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RESUMEN DEL PROYECTO 

Este trabajo desarrolla y valida un marco de predicción a corto plazo para la demanda de 

carga de un agregador de vehículos eléctricos (VE) a horizonte día‑adelantado y resolución 

horaria. A partir de ~35.000 sesiones reales, se construye una canalización reproducible 

(limpieza, ingeniería de variables y evaluación temporal) y se compara un Bosque Aleatorio 

con baselines clásicos. En el año de prueba, el modelo final reduce el MAE en ~44% frente 

al ingenuo estacional (R² = 0,735), aportando evidencia y pautas operativas para su 

despliegue. 

Palabras clave: vehículos eléctricos, agregación, predicción de demanda, series temporales, 

Rendón Forest, mercado diario, hiperparámetros, importancia de variables. 

1. Introducción 

La adopción de vehículos eléctricos (VE) convierte la recarga agregada en un recurso de 

flexibilidad distribuido cuyo comportamiento debe anticiparse para garantizar una 

operación fiable y eficiente. Las previsiones horarias del mercado diario permiten 

planificar capacidad, suavizar picos y fijar límites de riesgo, además de servir como 

entrada estable para módulos posteriores de optimización. Este trabajo se centra en el 

componente de predicción (excluyendo la puja y la co‑optimización del control) 

mediante una canalización reproducible que integra curación rigurosa de datos, diseño 

de características y evaluación temporal sin fugas. Con un conjunto de datos reales de 

sesiones de carga, se comparan modelos base clásicos con un Random Forest y se 

cuantifican las mejoras con métricas operativamente relevantes (MAE, RMSE, R², 

nMAE). El énfasis en la transparencia y los diagnósticos (importancia de variables y 

perfiles residuales) posiciona el enfoque para un despliegue práctico. 

2. Definición del proyecto 

Objetivo: Generar un vector día‑adelantado de 24 valores horarios (kWh) para un 

agregador residencial, empleando únicamente la información disponible en el origen de 

la previsión. 

Alcance: Predicción puntual (sin bidding ni control), prioridad en transparencia, 

reproducibilidad y gobernanza del modelo. 

Datos y proceso: Agregado horario construido a partir de ~35k sesiones reales e 

información de temperatura y calendario, filtrado de atípicos por IQR (k=3), recorte de 

meses de borde y uniones estrictamente temporales. 



Evaluación y éxito: Validación cronológica con un único año de prueba (2020‑08‑01 a 

2021‑07‑31), como métricas se utilizarán: MAE, RMSE, R², nMAE. El éxito se define 

como una reducción sustancial del MAE respecto al ingenuo estacional manteniendo 

interpretabilidad. 

Entregables: Producto de previsión automatizado (vector de 24 horas), informe de 

errores del año de prueba, diagnósticos residuales y una ficha del modelo con 

hiperparámetros y limitaciones conocidas. 

La figura 1 muestra la arquitectura: alineación temporal, pantalla de valores atípicos IQR 

(k = 3, ~3,7 % de horas excluidas), características con retrasos {1, 24, 168}, estadísticas 

móviles (24/168 h) y codificaciones cíclicas, bases de referencia clásicas (naive 

estacional, ETS) y el Random Forest propuesto. 

 

Figura 1 – Arquitectura de predicción (pipeline) 

3. Resultados 

Protocolo: Baselines y modelo final se entrenan en ventanas pre‑comprometidas y se 

evalúan una única vez en el año de prueba (8.760 horas). 

Baselines: Ingenuo estacional (yt-24): MAE = 5,423 kWh; RMSE = 8,600 kWh; R² = 

0,175; nMAE = 80,88%. ETS (aditivo, s=24) rinde ligeramente peor; la variante 

SARIMA se degrada en esta serie. 

Modelo final (Random Forest): MAE = 3,013 kWh; RMSE = 4,874 kWh; R² = 0,735; 

nMAE = 44,93% (~44% de reducción de MAE frente al ingenuo estacional). Los errores 

absolutos se concentran en picos matutinos y vespertinos, la nMAE aumenta de 

madrugada por denominadores bajos. La importancia de variables muestra dominancia 

del lag de 1 hora y estructura diurna/semanal, temperatura y calendario añaden valor 

limitado. 



 

Ilustración 2 - Simulación del bucle completo de  la etapa de frecuencias 

4. Conclusiones 

Un Random Forest, integrado en una evaluación temporal rigurosa y libre de fugas de 

información, supera a sólidos baselines clásicos y ofrece un comportamiento 

transparente mediante la importancia de variables. Las mayores ganancias se producen 

en las horas punta de mayor relevancia operativa. La canalización precomprometida, con 

limpieza por IQR fija, particiones cronológicas y una única pasada de prueba, constituye 

un esquema práctico para el despliegue en producción y favorece la auditabilidad. En 

términos operativos, la precisión alcanzada es suficiente para informar la asignación de 

capacidad del mercado diario y los límites internos de riesgo, con una carga de 

mantenimiento moderada y modos de fallo claramente identificables. De cara al futuro, 

las prioridades incluyen el pronóstico probabilístico y señales exógenas más ricas 

(llegadas/ocupación, precios). La validación externa en distintas flotas y estaciones 

permitirá acotar la capacidad de generalización e identificar conjuntos de características 

dependientes del contexto. 
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ABSTRACT 

This thesis develops and validates a short-term forecasting framework for an electric-vehicle 

(EV) aggregator’s day-ahead, hourly charging demand. Using ~35,000 real charging 

sessions, we build a reproducible pipeline (cleaning, feature engineering, time-aware 

evaluation) and benchmark a Random Forest against classical baselines. On the held-out test 

year, the final model reduces MAE by ~44% versus the seasonal naive baseline (R² = 0.735), 

providing evidence and operational guidance for deployment. 

Keywords: Electric vehicles, aggregation, demand forecasting, time series, Random Forest, 

day-ahead, hyperparameters, feature importance. 

1. Introduction 

As EV adoption accelerates, aggregated charging loads emerge as a distributed flexibility 

resource whose behavior must be anticipated to ensure reliable and economical system 

operation. Accurate day-ahead, hourly forecasts enable capacity planning, peak shaving, 

and informed risk limits, and they provide a stable input to downstream optimization and 

scheduling modules. This thesis addresses the forecasting component, explicitly 

excluding bidding and control co-optimization, by developing a reproducible pipeline 

that integrates rigorous data curation, parsimonious feature design, and time-ordered 

evaluation. Using a large, real-world dataset of charging sessions, we benchmark 

classical baselines against a Random Forest and quantify gains with operationally 

meaningful metrics (MAE, RMSE, 𝑅2, nMAE). The emphasis on transparency, leakage-

free validation, and diagnostic reporting (feature importance and residual profiles) 

positions the approach for practical deployment and future extensions to probabilistic 

forecasting and richer exogenous signals. 

2. Project definition 

Objective: Produce a 24-element day-ahead vector of hourly charging demand (kWh) 

for a residential EV aggregator, using only information available at the forecast origin. 

Scope: Point forecasts only (no bidding or control optimization), priority on 

transparency, reproducibility, and model governance. 

Data & pipeline: Hourly aggregate built from ~35k real charging sessions, enriched with 

temperature and calendar features, IQR outlier screen (k=3), edge-month trimming, and 

strict time-ordered joins. 

Evaluation & success: Chronological validation with a single held-out test year (2020-

08-01–2021-07-31), metrics: MAE, RMSE, 𝑅2, nMAE. Success is defined as a material 



MAE reduction versus the seasonal-naïve baseline while preserving interpretability via 

feature importance. 

Deliverables: Automated forecast product (24-hour vector), test-year error report, 

residual diagnostics, and a model card with hyperparameters and known limitations. 

Figure 1 depicts the architecture: time alignment; IQR outlier screen (k = 3, ~3.7% hours 

excluded); features with lags {1, 24, 168}, rolling statistics (24/168 h), and cyclic 

encodings; classical baselines (seasonal naive, ETS); and the proposed Random Forest. 

Chronological splits and a single, final test pass prevent leakage and optimistic bias. 

 

Figure 1 – Forecasting architecture (pipeline) 

3. Results 

Protocol. Baselines and the final model are trained on pre-committed windows and 

evaluated once on the 2020-08-01–2021-07-31 test year (8,760 hours). 

Baselines. Seasonal naive (yt-24): MAE = 5.423 kWh, RMSE = 8.600 kWh, R² = 0.175, 

nMAE = 80.88%. ETS (additive, s=24) underperforms slightly, the SARIMA variant 

degrades on this series. 

Final model (Random Forest). MAE = 3.013 kWh, RMSE = 4.874 kWh, R² = 0.735, 

nMAE = 44.93% (~44% MAE reduction versus seasonal naive). Absolute errors 

concentrate at morning/evening peaks, normalized errors inflate overnight due to low 

denominators. Feature-importance diagnostics show lag-1 dominance with 

diurnal/weekly structure, temperature and coarse calendar add limited incremental value 

in this residential setting. 



 

Figure 2 - Test-year accuracy (MAE/RMSE) across models 

4. Conclusions 

An engineered Random Forest, embedded in a disciplined, leakage-free temporal 

evaluation, outperforms strong classical baselines and offers transparent behavior via 

feature importance. Gains are largest at operationally salient peak hours. The pre-

committed pipeline, fixed IQR cleaning, chronological splits, single test pass, constitutes 

a practical blueprint for production deployment and supports auditability. In operational 

terms, the achieved accuracy is sufficient to inform day-ahead capacity allocation and 

internal risk limits with modest maintenance overhead and clear failure modes. Looking 

forward, priorities include probabilistic forecasting and richer exogenous signals 

(arrival/occupancy, prices, refined weather), together with adaptive learning to handle 

concept drift, while preserving the governance that guards against ex-post tuning. 

External validation across fleets and seasons will further quantify generalizability and 

help identify context-dependent feature sets. 
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Chapter 1.  INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Rapid growth in electric vehicle (EV) adoption is transforming electricity systems by 

coupling mobility demand with power-sector flexibility. While a single EV has negligible 

system impact, large EV fleets collectively constitute a significant, highly distributed 

flexibility resource that can both stress and stabilize the grid depending on how charging is 

coordinated. This latent flexibility is increasingly mobilized through EV aggregators and 

intermediaries that coordinate charging and, where enabled, discharging across many 

vehicles to deliver energy, capacity, and ancillary services to markets and system operators 

while respecting user constraints. Framed as distributed energy resources (DERs), 

aggregated EVs can participate in day-ahead, intraday, and balancing markets, as well as in 

frequency regulation and demand response programs. Recent assessments underscore the 

material scale of this opportunity as EVs approach one quarter of global light-duty sales and 

begin to displace meaningful volumes of oil demand (International Energy Agency, 2025). 

In Europe, the Clean Energy Package formally recognizes independent aggregators and 

mandates non-discriminatory market access for demand response and distributed flexibility, 

creating regulatory space for EV aggregation to compete in energy and ancillary services 

markets. This framework explicitly calls for market products, including ancillary and 

capacity, to be defined to enable demand-side participation, thereby lowering institutional 

barriers for aggregator-led flexibility (European Union, 2019). 

1.2 EV AGGREGATORS AND THEIR ROLE IN ENERGY MARKETS 

As documented by the (International Energy Agency, 2024) and (Muratori, 2018), 

accelerating electric-vehicle (EV) adoption introduces both operational challenges and 

strategic opportunities for electricity markets and power-system stability. While a single EV 
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has only a marginal effect on local feeders, the coordinated behavior of thousands of EVs 

can materially shape net-load profiles, ramping requirements, and reserve needs. When 

charging is orchestrated while respecting user mobility constraints, aggregated EV fleets 

function as a dispatchable, distributed energy resource (DER) capable of delivering services 

across time scales from seconds for frequency regulation to hours for load shifting. 

Under the European Union’s Directive (EU) 2019/944 (2019), independent aggregators are 

formally recognized and granted non-discriminatory market access, establishing the 

institutional footing for demand-side flexibility to participate in energy and ancillary-service 

markets. Building on the market-design perspective of (Papadaskalopoulos & Strbac, 2013), 

an EV aggregator contracts with, coordinates, and manages a portfolio of EVs and its 

associated charging infrastructure to translate mobility needs and battery constraints into 

market-facing energy and ancillary-service offerings. In practice, aggregators implement 

control and forecasting algorithms, manage telemetry and communications, and ensure that 

service delivery aligns with user convenience, battery health, and regulatory requirements. 

Drawing on IEA (2024) and Muratori (2018), aggregators first optimize energy consumption 

by shifting flexible charging to periods with lower marginal system costs or higher 

renewable availability. Through price-responsive or model-predictive control, they schedule 

charging in off-peak hours or during low locational marginal prices, thereby flattening 

demand profiles and reducing congestion. Where bidirectional power flow is available, 

aggregators may also schedule discharging during high-price or peak periods to arbitrage 

temporal price differences, subject to state-of-charge, user departure times, and degradation 

constraints. This form of smart charging mitigates sharp evening load increases associated 

with uncoordinated charging and can materially reduce system peaks and network 

reinforcements. 

Aggregators also enable participation in ancillary services by modulating charging power 

and, in V2G settings, discharging to track grid signals. Fast, symmetric adjustments around 

a baseline charging set-point allow EV fleets to contribute to frequency containment and 

regulation, while slower adjustments support secondary reserves, voltage management, and 
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demand-response programs. Evidence from foundational V2G studies and subsequent 

demonstrations, notably (Kempton & Tomić, 2005), establishes both the technical feasibility 

and the revenue potential of these services, with aggregate performance hinging on fleet size, 

communication latency, and the diversity of mobility patterns. 

By pooling many small devices into a single market-facing resource, aggregators lower 

transaction costs and meet minimum bid sizes, enabling participation in wholesale markets. 

Aggregated portfolios can submit bids in day-ahead, intraday, and real-time markets, as well 

as capacity and reserve auctions where market design permits independent aggregation. This 

is codified in (Directive (EU) 2019/944, 2019) and consistent with the market mechanism 

described by Papadaskalopoulos and Strbac (2013). Effective market interfacing requires 

accurate short-term forecasting of available flexibility, robust baseline methodologies, and 

settlement processes that allocate revenues and penalties transparently among participating 

EV owners. 

As argued by (Sundström & Binding, 2012), aggregators further facilitate renewable-energy 

integration by aligning charging with periods of high variable renewable generation such as 

midday solar or overnight wind. Temporal shifting of EV demand reduces curtailment, 

improves renewable utilization, and decreases reliance on thermal units for balancing. In 

systems targeting high shares of wind and solar, this coupling between transport 

electrification and electricity supply can lower system costs and emissions while maintaining 

adequacy and operational security. 

At scale, EV fleets can enhance grid resilience by acting as spatially distributed storage that 

supports critical loads during contingencies and, where regulations and interconnection 

standards allow, provides black-start or islanded microgrid services. Vehicle-to-grid (V2G) 

and vehicle-to-building (V2B) capabilities enable back-feeding during peak events, outages, 

or emergencies, complementing stationary storage and improving the overall flexibility of 

the distribution network. Early analyses (2005) and more recent assessments (Global EV 

Outlook 2024) emphasize that the magnitude and reliability of these services depend on 
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participation rates, diversity of plug-in times, and the technological readiness of bidirectional 

chargers and communication protocols. 

EV aggregators participate in electricity markets through several distinct business models 

shaped by prevailing regulatory frameworks and market structures. One common model 

frames aggregator-operated fleets as a virtual power plant (VPP). As described by 

(Pudjianto, Ramsay, & Strbac, 2007) the aggregator co-optimizes many small, 

heterogeneous EV charging resources and presents them to the market as if they were a 

single dispatchable unit. By forecasting available flexibility, meeting minimum bid sizes, 

and ensuring telemetry and verification, the VPP can submit bids in day-ahead, intraday, and 

real-time markets alongside conventional generators and storage assets. Implementation 

hinges on accurate short-term forecasting of EV availability, robust baseline methodologies 

for settlement, and control architectures capable of tracking market or operator set points in 

near real time. 

A second pathway is peer-to-peer (P2P) energy trading, in which EVs act as mobile 

prosumers transacting directly with other consumers or prosumers. Reviews of pilot projects 

and architectures, such as (Andoni, 2019), highlight how distributed ledgers and smart 

contracts can reduce transaction costs, automate settlement, and enhance trust in 

decentralized coordination, while also surfacing issues of scalability, privacy, cybersecurity, 

and interoperability that must be addressed before widespread deployment. 

A third model emphasizes demand-response (DR) aggregation, wherein EV charging 

profiles are modulated to reduce peak loads, alleviate network constraints, and provide 

system balancing. Classic overviews (Siano, 2014) outline the need for reliable baselines, 

verifiable load adjustments, and incentive schemes that are both economically meaningful 

and acceptable to users. In practice, EV-based DR complements traditional industrial and 

commercial DR by adding fast, distributed flexibility with high temporal granularity. 
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Market design and institutional context strongly influence how these models are 

implemented. In liberalized markets, aggregators must comply with market-participation 

rules, grid codes, metering and verification requirements, and settlement procedures, often 

coordinating with retailers and balance-responsible parties. Recent policies including 

(Directive (EU) 2019/944, 2019), which recognizes independent aggregators and clarifies 

market access and compensation mechanisms, and the Federal Energy Regulatory (Federal 

Energy Regulatory Commission (FERC), 2020) mandating that RTOs/ISOs enable 

distributed-energy-resource aggregations have lowered barriers to entry and expanded 

eligible services for aggregated EV flexibility. In vertically integrated systems, by contrast, 

EV aggregation often proceeds via bilateral arrangements with utilities or system operators, 

with tariffs and program rules embedded in integrated resource planning and demand-side 

management portfolios. Across settings, effectiveness depends on technological readiness 

like bidirectional chargers or secure communications, market incentives (price volatility, 

reserve clearing prices), and policy frameworks that align incentives with measurable system 

value. 

Given the coordination complexity and the stochastic availability of mobile storage, AI-

driven strategies are increasingly central to operational excellence and market performance. 

Forecasting models predict near-term charging demand, plug-in durations, and available 

flexibility, price and imbalance-risk models inform bidding and hedging decisions, and 

optimization/control algorithms translate forecasts into dispatchable schedules. As shown in 

(Vázquez-Canteli & Nagy, 2019), reinforcement learning and other sequential decision-

making techniques can adapt online to non-stationary conditions and heterogeneous user 

behavior, while stochastic and robust optimization provide risk-aware bids under 

uncertainty. Data driven characterization of charging patterns from real-world telemetry 

further improves model fidelity and user-centric service delivery, enabling more 

sophisticated participation across energy, capacity, and ancillary service markets. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL 

 

INTRODUCTION 

11 

1.3 AI-DRIVEN STRATEGIES AND THEIR SIGNIFICANCE 

As the International Energy Agency (2024; 2025) documents, the rapid diffusion of electric 

vehicles (EVs) is reshaping power systems, intensifying the need for accurate forecasting, 

real-time balancing, and economically sound market participation. Uncoordinated charging 

can exacerbate evening peaks and feeder stress (Muratori, 2018), whereas coordinated 

strategies turn EV fleets into controllable resources. In this setting, Artificial Intelligence 

with reinforcement learning (RL) and broader machine learning toolkits emerges as a 

practical enabler for scalable, adaptive EV aggregation (Vázquez-Canteli & Nagy, 2019). 

1.3.1 FORECASTING AGGREGATED EV DEMAND (AND RELATED SUPPLY). 

Day-ahead scheduling and bidding hinge on robust expectations of plug-in behavior and 

charging energy. Surveys of demand response and smart-grid operation emphasize the 

importance of predictive baselines and multi-feature inputs for operational planning (Siano, 

2014). Combined with empirical usage patterns from Muratori (2018) and system-level 

trends reported by the IEA (2024), data-driven models provide the short-term forecasts 

aggregators need to align charging with market opportunities and renewable output. 

1.3.2 REAL-TIME CHARGING AND DISCHARGING OPTIMIZATION. 

To respect grid limits and user constraints while reacting to volatile signals, control needs to 

be adapted online. Flexible-charging optimization under distribution constraints is well 

established (Sundström & Binding, 2012), and RL offers a natural extension for sequential 

decision-making in demand response and EV coordination (Vázquez-Canteli & Nagy, 

2019). Together, these approaches schedule charging and, where available, vehicle-to-grid 

(V2G) discharging while honoring state-of-charge and network bounds. 

1.3.3 MARKET BIDDING IN DAY-AHEAD, INTRADAY, AND BALANCING 

MARKETS. 

Independent aggregation of flexible demand has viable market mechanisms 

(Papadaskalopoulos & Strbac, 2013), and aggregator-operated fleets can be organized as 
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virtual power plants that meet telemetry and verification requirements (Pudjianto, Ramsay, 

& Strbac, 2007). Policy developments further open the door to distributed-resource 

aggregations Directive (EU) 2019/944 (2019) in Europe and FERC (2020) in the United 

States clarify participation pathways and coordination with system operators. Within this 

framework, AI helps translate forecasts into risk-aware bids and continuous re-optimization 

across sequential markets. 

1.3.4 ANCILLARY SERVICES: FREQUENCY REGULATION AND DEMAND 

RESPONSE. 

Foundational V2G analyses show that EV fleets can technically and economically supply 

fast, short-duration services valuable for frequency regulation (Kempton & Tomić, 2005). 

On the demand-response side, consolidated reviews highlight control designs, verification 

needs, and market interfaces for automated load modulation (Siano, 2014; Vázquez-Canteli 

& Nagy, 2019). AI-enabled coordinators exploit these insights to track grid signals at fine 

time scales and monetize flexibility without compromising user mobility. 

1.3.5 DECENTRALIZED AND PEER-TO-PEER (P2P) TRADING, PRIVACY, AND 

COLLABORATION. 

Where regulations permit, EVs can transact locally as prosumers within community or retail 

platforms. A systematic review of the energy sector points to blockchain-backed settlement 

and smart contracts as mechanisms to reduce transaction costs and automate verification, 

while also surfacing challenges of scalability, interoperability, and privacy (Andoni, 2019). 

AI complements these architectures by informing price discovery, matching, and strategic 

interaction capabilities that become more valuable as fleets scale. 

1.3.6 OPERATIONAL ASSURANCE AND COMPLIANCE. 

Aggregator platforms must satisfy metering, telemetry, and coordination requirements set 

by market rules and regulators (European Union, 2019; Federal Energy Regulatory 

Commission, 2020). Embedding AI-based monitoring and forecasting within these 
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constraints improves operational resilience, helps detect abnormal behavior, and supports 

secure, auditable service delivery alongside traditional controls. 

1.4 WHY AI-DRIVEN STRATEGIES ARE ESSENTIAL FOR EV 

AGGREGATION 

AI-driven strategies have become indispensable for electric vehicle (EV) aggregation 

because they address the complexity and dynamism of large-scale coordination. By enabling 

scalable data processing, managing uncertainty in volatile environments, adapting decisions 

in real time, optimizing participation in electricity markets, and fostering both system 

sustainability and stability, AI provides the foundation for unlocking EV flexibility at scale. 

The following section details how these capabilities translate into tangible advantages for 

aggregators and the power system as a whole. 

Scalability and efficiency. AI methods process heterogeneous, high-volume data from large 

EV portfolios and markets, automating decisions beyond manual or rule-based limits 

(Vázquez-Canteli & Nagy, 2019; Siano, 2014). Uncertainty management. RL and 

probabilistic learning handle stochastic arrivals, weather, and prices, yielding robust policies 

under volatility. 

Real-time adaptation. Flexible-charging control proven at the device and feeder level 

(Sundström & Binding, 2012) combines with online learning to react to non-stationary 

demand and market signals, improving performance over time. 

Economic optimization. Market-compatible aggregation mechanisms (Papadaskalopoulos 

& Strbac, 2013) and VPP coordination (Pudjianto, Ramsay, & Strbac, 2007) provide the 

structure. AI turns forecasts into bids and dispatch that enhance revenues and reduce costs 

across day-ahead, intraday, and ancillary-service opportunities. 

Sustainability and stability. Coordinated, AI-enabled charging reduces peaks and 

integrates variable renewables (International Energy Agency, 2024), while V2G capabilities 

create fast services that support frequency and reserve needs (Kempton & Tomić, 2005). 
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In sum, AI equips EV aggregators with predictive, adaptive, and market-compatible tools 

that unlock flexibility at scale, strengthen grid operations, and enable profitable multi-market 

participation consistent with emerging regulatory frameworks in Europe and the United 

States. 

1.5 OBJECTIVES 

This thesis aims to develop and validate an AI-based framework that forecasts an electric-

vehicle (EV) aggregator’s short-term charging demand and demonstrates how such forecasts 

can be translated into economically efficient and market-compliant bidding strategies. The 

motivating hypothesis is that reliable, well-calibrated predictions of aggregated EV load, 

produced at the temporal resolution and horizons relevant to day-ahead and intraday 

decisions, enable aggregators to align charging with low-cost, low-carbon supply while 

meeting the telemetry, verification, and minimum-bid requirements of contemporary market 

designs. 

Methodologically, the work proceeds by constructing an audit-ready dataset from session-

level telemetry, applying transparent cleaning and outlier treatment, and aggregating to an 

hourly series with consistent calendar alignment. Feature engineering focuses on lag 

structures, rolling statistics, and cyclic encodings to capture diurnal and weekly seasonality, 

with optional exogenous drivers when available. Competing forecasting models are then 

trained for 1–24-hour horizons, with classical seasonal naive and exponential-smoothing 

baselines retained to anchor performance. Evaluation follows a rolling-origin scheme and 

reports mean absolute error (MAE), root mean square error (RMSE), coefficient of 

determination (R²), and a normalized MAE (nMAE) to enable scale-free comparisons across 

seasons and load levels. 

Analytically, the thesis asks what accuracy and calibration are achievable with operationally 

tractable AI models, which temporal and exogenous features are most influential and how 

stable their contributions are across seasons and horizons, how forecast uncertainty 

propagates to revenues and penalties in service markets and what practical guidance follows 
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for integrating forecasting into day-ahead, participation. Model interpretation via feature-

importance diagnostics is used to extract actionable insights for portfolio scheduling and 

market interfacing. 

1.6 SUSTAINABLE DEVELOPMENT GOALS 

This thesis contributes to the 2030 Agenda by advancing methods that allow EV fleets to act 

as reliable, grid-supportive flexibility resources without relying on market bidding. By 

focusing on accurate, well-calibrated forecasting of aggregated charging demand and on the 

operational scheduling insights that follow the work supports cleaner energy use, smarter 

infrastructure, more sustainable cities, and accelerated climate action. 

SDG 7: AFFORDABLE AND CLEAN ENERGY 

Forecasts of near-term charging demand enable aggregators to time charging to hours with 

abundant renewable generation (like midday solar or overnight wind) and lower marginal 

emissions. In residential and depot contexts, this improves on-site renewable self-

consumption and reduces reliance on high-carbon imports. At the system level, shifting 

flexible charging away from peaks lowers dispatch costs and helps integrate variable 

renewables more efficiently. 

SDG 9: INDUSTRY, INNOVATION, AND INFRASTRUCTURE. 

The thesis delivers digital building blocks (data pipelines, feature engineering, forecasting 

services, and monitoring) that modernize distribution-level operations. Better visibility of 

forthcoming charging demand allows operators to utilize existing network capacity more 

effectively, reduce congestion incidents, and defer costly reinforcements. The emphasis on 

transparency, reproducibility, and auditability strengthens data governance and supports 

interoperability with emerging grid-edge technologies. 
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SDG 11: SUSTAINABLE CITIES AND COMMUNITIES. 

Urban areas experience concentrated plug-in behavior and evening peaks. Forecast-driven 

scheduling smooths these peaks, mitigates local feeder stress, and improves quality of 

service at public and workplace charging sites. By aligning charging with local conditions, 

communities can retain more value from their distributed resources, while user-centric 

design, such as focusing on respecting mobility needs and battery health, sustains 

participation and social acceptance. 

SDG 13: CLIMATE ACTION. 

Aligning EV charging with low-emission hours directly lowers transport-related electricity 

emissions and reduces renewable curtailment. Peak shaving further decreases technical 

losses and the need for carbon-intensive peaking generation. The framework’s focus on 

uncertainty quantification supports robust operational decisions under volatility, sustaining 

emissions reductions across seasons and changing fleet compositions. 

Real-world impact depends on the cleanliness of the marginal grid mix, the accuracy and 

calibration of forecasts, user participation rates, and reliable communications. Ethical and 

operational safeguards, privacy-preserving data handling, transparent model validation, and 

battery-health-aware scheduling, are integral to ensuring that environmental benefits are 

achieved without compromising user trust or asset longevity. 

In sum, by equipping EV aggregators with credible forecasting and operational scheduling 

capability, this thesis provides a practical pathway to cleaner energy use, smarter networks, 

more livable cities, and measurable progress toward climate goals. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL 

 

AI FOR DEMAND FORECASTING 

17 

Chapter 2.  AI FOR DEMAND FORECASTING 

Accurate demand forecasting is a prerequisite for economically and operationally viable 

participation of EV aggregators in energy and ancillary service markets. Unlike traditional 

load, an aggregator’s charging demand is highly stochastic and price-responsive, shaped by 

heterogeneous driver behavior, spatial dispersion of charging points, weather and calendar 

effects, fleet composition, and control policies such as smart charging. Forecasts are required 

across multiple horizons very short-term (minutes to hours), intraday, and day-ahead with 

granular temporal resolution to inform energy procurement, reserve scheduling, and real-

time balancing. In this context, probabilistic forecasting (prediction intervals or quantiles) is 

often more useful than point forecasts because market bids and risk management depend on 

the distribution of possible loads rather than a single expected value (Hong & Fan, 2016; 

Hyndman & Athanasopoulos, 2021). 

2.1 TIME-SERIES FORECASTING METHODS 

EV-aggregator load exhibits strong autocorrelation, recurring intra-day and weekly 

seasonality (like commuting patterns), calendar effects (weekends/holidays), and gradual 

trends as fleet size evolves. Time-series models explicitly exploit these temporal regularities 

and are well suited for short and medium term horizons from minutes to day-ahead. When 

market bidding requires risk-aware decisions, probabilistic forecasts (prediction intervals or 

quantiles) are preferable to point forecasts (2016; 2021). 

2.1.1 ARIMA / ARIMAX 

Autoregressive integrated moving-average models remain a strong baseline whenever the 

series can be rendered stationary by differencing. After differencing the series d times, an 

ARIMA(p,d,q) assumes the transformed process is governed by a joint autoregressive 

moving-average structure: 
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𝜑(𝐵)(1 −  𝐵)𝑑𝑦𝑡 =  𝜃(𝐵)𝜀𝑡 

where B is the backshift operator, ϕ(⋅) and θ(⋅) are polynomials of orders p and q, and the 

residual (𝜀𝑡) has a distribution of N(0,σ2) (Box, Jenkins, Reinsel, & Ljung, 2015). When 

external drivers such as temperature, retail price signals, or operator-announced charging 

events materially affect demand, an ARIMAX specification augments the conditional mean 

with exogenous regressors: 

𝛷(𝐵𝑠)𝜑(𝐵)(1 −  𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 =  𝛽𝑇𝑥𝑡 +  𝛩(𝐵𝑠)𝜃(𝐵)𝜀𝑡 

In practice, these models are attractive because they are transparent, quick to re-estimate as 

fresh observations arrive, and yield closed-form prediction intervals under Gaussian errors. 

Their limitations are equally well understood, differencing must achieve stationarity, the 

linear form can underfit nonlinear responses, and performance deteriorates when several 

strong seasonalities coexist unless these are explicitly encoded (Box, Jenkins, Reinsel, & 

Ljung, 2015; Hyndman & Athanasopoulos, 2021). 

2.1.2 SARIMA / SARIMAX 

Seasonal ARIMA extends the ARIMA family by multiplying a nonseasonal component with 

a seasonal component tuned to a dominant period s (e.g., 24 hours or 168 hours): 

𝛷(𝐵𝑠)𝜑(𝐵)(1 −  𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 =  𝛩(𝐵𝑠)𝜃(𝐵)𝜀𝑡 

with seasonal order (P,D,Q)s. Incorporating exogenous predictors yields SARIMAX. For 

EV-aggregator operations, these models are often effective for day-ahead planning when 

daily or weekly cycles dominate a single timescale. A key caveat is that the classical 

multiplicative structure targets one seasonal period at a time, where intra-day and weekly 

cycles coexist at sub-hourly resolution, methods that represent multiple seasonalities within 

a single framework, such as TBATS, or decompositions with flexible seasonal terms may be 

preferable (2021). 
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2.1.3 PROPHET (META/FACEBOOK) 

Prophet operationalizes an additive decomposition with a trend term, one or more seasonal 

terms, and calendar effects, while automating changepoint detection in the trend: 

𝑦(𝑡) =  𝑔(𝑡) +  𝑠(𝑡) +  ℎ(𝑡) +  𝜀(𝑡) 

Here, g(t) is a piecewise linear or logistic trend with a sparse set of estimated changepoints, 

s(t) aggregates user-specified seasonalities represented by Fourier series, naturally 

supporting multiple seasonal periods and h(t) encodes holiday or event effects and other 

regressors (Taylor & Letham, 2015). The approach is appealing as a rapidly deployable 

baseline: it is comparatively robust to missing values and outliers, it simplifies the inclusion 

of several seasonalities and calendar effects, and it trains quickly. Its main constraints arise 

when the autocorrelation structure is complex beyond additive components, in which case 

residual dependence may persist and interval calibration can depend sensitively on prior 

settings and distributional assumptions. 

2.1.4 HYBRID ARIMA–LSTM MODELS 

When the load process displays both linear dependence and nonlinear responses, for example 

threshold-like reactions to price spikes or aggregator control signals, hybrid strategies can 

combine complementary strengths. A common design first fits an ARIMA/SARIMA to 

capture linear dynamics and obtains residuals 𝑒̂t. A recurrent neural network, typically an 

LSTM, is then trained on {𝑒̂t} (optionally augmented with exogenous inputs) to learn 

nonlinear structure not explained by the linear model. Forecasts are combined additively: 

ŷ{𝑡+ℎ} =  ŷ{𝑡+ℎ}
{𝐴𝑅𝐼𝑀𝐴}

+  𝑟̂{𝑡+ℎ}
{𝐿𝑆𝑇𝑀}

 

This architecture preserves an interpretable linear backbone while allowing flexible function 

approximation on the remainder. The trade-offs are practical: training and tuning costs rise, 

the risk of overfitting increases when historical data are limited or nonstationary, and 

rigorous cross-validation with appropriate regularization becomes essential. Nevertheless, 

for high-frequency EV-aggregator demand influenced by policy, price, or weather in 
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nonlinear ways, such hybrids frequently yield accuracy gains that translate into more 

reliable, risk-aware bids. 

2.2 REINFORCEMENT LEARNING METHODS FOR EV AGGREGATOR 

BIDDING 

Reinforcement Learning (RL) is a branch of machine learning concerned with sequential 

decision-making, where an agent learns to interact with an environment in order to maximize 

cumulative rewards (Sutton & Barto, 2018). Unlike supervised learning, which relies on 

labeled datasets, RL operates on trial-and-error mechanisms. Agents iteratively observe 

states, select actions, and receive feedback in the form of rewards or penalties, progressively 

refining their policies. 

The foundations of RL are rooted in behavioral psychology, particularly operant 

conditioning, where learning emerges from interaction and reinforcement. In computational 

terms, RL is typically modeled as a Markov Decision Process (MDP), defined by a tuple 

(S,A,P,R,γ), where: 

• S represents the set of states, 

• A the set of actions, 

• P the transition probabilities, 

• R the reward function, and 

• γ the discount factor for future rewards. 

The ultimate objective is to determine an optimal policy π*, mapping states to actions, which 

maximizes the expected discounted return: 

𝐺𝑡 =  ∑(𝛾𝑘𝑅𝑡+𝑘+1)

∞

𝑘=0

 

Where Gt is the return at time t. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL 

 

AI FOR DEMAND FORECASTING 

21 

RL is particularly suitable for problems with high uncertainty, delayed rewards, and dynamic 

environments, making it highly relevant for energy systems, electric vehicle (EV) 

aggregation, and service-market bidding strategies. 

2.2.1 DEEP Q-NETWORKS (DQN) 

DQN is an extension of the classical Q-learning algorithm, introduced by (Mnih, 

Kavukcuoglu, & Silver, 2015), where a deep neural network approximates the action-value 

function Q(s,a). Classical Q-learning struggles in high-dimensional or continuous state 

spaces because it requires a table representation of all state–action pairs. DQN overcomes 

this by employing deep learning to approximate Q, allowing it to scale to complex 

environments. 

The key mechanism involves using experience replay and target networks to stabilize 

training. Experience replay stores transitions (s,a,r,s′) in a buffer, which are later sampled 

randomly to break correlations between successive observations. Target networks, updated 

less frequently than the main network, provide stable reference values for training. 

DQN succeeds because deep networks generalize across large state spaces, and the use of 

stabilization techniques prevents divergence during training. This allows agents to learn 

effective policies in environments where tabular methods are infeasible. 

DQN is compelling when actions are discrete and observations are high-dimensional. Its 

implementation is comparatively straightforward, and it has demonstrated strong empirical 

performance on diverse benchmarks. However, the algorithm can be sample-hungry, 

particularly in environments with sparse rewards or large action branching factors. 

Overestimation bias in the max operator may degrade learning stability, variants such as 

Double DQN address this at the cost of additional bookkeeping. Moreover, extending DQN 

to continuous control requires auxiliary mechanisms like discretization or actor–critic 

adaptations, which can erode its simplicity. For EV aggregation, vanilla DQN is attractive 

for stylized decision layers with discrete bids or tariff choices, but it becomes less convenient 

when fine-grained power set-points or continuous price-responsive actions are central. 
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2.2.2 PROXIMAL POLICY OPTIMIZATION (PPO) 

Proximal Policy Optimization (PPO) is a first-order policy-gradient method designed to 

combine the reliability of trust-region ideas with practical scalability (Schulman, Wolski, 

Dhariwal, Radford, & Klimov, 2017). Instead of solving a constrained optimization as in 

TRPO, PPO maximizes a clipped surrogate objective, 

𝐿(𝑐𝑙𝑖𝑝)(𝜃) =  𝐸 [min ( 𝑟𝑡(𝜃)̂𝐴𝑡, 𝑐𝑙𝑖𝑝( 𝑟𝑡(𝜃), 1 −  𝜖, 1 +  𝜖)̂ 𝐴𝑡)] 

𝑟𝑡(𝜃) =  
𝜋𝜃(𝑎_𝑡 | 𝑠_𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎_𝑡 | 𝑠_𝑡)

 

Where 𝑟𝑡(𝜃) is the probability ratio and At an advantage estimate, typically from generalized 

advantage estimation. The clipping term suppresses excessively large policy updates that 

would otherwise lead to performance collapse, yielding a monotonic-improvement heuristic 

in practice. PPO is commonly implemented with an actor–critic architecture, where a value 

network reduces gradient variance and provides a baseline for At. 

PPO’s success lies in controlling the bias–variance trade-off of policy optimization. By 

constraining updates implicitly through the clipped ratio, it maintains a “trust region” 

without the computational expense of second-order constraints. Mini-batch stochastic 

optimization and multiple epochs over collected trajectories improve sample usage relative 

to naive REINFORCE, while the critic stabilizes learning by providing lower-variance 

advantage signals. The method scales gracefully to continuous action spaces via Gaussian 

policies, making it well suited for control tasks that require smooth actuation. 

In applied settings, PPO is valued for its robustness across domains and relatively forgiving 

hyperparameters compared with earlier policy-gradient algorithms. It accommodates both 

discrete and continuous actions, integrates naturally with recurrent or attention-based 

encoders for partial observability, and tends to produce stable learning curves. These benefits 

come with two caveats. First, performance remains sensitive to the choice of clipping 

parameter, learning rate, and advantage normalization, poor choices can silently under-
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update the policy or, conversely, erode the proximal constraint. Second, PPO’s on-policy 

nature increases data requirements relative to off-policy actor–critic methods, especially 

when environment interaction is expensive. In EV aggregation, PPO is a strong candidate 

when the action space is continuous (like power set-points or continuous bidding quantities) 

and when stability under changing market regimes is paramount, provided that trajectory 

data are sufficiently abundant either from high-fidelity simulators or carefully instrumented 

field trials. 

2.2.3 MULTI-AGENT REINFORCEMENT LEARNING (MARL) 

Multi-Agent Reinforcement Learning generalizes RL to systems with multiple decision-

makers whose interactions shape the dynamics and rewards. A common formalism is the 

decentralized partially observable MDP (Dec-POMDP), where each agent i receives private 

observations, selects actions under partial information, and contributes to joint rewards. A 

pragmatic and influential paradigm is centralized training with decentralized execution 

(CTDE): during training, agents (or a centralized critic) may access global state and other 

agents’ actions to facilitate credit assignment and stabilize learning at execution time, each 

agent acts using only its local observation and its learned policy. 

Algorithmic families include independent learners, each agent learns as if others were part 

of the environment, value-decomposition methods that factorize a joint action-value function 

into per-agent terms to enable scalable credit assignment, and centralized critics (such as 

actor–critic schemes where the critic conditions on joint information). Communication-

enhanced policies and opponent-modeling are additional techniques for cooperative or 

competitive settings. 

MARL is effective when the task’s structure is inherently distributed and coordination is 

essential. In EV aggregation, vehicles, chargers, and the aggregator can be framed as 

interacting agents whose local constraints (state of charge, mobility, feeder limits) and 

economic objectives (market revenues, penalties) must be reconciled. CTDE allows learning 

global coordination strategies respecting network and market couplings while preserving 
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decentralized implementability in the field, where communication may be limited or latency 

constrained. 

The principal advantage of MARL is its fidelity to multi-actor realities: it captures strategic 

interactions, supports cooperative load-shaping, and can internalize network externalities 

that single-agent formulations must approximate. This expressiveness enables policies that 

are resilient to local perturbations and that exploit heterogeneity across agents, for instance 

by prioritizing flexible EVs when system conditions tighten. Against these benefits stand 

several challenges. From each agent’s viewpoint, simultaneous learning by others induces 

non-stationarity, which can destabilize value estimation and impede convergence. Credit 

assignment determining which agent’s action caused a change in global reward remains 

difficult at scale, even with value decomposition. Sample and computing demands can be 

substantial, as joint action spaces grow combinatorially, careful curriculum design, 

parameter sharing, and hierarchical decompositions are often required. For EV aggregation, 

MARL is attractive when distribution-network constraints and diverse user preferences are 

central and when the control architecture must remain decentralized. Nonetheless, it 

typically requires a carefully engineered simulator and thoughtful regularization to achieve 

reliable training. 

DQN, PPO, and MARL occupy complementary positions on the RL design spectrum. DQN 

exemplifies value-based learning for discrete decisions and is appealing where action 

granularity can be coarsened without sacrificing performance like selecting among a small 

set of standardized bids or tariff responses. PPO represents a robust, implementation-friendly 

policy-gradient approach that natively handles continuous control and tends to deliver 

smooth, stable policies well matched to dispatching continuous charging power and shaping 

intra-day flexibility for energy and ancillary-service markets. MARL extends either value-

based or policy-gradient cores to settings with many interacting agents, it is the natural 

choice when coordination among heterogeneous EVs, chargers, and feeders is integral to the 

problem definition, such as feeder-aware reserve provision or distribution-level congestion 

management coupled to market bidding. 
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In practice, a layered architecture can be effective: MARL or hierarchical MARL governs 

local coordination under network and mobility constraints, PPO optimizes continuous 

bidding and scheduling at the aggregator level given forecasts and risk preferences, and a 

DQN-like module maps discrete market states (e.g., scarcity conditions, price caps) to 

tactical overrides. Such hybridization leverages each method’s strengths while mitigating 

their individual weaknesses. 

Algorithm Type Key Strengths Limitations Suitable 

Applications 

DQN Value-

based 

Good for discrete, high-

dimensional states; simple 

implementation 

Inefficient in 

continuous 

actions; data-

hungry 

Games, 

simplified grid 

models 

PPO Policy-

gradient 

Stable, robust, works in 

continuous actions 

Requires tuning; 

computationally 

heavier 

Robotics, 

energy 

management, 

EV scheduling 

MARL Multi-

agent 

Captures interactions 

between agents; models 

cooperation/competition 

Training 

instability, 

scalability issues 

EV 

aggregation, 

traffic control, 

smart grids 

Table 1 Reinforcement Learning Types Comparison 

2.3 FUZZY LOGIC & EXPERT SYSTEMS 

Fuzzy logic and expert systems emerged to address a limitation of classical, binary logic in 

representing human knowledge and reasoning under uncertainty. In many engineering and 

decision-making contexts particularly those involving linguistic rules, vague thresholds, 
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heterogeneous data quality, or incomplete measurements crisp true/false propositions and 

sharp boundaries are ill-suited to capture the gradual, graded structure of human concepts 

(Klir & Yuan, 1995). Fuzzy logic introduces degrees of membership to model such 

gradualness: rather than assigning an element strictly to a set, it specifies a membership 

function (x)∈[0,1] that quantifies how strongly x belongs to the fuzzy set A. Building on this 

representation, fuzzy inference enables the manipulation of linguistic rules (if charging 

demand is high and price is low, then charge aggressively) with mathematically rigorous 

operators that generalize conjunction, disjunction, and implication (Ross, 2010). 

Expert systems, in parallel, arose from the desire to encode specialist knowledge in rule-

based programs that explain their conclusions. Classical expert systems use crisp predicates 

and logical inference (like forward or backward chaining). Fuzzy expert systems extend that 

paradigm by allowing rules whose antecedents and consequents are fuzzy propositions and 

by propagating partial truth values through inference. This fusion is especially compelling 

in energy applications where measurements are uncertain, context is dynamic, and 

meaningful heuristics are naturally expressed in linguistic form. In the context of this thesis, 

fuzzy systems provide a principled way to embed expert heuristics about mobility patterns, 

state-of-charge priorities, and tariff regimes, they also support data-driven adaptation when 

combined with learning methods. 

2.3.1 FUZZY INFERENCE SYSTEMS (FIS) 

The modern FIS traces to the first fuzzy controller constructed by (Mamdani & Assilian, 

1975), which demonstrated that control rules stated by experts in natural language could 

drive real processes if encoded with fuzzy sets and inference. Two major families 

subsequently crystallized. Mamdani-type systems treat both antecedents and consequents as 

fuzzy sets, producing a fuzzy output that is “defuzzified”. Takagi–Sugeno (TS) systems use 

fuzzy antecedents but crisp, typically affine, consequents of the form 𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖𝑖  

(Takagi & Sugeno, 1985). In both families, the computational pipeline comprises 

fuzzification of inputs, rule evaluation, aggregation across rules, and output synthesis. 
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FIS operate as universal function approximators under mild conditions, leveraging 

overlapping linguistic partitions and local rules to reconstruct complex nonlinear mappings. 

Intuitively, each rule encodes expert knowledge about a region of the input space, and the 

degree to which the current input matches that region determines the rule’s activation. 

Aggregating the contributions of several partially active rules yields smooth, context-

dependent outputs. Mamdani systems excel when interpretability is paramount because their 

consequents are themselves linguistic terms. TS systems trade some linguistic transparency 

for computational efficiency and convenient optimization properties, as their crisp 

consequents support straightforward least-squares estimation of local models and efficient 

real-time evaluation. 

Knowledge-driven design starts from domain expertise: define linguistic variables (time-of-

day, state-of-charge, real-time price…), craft membership functions to capture meaningful 

regimes, like peak hours or low price, and articulate rules consistent with operational policy. 

Data-driven tuning then adjusts membership function parameters and rule weights to reduce 

prediction or control error. For TS models, identification often uses clustering (like 

subtractive or fuzzy c-means) to propose rule antecedents and local linear regression to 

estimate consequents, for Mamdani systems, gradient-based or evolutionary strategies can 

shape membership parameters (Ross, 2010). 

FIS offer a rare combination of interpretability and nonlinearity. They can encode qualitative 

expertise in a form auditable by stakeholders, and their graded reasoning naturally 

accommodates noisy sensors and incomplete information. Compared with many black-box 

models, they provide transparent rationales, rule activations and linguistic labels, that 

support explainable decision making in regulated energy settings. In practical deployments, 

TS systems achieve low latency because inference reduces to evaluating a small number of 

basic functions and affine consequents. 

These advantages come with trade-offs. Hand-crafted rule bases can grow quickly with the 

number of inputs, leading to a combinatorial “rule explosion” that complicates maintenance 

and may erode interpretability. Parameter tuning is nontrivial when many overlapping 
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membership functions interact, and without careful validation or regularization, overfitting 

can arise especially when rules are adapted to limited data. Furthermore, although FIS can 

approximate complex dynamics, their extrapolation beyond the range of training or expert 

knowledge is not guaranteed, and designing robust membership partitions in high-

dimensional spaces remains a challenge (Klir & Yuan, 1995; Ross, 2010). 

For EV aggregators, FIS enable the explicit encoding of heuristics that experts use daily: for 

example, if it is a weekday evening and public chargers near workplaces are saturated, 

expected charging demand at home hubs is high, or if real-time prices are low and state-of-

charge is below a mobility threshold, prioritize charging despite moderate feeder loading. A 

Mamdani FIS can generate qualitative risk scores, like charging urgency, while a TS FIS can 

map inputs such as time-of-day, weather, mobility patterns, and tariff signals to continuous 

forecasts of charging demand or to bids in reserve markets. Because rule activations can be 

inspected, operators may trace why a specific forecast or bid was produced, improving trust 

and facilitating compliance reviews. 

2.3.2 NEURO-FUZZY MODELS 

Neuro-fuzzy systems integrate fuzzy inference with neural-network learning to achieve 

adaptive, data-driven tuning while retaining a rule-based structure. The canonical 

architecture is ANFIS (Adaptive-Network-Based Fuzzy Inference System), introduced by 

(Jang, 1993). ANFIS realizes a first-order TS FIS as a layered network: layer 1 parameterizes 

input membership functions; layer 2 computes rule firing strengths; layer 3 normalizes these 

strengths; layer 4 evaluates rule consequents (affine functions); and layer 5 aggregates 

outputs. This representation enables gradient-based learning of premise (membership) 

parameters and least-squares updates of consequent coefficients via a hybrid algorithm that 

alternates between the two steps. 

The core rationale is to combine the universal approximation and interpretability of fuzzy 

rules with the powerful optimization machinery of neural networks. Membership functions 

serve as adaptive basis functions that carve the input space into soft regions, local linear 

consequents provide low-bias approximations within each region. Learning adjusts both the 
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location and shape of these regions and the local models to minimize prediction error. 

Because rule activations are normalized, the overall mapping is a smooth convex 

combination of local models, which lends itself to stable training and efficient inference 

(Pedrycz & Gomide, 2007). 

A central design issue is determining the number of rules. Clustering methods can initialize 

rule antecedents, after which training prunes or refines rules based on contribution to 

accuracy. Regularization of consequent parameters, like ridge penalties, and constraints on 

membership spreads help mitigate overfitting. Early stopping on a validation set and rule 

merging based on similarity can further control complexity. For nonstationary environments 

such as EV fleets whose behavior evolves with seasons or tariffs online or recursive learning 

variants update parameters as new data arrive, preserving adaptability without catastrophic 

drift. 

Neuro-fuzzy models typically deliver higher predictive accuracy than static FIS because they 

learn both structure and parameters from data. They are sample-efficient compared with deep 

neural networks of similar capacity, and the resulting rule base remains, at least partially, 

interpretable: one can still inspect linguistic antecedents and local consequents. The training 

process is relatively stable thanks to convex subproblems for consequents and smooth 

membership functions, and the final models are fast enough for real-time forecasting and 

bidding. 

However, the interpretability advantage can diminish as the number of rules increases or as 

membership functions become highly tuned to idiosyncratic patterns. Gradient-based 

adaptation may drift from the initial, semantically meaningful partitions, complicating 

human validation. Moreover, hybrid training introduces several hyperparameters (learning 

rates, regularization strengths, clustering radii) whose selection materially affects 

performance, suboptimal choices can yield overfitting or poor generalization. Finally, while 

ANFIS scales are better than hand-crafted FIS, very high-dimensional inputs can still 

provoke rule proliferation unless dimensionality-reduction or sparse rule induction is applied 

(Jang, 1993; Pedrycz & Gomide, 2007). 
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In the thesis context, neuro-fuzzy models are natural candidates for forecasting the charging 

demand of an EV aggregator across intraday horizons. Inputs may include temporal 

covariates (hour, weekday/holiday), mobility and fleet composition indicators, weather 

proxies, electricity prices, and historical charger occupancy. An ANFIS-style model can 

learn localized regimes such as commute-driven spikes or price-induced shifting and 

produce smooth, quickly computable forecasts needed for market bidding. Because the 

learned rules remain auditable linguistically (if hour is late evening and temperature is low 

then home-charging demand is high), the model’s decisions can be justified to operators and 

regulators, while its adaptive training captures evolving usage patterns. 

2.4 MACHINE LEARNING BASED APPROACHES 

Machine Learning (ML) refers to a family of computational methods that infer patterns from 

data and use those patterns to make predictions or discover structure. At its core, ML 

operationalizes statistical learning: it posits a hypothesis class (a set of candidate functions), 

selects a loss function that quantifies predictive error, and searches for the function that 

minimizes expected loss with respect to the data-generating process. Generalization, the 

ability to perform well on unseen data, arises when the hypothesis class embodies suitable 

inductive biases, the training data are representative, and optimization is regularized to 

prevent overfitting (Bishop, 2006; Hastie, Tibshirani, & Friedman, 2009). 

In the context of this thesis the principal supervised task is to predict short-term charging 

demand at various temporal granularities. These forecasts inform bidding and scheduling 

decisions under market and network constraints. Complementing this predictive task, 

unsupervised learning assists in discovering latent structure: typical charging session 

archetypes, user segments, station-level clusters, and anomalous behavior that may degrade 

forecast accuracy or violate service commitments. Together, supervised and unsupervised 

approaches form a coherent toolkit for both operational forecasting and strategic portfolio 

management. 
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2.4.1 SUPERVISED VERSUS UNSUPERVISED LEARNING 

Supervised learning addresses problems where each observation pairs inputs with a target, 

(xt,yt), and the goal is to learn a mapping f : Rp → R (regression) or f : Rp → {1,…,K} (classification) 

that minimizes an expected loss, often approximated by the empirical risk (1/

𝑛) ∑ l(𝑦𝑡, 𝑓(𝑥𝑡))𝑛
𝑡=1 . In EV demand forecasting, yt may represent aggregate charging power 

for an aggregator at time t, and xt can include calendar indicators, electricity prices, weather, 

fleet availability, mobility proxies, and lagged load features. The training objective is to 

maximize predictive accuracy while ensuring temporal robustness, which typically requires 

time-aware cross-validation, leakage prevention, and drift monitoring. 

Unsupervised learning, by contrast, operates without labeled targets. Its aim is to discover 

structure in {xt}: clusters, manifolds, or low-dimensional embeddings. In this thesis, 

clustering can reveal distinct usage patterns across depots or customer cohorts, while 

dimensionality reduction and reconstruction-based methods support anomaly detection and 

feature learning. Although unsupervised outputs are not directly evaluated by target error, 

they are invaluable for model design like creating stratified training regimes, for feature 

engineering such as cluster memberships as predictors, and for operational insights. 

The choice between supervised and unsupervised learning is determined by problem 

formulation and data availability. When reliable target labels exist and business value is tied 

to predictive accuracy, supervised learning is primary. When the goal is exploration, 

segmentation, or data quality control, unsupervised learning is complementary. In practice, 

both paradigms are often combined: unsupervised structure informs supervised models, and 

supervised residuals guide unsupervised anomaly screens. 

2.4.2 SUPERVISED LEARNING MODELS 

2.4.2.1 Linear and Polynomial Regression 

Classical linear regression assumes a linear relationship between predictors and the response, 
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𝑦𝑡̂ = β0 + ∑ β𝑗𝑥𝑡,𝑗

𝑝

𝑗=1

 

 

with parameters estimated by Ordinary Least Squares (OLS), 

min
β

∑(𝑦𝑡 − β0 − 𝑥𝑡
𝑇β)2

𝑛

𝑡=1

 

Regularized variants such as ridge and lasso add ℓ2 or ℓ1 penalties to stabilize estimates 

under multicollinearity and high-dimensionality. Polynomial regression augments xt with 

nonlinear basis functions (squared and interaction terms) to capture curvature while 

retaining linear-in-parameters estimation. 

Historically rooted in Gauss-Legendre least squares and later generalized through modern 

statistical learning theory (Hastie, Tibshirani, & Friedman, 2009), these models remain a 

robust baseline for EV load forecasting. They are computationally efficient, interpretable via 

coefficients and partial dependence, and well-suited to incorporating domain structure 

through engineered features. However, they rely on restrictive assumptions: linear or low-

degree polynomial relations, homoscedastic errors, and limited interactions unless explicitly 

modeled. When charging dynamics are highly nonlinear, driven by thresholds (tariff blocks), 

saturations (charger capacity), or unobserved heterogeneity (user schedules), linear models 

may underfit even with careful feature design. 

2.4.2.2 Random Forests (RF) 

Random Forests are ensemble learners that aggregate predictions from many decision trees 

trained on bootstrap samples, with feature subsampling at each split to decorrelate trees 

(Breiman, 2001). For regression, the forest prediction is the average across B trees, 

𝑓(𝑥) = (1/𝐵) ∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1
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where each Tb is a regression tree. The bootstrapping and random feature selection reduce 

variance relative to a single deep tree while maintaining the ability to model nonlinearities 

and interactions automatically. 

For EV demand prediction, Random Forests often perform strongly with minimal 

preprocessing: they handle mixed data types, accommodate non-additive effects, like 

interactions between weather and calendar, and provide measures of variable importance. 

Out-of-bag (OOB) error offers efficient internal validation, and quantile variants yield 

probabilistic forecasts. Their limitations stem from piecewise-constant fits that struggle to 

extrapolate beyond observed ranges and from reduced interpretability at the ensemble level. 

In very large datasets or with many trees, training and inference may also become 

computationally heavy, although parallelization alleviates this burden. 

2.4.2.3 Gradient Boosting Machines (GBMs) 

Gradient Boosting constructs an additive model by sequentially fitting weak learners 

(typically shallow trees) to the negative gradients of the loss function (Friedman, 2001). 

After M boosting rounds, 

𝑓𝑀(𝑥) = ∑ γ𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

 

where each hm is a tree fitted to current residuals, and γm is a learning-rate-scaled step size. 

Modern implementations, like XGBoost, LightGBM or CatBoost, introduce system-level 

and algorithmic optimizations that deliver state-of-the-art accuracy on tabular data. 

In EV aggregation, GBMs are attractive for capturing complex, nonlinear dependencies 

among exogenous drivers (prices, temperature, calendar effects, mobility signals) and lags 

of the target series. With careful regularization such as, shrinkage, subsampling or tree depth 

constraints, they balance bias and variance and can produce calibrated probabilistic outputs 

via quantile or distributional loss functions. Their drawbacks include a sensitivity to 

hyperparameters, potential overfitting when boosting too many rounds without early 

stopping, and limited extrapolation beyond the convex hull of the training data. Model 

explainability requires post hoc tools, which, while powerful, add analytical overhead. 
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2.4.2.4 Neural Networks (ANNs and Deep Learning) 

Artificial Neural Networks approximate functions by composing linear transformations with 

nonlinear activations. A feed-forward network with L hidden layers computes 

𝑎(𝑙) = σ(𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)) 

with a(0) = x, and learns parameters {W(l),b(l)} by minimizing a loss function using 

backpropagation and stochastic gradient descent (Goodfellow, Bengio, & Courville, 2016). 

Deep learning extends this paradigm with many layers and specialized architectures. For 

temporal EV demand, recurrent networks (LSTM/GRU), temporal convolutional networks 

(TCN), and attention-based models can represent long-range temporal dependencies and 

regime shifts. 

Neural networks excel when relationships are highly nonlinear, interactions are ubiquitous, 

and rich auxiliary data are available. They implicitly learn features, reducing reliance on 

manual engineering, and can produce multi-horizon forecasts in a single forward pass. Their 

disadvantages are well known, they require substantial data and careful regularization, 

training can be compute-intensive, and interpretability is limited without dedicated 

explainability methods. Sensitivity to dataset shift is also a concern, concept drift in charging 

behavior can degrade performance unless models are updated or adapted. 

2.4.3 UNSUPERVISED LEARNING MODELS 

2.4.3.1 Clustering: K-Means, DBSCAN, and Hierarchical Clustering 

Clustering aims to partition observations into groups that are internally coherent and 

externally distinct. K-Means seeks K centroids {μk} minimizing within-cluster sum of 

squares, 

min
{𝐶𝑘},{μ𝑘}

∑ ∑ ||𝑥𝑖 − μ𝑘||
2

𝑥𝑖∈𝐶𝑘

𝐾

𝑘=1
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usually optimized by Lloyd’s iterative assignment-and-update procedure (Lloyd, 1982). It is 

efficient and effective for roughly spherical, similarly sized clusters after appropriate scaling. 

In EV analytics, K-Means can reveal canonical daily load shapes or typical charging-session 

profiles that later serve as features or priors in forecasting. 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) defines clusters as 

regions of high point density separated by sparse regions (Ester, Kriegel, Sander, & Xu, 

1996). With parameters ε (neighborhood radius) and minPts (minimum neighbors), it 

discovers arbitrarily shaped clusters and identifies outliers as noise. This makes DBSCAN 

suitable for identifying unusual charging events, rare station behaviors, or spatial-temporal 

hotspots without pre-specifying K. 

Hierarchical clustering builds a tree (dendrogram) by iteratively merging (agglomerative) or 

splitting clusters according to a linkage criterion (single, complete, average or Ward) 

(Murtagh & Contreras, 2012). Its multiscale perspective is valuable for EV portfolios 

spanning heterogeneous sites, analysts can cut the dendrogram at different levels to obtain 

coarse or fine segmentations, and the tree structure aids interpretability. Through these 

methods, careful preprocessing (scaling, transformation, and choice of distance) materially 

influences results. Cluster stability checks and external validation are recommended before 

downstream use. 

2.4.3.2 Autoencoders 

Autoencoders learn compact representations by training an encoder fθ and decoder gϕ to 

minimize reconstruction error, 

min
θ,ϕ

∑ |

𝑛

𝑖=1

𝑥𝑖 − 𝑔ϕ(𝑓θ(𝑥𝑖))|2 

Undercomplete architectures, bottleneck latent dimension smaller than input, or 

regularization (sparsity, denoising) force the model to capture salient structure rather than 

memorize inputs. Variational Autoencoders (VAE) introduce a probabilistic latent variable 
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with a Kullback–Leibler regularization term to encourage a well-structured latent space 

(Kingma & Welling, 2014). 

In EV aggregation, autoencoders can denoise metering data, embed high-dimensional 

temporal features into compact vectors for downstream forecasting, and support anomaly 

detection by flagging observations with large reconstruction errors. Their strengths lie in 

flexibility and scalability to complex, nonlinear manifolds. Limitations include sensitivity to 

architectural choices and training objectives, interpretability is indirect, and reconstructions 

may be overly smooth, potentially masking sharp events unless the loss and architecture are 

tailored to the application. 

2.5 AI-POWERED SOFTWARE TOOLS FOR DEMAND FORECASTING 

This section reviews the principal software tools used to operationalize AI for short-term 

and day-ahead demand forecasting, focusing on their modeling scope, practical workflows, 

and suitability for an EV-aggregator context. The emphasis is on capabilities that matter for 

aggregator portfolios: handling strong seasonality (hour-of-day/day-of-week), incorporating 

exogenous drivers (prices, weather, mobility), scaling to many chargers, and deploying 

forecasts reliably into market-bidding pipelines. 

2.5.1 TENSORFLOW AND PYTORCH (DEEP LEARNING FRAMEWORKS) 

What they are and why they work. TensorFlow and PyTorch are general-purpose deep 

learning frameworks that provide automatic differentiation, GPU/TPU acceleration, and 

high-level APIs to implement sequence models (RNN/LSTM/GRU), temporal convolutional 

networks (TCN), transformers, and hybrids. For forecasting, they enable end-to-end learning 

of nonlinear temporal dependencies and interactions with exogenous signals, which is 

advantageous when EV charging demand exhibits regime shifts, complex calendar effects, 

or weather sensitivities that are hard to encode in linear models. Official tutorials illustrate 

time-series workflows (windowing, multi-step forecasts) and model training patterns 

(TensorFlow Team, 2025). 
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Their main advantages are modeling flexibility, hardware acceleration, and rich ecosystems, 

which facilitate large-scale training and real-time inference. Limitations include higher 

engineering overhead (feature pipelines, hyperparameter tuning, and monitoring) and the 

need for careful regularization to avoid overfitting when training data are limited at the 

charger level. 

2.5.2 SCIKIT-LEARN (CLASSICAL ML TOOLKIT) 

Scikit-learn offers a mature suite of classical ML estimators (regularized linear models, tree 

ensembles, gradient boosting) plus preprocessing and model-selection utilities. Although it 

does not provide native forecasting estimators, lagged-feature formulations like 

autoregression via feature engineering, allow one to use robust tabular learners as strong 

baselines. Its consistent API for pipelines and cross-validation makes it ideal for rapid 

experimentation and interpretable benchmarks. 

When station-level histories are short or when interpretability is paramount, tree-based 

models with engineered lags and calendar features offer competitive accuracy with low 

operational complexity (Scikit-Learn Developers, 2025). 

2.5.3 STATSMODELS (STATISTICAL FORECASTING) 

Statsmodels implements classical time-series models ARIMA/SARIMA/SARIMAX for 

seasonal dynamics with exogenous regressors, exponential smoothing/ETS for trend-

seasonality decomposition, and VAR/VECM for multivariate dependencies. These models 

embody well-understood stochastic assumptions and likelihood-based estimation, enabling 

inference (confidence intervals, diagnostics) valuable for operators and regulators 

(Statsmodels Developers, 2025). 

Strengths include interpretability, principled uncertainty quantification, and strong 

performance on stable seasonal patterns. Limitations include reduced flexibility for 

nonlinear effects, challenges with large cross-sectional hierarchies, and sensitivity to 

structural breaks which is common when fleet composition or charging policies change. 
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2.5.4 H2O.AI (AUTOML FOR FORECASTING) 

H2O AutoML (open-source) and H2O Driverless AI (commercial) automate feature 

engineering, model selection, and ensembling for tabular/temporal data. Driverless AI 

includes dedicated time-series workflows (rolling-window training, time-aware cross-

validation, test-time augmentation), yielding strong baselines with minimal hand-tuning and 

built-in explanations. 

AutoML is effective for rapidly establishing portfolio-wide baselines and for sites with 

heterogeneous data quality. It reduces manual iteration while providing reproducible 

pipelines suitable for MLOps integration (H2O.ai, 2025). 

2.5.5 CLOUD PLATFORMS: AZURE ML, GOOGLE VERTEX AI, AND AWS 

SAGEMAKER 

Managed cloud platforms provide experiment tracking, scalable training, AutoML for time 

series, reproducible pipelines, and online/batch serving. Azure Machine Learning includes 

time-series-specific featurization, model sweeping, and evaluation components. Google’s 

Vertex AI offers a forecasting workflow that integrates dataset preparation, training, 

evaluation, and deployment with MLOps primitives. AWS SageMaker supplies built-in 

forecasting algorithms such as DeepAR and CNN-based quantile regression, and it integrates 

with Amazon Forecast for turnkey pipelines. 

For production bidding, these platforms facilitate secure data ingestion (telemetry, prices, 

and weather), automated retraining, A/B testing across sites, and low-latency inference 

endpoints. Trade-offs include cost management, data-sovereignty constraints, and potential 

vendor lock-in (Microsoft, 2025; Google Cloud, 2025; Amazon Web Services, 2025). 

2.6 CHALLENGES IN AI-BASED DEMAND FORECASTING 

Accurate forecasting of electric-vehicle (EV) charging demand is essential for aggregators 

to construct profitable and reliable bids in energy and ancillary-service markets. Three 
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intertwined challenges data availability and quality, uncertainty in charging behavior, and 

scalability, constrain the performance and deployment of state-of-the-art AI models. 

2.6.1 DATA AVAILABILITY AND QUALITY 

Effective AI models require granular, well-labeled, and representative datasets. In EV 

aggregation, inputs span charging-session telemetry, site and feeder constraints, fleet 

attributes, prices/tariffs, and exogenous variables such as weather and events. In practice, 

these data are fragmented across stakeholders and systems, with heterogeneous schemas and 

sampling intervals, frequent missingness, and misaligned timestamps, all of which degrade 

feature engineering, bias models toward data-rich sites, and hinder transferability across 

regions (International Energy Agency, 2024). Privacy and commercial-sensitivity 

constraints further limit data access, underscoring the need for privacy-preserving data 

governance and standardized data contracts to support robust preprocessing, temporal 

alignment, and bias-aware validation. 

2.6.2 UNCERTAINTY IN EV CHARGING BEHAVIOR 

Aggregator-level demand exhibits pronounced variability driven by heterogeneous mobility 

patterns, state-of-charge on arrival, tariff design, real-time prices, weather, holidays, and the 

evolving spatial distribution of chargers. High-resolution, bottom-up analyses show that both 

the magnitude and timing of EV loads can shift substantially across locations and seasons, 

with local peaks that matter for distribution operations and market. Consequently, forecast 

products should quantify uncertainty, not just provide point estimates, through probabilistic 

methods and be evaluated with proper scoring rules and calibration diagnostics common in 

the probabilistic load-forecasting literature (Hong & Fan, 2016). 

A further complication is non-stationarity (concept drift): policy changes, adoption growth, 

infrastructure expansion, and user responses to prices alter the data-generating process over 

time. Models must therefore adapt online or via periodic updates, with drift detection and 

hierarchical reconciliation to maintain accuracy across portfolio levels (Xiang, Zhen, Peng, 

Zhang, & Pu, 2023). 
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2.6.3 SCALABILITY FOR REAL-TIME, PORTFOLIO-SCALE OPERATIONS 

Production forecasting is a streaming, near-real-time task: features and predictions must 

update at minute-to-hour horizons across thousands of connectors and multiple market 

zones, under strict latency budgets. This creates three scaling pressures. First, computational 

scaling: multivariate spatiotemporal models can be costly to retrain frequently, adaptive 

learners that detect and accommodate drift mitigate retraining overhead while sustaining 

accuracy (2023). Second, data-pipeline scaling: feature engineering must handle late-

arriving data and schema evolution without information leakage, favoring event-time 

processing, feature stores, and idempotent backfills (International Energy Agency, 2024). 

Third, organizational scaling: as infrastructure and fleets expand, the number of forecasted 

series and the pace of change rise, necessitating automated monitoring (data/feature/forecast 

drift), alerting, and safe rollbacks integrated into MLOps. 
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Chapter 3.  STATE OF THE ART 

Short‑term electricity demand forecasting (STLF) underpins secure system operation, 

congestion management, and market bidding. Over the last decade, tree‑based ensemble 

methods especially Random Forests (RF) have emerged as robust competitors to classical 

time‑series models and to more complex neural architectures. This chapter reviews the 

evidence, progressing from early comparisons against statistical baselines to broad, 

cross‑country studies versus modern machine‑learning (ML) and deep‑learning (DL) 

approaches, and finally to applications directly relevant to EV charging and, by extension, 

EV‑aggregator demand forecasting. 

3.1 WHY RANDOM FOREST IS A STRONG BASELINE FOR LOAD 

FORECASTING 

RF is an ensemble of decision trees built on bootstrap samples with random feature 

subsetting at each split, averaging across many decorrelated trees reduces variance and yields 

robust generalization with minimal tuning (typically the number of trees and the number of 

features per split) (Breiman, 2001). These properties make RF attractive for electric‑load and 

EV‑charging forecasting, where nonlinearities, interactions among weather, calendar, and 

behavioral variables, and distributional shifts are common. RF natively handles mixed 

predictors, is resilient to outliers, and offers diagnostics such as permutation‑based variable 

importance that support interpretability, valuable in market and operations settings where 

feature attributions inform decisions. 

Early comparative evidence found that RF achieved STLF accuracy on par with 

feed‑forward neural networks and clearly superior to ARIMA and Holt–Winters exponential 

smoothing, while being easier to tune and less prone to overfitting due to variance reduction 

from tree averaging. This result, together with the method’s limited hyperparameter burden, 

helped establish RF as a practical baseline for day‑ahead system‑load prediction. 
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3.2 EVIDENCE FROM POWER‑SYSTEM SHORT‑TERM LOAD 

FORECASTING 

 Building on early results, a comprehensive evaluation by (Dudek, 2022) compared local 

versus global RF training and multiple input encodings across four national STLF problems 

(Poland, Great Britain, France, Germany). With careful input design that explicitly encodes 

intra‑day and intra‑week seasonal patterns and a global training regime enhanced by calendar 

features, the proposed RF delivered the lowest MAPE in three of the four countries and 

remained highly competitive in France. Pairwise Giacomini–White tests confirmed that 

many of the improvements were statistically significant. 

Two methodological insights are particularly relevant for EV‑demand contexts. First, 

encoding multiple seasonalities directly in the features simplifies the learning problem for 

nonparametric models like RF. Second, training a single global model across many days 

augmented with calendar variables improves data efficiency and generalization. Despite its 

simplicity and few hyperparameters, RF competes credibly with sophisticated DL variants 

when supplied with informative, well‑engineered inputs (Dudek, 2022). 

In sum, tree ensembles remain state‑of‑the‑art contenders for STLF: when inputs exploit 

calendar and seasonal structure, training leverages cross‑series regularities via global 

modeling and the objective is reliable accuracy with modest engineering effort, conditions 

common to EV‑aggregator operations that must scale models across many feeders or depots. 

3.3 APPLICATIONS TO EV‑RELATED DEMAND AND CHARGING 

 RF has also been evaluated specifically for EV‑charging demand. (Khan, et al., 2023) 

studied 15‑minute EV load across multiple spatial resolutions and found that RF 

outperformed a multilayer ANN at several aggregation levels, the authors emphasized the 

importance of calendar and user‑presence features at small scales, while RF’s performance 

improved with aggregation, consistent with the variance‑reduction benefits of ensembles. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL 

 

STATE OF THE ART 

43 

From an energy‑procurement and risk perspective, (Ostermann & Haug, 2024) compared 

probabilistic models for EV charging using hundreds of thousands of sessions at more than 

500 sites in Germany. Ensemble trees (Bagging, AdaBoost, RF) delivered strong point and 

quantile accuracy at higher aggregation levels (such as portfolio or TSO zones), with RF 

achieving low error and high R² alongside narrow prediction intervals, evidence that RF 

scales well and supports risk‑aware planning via quantile forecasts in operational settings. 

At single‑station and fleet level, results are mixed but informative. (Deb, Kalam, & 

Agalgaonkar, 2022) built an RF‑based framework to forecast charging demand for an 

electric‑bus fleet in Helsinki, showing effective short‑term predictions for operational 

planning. Conversely, in a day‑ahead charging‑station case study, a thorough comparison 

reported gradient‑boosted trees slightly outperforming other regressors on power 

consumption, while RF still tracked the target closely illustrating that boosted trees may 

dominate at highly granular horizons, though RF remains competitive and easier to tune 

(Amezquita, Rojas, & Arango, 2024). 

In weather‑sensitive contexts similar to EV‑charging demand, RF remains highly 

competitive while enabling post‑hoc explanation through permutation importance or SHAP. 

Empirical analyses highlight irradiance and daylight duration as dominant drivers of hourly 

consumption, aligning with operational intuition and facilitating transparent communication 

of forecast drivers to market stakeholders (Qu, Kou, & Zhang, 2025). 

3.4 STRENGTHS, LIMITATIONS, AND BEST PRACTICES FOR 

EV‑AGGREGATOR USE 

The main strengths of RF for EV and power‑system demand forecasting are robustness to 

noise and outliers, the ability to capture nonlinear interactions without bespoke feature 

transforms, scalability to large predictor sets (calendar, weather, event flags, mobility 

proxies) and modest hyperparameter sensitivity, often many trees and small leaves, the most 

consequential choice is the number of features per split. Empirically, RF excels as 

aggregation increases like station to depot to portfolio, and when calendar and seasonal 
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pattern encodings are used. It is also comparatively data‑efficient when per‑site history is 

short, a common situation for new charging assets (Breiman, 2001; Dudek, 2022; Ostermann 

& Haug, 2024). 

Limitations are equally clear. RF produces step‑wise predictions and cannot extrapolate 

beyond the convex hull of observed features, temporal dynamics are captured indirectly 

through lagged, seasonal, and calendar features rather than explicit sequence modeling. At 

very fine granularity, like single charging stations with volatile sessions, boosted trees often 

edge out RF in point accuracy, and specialized deep models can win when long sequences 

and rich exogenous context are available. Finally, native RF is a point forecaster, quantile or 

interval forecasts require adaptations, although practice shows that tree ensembles still yield 

competitive probabilistic accuracy at higher aggregation levels (Amezquita, Rojas, & 

Arango, 2024; Dudek, 2022; Ostermann & Haug, 2024). 

For an EV‑aggregator bidding framework, a strong and pragmatic setup consists of: a global 

or extended‑global RF trained across sites or depots to leverage cross‑sectional regularities, 

a feature design that encodes intra‑day and weekly seasonality, holiday effects, recent lags, 

and weather, a portfolio‑level and node‑level models to exploit aggregation benefits while 

retaining local signal and a probabilistic outputs via quantile RF or ensemble bootstrapping, 

enabling risk‑aware bids and reserve offers. RF’s interpretability supports model governance 

and market compliance by explaining forecast changes due to weather or calendar shifts 

(Dudek, 2022; Ostermann & Haug, 2024). 
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Chapter 4.  RESEARCH PROBLEM AND APPROACH 

4.1 PROBLEM STATEMENT AND USE CASE 

This thesis investigates short-term forecasting of the aggregated charging demand at an 

electric-vehicle (EV) aggregation charging station. The practical aim is to generate accurate 

day-ahead predictions of hourly energy (kWh) so that operators can plan capacity, schedule 

maintenance and load management, coordinate with counterparties, and monitor operational 

risks in advance. As EV adoption grows, the ability to anticipate the next day’s load profile 

at an hourly resolution becomes increasingly consequential for local operations and for the 

wider system, given the contribution of EV charging to net-load patterns and flexibility 

provision (International Energy Agency, 2024; Muratori, 2018). 

4.1.1 FORMAL FORECASTING TASK 

Formally, the task is defined as producing a 24-dimensional vector of point forecasts 

(𝑦𝑡+1̂, … , 𝑦𝑡+24̂) each day, where 𝑦𝑡+ℎ̂ denotes the predicted total energy demanded (kWh) 

by the aggregated station in hour t + h. The temporal granularity is hourly, and the horizon 

is day-ahead. Forecasts are issued once per day (point forecasts only) at a fixed cut-off that 

aligns with the operator’s internal planning cycle. The information set comprises historical 

aggregated load, calendar structure capturing intraday and intraweek regularities, and 

exogenous temperature signals represented through lagged transformations. The model 

therefore exploits short, daily, and weekly-scale dependence in the series while allowing 

weather-sensitive variation to be reflected in a parsimonious way. 

4.1.2 OPERATIONAL CONTEXT 

Within the station’s day-ahead planning workflow, the forecast plays several roles. First, it 

informs capacity management by indicating expected peak hours and troughs, which 

supports scheduling of controllable charging policies and preventive load-smoothing 

actions. Second, it provides a forward view to coordinate routine activities, such as 
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maintenance windows, software updates, and staffing, away from projected peaks. Third, 

the predicted profile is used as an early-warning signal: large deviations from typical patterns 

prompt diagnostic checks on data feeds, metering, or unusual user behavior. Finally, 

although this dissertation does not address bidding, the same forecast stream is readily 

consumable by downstream decision tools for energy planning in other contexts. The thesis, 

however, limits itself to the construction and validation of the forecasting component. 

4.2 MARKET RELEVANCE AND STAKEHOLDER VALUE 

Reliable day-ahead forecasts at the station-portfolio level create value across the ecosystem. 

For aggregators and charging-station operators, they reduce operational uncertainty, 

enabling better scheduling of charging policies and targeted peak reduction. Retailers and 

balance-responsible parties, where they interact with the station, benefit from improved 

predictability of load that facilitates hedging and internal risk management. Transmission 

and distribution system operators gain indirect advantages from smoother net-load 

trajectories and enhanced visibility of flexible demand, factors that contribute to secure 

system operation and more efficient planning of network resources (International Energy 

Agency, 2024; Muratori, 2018). In sum, even though this work concentrates on the 

forecasting layer, the resulting accuracy gains translate into tangible operational and system-

level benefits. 

4.3 RESEARCH QUESTIONS AND HYPOTHESES 

The study is guided by two questions. RQ1: To what extent can a Random Forest (RF) 

model, built on lagged load, calendar structure, and temperature-based exogenous signals, 

accurately forecast day-ahead hourly demand for an EV aggregation station? The 

corresponding hypothesis is that a RF model using lagged load, calendar structure, and 

temperature-based features will be able to achieve lower error than a classical statistical 

baseline (SARIMA) for day-ahead hourly load. RQ2: Which components of the information 

set contribute most to predictive performance? The expectation is that short, daily, and 
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weekly-lag features dominate, with calendar encodings and temperature lags providing 

incremental improvements during weather-sensitive periods. 

4.4 OBJECTIVES 

The scientific objective is to develop and validate a transparent, data-driven forecasting 

model for day-ahead hourly demand that demonstrates measurable improvement over a 

classical statistical benchmark. Equally important is to quantify where that improvement 

comes from by examining feature contributions and error profiles. The practical objective is 

to deliver an operationally simple pipeline that can be executed daily with modest 

computational effort, integrates external temperature information without heavy 

preprocessing, and exposes model outputs that are interpretable for practitioners responsible 

for station operations. 

4.5 METHODOLOGICAL APPROACH 

4.5.1 OVERALL PIPELINE 

The methodological pipeline proceeds from data acquisition to evaluation as a connected 

process. It begins with real-world historical charging-demand data aggregated at the 

station/portfolio level and supplemented with hourly ambient temperature as an exogenous 

regressor. From these inputs, the study constructs a feature set that encodes temporal 

dependence and regularity: lagged demand values represent short-term dynamics as well as 

daily and weekly recurrences (calendar variables capture hour-of-day, day-of-week, month, 

and weekend effects) and lagged temperature values allow weather sensitivity to enter the 

model in a stable manner. On this foundation, the primary model is a Random Forest 

regressor trained to map the engineered features to next-day hourly energy. To contextualize 

performance, a baseline SARIMA model is fitted to the same target series, following 

standard practice in short-term load forecasting. The training process is strictly chronological 

to prevent leakage, and hyperparameters for the RF are selected on a validation slice carved 

from the training period. 
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The pipeline culminates with the error metrics, forecast accuracy is assessed with three 

complementary measures: Mean Absolute Error (MAE) to quantify the typical magnitude of 

errors in the same physical units (kWh), the coefficient of determination (R2) to indicate 

variance explained relative to a mean-only benchmark, and the Normalized MAE (NMAE) 

to express error as a unitless fraction of average load, enabling scale-free comparison across 

periods or sites. 

Mean Absolute Error (MAE). Measures average absolute deviation between forecasts and 

observations (lower is better). Units: kWh. 

MAE =
1

𝑛
∑|𝑦𝑡 − 𝑦𝑡̂|

𝑛

𝑡=1

 

Coefficient of determination (R2). Proportion of variance in the observations explained by 

the forecasts relative to using the sample mean. R2 = 1 is perfect, R2 = 0 matches the mean 

predictor, and it can be negative if forecasts are worse than predicting 𝑦̅. 

𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑦𝑡̂)2𝑛

𝑡=1

∑ (𝑦𝑡 − 𝑦̅)2𝑛
𝑡=1

 

Normalized MAE (NMAE). MAE scaled by the average observed load. Unitless and often 

reported as a percentage by multiplying by 100. 

NMAE =

1
𝑛

∑ |𝑦𝑡 − 𝑦𝑡̂|𝑛
𝑡=1

1
𝑛

∑ 𝑦𝑡
𝑛
𝑡=1

 

Notation: yt is the observed load, 𝑦̅𝑡 the forecast, 𝑦̅ the sample mean of yt, and n the number 

of forecasted hours in the test set. 

4.5.2 VALIDATION DESIGN 

Model development follows a blocked chronological train/test split that mirrors deployment. 

The time series is partitioned into an initial training window and a subsequent, contiguous 
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test window, only observations up to the training end are visible during model selection. All 

hyperparameter tuning is conducted strictly within the training window, using time-ordered 

resampling to assess candidate settings without leaking future information. After selecting 

hyperparameters, the Random Forest is refit on the full training period, and forecasts are 

then generated for the entire test window, respecting the operational cut-off (one 24-hour 

vector of hourly predictions issued per day). 

To prevent leakage, every transformation is estimated on training data only and applied 

forward: lagged features are constructed using past values exclusively, any scaling or 

imputation parameters are fitted on the training window and then carried to the test window 

unchanged. Performance on the held-out test window is reported once, using MAE, R2, and 

NMAE, and the test set is never used for tuning or model selection. This design provides an 

unbiased estimate of out-of-sample accuracy under stable operating conditions. 
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Chapter 5.  DATA AND MODEL DEVELOPMENT 

The forecasting task is defined as short‑term prediction of the aggregated electric‑vehicle 

(EV) charging demand at an hourly cadence. The target variable yt is the total energy charged 

during hour t (kWh) across all active sessions in the fleet. This choice keeps the target 

consistent with the construction of the source dataset, which attributes energy to hourly 

buckets per session. The forecasting horizon is day‑ahead, h = 1,…,24 hours ahead. The 

spatial granularity is the aggregated fleet formed by all sessions and there is no 

vehicle‑to‑grid (V2G) discharging occurs in the dataset. 

5.1 DATASETS AND SOURCES 

5.1.1 AGGREGATOR TELEMETRY AND CHARGING SESSIONS 

This study employs the open dataset “Electric vehicle charging dataset with 35,000 charging 

sessions from 12 residential locations in Norway”, which documents residential charging 

behavior over the period 6 February 2018 to 5 August 2021. The release contains more than 

35,000 sessions across twelve locations in a mature EV market and was curated to support 

reproducible analyses of charging demand (Sørensen, Sartori, Lindberg, & Andresen, 2024). 

The accompanying data article explains the rationale for the release and situates it within a 

methodological effort to generate “complete” charging traces suitable for system studies. 

The data is organized as a progression from observed session logs to derived per-user 

attributes and, finally, to per-hour attributions. The starting point is a session-level table 

exported from charge-point operators that records the location and user identifier, a unique 

session identifier, the plug-in and plug-out timestamps, the total connection time, and the 

energy delivered during the session. Building on these observations, the authors estimate 

two latent technical parameters for each user, typical charging power and effective battery 

capacity, by fitting to historical behavior so that subsequent reconstructions reflect realistic 

user-specific constraints. Using those per-user parameters, each observed session is then 
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translated into an internal timeline that is consistent with the connection window and the 

empirically inferred power/capacity limits. For every session, the reconstruction yields the 

active charging time, the change in state of charge (SoC) and its starting level, the length of 

idle periods while connected, and a flag that marks sessions with negligible flexibility. In 

the final step, the reconstructed session trajectories are downscaled onto an hourly grid, 

allocating the delivered energy to the hours in which the vehicle was connected and actively 

charging, the same hourly panel also contains SoC diagnostics for each hour. 

The present analysis aggregates this per-session, per-hour panel into a single fleet-level 

hourly series, yt, representing the total energy charged in hour t. In other words, for each 

clock hour all concurrent session attributions are summed to form the target used for 

forecasting. The dataset contains charging only, vehicle-to-grid discharging does not occur 

so yt is non-negative by construction. Timestamps are retained in local Norwegian time to 

remain consistent with the source and to facilitate alignment with hourly exogenous 

variables (temperature and calendar effects) introduced later in this chapter. 

5.1.2 EXOGENOUS DATA 

Hourly 2-m air temperature observations were obtained from the national meteorological 

service via the FROST application programming interface and merged with the load series 

by timestamp. Only historical values were used, no forecasted weather products were 

incorporated. All meteorological timestamps were retained in Norwegian local time 

(CET/CEST), consistent with the load data, so that hourly alignment required no temporal 

interpolation beyond the native resolution. Temperature subsequently enters the model as an 

exogenous regressor, both contemporaneously and through short seasonal lags, reflecting its 

role as a proxy for weather-driven variation in charging behavior (Norwegian 

Meteorological Institute). 

Calendar structure was encoded through deterministic indicators that are known at prediction 

time. Specifically, the feature set includes hour-of-day, day-of-week, a weekend flag, the 

month of year, and a binary indicator for official Norwegian public holidays. These variables 
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capture recurring intra-day and weekly patterns and isolate holiday effects without 

introducing look-ahead, since the calendar is fully specified ex ante. 

5.2 DATA PREPARATION 

5.2.1 CLEANING, MISSING DATA, AND OUTLIER TREATMENT 

No missing timestamps are present after aggregation to an hourly cadence. Outliers in yt are 

screened using an interquartile‑range (IQR) rule. Sensitivity to the multiplier k in [0, 10] is 

explored (results reported in Chapter 6), and the final setting is fixed prior to model selection 

to avoid bias. 

All sources are hourly and time‑stamped in Norwegian local time (CET/CEST). Weather is 

aligned to load via an inner time join at the hour mark. Because both series are observational 

and synchronized hourly, no temporal interpolation is required. 

5.2.2 FEATURE ENGINEERING 

To capture autocorrelation and seasonality, the following features are used: 

• Lag features of the target yt: yt-1, yt-24, yt-168. 

• Rolling statistics: 24‑hour and 168‑hour rolling mean and standard deviation of yt 

(trailing windows, past‑only). 

• Weather features: air temperature at t, and lagged values at t−1 and t−24. 

• Calendar features: hour‑of‑day (0–23), day‑of‑week (0–6), weekend flag, holiday 

flag, and month. 

All engineered features are strictly constructed only from information available up to time t. 

5.2.3 LEAKAGE CHECKS 

Strict temporal joins (no look‑ahead) are enforced and all rolling windows are constructed 

in a one‑sided (past‑only) fashion. Timestamps are kept in Norwegian local time 

(CET/CEST), daylight‑saving transitions are handled by preserving the platform’s native 
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treatment of repeated/missing hours, ensuring features and target remain aligned within local 

time. 

5.3 EXPERIMENTAL DESIGN 

5.3.1 TRAIN/VALIDATION/TEST SEGMENTATION (TIME‑AWARE) 

Data is split into chronological blocks: 

• Training block: 2018‑02‑06 to 2020‑02‑05 

• Validation block: 2020‑02‑06 to 2020‑08‑05 

• Test block: 2020‑08‑06 to 2021‑08‑05 

Hyperparameters are selected once using the validation block, the test block remains 

untouched until the final evaluation to avoid optimistic bias. 

5.3.2 BASELINE MODEL (SARIMA) 

A seasonal ARIMA model was fitted to the aggregated hourly series as a classical baseline, 

using a daily seasonal period s = 24. Orders (p,d,q)×(P,D,Q)24 are selected by information 

criteria (AIC) over a modest grid with d,D ∈ {0,1}, p,q ∈ {0,1,2}, and P,Q ∈ {0,1}, applied 

only on the training + validation data, and forecast on the test block. This establishes a 

transparent statistical benchmark (2021). 

5.3.3 EVALUATION METRICS (POINT FORECASTS) 

Evaluation metrics. Evaluation follows the definitions provided in 4.5.1. Performance is 

summarized by MAE, R2, and normalized MAE (nMAE) on the held-out test block (2020-

08-06–2021-08-05). To prevent instability of percentage errors at very low load, percentage 

metrics are not emphasized, near-zero hours are handled as described in 4.5.1. All model 

selection uses MAE on the validation block. 
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5.4 RANDOM FOREST SPECIFICATION 

5.4.1 HYPERPARAMETERS AND SEARCH STRATEGY 

The RandomForestRegressor implementation from scikit-learn (version 1.6.1) was 

employed with random_state = 42 and n_jobs = −1. The base configuration is: 

Hyperparameter Value Explanation 

n_estimators 100 Number of decision trees in the forest. A larger number 

reduces variance but increases computation time. 

max_depth 10 Maximum depth of each tree. Limits complexity to prevent 

overfitting. 

max_features 1.0 Fraction of features considered at each split (1.0 = all 

features). 

min_samples_leaf 1 Minimum number of samples required in a terminal leaf 

node. 

min_samples_split 2 Minimum number of samples required to split an internal 

node. 

bootstrap True Whether bootstrap samples (random sampling with 

replacement) are used when building trees. 

max_samples None If bootstrap = True, specifies the fraction of the training set 

to draw per tree (None = full sample). 

Table 2 Random Forest base hyperparameters 

Hyperparameters are tuned via random search, scoring MAE on the validation block. The 

search space is: 
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• n_estimators ∈ {300, 500, 800, 1000} 

• max_depth ∈ {None, 12, 16, 24, 32} 

• min_samples_leaf ∈ {1, 2, 5, 10, 20} 

• max_features ∈ {'sqrt', 0.3, 0.5, 0.7, 1.0} 

• bootstrap ∈ {True, False} 

When bootstrap = True, the hyperparameter max_samples was allowed to take values in 

{None, 0.7, 0.9}. A total of 50 configurations were drawn at random, the best-performing 

model was refitted on the combined training and validation blocks, and its performance was 

subsequently evaluated once on the held-out test block. 

5.5 IMPLEMENTATION DETAILS 

All experiments were conducted in Python (version 3.10.12) using standard scientific 

libraries: NumPy (2.2.4), pandas (2.2.3), scikit-learn (1.6.1), and Matplotlib (3.10.3). 

Computations were executed on a conventional CPU workstation, and both the Random 

Forest and SARIMA models were trained in CPU-bound mode without the need for 

specialized hardware acceleration. To ensure reproducibility, random seeds were fixed at 42 

for all stochastic elements of the pipeline. The project followed a modular organization: raw 

and processed datasets were stored separately, feature engineering routines were isolated in 

dedicated scripts, models were implemented and persisted within a structured module, and 

evaluation metrics and visualizations were maintained in a distinct evaluation layer. 

Configuration files specifying data splits and hyperparameter ranges were externalized to 

human-readable formats (YAML), and the full software environment was captured in a 

requirements.txt file. Trained models, processed data, and evaluation outputs were versioned 

with timestamped identifiers to allow experiments to be replicated exactly. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL 

 

DATA AND MODEL DEVELOPMENT 

56 

5.6 MODEL INTERPRETATION 

5.6.1 FEATURE IMPORTANCE 

Feature importance was examined to interpret the behavior of the Random Forest model. In 

addition to the model’s impurity-based importance measures (mean decrease in impurity), 

permutation importance was computed on the validation block. The latter quantifies the 

increase in forecast error when the values of a given feature are randomly permuted and is 

less prone to bias toward high-cardinality or high-variance predictors. Both perspectives are 

reported, although greater emphasis is placed on permutation importance in the subsequent 

discussion. 

5.6.2 ERROR DECOMPOSITION BY REGIMES 

Although not central to the reported results, a standard diagnostic can be applied in which 

errors are disaggregated by context. In particular, MAE and nMAE can be calculated 

separately by hour-of-day, weekday versus weekend, holiday versus non-holiday, and by 

terciles of temperature. Such stratification highlights systematic under- or over-prediction 

patterns, for example around morning or evening charging peaks or during cold spells, and 

can therefore inform future refinements to the feature set. 
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Chapter 6.  RESULTS AND DISCUSSION 

6.1 SENSITIVITY TO THE IQR OUTLIER AND SELECTION OF K 

Before reporting headline forecasting accuracy, the effect of the IQR-based outlier policy 

(Section 5.2.1) on sample size and performance is quantified. Because the filter changes the 

estimation and evaluation samples, the choice of the multiplier k can materially affect both 

the learning signal and the reported metrics. Establishing and freezing 𝑘 prior to model 

comparison avoids ex-post selection bias and ensures that all subsequent results are 

comparable and replicable. 

6.1.1 EXPERIMENTAL SETUP 

Quartiles Q1 and Q3 and IQR = Q3 - Q1 were computed on the training block only (2018-02-

06 to 2020-02-05). For each k∈{0,0.5,1,…,10}, hours with 𝑦𝑡 ∈ [𝑄1 − 𝑘 ⋅ IQR,  𝑄3 + 𝑘 ⋅

IQR] were removed consistently from the training and validation blocks. A baseline 

RandomForestRegressor with the default hyperparameters defined in Section 5.4 was fitted 

on the cleaned training data and evaluated on the cleaned validation block. The following 

metrics were recorded: mean absolute error (MAE), mean squared error (MSE), R2, and 

normalized MAE (denoted MAErel, i.e., MAE/𝑦̅ x 100%). The percentage of excluded hours 

was also computed. 

A compact summary of the grid appears in Table 3 Sensitivity of validation accuracy to the 

IQR outlier multiplier, and the principal relationships are visualized in Figure 1 Excluded 

observations (%) as a function of k and on Figure 2 Normalized MAE (%) on the validation 

block vs k. Monthly diagnostics for the selected policy are summarized later in this section 

and detailed in Table 4 Monthly metrics for k = 3. 
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6.1.2 RESULTS 

Here are the results for each value of k on the model: 

k excluded_pct MAE MSE R2 MAE_rel_percent 
0.0 73.4 0.025 0.057 0.608 87.1 
0.5 23.5 0.293 0.962 0.598 84.2 
1.0 14.9 0.536 2.255 0.581 78.1 
1.5 11.3 0.782 3.608 0.594 75.2 
2.0 8.0 0.848 3.834 0.578 75.6 
2.5 5.3 0.887 3.741 0.610 71.7 
3.0 3.7 0.946 4.233 0.634 69.6 
3.5 2.8 0.946 4.19 0.638 69.6 
4.0 1.7 0.955 4.295 0.629 70.2 
4.5 1.1 0.968 4.3 0.629 71.2 
5.0 0.8 0.984 4.327 0.626 72.4 
6.0 0.4 0.983 4.315 0.627 72.3 
7.0 0.2 0.992 4.378 0.622 73.0 
8.0 0.1 0.999 4.387 0.621 73.5 
9.0 0.0 0.997 4.386 0.621 73.4 
10.0 0.0 0.997 4.386 0.621 73.4 

Table 3 Sensitivity of validation accuracy to the IQR outlier multiplier 

 

Figure 1 Excluded observations (%) as a function of k 
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Figure 2 Normalized MAE (%) on the validation block vs k 

The exclusion share declines steeply with 𝑘, by 𝑘 = 3 only 3.7% of hours are removed, and 

for 𝑘 ≥ 4 the share becomes negligible. See Figure 1 and Table 3. 

Performance improves as extreme hours are gradually reincluded, reaches a broad optimum 

around 𝑘 = 3–3.5, and then drifts slightly downward as 𝑘 increases further. At 𝑘 = 3 the 

baseline model attains MAErel = 69.6%, 𝑅2 = 0.634, and MAE = 0.946 (MSE = 4.233). At 𝑘 

= 3.5 the results are essentially tied on MAErel (69.6%) with a marginally higher 𝑅2 (0.638) 

and slightly less trimming (2.8%). For 𝑘 ≥ 4, MAErel increases (71.2% at 𝑘 = 4.5, 73.5% at 

𝑘 = 8) without compensating gains in 𝑅2. 

Across all 𝑘, the model is dominated by 𝑦t-1 (lag1) with stable, secondary roles for 𝑦t-24, 𝑦t-

168, and hour-of-day; temperature lags remain modest. This stability indicates that the outlier 

policy does not artifactually alter the learned structure. 

6.1.3 SELECTION AND FREEZE OF K 

On the basis of these results, k = 3 is selected and fixed for all subsequent. The decision is 

justified by three considerations: 
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• Accuracy at minimal trimming. k = 3 sits on the empirical optimum (tied with k = 

3.5 on MAErel) while excluding only 3.7% of hours, preserving nearly the entire 

dataset and, crucially, peak-demand periods of operational interest. 

• Comparability and pre-commitment. Freezing k before model selection, ablations, 

robustness checks, and bidding back-tests removes a degree of freedom that could 

bias results ex post. All headline metrics in this chapter are therefore conditional on 

a fixed data-cleaning policy. 

• Robust learning signal. The near-constancy of feature salience across k supports the 

view that the choice of k does not induce spurious drivers. Selecting k = 3 provides 

additional protection against high-leverage anomalies without materially changing 

conclusions relative to k = 3.5. 

The remainder of the chapter proceeds under the fixed policy k = 3. 

 

Figure 3 Session outliers with k = 3 

To interpret the effect of the k = 3 IQR policy, Figure 3 plots per-session energy against 

connection time, highlighting observations flagged as outliers. The retained cloud (blue) 

forms a wedge bounded by physical limits, charging power and battery capacity, consistent 

with residential AC charging. In contrast, excluded points (orange) cluster in two regions: 
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First very long connection times with little energy (vehicles parked while plugged in), and 

second unusually high energy given short connection times, implying power rates that are 

implausible in the residential context. This pattern indicates that the policy primarily 

removes atypical, low-information, or physically inconsistent sessions rather than 

structurally relevant charging behavior. 

For the selected policy (k = 3), monthly normalized errors are lower during high-load winter 

months (35.7% in 2021-02; 41.8–42.97% in 2020-12/2021-01) and higher during lower-load 

summer months (69.6–84.5% in 2021-05/2021-06). This pattern is consistent with 

normalization by the monthly mean, relative errors expand when the denominator is small. 

A full month-by-month table is provided in Table 4. 

Month MAE MSE R2 MAE_rel_percent 
2020-08 2.740279 16.289791 0.56729 51.491045 
2020-09 2.930573 18.427366 0.632598 49.566059 
2020-10 3.845166 31.563427 0.581171 47.072319 
2020-11 3.476104 24.201655 0.600156 49.137035 
2020-12 4.214996 35.457987 0.612844 42.967323 
2021-01 5.057799 55.035279 0.635774 41.819726 
2021-02 5.010782 49.270329 0.760781 35.651367 
2021-03 4.597326 43.687403 0.688587 42.168079 
2021-04 2.160324 12.580135 0.568495 63.653654 
2021-05 1.146511 5.003932 0.634391 69.886974 
2021-06 0.962261 3.859659 0.515999 84.452034 
2021-07 0.945719 4.233109 0.634455 69.56981 

Table 4 Monthly metrics for k = 3 

6.2 BASELINE MODEL 

Baselines serve to contextualize the performance of the proposed Random Forest model by 

providing simple, transparent forecasting rules that are difficult to outperform on short 

horizons. Given the strong daily regularity of residential charging, the seasonal naive 

forecaster, defined by 𝑦̅𝑡 = yt-24, is an appropriate primary comparator for hourly data (2021). 

Two additional classical baselines were assessed without any order or parameter search: a 
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seasonal ARIMA with daily seasonality and a Holt–Winters Exponential Smoothing (ETS) 

model with additive seasonality and seasonal period 24. These models were fitted in 

univariate form to the aggregated hourly energy series to maintain a fair comparison and to 

avoid the complexities of exogenous regressors. 

6.2.1 EVALUATION PROTOCOL 

All baselines were estimated on the training + validation window and evaluated once on the 

held-out test window spanning 2020-08-01 00:00 to 2021-07-31 23:00 (8,760 hours). The 

split is month-aligned and strictly chronological. Accuracy is reported using MAE, RMSE, 

R2, and nMAE, following the definitions in 4.5.1 The seasonal naive forecaster requires no 

estimation, its predictions are formed by lagging the series by 24 hours, with the first 24 test 

hours bridged using the last 24 hours of the estimation window to avoid undefined values. 

6.2.2 TEST-YEAR RESULTS 

Table 5 summarizes the test-year results. The seasonal naive baseline attains the best scores 

among the classical comparators considered, with MAE = 5.423 kWh, RMSE = 8.600 kWh, 

R2 = 0.175, and nMAE = 80.88%. The ETS model (additive seasonality, s=24) performs 

slightly worse on all metrics. The seasonal ARIMA attempted here underperforms markedly, 

diagnostic inspection indicates the combination of seasonal differencing and sparsity drives 

forecasts toward zero, yielding poor fit despite correct alignment. 

Baseline MAE (kWh) RMSE (kWh) R² nMAE (%) 

Seasonal naive (𝒚̅𝒕 = yt-24) 5.423 8.600 0.175 80.88 

ETS (seasonal additive, s = 24) 5.512 8.783 0.139 82.20 

SARIMA (1,0,0) × (0,1,1)24, const 6.712 11.603 −0.502 100.10 

Table 5 Test-year accuracy of classical baselines. 

The test-year evidence indicates that a 24-hour seasonal naive constitutes a strong and 

defensible baseline for residential EV charging at hourly cadence. Its advantage stems from 

structural daily repetition in charging behavior and robustness to long runs of zeros. The 

ETS variant considered here slightly underperforms the naive benchmark, which is 

consistent with the difficulty of fitting additive seasonal components in zero-inflated series 
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without extensive tuning. The seasonal ARIMA specification attempted performs 

substantially worse, on this dataset, seasonal differencing removes level information and 

combined with sparsity, drives forecasts toward near-zero means. The seasonal naive is 

therefore retained as the primary statistical comparator against which the Random Forest’s 

gains are interpreted. 

6.3 RANDOM FOREST RESULTS 

6.3.1 MODEL SELECTION AND FINAL SPECIFICATION 

With the IQR multiplier fixed at 𝑘 = 3, the Random Forest was selected by minimizing MAE 

on the validation window under the month-aligned, strictly chronological splits like shown 

in Table 6. The search identified a variance-reduced configuration: nestimators = 300, 

min_samples_leaf = 20, bootstrap = True, max_samples = 0.9, max_features = 1.0, 

max_depth = None (random_state = 42). This model achieved a validation MAE of 3.144 

kWh and was then refitted on train + validation for the final evaluation on the untouched test 

year. 

parameter value 
n_estimators 300 
min_samples_leaf 20 
bootstrap True 
max_samples 0.9 
max_features 1 
max_depth None 
random_state 42 
validation_MAE_kWh 3.144 
k_IQR 3 

Table 6 Hyperparameters 

6.3.2 TEST-YEAR POINT-FORECAST ACCURACY 

On the held-out test year (2020-08-01 to 2021-07-31; 8,760 hours), the selected Random 

Forest attains MAE = 3.013 kWh, RMSE = 4.874 kWh, 𝑅2 = 0.735, and nMAE = 44.93%. 
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Relative to the baselines in Section 6.2, this corresponds to a ≈44% MAE reduction versus 

the seasonal naive (yt-24) and a ≈10.5% RMSE reduction versus the lag-1 naive, with 𝑅2 

improving from 0.669 (lag-1) to 0.735. These improvements are operationally meaningful 

because RMSE penalizes peak-hour deviations that drive bidding risk. 

Model MAE_kWh RMSE_kWh R2 nMAE_percent 
Random Forest (final) 3.0129 4.8738 0.7349 44.9317 
Naive lag-1 3.1385 5.4461 0.6690 46.8001 
Seasonal naive (yt-24) 5.4291 8.6072 0.1743 80.8880 

Table 7 Aggregate Test Metrics 

6.3.3 DAY-AHEAD OPERATIONAL PROFILE 

To examine when errors matter across a bidding day, FIGURE 6.3 plots MAE(h) and 

nMAE(h) by hour of day h ∈ {0,…,23} on the test block. As expected, absolute errors are 

largest around morning and evening charging peaks, whereas normalized errors inflate 

overnight when denominators are small as shown in Figure 4 MAE by hour and Figure 5 

nMAE by hour. 

 

Figure 4 MAE by hour 
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Figure 5 nMAE by hour 

6.3.4 INTERPRETATION VIA FEATURE IMPORTANCE 

Two complementary diagnostics are reported. Permutation importance on the validation 

window quantifies the increase in MAE when a feature is permuted, holding others fixed. 

The Random Forest’s impurity-based importance summarizes average reductions in node 

impurity across trees. 

Both views agree that short-lag persistence is dominant. Permuting lag1 alone increases 

MAE by ≈1.14 kWh, while most other predictors have near-zero or slightly negative 

permutation importances, evidence of redundancy once lag1 and the diurnal structure are 

present. The impurity ranking assigns ≈0.933 of total importance to lag, followed by a 

second tier comprising weekly recurrence (lag168), diurnal encodings (hour_cos, hour_sin, 

hour), and daily recurrence (lag24), rolling variability measures contribute modestly, calendar 

and temperature features are negligible. The model thus behaves like a non-parametric with 

diurnal/weekly modulation, rather than a strongly exogenous forecaster. 

For residential aggregations at hourly cadence, further accuracy gains likely require richer 

exogenous signals (like arrival/occupancy or price exposure) or sequence models designed 

to capture rare peak patterns. 
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Figure 6 Permutation importantce 

 

Figure 7 Impurity-based Feature Importance 

6.3.5 VISUAL FACE VALIDITY 

To provide face validity, Figure 8 Winter Real vs Predicted Load and Figure 9 Summer Real 

vs Predicted Load overlay realized and predicted hourly energy for two representative weeks 

(winter and summer). The winter week shows accurate tracking of higher, more volatile 

demand, the summer week shows small absolute deviations even when normalized errors 

appear large due to low denominators. A monthly view (February 2021) is provided as a 

supplementary exhibit to illustrate sustained performance over a full billing cycle. 
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Figure 8 Winter Real vs Predicted Load 

 

Figure 9 Summer Real vs Predicted Load 
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Figure 10 February monthly Real vs Predicted Load 

Fixing 𝑘 = 3 and selecting a variance-reduced Random Forest delivers substantial 

improvements over classical baselines: approximately 44% lower MAE than the seasonal 

naive and ≈10.5% lower RMSE than the lag-1 naive on the test year, with 𝑅2 = 0.735. Errors 

concentrate around peak hours that matter for bidding, precisely where the Random Forest 

offers the largest RMSE gains. Feature-importance analyses indicate that the model’s 

predictive power is driven primarily by short-lag persistence plus diurnal/weekly 

regularities, with weather and calendar signals playing only a minor role for this dataset. 
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Chapter 7.  CONCLUSIONS 

7.1 SUMMARY OF CONTRIBUTIONS 

This thesis proposed and validated an AI-based framework to forecast the aggregated hourly 

charging demand of an EV aggregator and to translate forecast behavior into operational 

guidance for market bidding. The main contributions are the following. 

1. A disciplined, time-aware evaluation pipeline. The study enforced strict 

chronological splits (train/validation/test) with complete-month boundaries and a 

single final test pass. Model selection was conducted on the validation block using 

MAE, and the chosen configuration was refit on train + validation before test 

evaluation, thereby reducing optimistic bias. 

2. A transparent data-cleaning policy anchored in robustness. An interquartile-range 

(IQR) outlier screen was tuned empirically and frozen at k = 3 before any headline 

evaluation. This removes 3.7% of hourly observations, balances fidelity to rare but 

relevant peaks against undue leverage from implausible points and keeps 

downstream comparisons defensible. A session-level diagnostic showed that the 

policy primarily excludes long-idle/low-energy sessions or combinations 

inconsistent with residential charging power limits. 

3. A competitive yet interpretable forecasting model. A Random Forest selected on 

validation (nestimators = 300, min_samples_leaf = 20, bootstrap = True, max_samples 

= 0.9, max_features = 1.0, max_depth = None) achieved on the held-out test year 

MAE = 3.013 kWh, RMSE = 4.874 kWh, 𝑅2 = 0.735, and nMAE = 44.93%. Against 

a strong seasonal naive baseline (yt-24), the model reduced MAE by ~44% and RMSE 

by ~43%, versus a lag-1 naive, it improved MAE by ~4% and RMSE by ~10.5%. 

4. Actionable insights for operations. Errors concentrate around morning/evening 

peaks, while normalized errors inflate overnight due to small denominators. Feature-

importance analyses (permutation and impurity) showed that short-lag persistence 
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(yt-1) and diurnal/weekly structure provide most of the signal, temperature and coarse 

calendar variables add little incremental value for this residential dataset. These 

findings were translated into pragmatic bidding guidance (hour-specific safety 

margins, rolling updates) and managerial recommendations. 

Collectively, the framework delivers measurable accuracy gains over classical baselines 

while remaining simple enough for reliable deployment and audit. 

7.2 ANSWERS TO THE RESEARCH QUESTIONS 

To organize the evidence, the thesis addressed three questions stated in the introduction. 

RQ1. Can an AI model improve short-term EV-aggregator load forecasting over standard 

statistical baselines? 

The final Random Forest outperformed both seasonal naive and ETS/SARIMA baselines on 

the held-out year. Relative to the seasonal naive, MAE fell from 5.423 to 3.013 kWh and 

RMSE from 8.600 to 4.874 kWh, 𝑅2 rose from 0.175 to 0.735. Even against the lag-1 naive, 

MAE and RMSE improved (from 3.138 to 3.013 kWh and from 5.446 to 4.874 kWh). These 

gains are largest at peak hours, where operational risk is greatest. 

RQ2. Which predictors contribute materially to forecast accuracy for residential EV 

aggregation? 

Short-lag persistence dominates. Permuting yt-1 increases validation MAE by ~1.14 kWh, 

while most other variables exhibit near-zero (or slightly negative) permutation importance, 

indicating redundancy once yt-1 and hour-of-day are present. Impurity-based importance 

assigns ~0.93 of total weight to yt-1, with a second tier comprising weekly recurrence (yt-168), 

diurnal encodings (hour, hour_sin, hour_cos, hour, hour_sin hour_cos), and daily recurrence 

(yt-24). Weather and coarse calendar effects contribute marginally in this setting. 
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RQ3. How sensitive are results to the outlier-screening policy, and what policy is 

appropriate? 

Moderate trimming is best. A systematic sweep of the IQR multiplier found a broad optimum 

around k = 3–3.5. Fixing achieves near-minimal normalized MAE with only 3.7% of hours 

excluded and stable feature salience. This pre-commitment prevents ex-post tuning and 

ensures that all reported comparisons share an identical sample. 

7.3 PRACTICAL RECOMMENDATIONS FOR EV AGGREGATORS 

The empirical results point to a deployment strategy that privileges reliability and 

operational discipline over model complexity. Because very short-lag persistence (yt-1) and 

the diurnal/weekly structure carry most of the predictive signal, aggregators will gain more 

from ensuring timely, high-quality metering than from adding weak exogenous feeds. In 

practice, this means prioritizing low-latency data ingestion, automated checks for missing or 

duplicated intervals, and immediate remediation of telemetry gaps. A clean and promptly 

updated yt-1 stream is the single most valuable input to the model identified here. 

A second pillar is pre-committing the data-cleaning policy. The IQR screen fixed at k=3 in 

this study strikes an effective balance between robustness and fidelity to genuine peaks. 

Freezing that policy ex ante, not revisiting it when results fluctuate, prevents hidden degrees 

of freedom from seeping into operations and keeps weekly performance reports auditable. 

In alignment with the thesis design, the screen should be applied to the aggregated hourly 

target rather than to feature-dependent transforms, so that the forecasting pipeline remains 

free of look-ahead and selection biases. 

Translating point forecasts into bids benefits from hour-specific safety margins. The error 

profile by hour of day shows that absolute deviations concentrate in morning and evening 

peaks, precisely when imbalance penalties are most consequential. A pragmatic rule is to 

deduct, from the raw point forecast, the empirical 75th percentile of the hour-specific 

absolute residuals computed on a rolling validation window. This simple transformation 
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widens the margin when risk is high and narrows it overnight without requiring full 

probabilistic modeling. Because the model’s signal is largely local in time, rolling updates 

re-forecasting intraday as new hours realize can further reduce exposure in intraday or 

balancing markets. 

Sustained performance also depends on lightweight model governance. A quarterly refit on 

a recent window, coupled with routine residual monitoring, will detect drift arising from 

tariff changes, holidays, or infrastructure upgrades. When control limits are breached, the 

remedy should be procedural rather than ad hoc: refresh the training window, keep the 

cleaning policy and evaluation protocol unchanged, and re-issue a versioned model artifact. 

Finally, feature expansion should be targeted by portfolio context. For residential fleets 

similar to the data studied here, weather and coarse calendar signals add limited value. In 

workplace or price-responsive fleets, however, arrival/occupancy indicators, connector 

ratings, and explicit price exposure are natural candidates, when such signals are available, 

upgrading to probabilistic outputs can align the forecasting layer with penalty-aware bidding 

without abandoning the governance practices just described. 

7.4 LIMITATIONS 

The conclusions of this thesis are bound by several contextual and methodological 

constraints. The underlying dataset reflects residential charging in Norway without vehicle-

to-grid discharging, a setting with specific infrastructure, tariff structures, and climatic 

conditions. While the modeling approach is general, its quantitative gains may not transfer 

one-for-one to commercial or mixed portfolios, to regions with different connector power 

levels, or to fleets whose demand is tightly coupled to workplace schedules or dynamic 

prices. 

Methodologically, the primary model is a Random Forest optimized for point accuracy 

(MAE) and evaluated on a single held-out year. Although the evaluation protocol is strictly 

chronological and pre-committed, stronger statistical assurances would come from multi-

year external tests and formal uncertainty quantification. Moreover, markets with 
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asymmetric penalties or explicit capacity obligations would benefit from probabilistic 

forecasts, quantiles or predictive intervals, so that bids can be derived from risk tolerances 

rather than from heuristic safety margins. These extensions are outside the present scope. 

The feature scope is intentionally lean (calendar and temperature only) to preserve 

auditability and focus on what can be deployed reliably. That several of these variables 

showed limited incremental value here should not be read as evidence against richer 

exogenous information, it simply reflects the residential context and available data. 

Similarly, the IQR filtering choice (fixed at 𝑘 = 3) is justified empirically and supported by 

session-level diagnostics, yet any filter can attenuate rare but operationally meaningful 

extremes. The small exclusion rate mitigates this risk but does not eliminate it. 

Finally, the framework assumes a degree of temporal stability in user behavior within the 

test year. Structural breaks, policy changes, rapid EV adoption shifts, or infrastructure 

upgrades, could alter demand patterns in ways that a point-forecasting Random Forest does 

not anticipate. The recommended governance measures (rolling updates, drift monitoring, 

versioned configurations) are intended to reduce this exposure, but they cannot substitute for 

truly exogenous signals when behavior is driven by factors absent from the data. 

Overall, the thesis demonstrates that a carefully engineered yet simple AI model, embedded 

in a robust, pre-committed evaluation pipeline, can deliver substantial accuracy gains over 

classical baselines for day-ahead EV-aggregator demand forecasting. The results translate 

into clear operational guidance for bidding and highlight targeted avenues, richer exogenous 

data and probabilistic decision-alignment, where further improvements are both feasible and 

worthwhile. 
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