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Abstract
This paper addresses the growing need for rapid, in-line characterization of metallic nanoparticles by demonstrating a compact metamaterial-
based sensor for nanoparticle characterization. We employ a microwave-frequency resonator whose response shifts measurably when
local material properties change. Copper and iron nanoparticles (synthesized via a controlled wire-explosion method) are suspended in a
liquid medium and introduced over the sensor’s surface. As the particles settle under gravity, they alter the effective electrical properties
immediately above the resonator, producing a time-dependent shift in its resonant frequency. By continuously recording these shifts
with a Vector Network Analyzer (VNA), we obtain detailed frequency-versus-time curves that capture both the sedimentation kinetics
and the overall magnitude of the resonance peaks. An inversion algorithm is then applied to fit these curves with multi-exponential
functions, yielding characteristic sedimentation time constants for each sample. The results demonstrate clear differentiation between
copper and iron nanoparticle dispersions, and even discriminate between samples of the same material that have different size distributions.
By combining metamaterial resonance with data-driven analysis, this work establishes a non-destructive, optics-free methodology
for real-time nanoparticle analytics. Its compact form factor and minimal sample preparation make it well suited for integration into
flow-through industrial process lines. The findings lay the groundwork for future enhancements, including sensor arrays for multiplexed
measurements, extension to other nanomaterials, and closed-loop control systems for autonomous process monitoring and optimization.
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1. Introduction

Nanotechnology refers to the branch of science and engineer-
ing which studies structures less than 100 nanometers in length.
Nanotechnology has many revolutionary applications in fields
such as electronics, biotechnology and medicine[25]. Parti-
cles ranging from 1 nm to 100 nm are usually referred to as
nanoparticles (NPs). These powders show easy bonding with
the contact materials, have a large surface area, low melting
point and peculiar electromagnetic and optical characteristics
[19].

Characterizing nanoparticles is the first step to guarantee-
ing they behave the way they should. Evaluating the outcome
of the production processes is important in order to readjust the
production parameters to obtain the desired output in a closed
loop. Measuring some properties, including particle size, size
distribution, surface charge, or shape is generally not an easy
task [24]. Key size parameters are commonly obtained using
microscopy techniques, mainly Scanning Electron Microscopy
(SEM) and Transmission Electron Microscopy (TEM). These
methods are used alongside visual measurements, since they
output images of the particles, enabling the assessment of di-
mensional distributions.

These characterization methods often require a time con-
suming process with complex instrumentation and many man-
ual interventions, causing huge delays in the fabrication process
and verification of the experiments while being quite expen-
sive. The development of new, faster and cheaper fabrication
processes is key in the development and integration of nan-
otechnology and nanoparticles into industrial processes [19].

1.1 Nano-particles: What are they?
Due to their unique properties, nanoparticles and nanomate-
rials are used in a variety of applications, ranging from water
treatment, medicine, agriculture, to energy storage [5]. There
are two main factors that lead to the different behaviour of NPs
in contrast to the same materials at larger dimensions: surface
effects and quantum effects. These factors make nanomateri-
als exhibit enhanced or novel mechanical, thermal, magnetic,
electronic, optical and catalytic properties [29].

Nanomaterials have different surface effects compared to
the bulk materials mainly due to their high surface area to mass
ratio and the number of direct neighbours of surface atoms
[29]. As a consequence of this, nanomaterial properties change
regarding their bulk counterpart.

1.1.1 Nanomaterial Classification
Based on Dimensional Characteristics

1. Zero-dimensional (0D) nanomaterials: All three spatial
dimensions are confined to the nanoscale. These materi-
als are essentially nanoscale in every direction. Common
examples include quantum dots, fullerenes, and spherical
nanoparticles.

2. One-dimensional (1D) nanomaterials: These materials
have two dimensions within the nanoscale, while the third
extends beyond it. They typically have a high aspect
ratio and are elongated in one direction. Examples in-
clude nanowires, nanotubes, nanorods, nanofibers, and
nanohorns.

3. Two-dimensional (2D) nanomaterials: In this group, only
one dimension remains at the nanoscale, while the other
two dimensions are larger. These materials often appear
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as thin films or sheets and include structures like graphene
layers, nanosheets, nanofilms, and nanolayers.

4. Three-dimensional (3D) nanomaterials or bulk nanostruc-
tured materials: These materials are not restricted to the
nanoscale in any of their dimensions. However, they still
contain nanoscale features within their overall structure.
This category includes bulk powders, nanocomposites, dis-
persed nanoparticle systems, and assemblies of nanowires
or nanotubes.

Composition Based Classification

1. Organic Nanoparticles: Organic nanoparticles (NPs) are
composed of organic compounds such as proteins, carbo-
hydrates, lipids, and polymers [27]. Common examples
include dendrimers, liposomes, micelles, and protein com-
plexes like ferritin. These NPs are typically biodegradable,
non-toxic, and, in some cases, such as liposomes, may have
a hollow core. Their functionality depends on factors
such as composition, surface morphology, and stability.
Currently, organic NPs are widely used in biomedicine,
especially for targeted drug delivery [11] and cancer ther-
apy.

2. Carbon-based Nanoparticles: This class includes nanopar-
ticles composed exclusively of carbon atoms [11]. Notable
examples are fullerenes, carbon black, and carbon quan-
tum dots. Carbon-based NPs are applied in fields like
drug delivery, energy storage, bioimaging, photovoltaics,
and environmental sensing. More complex carbon forms
such as nanodiamonds and carbon nano-onions also show
promise, particularly due to their low toxicity and high
biocompatibility, making them suitable for drug delivery
and tissue engineering[22].

3. Inorganic Nanoparticles: Inorganic NPs are those not de-
rived from carbon-based or organic sources. They include
metal, semiconductor, and ceramic nanoparticles. Metal
NPs, which can be monometallic, bimetallic, or polymetal-
lic, exhibit unique optical, thermal, electrical, and magnetic
properties due to phenomena like localized surface plas-
mon resonance [35]. Their synthesis can be finely tuned
to control size, shape, and surface characteristics, which is
crucial for advanced technological applications [10]. Semi-
conductor NPs, made from materials with intermediate
conductivity, show tunable bandgap properties that differ
significantly from their bulk forms. This makes them valu-
able in photocatalysis and optoelectronic devices. Ceramic
NPs, composed of inorganic compounds such as oxides,
carbides, and phosphates, are usually formed through high-
temperature processes. Found in various structural forms,
they are notable for their high stability and loading ca-
pacity, making them useful in both medical applications
and industrial areas like catalysis, dye degradation, and
photonics [22].

1.2 Nanoparticle Production Methods
1.2.1 Top-Down Approaches
Top-down methods begin with bulk materials, reducing them
to nano-scale dimensions through physical or mechanical pro-
cesses. Relevant techniques within this approach include me-
chanical milling, laser ablation and wire explosion.

1. Mechanical milling involves the grinding of bulk mate-
rials in high-energy ball mills, where particle size is re-
duced through repeated impact and abrasion. This method
is widely used for large-scale production due to its cost-
effectiveness and ability to yield high-purity particles. How-
ever, mechanical milling poses challenges such as potential
contamination from the milling media and often requires
extended processing to achieve smaller particle sizes [21].

2. Laser ablation is useful for generating highly pure particles
with narrow size distributions. This technique is partic-
ularly advantageous for generating highly pure particles
with narrow size distributions. Nonetheless, laser ablation
is energy-intensive and may experience reduced efficiency
over time as particles accumulate and obstruct the laser
path [21].

3. Wire Explosion (WE), which consists of a metal wire un-
dergoing explosive fragmentation when subjected to a
high-current pulse, presents unique benefits for NP syn-
thesis. During the WE process, the wire material is rapidly
ejected in the form of metal droplets and vapour, form-
ing NPs in a surrounding medium. This method proves
particularly efficient and environmentally favourable, es-
pecially in underwater applications, where energy loss is
minimized as water prevents plasma formation along the
wire surface and efficiently transfers the electrical energy to
the wire for disintegration. While challenging to charac-
terize due to broad and multi-modal size distributions, WE
is highly reproducible for specific applications requiring
stable, high-quality NPs [12].

1.2.2 Bottom-Up Approaches
In contrast to top-down methods, bottom-up approaches syn-
thesize nanoparticles from atomic or molecular precursors,
assembling them into nanoscale structures. Bottom-up meth-
ods include chemical reduction, sol-gel synthesis, and chem-
ical vapour deposition (CVD), each offering advantages for
applications requiring specific particle shapes or material com-
positions.

1. Chemical reduction is a widely employed technique in
which metal ions are reduced in a solution to yield NPs.
This method offers substantial control over particle size
and shape and is a relatively low-cost option. However,
chemical reduction requires stabilized agents, which may
introduce contaminants. It is frequently used to synthesize
gold and silver NPs, particularly in biomedical applications
where particle stability and uniformity are essential [21].

2. Chemical vapour deposition (CVD) involves vaporizing
metal precursors and depositing them onto a substrate,
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Figure 1. To the left, circuit for the wire-explosion fabrication process. To the right, vessel with a loaded wire sample used for the wire-explosion fabrication
process.

where they decompose to form NPs. This technique is ex-
tensively applied in electronics and solar cells, as it produces
high-purity NPs with controlled morphology. While
CVD is scalable and effective for high-purity NP produc-
tion, it requires expensive equipment and poses hazards
due to the use of toxic precursors and high operating tem-
peratures [15].

1.3 Nanoparticle Characterization and Classification Tech-
niques
Nanoparticle characterization is critical to understanding the
physicochemical properties that dictate functionality in applica-
tions ranging from catalysis to biomedicine. Metallic nanopar-
ticles (MNPs), in particular gold, silver, and platinum nanosys-
tems, exhibit size-, shape-, and composition-dependent optical,
electronic, and catalytic behaviours [7, 2].

However, a comprehensive characterization strategy often
requires combining multiple techniques to capture comple-
mentary information on morphology, size distribution, surface
chemistry, and crystallinity [4].

1.3.1 Imaging Techniques
Transmission Electron Microscopy (TEM) TEM provides high-
resolution images (< 0.1 nm) by transmitting an electron beam
through an ultrathin sample [36]. Sample preparation involves
drop-casting a dilute nanoparticle suspension on a carbon-
coated copper grid, followed by solvent evaporation.

Contrast arises from differences in electron scattering cross-
sections, allowing direct visualization of shape anisotropy in
crystalline MNPs [36]. However, TEM suffers from limited
statistical sampling (tens to hundreds of particles per image) and
potential beam-induced damage in sensitive materials. Cap-
ital cost for a modern field-emission TEM is in the range of
800 000e to 1 500 000e, with annual maintenance and oper-
ation costs around 50 000e to 100 000e [14].

Scanning Electron Microscopy (SEM) SEM images surface
topography by scanning a focused electron beam and detecting

secondary electrons. While resolution (∼ 1 nm to 5 nm) is
lower than TEM, SEM excels at bulk imaging over larger
fields of view (tens of microns) and 3D-like contrast [16].
Conductive coating or low-voltage operation is necessary to
mitigate charging in non-metallic nanoparticles.

Modern field-emission SEM instruments cost approximately
300 000e to 600 000e, with annual operating costs around
30 000e [16]. SEM cannot directly resolve internal crys-
tallinity or lattice defects.

Figure 2. Imaging Techniques.

1.3.2 Spectroscopic and Scattering Techniques
Dynamic Light Scattering (DLS) DLS measures the tempo-
ral fluctuations of scattered light intensity due to Brownian
motion, yielding hydrodynamic diameter distributions [4]. It
provides ensemble-averaged size with high throughput (mea-
surements in minutes) but assumes spherical geometry and is
sensitive to aggregates and polydispersity [4]. DLS instruments
range from 30 000e to 70 000e, with minimal consumables.

UV–Visible Spectroscopy Localized surface plasmon reso-
nance (LSPR) peaks of metallic nanoparticles produce size-
and composition-dependent absorption bands (e.g., gold NPs
at ∼ 520 nm) [17]. UV–Vis spectrophotometers (10 000e to
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30 000e) offer rapid, non-destructive assays, but spectral de-
convolution is required for polydisperse or complex mixtures.
Organic and dielectric NPs lack plasmonic signals and thus
require complementary methods.

X-ray Diffraction (XRD) XRD analyzes crystalline structure
by measuring Bragg diffraction of X-rays from lattice planes.
Scherrer analysis provides average crystallite size, while phase
identification confirms composition [6]. XRD is ensemble-
based (mg-scale samples), with capital costs around 150 000e
to 300 000e and operating costs mainly for X-ray tubes and
filters. Limited sensitivity to amorphous coatings and small
(< 3 nm) particles reduces applicability to ultrasmall NPs.

1.3.3 Size Distribution and Surface Charge
Nanoparticle Tracking Analysis (NTA) NTA tracks individ-
ual particles in Brownian motion via optical microscopy, ex-
tracting size distributions and concentration [9]. Provides
number-based rather than intensity-weighted distributions,
but lower throughput and operator bias in threshold settings.
Instruments cost approximately 80 000e.

Zeta Potential Measurements Electrophoretic light scatter-
ing yields zeta potential, reflecting surface charge and colloidal
stability [20]. Essential for predicting aggregation behavior
in suspension. Instruments (around 40 000e) require dilute
suspensions and assume uniform surface potential.

1.3.4 Scanning Electron Microscopy - In Depth
SEM is one of the most versatile and widely used techniques
for nanoparticle characterization, particularly for metallic sys-
tems. By rastering a focused electron beam across a sample and
detecting emitted electrons, SEM provides high-resolution
topographic, compositional, and crystallographic information
over large fields of view [16, 28].

Figure 3. (left) Scanning Electron Microscope (right) SEM Image

Principle of Operation In SEM, a thermionic or field-emission
electron gun provides a beam of electrons accelerated to en-
ergies between 0.5 kV–30 kV. The beam is focused by elec-
tromagnetic lenses and scanned in a raster pattern over the

sample surface. Interactions between primary electrons and
the specimen generate several signals:

1. Secondary electrons (SE): Low-energy (< 50 eV) electrons
emitted from the top few nanometers of the surface, pro-
viding high-contrast topographic images with lateral reso-
lution down to 1 nm [28].

2. Backscattered electrons (BSE): High-energy electrons re-
flected by elastic scattering; contrast scales with atomic
number (Z), enabling compositional imaging of metallic
nanoparticles against lower-Z substrates [16].

3. X-rays (EDS): Characteristic X-rays emitted upon electron-
shell ionization; collected by an energy-dispersive spec-
trometer for elemental mapping [16].

Instrumentation and Detectors Modern SEMs employ a
field-emission gun (FEG) for sub-nanometer probe sizes, vac-
uum chambers adjustable between high (< 1 × 10–6 Pa) and
variable pressure (1 Pa) modes [13]. Key components include
aperture and stigmator assemblies for beam shaping, objective
lenses for focusing, scan coils for beam deflection, and multiple
detectors:

1. Everhart–Thornley SE detector: A scintillator photomulti-
plier system optimized for SE collection.

2. Solid-state BSE detector: Semiconductor diode array of-
fering faster signal and compositional contrast.

3. In-column detectors: Position below the pole piece for
high-efficiency SE collection and enhanced resolution in
FEG-SEMs [28].

4. EDS detector: Silicon drift detector (SDD) with energy
resolution ∼ 130 eV, enabling rapid elemental mapping.

Capital investment for a state-of-the-art FEG-SEM with
EDS and variable-pressure capability ranges from 300 000e
to 700 000e. Annual service contracts, cryo-pumps, detectors’
maintenance, and consumables (stubs, carbon/tungsten tape,
conductive coatings) add approximately 25 000e to 40 000e
to operating costs.

Sample Preparation Accurate imaging of metallic nanopar-
ticles demands meticulous preparation:

1. Deposition: Drop-cast or spin-coat a dilute NP suspen-
sion on conductive substrates (carbon-coated stubs, silicon
wafers).

2. Drying: Gentle drying under inert gas or vacuum to pre-
vent aggregation and coffee-ring effects.

3. Coating (if needed): For non-conductive matrices or bi-
ological samples, sputter-coat with a 2 nm to 5 nm layer
of gold or platinum to mitigate charging; may obscure
sub-5 nm features [16].

4. Low-vacuum/Variable-pressure mode: For uncoated
samples, operate at 10 Pa to 50 Pa water vapor or nitrogen
to neutralize charge without coating [13].

Imaging Modes and Analytical Workflows Plan-view imag-
ing is performed using standard SE imaging at 5 kV to 15 kV
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to measure particle size, shape distributions, and surface assem-
blies. Tilted-view and stereo-pair approaches involve dual-axis
tilting to reconstruct the three-dimensional morphology of
anisotropic nanoparticles [28]. BSE mapping provides qualita-
tive information on alloy composition or core–shell contrast
in bimetallic NPs (e.g., Au@Ag core–shell) when operated at
20 kV to 30 kV. Finally, EDS spectral imaging entails auto-
mated mapping across regions of interest with a pixel dwell
time of approximately 1 ms to quantify elemental distribution
and detect trace impurities (< 0.1 wt%).

Resolution, Throughput, and Limitations Spatial resolution
can reach down to 1 nm in SE mode (FEG-SEM), though
beam–sample interactions (interaction volume < 50 nm at
15 kV) and coating layers may degrade true resolution [28].
Throughput is limited by typical raster scans (1024×768 pixels),
which require 30 s to 120 s per frame; automated stage and
gallery loading can increase sample throughput but necessitate
scripting [16]. Prolonged exposure can induce carbon buildup
and sintering in metallic nanoparticles; using low-kV imaging
(< 5 kV) and intermittent beam blanking helps mitigate beam
damage and contamination [13]. In terms of cost, although
SEM operating expenses are lower than TEM, the total cost per
hour of instrument time (including amortization and staffing)
is approximately 50e to 100e, depending on regional and
facility overhead [16].

2. Sensing
Nanoparticles (NPs) exhibit unique properties that make them
valuable in applications ranging from sensor coatings to bio-
chemical detection. However, characterizing NP size and
distribution typically requires time-consuming and complex
instrumentation.

Traditional methods such as electron microscopy (scan-
ning or transmission) provide direct imaging of particle di-
mensions but involve lengthy sample preparation and analy-
sis [26]. Other techniques like dynamic light scattering rely
on Brownian motion to infer particle size distributions, yet
they often demand elaborate setups and still face limitations in
throughput [26, 31]. An alternative approach is to analyze NP
sedimentation behavior in a fluid, since the mix of gravity and
diffusion during sedimentation is influenced by particle size
and density. By monitoring how NPs settle over time (their
sedimentation profile), one can potentially estimate these char-
acteristics when combined with appropriate modeling [31].
Unfortunately, many conventional characterization protocols
require significant manual intervention and long wait times
between fabrication and measurement steps. This creates a
need for faster, analysis techniques that minimize sample usage
and accelerate feedback in nanoparticle production [31].

Honrrubia et al.’s work [18] addresses that need by intro-
ducing a microwave planar resonator sensor designed to con-
tinuously monitor NP sedimentation. Microwave resonator
sensors (particularly those based on split-ring resonators (SRRs)
and related structures) offer a flexible, method to characterize
materials through their dielectric properties [37]. The general

principle is that the resonator acts as an LC circuit with a high
Q-factor; when a material is brought into the near field of the
resonator, it modifies the effective capacitance and therefore
shifts the resonant frequency [37]. The magnitude of the fre-
quency shift depends on the permittivity and volume of the
material interacting with the sensor: materials with higher di-
electric constant cause larger downward shifts in the resonance
frequency [37]. By designing the resonator appropriately, one
can target a specific frequency range and tailor the sensitivity
for a given application [33]. Spiral resonator designs are espe-
cially attractive because they achieve a longer resonant path
within a compact area, yielding potentially higher Q-factor
and sensitivity [23]. Planar resonator sensors have already
shown promise for thin-film dielectric measurements, since
miniaturized resonators confine electromagnetic fields in a
small volume near the sensor surface [30].

In this context, a square spiral resonator (SSR) sensor is
proposed to monitor nanoparticle sedimentation profiles in
real time. The idea is that as NPs dispersed in a fluid settle
onto the sensor surface, they form an accumulating layer in
the sensor’s sensing volume (the region of the electromagnetic
near-field above the resonator).

Figure 4. Diagram showing the measurement process of the MUT. First (left)
the SSR and container are cleaned and all liquid and solid residues are re-
moved, leaving the container and the PCB with the resonator antenna ready
for measurement; Second (center), the dispersed MUT is poured inside the
PLA container; Lastly (right), as time passes, the dispersed NPs will sediment
over the PCB, leading to a measurable shift in the resonance frequency of
the MUT.

This progressive deposition leads to a continuous change in
the sensor’s effective capacitance and hence a time-dependent
shift in its resonance frequency[25]. The process is illustrated
conceptually in Figure 4. Initially, the resonator is exposed to
the NP dispersion (with particles distributed throughout the
fluid). Over time, gravity causes NPs to migrate and concen-
trate near the bottom, eventually forming a uniform layer on
the sensor. Once a significant layer has formed and the local
NP concentration in the sensing region reaches an equilib-
rium, the resonance frequency stabilizes at a new value. The
difference between the initial and final resonance frequencies
(and the time taken to reach equilibrium) provides a “sedi-
mentation profile” characteristic of the nanoparticle type and
concentration.

The result is a sedimentation profile curve that can be
analyzed to extract meaningful parameters (such as the time
constant of sedimentation and the final frequency shift) which
correlate with NP properties. Thus, the SSR sensor provides
a novel route to rapidly characterize nanoparticles via their
sedimentation dynamics, using a simple electrical measurement
instead of elaborate microscopy or optical methods[19].
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Figure 5. Conceptual diagram of the sedimentation process as sensed by
the SSR sensor. Nanoparticles initially dispersed in the fluid (top) gradually
settle under gravity and form a layer on the sensor surface (bottom). x-axis
represents time while y-axis represent the peak of the resonance frequency
measured by the VNA.

3. Measurements
Cu-NPs were synthesized using the WE method, a top-down
physical fabrication technique well-suited for the production of
metallic nanopowders (see Section 1.2). This method relies on
the rapid vaporization of a metal conductor by the discharge
of a high-voltage capacitor, leading to nanoparticle formation
upon condensation in a surrounding medium.

In this study, the Cu-NPs were fabricated at the University
of Pisa. The experimental setup involved cylindrical copper
wires with a diameter of 1 mm and a length of 30 mm. A high-
current density, ranging from 1×107 A m–2 to 1×109 A m–2,
was applied by discharging a 765 µF capacitor charged up to
10 kV. This intense current caused adiabatic heating of the
wire, leading to its explosive vaporization. The vaporized
copper then condensed into nanoparticles upon interaction
with a surrounding medium of distilled water, which also
served to contain and collect the resulting product.

The explosion process was monitored using a dedicated
voltage probe (1:1000), a calibrated Rogowski coil, and a high-
bandwidth oscilloscope, ensuring precise characterization of
the electrical parameters during the event. The entire en-
vironment was optimized to minimize contamination: post-
explosion, the vessel and electrodes were carefully cleaned with
deionized water before repeating the procedure.

To ensure reproducibility and sufficient material yield, the
explosion cycle was iterated ten times. The collected suspen-
sions were subsequently subjected to a low-temperature evap-
oration process to isolate the dry nanopowder. The obtained
Cu-NPs were then re-dispersed in deionized water, deposited
onto substrates, and analysed via DLS to evaluate their size
distribution and morphology.

This method offers several advantages, including the ability
to produce nanoparticles without the use of chemical reagents,
the rapid generation of high-purity products, and the poten-
tial to fabricate complex or multicomponent nanostructures.
However, challenges such as precise control over particle size
and shape, as well as the potential for oxidation, remain areas

for further optimization.
Following the above-mentioned method, three samples

of copper nanoparticles were created. These samples were
generated using different parameters, aiming to create different
sized distributions of the nanoparticles. The samples (and the
names A, B, C chosen for each one) can be seen on Figure 6.

Figure 6. Three test tubes containing the three different nanoparticles, la-
belled A, B, C through the rest of the Thesis.

In order to measure the different sedimentation curves of
the different nanoparticles, a dispersion has to be made with
them. For this, pure paraffin was used as a medium in which
to disperse the copper nanoparticles. The same paraffin bottle
was used for all the measurements.

A concentration of 10 mg mL–1 was used in order to create
a saturated medium in which the nanoparticles will precipitate
due to gravity and sediment at the bottom of the sensor. If a
non-saturated concentration was chosen, the sedimentation
process would be slower and a higher percentage of nanopar-
ticles would remain in suspension through the medium and
never precipitate.

A high precision scale was used to prepare the mix of paraf-
fin and Cu-NPs. The nanoparticles were poured in first into
the test tube (and then the correct amount of paraffin was pipet-
ted into the test tube to guarantee the desired concentration
of 10 mg mL–1.

The result before the sonication is that shown in the left
side of Figure 7. After the process mentioned above, the result
should be similar to the one shown on Figure 7 right side.
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Figure 7. Before (left) and after (right) the sonication process.

3.1 Sonication Time Determination
In order to determine a suitable sonication time for the disper-
sion and avoid sonicating for an unnecessary amount of time,
an experiment was conducted. Samples of the same nanopar-
ticle type (in this case we chose NP A, since it was the most
abundant) would be sonicated for different time intervals and
their sedimentation curves would be recorded and compared.

Figure 8. Sedimentation curves of the same dispersion during different
sonication times.

As seen on Figure 8, the sedimentation curves keep having
a slower exponential decay the longer they are sonicated until
a saturation point is reached at around 15 min to 30 min. At
this point, the resolution of the measurement is thee key dif-
ference since the difference between both measurements (red
and purple) is only ±1 MHz (in constrast with the 5 MHz in
between the 1 min and the 15 min measurements).

With this graph, we can determine that a suitable time to
sonicate the dispersion would be 15 minutes, since it grants
the same results as the 30 minute one and takes half the time,
allowing for faster iterations of measurements.

All of the sonications performed were done in the same
conditions. The sonicated test tube would have a minimum
of 5 mL and a maximum of 10 mL. The test tube would be
submerged inside an ice bath with the probe tip inside the test
tube just barely not touching the bottom of the test tube as
seen on Figure 9.

Figure 9. Test tube with nanoparticles submerged into the ice bath with the
probe inside.

3.2 Material Differentiation
A difference in a material’s properties (permittivity, conduc-
tivity and magnetic permeability) lead to distinct shifts in a
resonant sensor’s response. When a planar resonator is loaded
with a medium under test (MUT), its resonance frequency
typically shifts downwards due to the increase in the effective
permittivity.

This variation can be seen on Figure 10. The main value
of interest for this research is the resonance frequency, not
so much the magnitude of the peak. We can see that there is
a clear distinction between some materials (for example, air
and hexane), while some other materials have more similar
frequencies.

It is important to note that both the Iron NPs and the Cop-
per NPs are measurements performed in a paraffin dispersion,
which is the reason their frequencies are slightly lower than
that of the paraffin while still being quite close to it.

With the SSR and the VNA, the resolution of the measure-
ments performed can perceive changes of less than 1 MHz in
the resonance frequency, therefore a very viable application of
this sensor is to classify different materials depending on their
resonance frequency.

Apart from having different resonance frequency peaks at
a certain common time after sonication, two dispersions of
different material NPs will have different sedimentation curves.
These curves depend on many factors, mainly the material,
temperature, concentration and sonication times.

If we try and keep the changes to a minimum, we can
reach some conclusions. As seen on Figure 11, even when
sonicating and exposing paraffin to the same conditions as
the NP dispersions, the resonance frequency does not shift
significantly (the drift observed in the measurement is due to a
slight temperature change in the measurement room and due
to the inherent measurement error of the VNA measurement
device. This error is less than 1 MHz and therefore can be
ignored for our analysis.

When considering two types of metallic nanoparticles (in
this case Copper and Iron), apart from a difference in any
instantaneous resonance frequency peak, both sedimentation
curves are different. These two NPs were fabricated following
the same method, a Wire Explosion method and both are dis-
persions in paraffin of the same concentration. Also, it can be
seen that the sedimentation process seems to follow an expo-
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Figure 10. Resonance frequencies depending on the MUT.

Figure 11. Resonance frequencies depending on the MUT.

nential curve. This exponential curve seems to have different
time constants depending on the material. Hence, determin-
ing this time constant might prove useful for classifying the
materials.

3.3 Size Differentiation
As previously mentioned, the main goal of this Thesis is to
determine wether a SSR and a VNA can be used to consistently
and correctly classify nanoparticles of the same material with
different size distributions.

Three copper samples were provided by the University of
Pisa as described in Section 3. The main intentios was to gen-
erate nanoparticles using three widely different settings during
the Wire Explosion in order to try and generate three different
size distributions in the nanoparticles. Once these nanopar-

ticles were shipped to ICAI, we used the VNA alongside the
SSR to measure their sedimentation curves.

Three dispersions of nanoparticles were created using a
concentration of 10 mg mL–1. The medium in which the
nanoparticles would be dispersed in is pure paraffin oil, which
proves to be a non-polar liquid, cheap, and non-reactive with
the nanoparticles.

The sonication times for each one of the measurements
was kept constant, as well as the temperature and measurement
times. Each sample was sonicated for 15 minutes in intervals
of 5 s ON and 10 s OFF (leading to a total of 20 minutes for
one sonication).

All nanoparticles’ sedimentation times were measured mul-
tiple times in order to remove any outliers and also to take
into account the variability noise inside the measurement can
create.

On Figure 12, we can observe the sedimentation curves of
the different nanoparticles. This graph was obtained measur-
ing the peak resonance frequency of the nanoparticle disper-
sion using the VNA and the SSR mentioned in this Thesis.

As it can be observed, the curves seem quite similar, all
following an exponential-like behaviour, common for sedi-
mentation curves. The bigger nanoparticles will take less time
to sediment while the smaller ones will remain a longer time
suspended in the paraffin.

With this graph, a clear distinction between the nanoparti-
cles can’t be determined easily. All of the measurements seem
to be very similar and, at least with a simple visual inspection, if
no colors were used in the plot, it would be extremely difficult
to differentiate and classify these nanoparticles.

Hence, a method to extract more information from this
experiment is required. Since these signals are similar to ex-
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Figure 12. Peak resonance frequency over time depending on the nanoparti-
cle sample sonicated.

ponentials, it would be interesting to obtain a time-constant
distribution for each signal and see if with that information,
classification would be easier.

4. Time Constant Extraction
4.1 Time Constant Extraction Procedure
Exponential decay processes are common in many areas of
science and engineering. In a simple exponential decay, a
quantity m(t) decreases at a rate proportional to its current
value. Equation 1 describes this behavior for a single decay
component:

m(t) = f exp
(

–
t
τ

)
+ g (1)

where τ is the characteristic time constant of the decay, f
is the decay amplitude (initial magnitude), and g is a baseline
offset [32]. Processes such as radioactive decay, population
decline, certain chemical reactions, fluorescence, and mag-
netic resonance relaxation often follow this single-exponential
model [32]. In these cases, the time constant τ (or its reciprocal,
the rate constant 1/τ) is a key parameter that can be obtained
from experimental data.

However, not all systems can be characterized by a single
time constant. Many complex systems exhibit multi-exponential
behavior, meaning the observed decay is a combination of mul-
tiple exponential components or even a continuous distribution
of time constants. For example, the decay of magnetization in
confined media (as in NMR experiments on porous materials)
involves multiple decay rates, and the effective “time constant”
of such a system is actually a distribution rather than a single
value [34]. In these cases, using a single τ in Equation 1 is
insufficient; instead, one must consider multiple exponentials
contributing to m(t).

4.1.1 Multi-Exponential Formulation
To model systems with more than one decay process, the
single-exponential model generalizes to a sum or continuum
of exponentials. In the simplest multi-exponential scenario, one
might have a discrete sum of two or more exponential terms.

For instance, a system with two sequential decay processes
could be described (conceptually) by an expression like [32]:

m(t1, t2) = f1 exp
(

–
t1
τ1

)
+ f2 exp

(
–

t2
τ2

)
+ g (2)

In equation 2, τ1 and τ2 are two distinct time constants for
two stages of decay (with t1 and t2 being time variables in each
stage), and this would yield a bi-exponential decay behavior.
While this two-component example illustrates multiple decays,
real systems can be even more complex.

In the most general case, the decay signal can be viewed as
a continuous superposition of many exponential decays with
different time constants. Instead of summing a few discrete
terms, one can consider a distribution function f (τ) that tells
us how much contribution comes from decays of character-
istic time τ. Equation3 expresses the measured signal as an
integral (continuous sum) of exponential decays weighted by
this distribution:

m(t) =
∫ ∞

0
f (τ) exp

(
–

t
τ

)
dτ + g , (3)

where f (τ) is the time-constant distribution (often normalized
so that its integral gives the total signal amplitude) and g is
again any constant offset [34]. Equation 3 generalizes the decay
model to account for an entire spectrum of time constants. In
practice, g (baseline) can often be measured or assumed zero
after appropriate corrections [34], so we will focus on the core
integral term.

It is worth noting that the concept extends to higher dimen-
sions as well. For processes involving two independent time
variables (e.g. two-step decays or correlation experiments),
one can define a two-dimensional distribution f (τ1, τ2) and
write a double integral analogous to Equation 3 [34]. Such
formulations allow modeling of even more complex decay be-
haviors. For simplicity, we will continue our discussion with
the one-dimensional case, as the core concepts are similar for
higher dimensions.

4.1.2 Inverse Problem and Ill-Posedness
Determining the distribution f (τ) from the measured signal
m(t), as formulated in Equation 3, is a classic inverse problem[1].
This particular inverse problem is essentially an inverse Laplace
transform: given the Laplace-transformed data m(t), we aim to
recover the original distribution function f (τ) [34].

Inverse Laplace transform problems are well-known to
be severely ill-posed [34]. An ill-posed problem is one in
which small errors or noise in the measured data m(t) can
lead to large and unstable variations in the solution f (τ), or
worse, the solution may not be unique or may not exist at
all in a meaningful way. In practical terms, this means that
experimental imperfections or measurement noise make it very
difficult to directly compute f (τ) with confidence.

This challenge arises because many different distributions
of time constants can produce very similar decay curves when
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integrated together. As a result, distinguishing which distribu-
tion is truly responsible for the observed signal requires very ac-
curate data and careful analysis. Simply put, multi-exponential
decay analysis is not a straightforward curve-fitting prob-
lem—it is a delicate process.

A common and practical approach is to discretize the time
constants into a finite set of Nτ discrete values. Rather than
evaluating an integral, the measured signal is approximated
as a sum of exponential decays, each associated with a specific
time constant τi:

m(t) ≈
Nτ∑
i=1

fi exp
(

–
t
τi

)
, (4)

where fi is the weight (or amplitude) of the decay corre-
sponding to τi [34]. Equation 4 serves as a numerical approxi-
mation of the continuous model in Equation 3, and it is widely
used in practical data analysis.

In this discretized form, the problem becomes a system of
linear equations. Let A be a matrix of size Nt × Nτ, where
Nt is the number of time samples and Nτ is the number of
assumed time constants. Each element of A is defined as:

aij = exp

(
–

ti
τj

)
(5)

so that the system can be written in matrix-vector notation
as:

A x ≈ b (6)

where x = [f1, f2, . . . , fNτ
]T is the vector of unknown

distribution weights, and b = [m(t1), m(t2), . . . , m(tNt )]
T is the

vector of measured data [8].
However, due to the nature of exponential functions, the

matrix A is typically ill-conditioned or nearly singular, which
again reflects the ill-posedness of the problem. Solving such a
system directly often yields unstable and oscillatory solutions,
especially in the presence of noise. Therefore, to obtain mean-
ingful and interpretable results, we must apply stabilization
techniques, which are discussed in the next section.

4.1.3 Regularization and Stabilization of the Solution
To reliably extract the time-constant distribution x = {fi} from
noisy data, it is necessary to apply regularization techniques.
Regularization introduces additional constraints or penalties
that favor reasonable, smooth solutions for f (τ) at the expense
of exactly fitting the noise.

A common approach is to solve a regularized least-squares
optimization instead of a plain least-squares fit. In a regularized
formulation, we seek the vector x that balances fitting the data
with keeping x “well-behaved.” This can be written as an
optimization problem:

min
x≥0

{
|0Ax – b|02

2 + λ2 Ω(x)
}

, (7)

where the first term |0Ax – b|02
2 is the usual sum of squared

errors (ensuring we fit the data closely), and the second term
λ2 Ω(x) is a regularization penalty that discourages undesirable
solutions. The parameter λ controls the trade-off between
fidelity to the data and the smoothness or size of the solution.
The notation x ≥ 0 indicates that we also enforce a non-
negativity constraint on the solution (since negative amplitudes
fi would be non-physical in most decay scenarios).

The choice of the penalty functional Ω(x) determines the
type of regularization. A very common choice is Tikhonov
regularization, which uses:

Ω(x) = |0x|02
2 (8)

i.e., the sum of squares of the components of x. In other
words, the solution is penalized for having large overall mag-
nitude or many large components. Using Ω(x) = |0x|02

2
(with x ≥ 0) in Equation 7 corresponds to a classical ridge-
regression or Tikhonov approach. This tends to produce a
smoother, more stable distribution f (τ) by filtering out the
high-frequency oscillations that typically come from fitting
noise. In practical terms, regularization filters out the effects
of noise in the solution, at the cost of a slight loss in resolu-
tion (e.g., very sharp features in the true distribution might be
smoothed out).

The non-negativity constraint x ≥ 0 is also important.
Since each fi represents a contribution to the signal, it makes
physical sense that fi should be zero or positive (you cannot
have a “negative” amount of signal component). Enforcing
fi ≥ 0 further stabilizes the solution and avoids unphysical
oscillations where positive and negative components cancel
out. Many algorithms for this problem use Non-Negative Least
Squares (NNLS) or similar methods to impose this constraint.

Solving the regularized problem (Equation 7) can be done
efficiently. One convenient way (as implemented by the au-
thors of the reference study) is to augment the matrix system
Ax = b with additional rows corresponding to the regular-
ization term. For example, in the Tikhonov case, one can
augment A with λI (and augment b with a vector of zeros),
which turns the minimization of |0Ax – b|02

2 + λ2|0x|02
2 into

an equivalent extended linear least-squares problem. Standard
algorithms can then solve this augmented system, yielding the
regularized solution for x.

The end result is a computed distribution f (τ) that fits
the experimental data within noise limits and avoids excessive
oscillation or noise amplification.

4.1.4 Implementation
The methodology above might sound involved, but modern
tools make it quite accessible. In fact, the authors of the study
[3] have provided simple MATLAB and Python scripts to per-
form this multi-exponential analysis . Thanks to high-level
numerical libraries, the entire inversion procedure (with regu-
larization and constraints) can be implemented in only a few
lines of code.

In order to test the performance of this tool, we generated a
synthetic example by manually building an exponential signal
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Figure 13. (left) Synthetic data generated for testing the time constant extraction; (right) results over the data.

which was the sum of two exponentials. We used Equation 9:

x(t) = 100e–10t + 30e–100t (9)

Yielding the results shown on Figure 13.
As it can be seen on Figure 13, the time constants are

perfectly determined by this method.
The output of this method is interpreted the same way

as the output of a Fourier transform when talking about the
sum of sinusoidal signals, but, in this case, they are exponential
signals.

Figure 14. Time constant distribution for samples A, B and C of copper
nanoparticles.

4.2 Differentiating Between Copper Nanoparticle Samples
The main goal of this Thesis is to try and differentiate in
between the three Copper NP Samples fabricated at the Uni-
versity of Pisa. Therefore, the data in Figure 12 was input to
the Python code and the results were recorded.

If we look at the whole time constant distribution of this
dataset, we can see the results shown on Figure 14.

Looking at this, we see a wide variety of signals and the
plot is quite confusing. However, we do see that the princi-
pal components are grouped in a single time constant range
(between 103 s and 104 s). Therefore, we can zoom into this
range, which yields the results shown on Figure 15.

Figure 15. Time constant distribution zoomed into the principal components
for samples A, B and C of copper nanoparticles.

With this new view of the results, we can clearly see two
things. Firstly, nanoparticles A and B seem to be highly in-
tertwined, with their measurements being mostly similar all
the time. Secondly, nanoparticle C seems to differ more with
one of the results being quite more different than the other
two. This right-most result may be due to noise or even some
external factors which might have affected the measruement.



12 Álvaro Martín Martín

Therfore, with these results, we can conclude that nanopar-
ticles A and B will have a very similar size distribution and
nanoparticle C will have a different size distribution to the one
present in the other two.

4.3 Mixing Copper Nanoparticles
Since in the previous section we have determined that nanopar-
ticles B and C are the most different, we designed a new mea-
surement set by mixing two dispersions of nanoparticles B
and C, both with the same concentration (10 mg mL–1) and
measuring them to compare and see if this new mix would
have intermediate results to those measured in B and C.

The sedimentation curves can be seen on Figure 16.

Figure 16. Sedimentation curves of copper nanoparticles B and C and the
mix of BC nanoparticles.

A good sign is that these measurements are in between the
values of both nanoparticles, therefore the results provided by
the time constant analysis look promising.

These results can be seen on Figure 17. This figure has the
same issues than the previous one, therefore, we will only focus
on the principal components, which can be seen on Figure 18.

As expected the results for the BC mix of nanoparticles
lay in between the results for both of the particles separetely.
However, we can see that the results are very similar to those of
the C nanoparticle. A simple hypothesis would be that sample
C has larger nanoparticles and that when mixing nanoparti-
cles B and C, these larger nanoparticles sediment before and
therefore the B nanoparticles have a lower impact on the signal.

4.4 Differentiating Between Copper and Iron Nanoparticle
Samples
Since we have been able to differentiate between nanoparticle
size in the same material, the question as to wether this method
can also be used to differentiate nanoparticles of different ma-
terials is only natural.

Therfore, we input the data represented in Figure 11 and
compared it with the nanoparticles A B and C. The results can
be seen on Figures 19 and 20 (close-up into the principal time
constant).

These results show that even when not only considering
the principal time constant, iron naopaprticles have a different

Figure 17. Time constant distribution for samples B, C and the BC mix of
copper nanoparticles

Figure 18. Time constant distribution zoomed into the principal components
for samples B, C and the BC mix of copper nanoparticles.

distribution in comparison to the copper nanoparticles. There-
fore, this method could potentially also be used to classify
different materials.

4.5 Comparison with University of Pisa’s Results
During our experiments on the nanoparticles provided by the
University of Pisa, they were perfoming a characterization of
the nanoparticles. This characterization was kept independant
from our results, and vice-versa, so as to perform a double-
blind experiment and not influnence the results of both parties.

Table 1. Largest and smallest particle size depending on the sample.

NP Large Particles Diameter (nm) Small Particles Diameter (nm)

A 462 164
B 490 156
C 483 122

When looking at the results on Table 1, they do not seem
to match those obtained by our research since they show that
the nanoparticles in C have the smallest nanoparticles and do
not have the largest particles. However, when looking at the
results in Figure 21, we see that indeed nanoparticles A and
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Figure 19. Time constant distribution for samples A, B and C of copper
nanoparticles and one of iron nanoparticles.

Figure 20. Time constant distribution zoomed into the principal components
for samples A, B and C of copper nanoparticles and one of iron nanoparticles.

B have a very similar size distribution, while C has a different
size distribution.

Also, we can see that even if C does not have the largest
nanoparticles, it does have more quantity of larger nanoparti-
cles that A or B and therefore relates correctly with our results
and hypotheses.

Therefore, while these two experiments were performed
independently, they yield the same results. This serves as a
corroboration of the results obtained in Figure 15.

5. Conclusion
5.1 Overview of the Research and Findings
This thesis has presented the design and validation of a novel
sensor system for characterizing metallic nanoparticles, ad-
dressing a critical need for faster and more automated nanopar-
ticle analysis in industrial and research settings. The proposed
sensor is based on a metamaterial-inspired electromagnetic
resonator (specifically, a planar square spiral resonator), which
is highly sensitive to the presence and distribution of nanopar-
ticles in its proximity.

By monitoring the real-time response of this resonator
when nanoparticle dispersions are introduced, the system can
profile the sedimentation of nanoparticles in a fluid and extract

Figure 21. Data from the DLS performed by the University of Pisa on a double-
blind analysis of the NPs.

meaningful signatures related to their physical characteristics.
This approach transforms the traditionally time-consuming
task of nanoparticle characterization into an automated, real-
time sensing process, aligning with modern industry demands
for smart, in-line instrumentation. The research performed
extensive experimental testing with metallic nanoparticle sam-
ples. Through this approach, the thesis demonstrated that the
sensor can reliably capture the dynamic sedimentation curves
of nanoparticle suspensions and translate them into informa-
tion about particle size distribution and material composition.
In essence, the work bridges the gap between advanced nano-
materials characterization techniques and practical sensing
technology, providing a prototype that is both scientifically
insightful and practically relevant.

5.2 Relevance to Industry 4.0 and Smart Manufacturing
A strong motivation behind this work is the growing demand
for advanced sensing solutions in the context of Industry 4.0,
the modern paradigm of smart manufacturing and automation.

Industry 4.0 production environments require sensors that
can operate in real-time, with minimal human intervention,
high precision, and reliability. Traditional nanoparticle charac-
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terization methods (such as electron microscopy or laboratory
particle analyzers) do not meet these criteria – they are labor-
intensive, slow (often days for sample preparation and analysis,
plus long waiting times for expensive equipment to be available
for use), and cannot be easily integrated into an automated
production line.

In contrast, the sensor developed in this thesis is inherently
suited for an Industry 4.0 setting. Once deployed, it functions
as a real-time monitoring device: it continuously converts the
state of a nanoparticle dispersion (an external environmental
condition) into an electrical signal (a resonant frequency shift
or amplitude change) that can be automatically recorded and
interpreted. No manual sampling and imaging are needed
after the initial setup, and the measurement is non-destructive
(the sample can remain in the production flow).

This means that manufacturing processes involving nanopar-
ticles could be equipped with this kind of sensor to achieve
in-line quality control and feedback. Moreover, metamaterial-
based sensors like the one presented offer additional advantages
that align with smart factory requirements. They are typically
compact, inexpensive to fabricate (the resonator in this work
is a simple printed circuit), and potentially capable of wire-
less or networked operation when connected to appropriate
electronics. Research has shown that sensors based on meta-
materials can achieve the high sensitivity and low detection
limits needed in advanced industrial applications, while also
being readily integrable into larger systems.

The ease of system integration is particularly important: it
implies such sensors can be embedded in production equipment
or pipelines without large footprints or special infrastructure.

Currently, verifying the size and consistency of manufac-
tured nanoparticles might require taking samples to a lab and
running lengthy analyses (microscopy, centrifugation, etc.),
during which the production might continue unchecked or be
paused. Our sensor, on the other hand, gives near-instant feed-
back on each batch or even continuously during production,
thus avoiding the delays associated with off-line analysis. This
improves throughput and can prevent batches with out-of-
specification nanoparticles from going undetected until much
later.

5.3 Limitations and Challenges
While the results of this thesis are promising, it is important to
acknowledge the limitations and challenges of the developed
sensor approach.

One fundamental limitation is that the sensor currently
provides a relative or qualitative characterization rather than
an absolute one. In other words, while it can tell if one sam-
ple’s particles are larger on average than another’s, it does not
directly output the exact particle size distribution or exact
material composition without reference to calibration data.

Traditional methods like electron microscopy or Dynamic
Light Scattering (DLS) can give absolute measurements (e.g.
an average diameter in nanometers, or a full size distribution
curve).

In contrast, our resonator sensor measures an electromag-

netic response that must be interpreted to infer particle prop-
erties. This interpretation typically relies on models or com-
parisons. For example, we might need to calibrate the sensor
with known samples to create a mapping between the “time
constant distribution” extracted from the sedimentation curve
and actual particle size ranges. Developing a robust calibration
for every new type of nanoparticle is a challenge and would
be necessary before the sensor could be used as a stand-alone
metrology tool.

Another challenge lies in the resolution and overlapping
signatures. If two nanoparticle samples have very subtle dif-
ferences in size distribution, the sensor’s ability to distinguish
them is constrained by signal noise and the fundamental resolu-
tion of the method. In our experiments, Samples A and B were
intentionally fairly similar, and indeed the sensor correctly
indicated they were alike (which is as expected). However,
distinguishing subtle differences might be difficult if those dif-
ferences do not produce a sufficiently different sedimentation
profile within the time window of observation.

Additionally, the sensor’s measurements are governed by
physical contrasts (density, permittivity, magnetic permeabil-
ity) between materials. If those contrasts are small, more sensi-
tive or different resonator designs might be required.

The method’s reliance on sedimentation introduces its own
limitations. Sedimentation is a process that depends on gravity
(or centrifugal force if aided by centrifugation), fluid viscosity,
and particle density. Very small nanoparticles (say, much below
100 nm, especially if stabilized in solution) may take a very
long time to sediment or might exhibit significant Brownian
motion that counteracts sedimentation. In such cases, the
“sedimentation profile” might be extremely slow or almost flat
over practical timescales, making it hard for the sensor to get
a reading within a reasonable time.

In summary, while the sensor provides rich data, making
sense of that data in an automated way is non-trivial. We
managed it in post-processing for the thesis, but an industrial
monitor would need a reliable on-line algorithm. This could
be considered a limitation of the current state of the system
though it is also an opportunity for improvement.

5.4 Alignment with the Sustainable Development Goals (SDGs)
A key strength of the sensor technology developed in this thesis
is its clear alignment with several United Nations Sustainable
Development Goals:

• SDG 7: Affordable and Clean Energy
Precise, real-time monitoring of metallic nanoparticles
supports the reliable production of nanomaterials used in
advanced catalysts, battery electrodes, and photovoltaic
coatings, thereby accelerating access to clean energy tech-
nologies.
• SDG 9: Industry, Innovation and Infrastructure

The low-cost, compact metamaterial sensor fosters resilient
and sustainable industrialization by enabling inline quality
control, automated process optimization, and smart factory
integration without human intervention.
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• SDG 12: Responsible Consumption and Production
By shortening the feedback loop for detecting deviations
in nanoparticle size and composition, the sensor minimizes
waste from off-specification batches and reduces the con-
sumption of reagents, promoting more resource-efficient
manufacturing.
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