection of the model will be the validation performance under the
evaluation metric used in the project.

THRESHOLD SELECTION:

The LightGBM classifier generates probabilistic outputs that must be con-
verted into binary predictions using a decision threshold. Rather than fixing this
value at 0.5, the same function as in the XGBoost model was used: for each
candidate threshold, the corresponding precision, recall, F1-score, and IoU were
computed, and the optimal value was chosen after deciding the best evaluation
metric for this project.

Anomaly detection in railway infrastructure based on 3D Point Cloud data 64
using neural networks
Lucia Hernandez Fernandez



EVALUATION METRICS:

During the training of the Light GBM model, the objective was based on the
binary log loss metric, also known as logistic loss or cross-entropy loss. This
metric measures the difference between the predicted probabilities generated by
the classifier and the true binary class labels:

N
1
- N > [y log(p) + (1 — i) log(1 — pi)

=1

where N is the number of samples, y; € {0, 1} is the true label of sample i, and p;
is the predicted probability that sample 7 belongs to the positive class.

This penalizes incorrect predictions in a non-linear manner: confident misclas-
sifications, which consists on assigning a high probability to the wrong class, have
a much higher penalty than less confident ones. As a result, the metric encourages
the model to assign probabilities that are both accurate and well calibrated, unlike
metrics based on hard class assignments like accuracy, log loss works directly on
the probabilities of the model.

For Light GBM, binary log loss is particularly useful because each new tree is
constructed to minimize the overall uncertainty of the model’s predictions.

On the other hand, for the evaluation of the model the same metric used in
XGBoost Will be maintained,making sure that both models are being evaluated
using the same metrics, which is essential to compare the performance of both
models.

EVALUATION OF THE MODEL WITH THE VALIDATION SET:

As explained before, the Light GBM best model needs to be selected comparing
the Fl-score metric for all the models created.

In order to do so, each model will have a different optimal threshold, which
will also be selected along with the best model:
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Model Threshold Train PR AUC Validation PR AUC

MODEL 1 0.43 0.9595 0.8669
MODEL 2 0.39 0.9714 0.8746
MODEL 3 0.35 0.9777 0.8816
MODEL 4 0.44 0.9512 0.8506
MODEL 5 0.41 0.9710 0.8706
MODEL 6 0.39 0.9716 0.8744

Table 4.6: Threshold values and corresponding PR AUC scores for training and
validation across different Light GBM models.

Among the models created, Model 3 is the best performing Light GBM model
for the railway presence classification task, because it achieved the best validation
score (0.8816) while also maintaining the best training result (0.9777). In com-
parison, other models such as Model 2 and Model 6 achieved similar validation
scores (0.8746 and 0.8744, respectively), but it was slightly worse than Model 3.
Meanwhile, models like Model 4 and Model 5 had much lower validation results,
proving that the model does not work well with new, unseen data.

The optimal threshold for this model is 0.35 which maximizes the F1-score for
the class 1 (positive outcome).

Model learning depth estimators leaves min Best Train Validation
rate child itera- Log Log
sam- tion Loss Loss
ples
Model 3 0.10 9 200 - 200 200 0.174528 0.414523

Table 4.7: Best performing Light GBM model

The evaluation of this model on the validation set had a global accuracy of
0.8368 and a balanced accuracy of 0.8228, indicating that the classifier main-
tains a consistent behavior across both classes despite their imbalance. The ROC
AUC of 0.8993 shows the model’s ability to distinguish reliably between infras-
tructure and non-infrastructure points, while the PR AUC of 0.8816 reflects a
strong balance between precision and recall for different thresholds.
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Class Precision Recall Fl-score IoU
Class 0 0.8442 0.8928 0.8678 0.7665
Class 1 0.8240 0.7528 0.7868 0.6485

Table 4.8: Class-specific evaluation metrics for the best model on the validation
set.

For Class 0 (non-infrastructure), the model achieved strong results, with pre-
cision of 0.8442 and recall of 0.8928, obtaining an F1l-score of 0.8678 and an IoU
of 0.7665, confirming the model filters irrelevant elements. In contrast, the per-
formance for Class 1 (infrastructure) was slightly lower, with precision = 0.8240,
recall = 0.7528, and an F1l-score of 0.7868, some false negatives persist, slightly
reducing recall.

True \ Predicted Class0 Class 1
Class 0 12,450,154 1,495,331
Class 1 2,298,202 6,998,78

Table 4.9: Confusion matrix of Model 3 on the validation set.

The confusion matrix shows that, out of more than 13.9 million Class 0 points,
approximately 1.5 million were misclassified as infrastructure, and for Class 1
points, about 2.3 million were incorrectly labeled as non-infrastructure. This con-
firms that while some misclassifications remain, the model provides a reliable clas-
sification between infrastructure and non-infrastructure elements.

4.3.2 Railway components segmentation: PointNet

The goal of this stage is to design and implement a deep learning architecture
capable of segmenting the different components of the railway infrastructure at
point level (see Figure . In this context, each point of the input cloud must
be assigned to one of the predefined semantic classes, allowing the separation of
structural elements such as tracks, masts, and overhead wires.

The PointNet model was selected as the backbone of the segmentation frame-
work because it is a pioneering architecture for directly processing raw point clouds
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without intermediate voxelization or projection. The choice of this type of model
is also motivated by its efficiency and adaptability, unlike more complex hierarchi-
cal methods, it provides a balance between computational cost and segmentation
accuracy, which is particularly relevant when processing large-scale railway scenes
with millions of points.

The model implemented in this project is based on the original PointNet
model|| but some changes have been made in order to create a better model for
this specific tasks, using all of the information available in the database. First of
all, we want to obtain all the points classified as part of the infrastructure from
the previous model, as segment them as part of three possible categories:

e Class 3: Rails
e Class 4: Poles

e Class 5: Wires

MODEL INPUT:

The main difference between this model and the original PointNet lies in the
definition of the input representation. In the original formulation, each point of
the cloud is characterized solely by its spatial coordinates (z,y, z), but the model
developed extends the representation by including additional per-point attributes:
the RGB color channels (r,g,b) and the intensity value. This results in a bet-
ter description of the scene, which is particularly useful in the railway context,
where many components may share similar geometric profiles but differ in visual
or reflectance properties.

The integration of these attributes required adapting the input for the model.
For each scene, the information stored in the LiIDAR dataset is combined into a
single feature vector per point of the form:

Pi = [xi7yi7ziuriagi7bi7[i:|7 L= 17"'7N

where N denotes the number of points in the scene and I; corresponds to the
intensity value of point 7.

Another important difference with the original model is the number of points
per scene N: in the original model it is a fixed number, but as was analyzed in the
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data exploration stage, this database has different number of points per scene, so
N can not be a fixed number. To work with this, the model is designed to operate
in a fully point-wise manner, applying shared multilayer perceptrons to each point
independently,so that the architecture remains invariant to the number of input
points.

As a result of this preprocessing, each scene is represented as a tensor of dimen-
sion (N, 7), where N is the number of points and 7 corresponds to the concatenated
features described above. This flexible representation preserves all relevant infor-
mation from the dataset while designing the model to process point clouds of
different size without requiring additional processing.

INPUT TRANSFORM BLOCK:

Unlike the original PointNet, which operates on per-point coordinates (x,y, 2),
this model works on (N, 7) containing spatial coordinates, color (r, g,b) and inten-
sity.

The purpose of the this block is to learn a distribution of the points that
reduces variations, like rotations around the track axis, which is why T needs to
be exclusively applied to (z,y,z). Mixing color or intensity into this would use
non-geometrical attributes to create the geometrical representation, causing the
model to incorrectly detect the real geometry of each image.

In this part of the model, two groups of features are created:
Xy = X[, 1:3] € RV*3 Xaux = X[;,4:7] € RV,
A learnable 3x 3 matrix T, predicted by a T-Net, is then applied to the coordinates,

X, = Xy, T € RV

XYZ

and the modified coordinates are concatenated back with the untouched additional
features to recover a scene tensor of shape (N, 7):

X' = [X, || Xauw] € RV

This design preserves the complete (N, 7) representation at the model level while
maintaining geometrical steps based only on the coordinates of each point.

The T-Net is created for k=3 (see Appendix and the original coordinates
are multiplied by this matrix to obtained the new outputs.
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MLP(64,64): At this stage, the network processes the input tensor of size (N,7),
which encodes the spatial coordinates together with the radiometric attributes
(RGB and intensity). These features go through a shared multilayer perceptron
(see Appendix |C)) with two fully connected layers with ReLLU activations.

FEATURE TRANSFORM:

In the original PointNet formulation, a second transformation network (T-Net)
is applied at the feature level, after projecting the input into a 64-dimensional
space. However, in this project the feature transform block is deliberately omitted.

The reason behind is related to the additional features available in this model,
which are non-geometrical, so this addition makes the result from the previous
step not entirely geometrical. The resulting 64-dimensional space is no longer
separated between purely geometric and non-geometric components, so once the
features are combined, it is not possible to separate whether a given dimension
has spatial structure, color, or intensity. Applying a transformation at this stage
could change meaningful correlations,creating a worse model.

Although the absence of the feature transform block might lead to a slightly
worse performance compared to the original PointNet, it is a necessary design
choice for this project, that prioritizes the integration of all available attributes
over the potential loss in model performance.

The original PointNet framework is capable of creating two different models:
object classification, where a single label is predicted for the entire point cloud, and
point-wise segmentation, where a class is assigned to each individual point. For
this problem, only the segmentation branch is implemented, because the objective
of this study is not to classify entire railway scenes into categories, but to identify
and separate the structural components that form the infrastructure within each
scene. For this purpose, point-wise segmentation is the only relevant output, since
the classification of entire scenes into a single label would not provide meaningful
information for detecting anomalies in cables.

OUTPUT SCORES: The result of the model is a tensor of size (N,3) for each
scene where N corresponds to the number of points in the input file, which is a
variable number depending on the file.
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The dimension 3 corresponds to the number of target classes:

e Class 3: Rails
e Class 4: Poles

e Class 5: Wires

Each row of this matrix contains the raw output scores (logits) for the three
classes associated with a single point. After applying a softmax activation, these
scores are converted into class probabilities. hus, the element (7,j) of the ten-
sor represents the probability that point ¢ of the scene belongs to class j €
{rails, poles, wires}. The final predicted segmentation is obtained by assigning
to each point the class with maximum probability.

OPTIMIZER SELECTION:

The training of the model was performed using the Adam optimizer, a widely
adopted method in deep learning due to its ability to adapt the learning rate in-
dividually for each parameter. Adam combines the advantages of two optimiza-
tion techniques: momentum and RMSProp. Specifically, it computes exponential
moving averages of both the gradients (first moment estimate) and the squared
gradients (second moment estimate). Formally, for a parameter 6, at iteration ¢
with gradient ¢g;, Adam maintains:

me = fimi—1 + (1 — B1)gr, ve = Bavy_y + (1 — 52)9?7

where m; and v; are the biased first and second moment estimates, and (i, 32
are exponential decay rates (commonly set to 0.9 and 0.999, respectively). Bias-
corrected estimates m; and ¥, are then computed, and the parameters are updated
as:

my
Tt e

where 7 is the global learning rate and € a small constant for numerical stability.

9t+1 = et -

PARAMETERS:
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o learning rate = 0.001: This value was chosen based on the original
PointNet network, it s small to create gradual and stable updates

o weight decay=10"*: L, regularization term added to the loss function,
penalizing large parameter values, helps to prevent overfitting by encouraging
simpler solutions.

CLASS BALANCE:

In the dataset, certain categories such as rails contain a very large number of
points, whereas others, such as wires and poles, are far less represented, so to train
the model it is necessary to balance this classes to increase the model’s ability to
learn the minority classes.

To create this balance, class-specific weights were added to the loss function
based on the frequency of each class. For each class ¢ € {1,...,m}, the weight
was defined as: .

> j=1"

m - (ne+e€)’
where n. is the number of points belonging to class ¢, m is the number of classes,
and € is a small constant introduced to avoid division by zero.

W, =

This assigns higher weights to underrepresented classes and smaller weights
to majority classes, and introducing these weights into the cross-entropy loss, the
contribution of each class is balanced, so that the model learns to recognize both
frequent and rare railway components.

LOSS FUNCTION:

The loss function adopted for training is the cross-entropy loss. Cross-
entropy measures the difference between the predicted probability distribution and
the true labels. For a point ¢ with true label y; and predicted class probabilities
Dic, the loss is defined as:

1 N
Lok = _N ; logpi,ym
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where N is the number of points in the scene, y; is the ground-truth class of point
i, and p; ,, is the predicted probability assigned to that class, penalizing the model
more heavily when it assigns low probability to the correct class.

In this model, cross-entropy loss is important because the it requires assigning
exactly one semantic label to each point in the cloud, that combined with the class
balancing weights w,, the final loss used in training can be written as:

| XN
L= N ;wyi log Dy, -

EARLY STOPPING:

The training process employed an early stopping strategy to prevent overfit-
ting. After each epoch, the validation mean Intersection-over-Union (mloU) was
calculated, and the model parameters were saved if the validation mlIoU surpassed
the previous best value. If there is no improvement for 5 consecutive epochs and
the validation mlIoU is at least 0.85, the training is stopped, selecting as the final
model the one with the highest validation miou instead of choosing the last epoch.

Once the model architecture was defined, the training was carried out us-
ing Google Colab, using an NVIDIA A100 GPU. The process was organized into
training sessions of 100 epochs each, in order to monitor progress and evaluate
improvements at regular intervals.

The first training, covering epochs 0 to 100, required approximately 15 minutes
of computation, producing the following results:

Best epoch Train accuracy Train mloU Validation mloU

90 0.8930 0.7754 0.7655

Table 4.10: Training and validation performance of the best model from epoch 0
to 100.

The following training covered from 100 to 200 epochs, also requiring 15 min-
utes and producing the following results for the best model:
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Best epoch Train accuracy Train mIoU Validation mIoU

146 0.8631 0.7239 0.7703

Table 4.11: Training and validation performance of the best model from epoch 100
to 200.

EVALUATION METRICS:

The criteria used to select the best model for the training is the mean Intersection-

over-Union (mIoU) computed on the validation set. The IoU metric evaluates
the common elements between the predicted segmentation and the true labels for
a given class, defined as:

— TP,
YT TP Y FP.+ FN,’

where T'P. (true positives) represents the number of points correctly predicted as
class ¢, F'P. (false positives) the points incorrectly predicted as ¢, and F'N, (false
negatives) the points of class ¢ that were missed by the model. The mean IoU
(mlIoU) is obtained by averaging the IoU values across all classes:

1 m
IoU=—Y IoU.,
mTo m;o

with m being the number of classes. This metric is particularly suitable for seg-
mentation tasks with imbalanced datasets, as it treats all classes equally regardless
of their frequency.

In this project mIoU was chosen as the evaluation criteria because it provides
a fair and comprehensive assessment of segmentation quality, so the best model
of each training group of 100 epochs is the one that obtained the higher mIoU for
the validation subset.

EVALUATION OF THE MODEL WITH THE TRAIN AND VALIDATION:

For each group of training epochs, the best final model had the following results:
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For the first model (epoch 0 to 100), the validation subset achieved a global
accuracy of 0.8769 and a balanced accuracy of 0.8577, and the mean
Intersection-over-Union (mIoU) reached a value of 0.7655, which confirms
that the model is capable of segmenting the infrastructure.

Class Precision Recall Fl-score IoU

Class 3 0.9458 0.9992 0.9717  0.9450
Class 4 0.8455 0.6704 0.7478  0.5972
Class 5 0.8204 0.9034 0.8599  0.7543

Table 4.12: Class-specific evaluation metrics for the best model on the validation
subset from epoch 0 to 100.

For Class 3 (tracks), the model exhibits excellent results, with precision =
0.9458 and recall = 0.9992, obtaining an F1l-score of 0.9717 and an IoU of 0.9450.
This very high recall shows that almost all track points are correctly identified,
while the slightly lower precision reflects a small number of false positives.

For Class 4 (masts), the performance is more limited, with precision = 0.8455,
recall = 0.6704, Fl-score = 0.7478, and IoU = 0.5972, and gap between precision
and recall reveals the presence of missed detections (false negatives).

For Class 5 (cables), the model achieves a solid balance, with precision =
0.8204 and recall = 0.9034, leading to an F1l-score of 0.8599 and an IoU of 0.7543.
The high recall demonstrates the ability of the model to detect most cable points,
although the lower precision indicates occasional confusion with other elements.

True \ Predicted Class 3 Class 4 Class 5

Class 3 397,961 329 0
Class 4 22,818 188,574 69,881
Class 5 0 34,138 319,298

Table 4.13: Confusion matrix of the best model on the validation subset from
epoch 0 to 100.

The confusion matrix shows that almost all Class 3 (tracks) points were cor-
rectly classified, with only 329 mislabeled as masts and none as cables. For Class
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4 (masts), however, a considerable number of points were confused, with more
than 22,000 predicted as tracks and nearly 70,000 predicted as cables, confirming
this class as the most challenging. In contrast, Class 5 (cables) achieved strong
performance, but over 34,000 points were misclassified as masts.

For the second model (epoch 100 to 200), the validation subset reached a
global accuracy of 0.8819 and a balanced accuracy of 0.8604, with a mean
Intersection-over-Union (mloU) of 0.7703.

Class Precision Recall Fl-score IoU

Class 3 0.9429 0.9980 0.9697  0.9412
Class 4 0.8988 0.6380 0.7463  0.5952
Class 5 0.8112 0.9451 0.8730  0.7746

Table 4.14: Class-specific evaluation metrics for the best model on the validation
subset from epoch 100 to 200.

For Class 3 (rails), the model delivers very strong results, achieving precision
= 0.9429 and recall = 0.9980, which corresponds to an Fl-score of 0.9697 and an
IoU of 0.9412.

For Class 4 (poles), the results are more modest: precision = 0.8988, recall =
0.6380, Fl-score = 0.7463, and IoU = 0.5952. The low recall indicates that there
are a lot of points from this class that are not correctly identified as poles.

For Class 5 (wires), the model achieves a strong compromise, with precision
= 0.8112 and recall = 0.9451, leading to an Fl-score of 0.8730 and an IoU of
0.7746. The high value of recall shows that most of the points from this class are
correctly identified as part of cables in the infrastructure, but the lower precision
number shows there are points classified as part of class 5 when they do not belong
in this category.
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True \ Predicted Class 3 Class 4 Class 5

Class 3 397,493 797 0
Class 4 24,058 179,460 77,755
Class 5 0 19,419 334,017

Table 4.15: Confusion matrix of the best model on the validation subset (epoch
100 to 200).

The confusion matrix shows that almost all Class 3 (rails) points are correctly
classified, with only 797 mislabeled as poles and none confused with cables. For
Class 4 (poles), misclassifications are more pronounced: over 24,000 points were
predicted as rails and more than 77,000 as wires. In the case of Class 5 (wires), most
points were correctly segmented, but around 19,000 were confused with masts.

4.3.3 Cable anomalies detection

The main goal of this project is to detect anomalies in the catenary systems of the
railway infrastructure, making this part of the modelling stage (see Figure |4.13])
the most important of the whole study.

The previous segmentation stage separated the cables (class 5) from the rest of
the elements, making it possible to now detect anomalies in each of those cables, so
the input of the anomaly detection stage corresponds to the point clouds previously
segmented as cable elements by the PointNet-based model. The objective is to
process these points and evaluate their geometric consistency, and create indicators
to see if there are anomalies present in those cables.

It is important to emphasize that this analysis is exclusively conducted on the
validation and test datasets. Training data are intentionally excluded from this
process, since they have already been used to create and optimize the segmentation
models in the previous stages. Using the validation and test data, the model is
focusing on new, unseen data like it will happen with real cases.

CABLE SEPARATION:

In order to detect the anomalies in the cables, it is first necessary to separate
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each cable from the complete set of points previously classified as cable. If all
cable points were analyzed together, the detection process would be affected by
the spatial distances that naturally exist between different cables. To avoid this,
the cloud of points corresponding to the cable class is divided into different clusters
that each represent a different cable, performing the detections on a cable-by-cable
basis, rather than on the entire image simultaneously.

From a mathematical perspective, let the set of cable points obtained from
segmentation be denoted as:

P:{p1>p27"'7pN}7 PiERS (41)

where p; = (x;,y;, 2;) represents the spatial coordinates of each point classified as
cable. The goal is to partition P into K disjoint subsets, each corresponding to
an individual cable:

K
P=|JC CNC=2 Vit (4.2)

k=1

To achieve this, a density-based clustering algorithm (DBSCAN) was ap-
plied to the 3D coordinates of the cable points. DBSCAN assigns a cluster label
l; to each point p; based on two parameters:

e ¢ (eps): The maximum distance between two points for considering them
part of the same cluster

e minPts (min_ samples): The minimum number of points required to de-
fine a new cluster.

Formally, DBSCAN groups points according to the following rule:
Cluster(p;) = {p; € P | ||pi — p;l| < € and density > minPts} (4.3)

As a result, each cluster Cy corresponds to a different cable, while noise points (not
belonging to any cluster) are labeled as —1. The points labeled as —1 could also
be points misclassified from previous steps that are also considered noise if they
do not belong to any of the created clusters.

The selection of parameters € and min Pts is the most important step, because
a correct or incorrect separation of cables can have a very big impact in the final
anomalies. These parameters were selected based on the separation results in the
validation subset, and then they were applied to the test subset directly, without
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any additional changes. This makes the model aplicable to other cases and to new
unseen data without needing to redefine the parameters.

Parameter Value
e (eps) 0.045
Minimum samples (minPts) 10

Table 4.16: Selected parameters for cable separation using DBSCAN.

This preprocessing step provides the foundation for subsequent anomaly detec-
tion, where each cable is treated as an independent entity and its geometry can
be evaluated without interference from neighboring cables.

Y

(a) File sncf 05 (b) File hmls_ 01

Figure 4.14: Cable separation

GLOBAL CABLE ANOMALIES
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CABLE ALIGNMENT

The first type of global anomaly focuses on verifying whether the points of each
cable are aligned. The motivation behind this analysis is to detect situations where
the cable has suffered a rupture, a fracture, or a significant bending, which would
deviate it from its expected straight geometry.

To evaluate the global alignment of the cable, the method is created based on
the Principal Component Analysis (PCA) applied to the point cloud of each
cable. Let the set of points for a given cable be denoted as:

C:{p17p27"'apM}7 Pi €R3 (44)

First, the point cloud is centered with respect to its mean:

M
1
'=pi—P, P=-— ; 4.5
Pi=pi—P P=7; z; p (4.5)
PCA is then applied to the centered points p}, producing a set of orthogonal
eigenvectors {vy, vo, v3} associated with descending eigenvalues {1, Ay, A3}. The
eigenvector corresponding to the largest eigenvalue, vy, is interpreted as the main
axis of the cable:mathbfe .. = vi Each point is then projected onto this main

sy
axis: pt; = P; * €cable

The variance of the projection explains how much the points are aligned with
the main axis, returning a number from 0 to 1, 1 being completely explained by
the main axis and 0 the opposite: sigma2,,, = Var(m;), while the overall variance

of the cloud is obtained from the covariance matrix of the centered points:

Ut20tal = TI‘(COV(pll, pl27 te 7p/M)) (46)

The explained variance ratio is defined as:

0.2

R =g (4.7)

Jtotal

Finally, a cable is considered anomalous if the explained variance ratio R is
lower than a predefined threshold 7, showing that they points do not have a clear
alignment between them:

1, ftR<T
Anomaly = ¢ ' (4.8)
0, otherwise
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In this project, the threshold 7 was empirically set to 0.90, meaning that if less
than 90% of the variance of the cable points is explained by the principal axis, the
cable is marked as anomalous.

Parameter Value

Variance threshold (1)  0.90

Table 4.17: Selected parameter for Cable Alignment anomaly detection.

CABLE INCLINATION

The second type of global anomaly focuses on the inclination of the cable with
the reference system. This analysis wants to detect cases in which a cable has
collapsed, is hanging abnormally, or does not follow the expected horizontal or
vertical orientation.

From a geometric perspective, the alignment of a cable can be checked either
with respect to a dominant axis or relative to a reference plane. The choice
between these two approaches depends on the distribution of the principal axis of
the cable in space. Dominant axis condition: Let e_.. ;. be the main axis of the
cable, obtained through PCA as in the previous anomaly:

€cable = (exy €y, ez); HecableH =1 (49)

A dominant axis exists if one component of e, is significantly larger (in absolute
value) than the others. Formally, if

Cmarl o ) gpa Jemel o (4.10)
’ €second ’ ‘ Cthird ’

where |€,,4.| is the largest component of €4, |€second| @and |egnira| are the other
two components, and p is a dominance ratio, then the cable is considered to follow
primarily that axis. For this Project, the dominance ratio chosen was p = 10, so
that the main axis is largely influenced by one only component.

The inclination angle of the cable with respect to this dominant axis is:

6 = arccos (|ecapie - €ref|) (4.11)
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where e, s is the unit vector of the dominant axis. If § exceeds a predefined
threshold 7, the cable is marked as anomalously.

The dominance ratio chosen was p = 10, so that the main axis is largely
influenced by one only component,and the threshold for anomaly in inclination
was set to 7 = 5°

Planar condition: If no single component of €4 is dominant, the cable can
be better described as part of a plane. In this case, the two largest components of
ecanle indicate the plane of orientation, while the smallest component is negligible.
Let nyq,e be the normal vector of the corresponding plane, the angle between e qpe
and 1Ny, is given by:

¢ = arccos (|€caple - Mplane|) (4.12)

and the inclination with respect to the plane is then:
eplane =90° — (b (413)
If Opiane > T, the cable is again considered anomalous.

Every cable can be analyzed with respect to a plane, since its main axis always
belongs to one of the coordinate planes, however, when one axis component of
€caple 18 much larger than the others, the cable geometry is better captured by
comparing it to the corresponding dominant axis. Although this approach usually
has slightly higher inclination angles than the planar approach, it is deliberately
more conservative.

Parameter Value
Dominant axis ratio (p) 10
Minimum plane ratio 0.5

Inclination threshold (7) 5°

Table 4.18: Selected parameters for Cable Inclination anomaly detection.

POINT PER POINT ANOMALIES
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POINT DEVIATION

The first point-level anomaly wants to identify local deviations of individual points
from the expected cable trajectory. In practice, a cable should follow a continuous
curve that can locally be approximated by a straight line. When certain points
are located significantly away from this line, they may indicate irregular situations
such as a cable being on top of tree branches, so the detection of this case is also
very important to do a further inspection of the cable. Let C = {p;}, be the set
of points belonging to a cable, with p; € R®. The global orientation of the cable
is estimated through PCA, obtaining the unit direction vector of its principal axis
€canle- Once the cable centroid is computed as

1 M
5= —S p, 414
p M;p (4.14)

each point p; can be orthogonally projected onto the axis defined by (P, €capie)
according to
ﬁ’i =p+ ((pz - p) : ecable) €cable- (415)

The distance between the original point and its projection is then defined as

d; = ||p2 - ﬁiHZ; (4-16)

which measures the orthogonal deviation of each point with respect to the cable’s
main trajectory. A point is considered anomalous whenever its deviation exceeds
a predefined threshold 9, that is,

p; is anomalous if d; > 9. (4.17)

For this project, § was chosen equal to 0.05, allowing for small deviations but not
big in reference to the main axis.

Parameter Value

Deviation threshold (6)  0.05

Table 4.19: Selected parameter for Point-Point Deviation anomaly detection.
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SEGMENTS CHANGE IN DIRECTION

Another point-level anomaly is related to the detection of abrupt changes in the
direction of the cable. Under normal conditions, the orientation of the cable should
remain relatively stable when moving along consecutive portions of points, how-
ever, if two contiguous sections form a large angle between them, this may reveal
structural problems such as a cable that has fallen, has been twisted, or is hanging
irregularly. Detecting this is important to detect when a cable needs to be further
inspectioned.

The method begins by dividing the sequence of points belonging to a cable into
consecutive segments of fixed size S. Formally, given a set of ordered points

CZ{pl,p?a"'apN}a piERB,

the function split_segments groups them into subsets

K
C= USka Sk:{pika--'apjk}7 |Sk|%5,
k=1

where K denotes the total number of segments.

For each segment S, its dominant orientation vector is extracted using Princi-
pal Component Analysis (PCA). Let py be the centroid of Si. The first principal
component is computed by solving

1 _ _
e, = arg lfﬁlxl u! (@ Z (pi — Pr)(Pi — Pk)T) u,

Pi€Sk

yielding the unit vector e, that best represents the direction of the segment.

To detect anomalies, the angle between consecutive segment directions is cal-
culated. For two consecutive segments S and Sk 1, the angle is given by

0y = arccos (|e, - exy1]) -

This angle quantifies the directional change between contiguous segments. If the
angle exceeds a predefined threshold 7, then the set of points belonging to both
segments is flagged as anomalous:

Anomaly at k. <= 0y > T.

For this model, the parameter S was empirically set to 1000 points, ensuring that
each segment was large enough to provide a stable estimate of its orientation.The
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other parameter threshold, 7 was fixed at 30°, balancing the need to detect signif-
icant misalignments without over-penalizing minor natural fluctuations.

The algorithm returns the angular deviation between consecutive segments and
the indices of the points corresponding to anomalous regions, which can later be
visualized or quantified in the evaluation phase.

Parameter Value

Segment size (S) 1000 points
Angle threshold (7) 30°

Table 4.20: Selected parameters for Segment Change Direction anomaly detection.

SPACE BETWEEN POINTS

The final type of point-level anomaly is related to the detection of unusually large
gaps between consecutive points along the cable. If the separation between con-
secutive points is larger than expected, this may indicate that the cable has been
broken or displaced.

However, it must also be noted that due to the way in which elements are
classified, cables are often supported by poles whose points do not belong to the
cable class. As a result, when a pole intersects a cable, the gap caused by the
missing points from the pole’s region can lead to the false detection of an anomaly.
This introduces an inherent limitation in the model, which must be considered
when interpreting the results.

Formally, the detection process begins by estimating the main axis e of the
cable via PCA, as described in previous sections. Each point p; is projected onto
this axis:

T, = (pz - 1_3) * €cable, (418)

where p is the centroid of the cable. The projections ; are then sorted in ascending
order, producing a one-dimensional sequence that preserves the longitudinal order
of the cable.

The differences between consecutive projections quantify the spacing between
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points along the axis:
Aj:Wj+1—7Tj, ]:1,,M—1 (419)

If any A, exceeds a predefined threshold 9, the gap between the corresponding
points is flagged as anomalous:

Anomaly at gap j <= A; > 0. (4.20)

The threshold was set to 6 = 0.02, as it represents a reasonable upper bound on
the expected spacing between consecutive points. By fixing this parameter after
validation, the same value was consistently applied to the test dataset, ensuring
comparability and avoiding overfitting to specific cases. The output of the detector
consists of the indices of the points that define each anomalous gap, together with
the measured gap size.

Parameter Value

Gap threshold (§)  0.02

Table 4.21: Selected parameter for Space Between Points anomaly detection.

4.4 Testing and results

4.4.1 Railway presence classification

XGBoost

For the classification of railway presence, the first model created and evaluated is
the XGBoost. The configuration and hyperparameters of the model are already
selected during the modelling stage, some based on the training and others on the
validation, like the F1 score, aiming to obtain the maximum F1 score possible.

Model depth learning rate estimators ‘ Threshold

MODEL 4 4 0.10 500 | 0.37

Table 4.22: Final model with all the parameters
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The evaluation on the test dataset resulted in a global accuracy of 0.7579
and a balanced accuracy of 0.7304, while the ROC AUC and PR AUC
achieved values of 0.8399 and 0.7962, respectively. These scores confirm a
reasonably good discriminative capability of the model, although lower than the
values obtained on the validation set (accuracy = 0.8270, balanced accuracy =

0.8183, ROC AUC = 0.8946, PR AUC = 0.8734).

Class Precision Recall Fl-score IoU
Class 0 0.7618 0.8678 0.8114 0.6826
Class 1 0.7494 0.5931 0.6621 0.4949

Table 4.23: Class-specific evaluation metrics on the test set for XGBoost model

At the class level, the performance for Class 0 (non-railway presence) remains
stable, with a precision of 0.7618, recall of 0.8678, Fl-score of 0.8114, and IoU
of 0.6826. However, there has been a great decrease in performance for Class 1
(railway presence), where the Fl-score falls to 0.6621 compared to 0.7818 during
the validation of the model. This is due to a decrease in the recall of the class
(from 0.7748 to 0.5931), confirming that the model is worse at identifying the true
positives in unseen data.

However, a worse result can be observed for Class 1 (railway presence), where
the F1-score drops to 0.6621 compared to 0.7818 during validation. This reduction
is mainly due to a recall decrease (from 0.7748 to 0.5931), which indicates that the
model has greater difficulty in correctly identifying true positive railway samples
when facing previously unseen data.

True \ Predicted | Class 0 | Class 1
Class 0 | 14,980,039 | 2,209,291
Class 1 | 4,532,463 | 6,605,757

Table 4.24: Confusion matrix on the test set for XGBoost model

The confusion matrix provides additional information, out of the total Class 0
samples, 14,980,039 were correctly classified, while 2,209,291 were misclassified as
Class 1. For Class 1, the model correctly identified 6,605,757 instances but incor-
rectly assigned 4,532,463 samples to Class 0. This imbalance in misclassification
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explains the drop in recall for Class 1 and the corresponding decline in its F'1-score.
Even with this, the results of the test set are consistent and offer good results for
both classes.

The difference between validation and test performance suggests a certain de-
gree of overfitting to the validation distribution. This could happen when choosing
the optimal threshold because the one that maximizes validation scores is selected
and it is then fixed to that value for the test set. Consequently, this choice may not
be optimal for the test distribution, which could explain the difference. It could
also happen because of the variations in the distribution of test samples compared
to training and validation.

LightGBM

The next model created for the railway presence classification is the Light GBM
model, also using the same hyperparameters and threshold strategy defined in the
modeling pase, which has the following parameters and threshold:

Model learning depth  estimators leaves min Threshold
rate child
sam-
ples
Model 3 0.10 9 200 - 200 \ 0.39

Table 4.25: Final Light GBM model and threshold applied

The evaluation on the independent test data had a global accuracy of 0.7618
and a balanced accuracy of 0.7298 and achieved a ROC AUC of 0.8300 and
a PR AUC of 0.7875. Although these values remain consistent with a good level
of performance, they are lower than the results obtained during validation, which
indicates a worse performance when faced with unseen data.
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Class Precision Recall Fl-score IoU
Class 0 0.7562 0.8901 0.8177 0.6916
Class 1 0.7755 0.5694 0.6567 0.4889

Table 4.26: Class-specific evaluation metrics on the test set for the Light GBM
model

At the class-specific level, it shows a consistent behavior for Class 0 (non-
railway presence), reaching a precision of 0.7562, recall of 0.8901, Fl-score of
0.8177, and IoU of 0.6916. In contrast, the performance on Class 1 (railway pres-
ence) decreases significantly, with its Fl-score dropping to 0.6567 compared to
0.7818 in the validation phase, as in XGBoost caused by a reduction in recall
(from 0.7748 to 0.5694).

True \ Predicted | Class 0 | Class 1
Class 0 | 14,871,489 | 1,835,841
Class 1 | 4,795,617 | 6,342,603

Table 4.27: Confusion matrix on the test set for Light GBM model

The confusion matrix further illustrates these results. From the Class 0 sam-
ples, 14,871,489 were correctly classified, while 1,835,841 were wrongly predicted
as Class 1. For Class 1, the model successfully identified 6,342,603 instances, but
4,795,617 samples were misclassified as Class 0. This large number of false nega-
tives for Class 1 is directly reflected in its lower recall and explains the drop in the
F1-score observed on the test set.

As in the XGBoost model, there is a big difference between the test and valida-
tion results, which could also be explained by the variations of the class distribution
and the selection of the threshold based on the validation results, maximizing the
validation F'1 score, but without having the same impact on the test data.
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4.4.2 Railway components segmentation: PointNet

For the railway component segmentation, as explained in the previous stage, a
PointNet model was created. For the training and validation, groups of 100 epochs
were used to obtain the best final model possible.

As part of the control of the creation and design of the model, each of these
groups is also evaluated in the test results, in order to see the impact of increasing
the number of epochs.

For epoch 0 to 100:

The best model obtained is

Best epoch Train accuracy Train mloU Validation mloU

90 0.8930 0.7754 0.7655

Table 4.28: Training and validation performance of the best model from epoch 0
to 100.

The evaluation of the PointNet model over the first 100 epochs on the test
dataset produced a global accuracy of 0.8687, a balanced accuracy of 0.8347,
and a mean IoU of 0.7344. These results, although slightly below the validation
performance (accuracy = 0.8769, balanced accuracy = 0.8577, mIoU = 0.7655),
are great results for a segmentation model.

Class Precision Recall Fl-score IoU

Class 3 0.9564 0.9918 0.9738  0.9489
Class 4 0.8119 0.6237 0.7055  0.5450
Class 5 0.7784 0.8887 0.8299  0.7093

Table 4.29: Class-specific evaluation metrics for the PointNet model on the test
set from epoch 0 to 100.

At the class-specific level, the model shows very strong results for Class 3
(rails), with precision of 0.9564, recall of 0.9918, Fl-score of 0.9738, and IoU of

0.9489, which remain close to the validation values, indicating that the network
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identifies rail points with high reliability. Class 5 (cables) also has a very good
performance, achieving F1 = 0.8299 and [oU = 0.7093, although both values are
slightly lower compared to validation (F1 = 0.8599, IoU = 0.7543). The worst
performing is Class 4 (posts), as occurred with the validation subset, where the
F1-score drops to 0.7055 and the mloU to 0.5450, compared to 0.7478 and 0.5972
during validation.

True \ Predicted Class 3 Class 4 Class 5

Class 3 201,725 4,141 0
Class 4 22,866 175,091 82,767
Class 5 0 36,422 290,810

Table 4.30: Confusion matrix of the PointNet model on the test set from epoch 0
to 100.

The confusion matrix shows that, for Class 3, the majority of samples (501,725)
were correctly classified, and in Class 5, the model correctly identified 290,810
instances, while 36,422 were misclassified as Class 4. The worst performing as
expected is Class 4, where 82,767 samples were incorrectly labeled as Class 5,
which explains the reduced recall and lower F1-score for this class.

For this model, different to the previous models, the results for the validation
and test subsets are very similar, which means that the model performs very good
with new, unseen data, and it is a model that can be used for segmenting effectively
new images.

For epoch 100 to 200:

The best model created in this group is:

Best epoch Train accuracy Train mloU Validation mloU

146 0.8631 0.7239 0.7703

Table 4.31: Training and validation performance of the best model from epoch 100
to 200.
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The evaluation of the PointNet model in this of epochs (100-200) on the test
dataset had a global accuracy of 0.8242, a balanced accuracy of 0.8001,
and a mean IoU of 0.6782. These values, although they are good, show a

much worse performance compared to the validation subset where the accuracy
was 0.8819, balanced accuracy = 0.8604, and mloU = 0.7703.

Class Precision Recall Fl-score IoU

Class 3 0.9585 0.9070 0.9320  0.8727
Class 4 0.6570 0.6333 0.6449  0.4759
Class 5 0.7721 0.8600 0.8137  0.6859

Table 4.32: Class-specific evaluation metrics for the PointNet model on the test
set from epoch 100 to 200.

At the class level, Class 3 remains the best performing, with an Fl-score of
0.9320 and an IoU of 0.8727, but still dropped compared to validation (F1 =
0.9697, mIoU = 0.9412), mainly for the decrease in recall (0.9070 vs 0.9980). Class
5 maintains acceptable performance (F1 = 0.8137, mloU = 0.6859), although these
are again worse than validation (F1 = 0.8730, mIoU = 0.7746). The largest decline
and worse performing class is Class 4, where the F1-score falls to 0.6449 and mIoU
to 0.4759, compared to 0.7463 and 0.5952 during validation.

True \ Predicted Class 3 Class 4 Class 5

Class 3 458,836 47,030 0
Class 4 19,884 177,787 83,053
Class 5 0 45,802 281,430

Table 4.33: Confusion matrix of the PointNet model on the test set from epoch
100 to 200.

As for the previous group of epochs, the confusion matrix shows that most
of the Class 3 points were correctly classified, although more than 47,000 are
misassigned as Class 4, explaining the reduction in recall, and for Class 5, most
samples are predicted correctly (281,430), but 45,802 are confused with Class 4.
Once again, the most worst case is Class 4, where a large number of samples
(83,053) are wrongly labeled as Class 5, which significantly affects its recall and
overall Fl-score.
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In contrast to the first 100 epochs, where test and validation results were
almost identical, the interval between 100 and 200 epochs shows a more pronounced
divergence. This suggests that the model may be starting to overfit the training
distribution, losing some of its ability to generalize. While PointNet continues to
perform robustly for Classes 3 and 5, the systematic weakness in segmenting posts
(Class 4) becomes more evident in this phase, pointing to the need for further
refinements or complementary strategies to improve its detection in unseen data.

COMPARISON BETWEEN GROUPS OF EPOCHS:

When comparing the two training intervals of PointNet, it shows that the model
trained during the first 100 epochs provides a more reliable balance between valida-
tion and test performance. Although the second interval (100-200 epochs) slightly
improves validation metrics, the test results are much lower than the validation
scores and even worse than the test results for the previous training Interval.

The difference between validation and test results is bigger in the second inter-
val, decreasing a lot in recall and segmentation quality, especially for posts, but
by contrast, the model from epochs 0-100 is much more consistent between the
two subsets, generalizing better for unseen data.

The reason behind this poorly performance for the test subset in the second
interval may be caused by the overfitting of the train model, changing the weights
to create a better model for the train set but having a much worse results with
unseen data. On the contrary, the first interval of epochs, has a worse (but still
good) results for the training model but can segment unseen data with higher
accuracy. Therefore, the model trained within the first 100 epochs is the best
choice, as it achieves high performance for unseen data.

4.4.3 Cable anomalies detection

For each of the anomaly detections described in the previous stage, the results
are presented using two different perspectives that combine both quantitative and
qualitative results. This approach makes the analysis not only reliable on numerical
results, but is also supported by visual inspection of the cable geometries.
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From a quantitative perspective, the outcomes of each detection model
are summarized in a dataframe, stored for the combination of all the test and
validation files. Each dataframe provides the numerical values associated with the
detection, such as the alignment variance, inclination angle, deviation distances,
or gap sizes, depending on the anomaly under study. In addition, a binary flag is
included to explicitly indicate whether the corresponding cable (or set of points)
has been classified as anomalous.

From a qualitative perspective, the point clouds of the original cables are
visualized with a color code that reflects the detection result. This visual inspection
allows us to directly validate the anomalies detected by the numerical analysis and
to better understand their spatial context. The color code is the following:

e Green: The cable (or points) were analyzed and no anomaly of that type
was detected.

e Red: An anomaly of the considered type was detected.

Depending on the nature of each anomaly, the visualization is applied either
at the global cable level or at the point level.

GLOBAL CABLE ANOMALIES

CABLE ALIGNMENT

The output of this model is the structured dataframe, stored in both pickle
and csv formats, where each row contains the information of an individual cable
extracted from the dataset. The dataframe includes the file of origin, the cable
identifier, the number of points composing the cable, the estimated principal axis,
the explained variance associated with this axis, and a boolean flag indicating if
it is anomalous or not.
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File Cable Points Invariance in Axis Anomaly

sncf 05 norm _filtered.npz 0 88130 0.9990 False
sncf 05 norm _filtered.npz 1 12878 0.9975 False
sncf 05 norm _filtered.npz 2 80942 0.9991 False

Table 4.34: Example of the dataframe output for the file sncf 05.

File Cable Points Invariance in Axis Anomaly
hmls 01 norm filtered.npz 0 11992 0.9991 False
hmls 01 norm _filtered.npz 1 4696 0.9996 False

Table 4.35: Example of the dataframe output for the file hmis_01.

The numerical results provide a first quantitative insight into the anomalies
in each cable. The column Invariance in Azis reflects the proportion of the total
variance that is captured by the first principal component, high values (close to 1.0)
indicate that the cable is well aligned with a dominant axis, while low values would
suggest possible fractures, bends, or structural inconsistencies. The anomaly flag is
directly derived from this measure, comparing it against the predefined threshold
in the modelling stage.

Additionally, numerical evaluation is complemented with a qualitative anal-
ysis based on visualization. For each cable, the corresponding point cloud was
displayed using a color code previously defined, allowing to visually assess whether
the cable maintains a coherent alignment.

CABLE INCLINATION

The second global cable anomaly focuses on the inclination of the cables with
respect to their expected orientation in space. The outputs of this detector are
organized in a dataframe, where each row corresponds to a single cable. The
recorded values include the file of origin, the cable identifier, the number of points,
the estimated principal axis, the orientation criterion adopted (dominant axis or
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(a) File sncf 05 (b) File hmls_ 01

Figure 4.15: Cable alignment

plane), the measured angle of inclination, and a boolean flag indicating whether
the anomaly threshold was exceeded.

File Cable Points Angle of Inclination Anomaly
sncf 05 norm _filtered.npz 0 122817 0.0261° False
sncf 05 norm_filtered.npz 1 9455 1.1420° False

Table 4.36: Example of the dataframe output for sncf_05.

File Cable Points Angle of Inclination Anomaly
hmls 01 norm _filtered.npz 0 11992 0.2906° False
hmls 01 norm _filtered.npz 1 4696 0.9172° False

Table 4.37: Example of the dataframe output for hmls_01.

Numerical results show that the majority of cables are assigned to a planar
orientation, with inclination angles consistently below the predefined threshold of
5°. The detection mechanism distinguishes between cables predominantly aligned
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with one of the coordinate axes and those in a plane. In practice, all cables
could be projected onto a plane; however, whenever a strong dominant axis is
identified, the inclination is computed with respect to that axis to adopt a more
conservative criterion. As in the previous anomaly detector, quantitative results
are complemented by visualization. Each cable uses the predefined color code,
with green indicating normal orientation and red marking cases that exceed the
inclination threshold.

(a) File sncf 05 (b) File hmls_ 01

Figure 4.16: Cable inclination

POINT PER POINT ANOMALIES

POINT PER POINT DEVIATION

The first point-level anomaly detector focuses on local deviations of individual
points with respect to the main trajectory of the cable. The results of this analysis
are stored in a dataframe, containing the mean orthogonal deviation of the points,
the maximum deviation observed, the standard deviation of the deviations, the
number of points exceeding the predefined threshold (6 = 0.05), and the indices
of such anomalous points.
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File Cable Points Mean Deviation Max Deviation Points over Threshold

sncf 05 0 122817 0.0121 0.0284 0

sncf 05 1 9455 0.0186 0.1489 238

Table 4.38: Example of the dataframe output for sncf 05.

File Cable Points Mean Deviation Max Deviation Points over Threshold
hmls 01 0 11992 0.0122 0.0295 0
hmls 01 1 4696 0.0045 0.0192 0

Table 4.39: Example of the dataframe output for hmls_01.

The numerical results indicate that the vast majority of points in the an-
alyzed cables exhibit very small deviations from their projected trajectory, with
mean deviations on the order of 1072 and maximum deviations rarely exceeding
0.03.

As with previous detectors, these quantitative results were complemented by
visualizations of the cables using the color code defined earlier. In this case, the
absence of anomalies translated into cables being displayed in green, with no red-
highlighted points. This dual representation reinforces the numerical evidence by
visually confirming that no local irregularities such as detached points or spurious
clusters are present in the tested samples.

SEGMENT CHANGE IN DIRECTION

The anomaly evaluates the consistency of the cable’s orientation by analyzing the
direction of consecutive segments. The results of this detector are stored in a
dataframe, where each row corresponds to a pair of consecutive segments of a
cable. The dataframe records the file of origin, the cable identifier, the number
of points, the indices of the two segments under comparison, the computed angle
between their dominant axes, and a flag indicating whether this angle exceeds the
threshold of 30°.
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(a) File sncf 05 (b) File hmls_ 01

Figure 4.17: Point per point deviation

File Cable Points First Segment Second Segment Angle (°) Anomaly

snef 05 0 122817 (0, 2000) (2000, 4000) 37.74 True
snef_ 05 0 122817 (2000, 4000) (4000, 6000) 0.88 False
snef 05 0 122817 (4000, 6000) (6000, 8000) 2.47 False
snef 05 0 122817 (6000, 8000) (8000, 10000) 0.03 False
snef_ 05 0 122817 (8000, 10000) (10000, 12000) 0.95 False

Table 4.40: Example of the dataframe output for sncf 05.

File Cable Points First Segment Second Segment Angle (°) Anomaly

hmls 01 0 11992 (0, 2000) (2000, 4000) 1.74 False
hmls 01 0 11992 (2000, 4000) (4000, 6000) 0.46 False
hmls 01 0 11992 (4000, 6000) (6000, 8000) 0.11 False
hmls 01 0 11992 (6000, 8000) (8000, 10000) 1.00 False
hmls 01 0 11992 (8000, 10000) (10000, 11992) 0.12 False

Table 4.41: Example of the dataframe output for hmlis 01.
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The numerical analysis shows that most of the angles between consecutive
segments remain below the threshold but there are some exceptions

As with the previous detectors, numerical analysis was complemented with
visualizations. Cables were represented using the color code: green segments
represent stable orientation, while red highlights abrupt directional changes.

(a) File sncf 05 (b) File hmls_ 01

Figure 4.18: Point per point deviation

DISTANCE BETWEEN POINTS

The detection of anomalies based on the distance between consecutive points pro-
duced a dataframe containing, for each cable, the indices of the two points defining
the gap, the computed distance, and if the gap exceeded the predefined threshold.

File Cable Points Start Point End Point Gap Size

hmls 14 norm filtered.npz 1 10462 4876 4877 0.0243

Table 4.42: Example of the dataframe output for the distance between points
anomaly detection

This quantitative analysis shows a detailed desription of each anomaly for
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each file, but only has information for those considered as anomalous, to reduce
the size of the complete dataframe.

In addition to the numerical evidence provided in the dataframe, qualitative
validation was performed through visual inspection. Cables without anomalous
gaps are shown in green, while cables with one or more anomalous points, have
those points in red.

Figure 4.19: Space between points anomaly visualization
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Chapter 5

Conclusions

This project has presented a comprehensive exploration of machine learning and
deep learning models applied to the detection of anomalies in railway infrastruc-
tures. Through the combination of segmentation techniques based on PointNet,
classification models with XGBoost, and a customed anomaly detection model, a
complete end-to-end model has been developed to analyze LiDAR point cloud data.
The experimentation across training, validation, and test datasets have shown the
ability of these models to accurately segment structural elements, classify relevant
infrastructure components, and identify global and local anomalies in overhead
cables.

The potential application of these models is considerable. The results obtained
how the model created manages complex data and detects problems in the struc-
ture analyzed. This project is mainly focused on the railway sector but the impact
it has can be extended to other industries that also require structural monitoring
and have large-scale data.

Potential of proposed model for anomaly detection

The proposed model, combining PointNet-based semantic segmentation, tree-
boosting classification, and a custom anomaly detection model, demonstrates strong
potential for reliable assessment of overhead cable integrity in railway environ-
ments. By design, the system jointly addresses global irregularities (alignment
and inclination at the cable level) and local defects (point-wise deviations, direc-
tional changes between segments, and abnormal space between points), obtaining a
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detailed analysis without sacrificing scene-level consistency. The evaluation of the
model is also validated quantitatively and qualitative, using visualizations to im-
prove the understanding of the whole scene and making it easier for non-specialized
technicians to inspect each scene.

From an operational standpoint, the approach scales favorably to larger LIDAR
datasets|35]. First, the anomaly detectors are based on linear-algebraic functions
like centering, PCA, or projections. Second, the segmentation PointNet model is
also designed to scale easily to larger databases and files with more points per
scene.

For future investigation and further improvement of this model, two directions
are particularly promising: - Enhanced point representations. Upgrading the seg-
mentation from PointNet to PointNet++[57] would add hierarchical local geometry
into feature learning and improve the segmentation of real-world LiDAR data. -
Flexible classifiers. While gradient-boosted trees (XGBoost and Light GBM) pro-
vided an effective and interpretable classifier, modern GBDT frameworks such as
CatBoost[54] could be added to see it the classifiers improve, offering efficiency
gains and stronger handling of categorical/statistical drift in certain regimes.

Impact on the railway sector

Beyond the methodological contributions, the potential impact of this project
on the railway sector is very big. By enabling automatic detection of anomalies
in overhead cables from LiDAR data, the system directly addresses one of the
key challenges of modern railway management: the continuous monitoring and
maintenance of large-scale infrastructure networks.

First, the models support the transition from reactive to predictive mainte-
nance[63,9]. By identifying defects at the global and local scale, railway operators
can plan interventions more efficiently, reducing unplanned downtime, preventing
service disruptions and severe accidents.

Second, the approach contributes to a considerable reduction of costs, as it
minimizes manual inspection campaigns, traditionally time-consuming and labor-
intensive. Automatically identifying anomalies allows the team to use the resources
available at the most critical areas, optimizing time and money.

Third, the adoption of this improves safety|[I], not only for railway staff but
also for passengers and cargo. The early detection of anomalies such as cable
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fractures, excessive inclination, or abrupt directional changes prevents accidents.

Finally, the proposed method aligns with the broader agenda of digitaliza-
tion in railway infrastructure[I8|. The capacity to automatically process large
LiDAR datasets and turn them into actionable insights places this work within the
framework of “smart railways”, where data-driven decision-making is important to
improve operational efficiency, sustainability, and long-term duration of transport
systems.

Applications of the project in other sectors

Although this project was designed for railway infrastructures, the proposed
method can be also extended to other sectors where structural integrity and
anomaly detection are critical. The combination of semantic segmentation, classi-
fication, and anomaly analysis from LiDAR or 3D point cloud data is not limited
to cables and poles but can be adapted to other types of large-scale infrastructure.

A first area of application is the energy sector, where there are similar chal-
lenges in monitoring high-voltage power lines and transmission networks. Recent
studies[32, [73] have shown the effectiveness of LiDAR-based analysis for detecting
vegetation encroachment, cable sagging, or structural defects in power distribution
systems.

Secondly, in civil engineering|79, 45|, anomaly detection models can be ap-
plied to the structural health monitoring of bridges, tunnels, and buildings, where
deviations or cracks in 3D geometry must be identified early to prevent catas-
trophic failures.

Another promising application is in the telecommunications sector|71],
where overhead cables and antenna towers require continuous monitoring to ensure
service continuity and resilience against environmental changes.

Finally, the methodology could be extended to the aerospace and aero-
nautical industries[47, 53], where LiDAR and 3D scanning technologies are in-
creasingly used for quality control and damage detection on aircraft fuselages or
spacecraft components.
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Appendix A

Alignment of the project with the
United Nations Sustainable
Development Goals (SDGs)

In the current world, it has become more important for research and innovation
to align with international objectives and sustainability. The United Nations Sus-
tainable Development Goals (SDGs) provide a guide for governments, institutions
and communities that want to create a fairer, environmentally responsible future,
and is based on social, economical and environmental challenges all around the
world.

The purpose of this section is to explain how this project aligns with the SDGs,
showing the ways in which it makes it easier to commit to these goals. By thinking
about the principles of the SDGs, applying them into its design and objectives,
this model contributes to technological progress that improves the quality of life
of everyone.

Specifically, this work aligns with at least five of the SDGs established by the
United Nations in 2015 as objectives for the 2030 Agenda:

e Industry, Innovation and Infrastructure (9). Addressed in this project
by promoting the use of artificial intelligence to optimize inspection, main-
tenance, and repairing tasks in critical infrastructure. The main goal is to
reduce reliance on manual interventions while advancing the digitalization
of this industry. This vision is in line with initiatives led by the European
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Union Agency for Railways (ERA) and the Europe’s Rail Joint Undertak-
ing [I7], which encourage the development of more resilient, intelligent, and
sustainable infrastructures, as outlined in the EU’s common transport policy.

e Reduced inequalities (10). This project develops tools that can be adopted
by countries regardless of their level of technological resources. Because the
methodology is based on reproducible models and open-access datasets, it
can be adapted to different national contexts, from highly industrialized rail-
way networks to less developed regional systems. This promotes equal access
to advanced digital solutions, reducing dependence on costly technologies and
enabling wider adoption, contributing to narrow the technological gap within
and among countries, while fostering more inclusive and sustainable mobility
on a global scale.

e Sustainable cities and communities (11). Promoting rail transport as
an efficient, safe, and low-emission type of mobility directly supports urban
sustainability. Strengthening the role of railways helps reduce dependence
on private cars, alleviate congestion in cities, and lowers both noise and
air pollution levels. Beyond these immediate benefits, it also contributes to
encouraging more integrated and sustainable urban models.

e Climate Action (13). Sustainability is closely connected to the railway
sector, as trains are one of the most sustainable modes of transport avail-
able today. Compared to road and air travel, the train has significantly
lower greenhouse gas emissions, consumes less energy per passenger or ton
of goods transported. This project reinforces the long-term sustainability
of rail transport, helping it to remain a safe, efficient, and environmentally
friendly alternative.

e Partnerships for the goals (17). This project is framed within the con-
text of international cooperation to build a common, interoperable, and dig-
ital railway network. This goal is to create the Trans-European Transport
Network (TEN-T)[21], which aims to connect rail systems across European
Union’s member countries and to ensure seamless cross-border mobility. FEu-
ropean transport policy [I7] emphasizes the importance of interoperability,
standardization, and shared digital platforms so that national networks can
operate as part of a single system. In doing so, it reinforces the idea that
the modernization of the railway sector is a collective effort, where shared
knowledge, common standards, and joint strategies are essential to achieving
sustainable, efficient, and resilient transport across Europe.
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Appendix B

Project directory structure and
source code repository

The complete source code of the project, together with all the processed data, ex-
perimental results, and supplementary documentation, is available at the following
repository: |[Project Repository Link

This repository provides full access to the implementation details and outcomes,
ensuring transparency, reproducibility, and further analysis.

project/

| raw_data [.ply]

| _processed_data/

normalized_data [.npz]

splitted_data [.npz]

resampled_data [.npz]

filtered_data [.npz]

| _data_exploration [data_load.py, raw_data_analysis.ipynb]

| _data_processing/
data_normalization [data_normalization.ipynb]
data_split [data_split.py, data_split.ipynb]
data_resample [data_resample.py, data_resample.ipynb]
data_filter [data_filter.py, data_filter.ipynb]

| _modelling/

LA,railway_presence_classification/
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kxgboost [xgboost_model.py, xgboost_model.ipynb, xgboost_test.ipynb]
lightgbm [lightgbm_model.py, lightgbm_model.ipynb, lightgbm_test.ipynb]
| railway_components_segmentation/
lg,pointnet [pointnet_model.ipynb, pointnet_test.ipynb, pointnet_model.py,
pointnet_blocks.py, input_transform.py, mlp.py,max_pool.py,
feature_fusion.py]

| _cable_anomalies_detection [cable_anomalies_detection.py; .ipynb,
cable_anomalies_visualization.py]
| _model/
xgboost [.pkl]
lightgbm [.pkl]
pointnet [.pkl]
| modelled_data/
kvalidation [.npz]
test [.npz]
| cable_anomalies_detected/
kseparated_cables [.plyl
detected_anomalies/
point_alignment [results.csv, results.pkl, .ply]
cable_inclination [results.csv, results.pkl, .ply]
point_deviation [results.csv, results.pkl, .ply]
segment_direction [results.csv, results.pkl, .ply]
point_space [results.csv, results.pkl, .ply]
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Appendix C

Detailed explanation of T-Net and
MLP

T-NET

The T-Net is a component of the PointNet architecture, introduced to create
invariance of the model to geometric transformations of the input point cloud. Its
main goal is to learn an affine transformation matrix that aligns the input data
into a canonical space before feature extraction, reducing the sensitivity of the
network to rotations and translations.

Formally, given an input point cloud
X ={x1,%X,...,%X,}, x; €RY

where n is the number of points and d the dimensionality of each point, the T-Net

learns a transformation matrix
T € R4,

The transformed points are then obtained as
x;=Tx;, VYie{l,...,n}.

The transformation matrix T is estimated by a small network with a similar struc-
ture to PointNet itself (see Figure . This network applies a series of shared
multilayer perceptron (MLP) layers to each point, followed by a max-pooling oper-
ation to aggregate a global feature. Finally, a set of fully connected layers regresses
the entries of T.
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Since T is required to be close to an orthogonal matrix to avoid degenerate
transformations, a regularization term is added to the loss function:

Lo =1 T2

where || - || denotes the Frobenius norm and I is the identity matrix.

trainable weights| |trainable

256x9 biases
1x9
o | shared < v ‘
& (MLP(1024) | & | max pool FC_|au|FC_|@]| [matrix reshape
= > by 8 mult 0 3x3
c c

Figure C.1: T-Net network arquitecture

Multilayer Perceptron (MLP)

Another fundamental component of PointNet is the Multilayer Perceptron
(MLP), which is used extensively throughout the architecture for feature extrac-
tion. The MLP operates on each point individually, applying a sequence of affine
transformations (see Figure followed by nonlinear activations in order to map
the input space into progressively higher-dimensional feature spaces.

Formally, given an input point
x € RY,
an MLP with L layers computes a transformation
f) = fE (I V),
where each layer is defined as
fO(h) = (WOh +bW),

with W and b® denoting the weight matrix and bias vector of layer [, and o(-)
representing a nonlinear activation function such as ReL.U.
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In PointNet, the MLP is shared across all input points. That is, the same
weights are applied independently to each point x;, ensuring permutation invari-
ance of the point set:

h, = f(x;), Vie{l,...,n}.

By stacking multiple MLP layers, PointNet is able to progressively capture
increasingly complex geometric features of individual points. When combined with
a symmetric aggregation function (such as max pooling), these per-point features
are integrated into a global feature vector that encodes the overall structure of the
point cloud.

Hidden Layer

Input Layer

Input 1
Input 2
Input 3
Figure C.2: MLP arquitecture
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