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ABSTRACT  

This study develops a multi-criteria evaluation framework for model-based State of Health 

(SoH) estimation methods for lithium-ion batteries (LiBs), enabling transparent and use-case 
specific method selection. More than twenty methods were qualitatively assessed, with three 

chosen for validation on real-world datasets. Results confirmed the framework’s initial 

qualitative ratings with only minor adjustments. 

Keywords: SoH, Li-ion battery, Electric vehicle, Model-based estimation, Real world data 

1. Introduction 

The global shift towards decarbonization has placed the electrification of transportation at 
the center of climate mitigation strategies [1]. This has rapidly increased demand for high-

performance battery systems, driven by the widespread adoption of battery electric vehicles 
(BEVs) [2]. To meet this demand, LiBs have emerged as the preferred solution, due to their 

high energy density, efficiency and long cycle life [3]. However, LiBs degrade due to a series 

of irreversible internal chemical and physical processes [4]. Beyond reducing performance, 

this can impair safety, increase operational cost and reduce system reliability [4]. 

To mitigate these risks, Battery Management Systems (BMS) are employed [4]. As the 
central control system of a battery, they are responsible for monitoring battery parameters; 

protecting the battery against unsafe operating conditions; balancing of cell voltages; and 

estimating internal battery states (e.g., SoH) [5]. Among these, accurate SoH estimation is 
critical to ensure safe and reliable operation [6]. Since SoH is not directly measurable, it 

must be inferred from indirect observations, such as voltage, current and temperature [5]. To 
address this challenge, researchers have developed a wide range of techniques, which can be 

categorized into experimental, model-based and hybrid approaches [5]. In particular, model-

based methods, have gained popularity due to real-time, non-invasive estimation [6]. 

2. Project definition 

The growing variety of model-based methods has led to inconsistent evaluation, often 
focusing on a single performance dimension, typically accuracy [6]. This overlooks critical 

dimensions for practical deployment such as computational efficiency or robustness to noise. 

In addition, most methods are validated on laboratory datasets, which fail to capture the 
complexity of real-world degradation [7]. Consequently, methods trained on such data often 

exhibit significant generalization gaps when applied to real-world scenarios [7]. 

This study addresses these limitations by developing a replicable, multi-criteria evaluation 

framework that allows model-based SoH estimation methods to be compared across multiple 

dimensions relevant to real-world use. In addition, it validates initial qualitative method 

assessments using real-world datasets. The detailed approach is shown in Figure. 1. 



 

Figure. 1: Five-step approach to develop and validate a multi-criteria evaluation framework for use-case 

specific SoH method selection 

3. Evaluation framework development and qualitative assessment 

The framework is derived via an extensive literature review, in which five suitable studies 
are identified. They are selected based on their use of multi-criteria evaluation frameworks, 

which are applied to multiple model-based SoH estimation approaches. A comparative 
analysis of these studies reveals six key evaluation criteria: accuracy, computational 

efficiency, interpretability, data requirements, reliability and scalability. Each criterion is 

formally defined and a corresponding five-level scoring scale is introduced, ranging from 

“Very Low” to “Very High”, to facilitate a consistent and transparent assessment process. 

Then, over twenty model-based SoH estimation methods are qualitatively evaluated against 
these six criteria. Ratings are assigned based on empirical comparisons from literature, 

methodological strengths and weaknesses and expert insights from comparative reviews.  

The outcome of this evaluation highlights ANNs and ensemble learning as the best methods 
across the six criteria, due to high levels of accuracy, reliability and scalability. However, 

these strengths are accompanied by increased computational demands, significant data 
requirements and limited interpretability. In the context of this study, interpretability and 

data availability are no limiting factors, as public datasets are accessible and sufficient 

methodological understanding has been developed to construct such methods. Given these 
boundary conditions, RF (Random Forest), XGBoost and CNN (Convolutional neural 

network) are selected for empirical validation. 

4. Quantitative validation of evaluation framework 

To validate the selected methods, a real-world dataset, consisting of three smaller datasets, 

is prepared. After preprocessing the data is labeled, forming the basis to train the selected 
methods. The labeling process starts with the grouping of data points based on vehicle ID 

and mileage, before concatenating them into charging segments occurring at the same 

mileage. Each charging segment is used to estimate the battery’s current capacity. By 
dividing the current capacity with the battery’s nominal capacity, its SoH is calculated. 

Finally, the SoH is assigned to all charging snippets within that charging segment. 

To apply the three selected SoH estimation methods to the labeled dataset and validate the 

initial qualitative ratings, each method is implemented in Python.  

5. Results 

As accuracy, computational efficiency, reliability and scalability were used to guide the 

selection of SoH estimation methods, for empirical validation for the qualitative ratings, they 
are assigned a corresponding quantitative metric. Accuracy is measured using the Mean 

Absolute Percentage Error (MAPE), computational efficiency via the training and inference 

time, reliability by comparing the MAPE across multiple datasets and scalability by 

comparing the MAPE and training time on several proportions of one dataset. 
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The results for each of the four criteria is shown in Figure. 2. They largely validate the 

qualitative assessments, requiring only minor adjustments. 

 

Figure. 2: Quantitative results across the four selection criteria: accuracy, computational efficiency, 

reliability and scalability 

These findings can be used for recommendations for method selection in practice, e.g., RF 

for onboard BMS in BEVs, where method stability and robustness under varying operational 
conditions are essential, or XGBoost for diagnostic tools and low-resource environments, 

combining speed, accuracy and reliability. At the same time, the results highlight the 
limitations of the selected quantitative metrics. While they offer meaningful insights, certain 

aspects of the initial criteria definitions are not covered and require further refinement. 

6. Conclusion 

This study successfully developed a multi-criteria evaluation framework that allows users to 

select SoH estimation methods for their specific use-case. In addition it assessed a total of 

over twenty methods qualitatively using empirical comparisons and comparative studies 
found in literature. Afterwards, the qualitative ratings of a subset of the evaluated methods 

was validated using real-world data, which largely confirmed the qualitative ratings, with 

only a few adjustments necessary.  

To further improve the framework, future research should focus on three key directions. 

First, expand the current quantitative metrics to enable a more complete assessment of the 
evaluation criteria. Second, apply additional model-based SoH estimation methods to the 

same dataset to develop quantitative thresholds for the framework’s rating scale and 
transition the qualitative assessment to a hybrid qualitative-quantitative framework, allowing 

for absolute, rather than relative, performance comparison across methods. Third, greater 

effort should be placed on obtaining usable real-world datasets for method development, as 

such datasets are currently limited yet essential for testing practical applicability. 
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RESUMEN DEL PROYECTO  

El presente estudio tiene como objetivo desarrollar un marco de evaluación multicriterio 

para métodos de estimación del estado de salud (SoH) basados en modelos para baterías de 
iones de litio (LiB). Este marco permite una selección de métodos transparente y específica 

para cada caso de uso. Se evaluaron cualitativamente más de veinte métodos, de los cuales 

se seleccionaron tres para su validación en conjuntos de datos del mundo real. Los resultados 
de la investigación confirmaron las calificaciones cualitativas iniciales del marco, con solo 

ligeras modificaciones. 

Palabras clave: Estado de salud, batería de Li-ion, vehículo eléctrico, métodos de 

estimación basados en modelos, conjunto de datos del mundo real 

1. Introducción 

El cambio global hacia la descarbonización ha situado la electrificación del transporte en el 

centro de las estrategias de mitigación del cambio climático [1]. Esto ha provocado un rápido 

aumento de la demanda de sistemas de baterías de alto rendimiento, impulsado por la 
adopción generalizada de los vehículos eléctricos de batería (BEV) [2]. Para satisfacer esta 

demanda, las LiB se han convertido en la solución preferida, debido a su alta densidad 
energética, eficiencia y larga vida útil [3]. Sin embargo, las LiB se degradan debido a una 

serie de procesos químicos y físicos internos irreversibles [4]. Además de reducir el 

rendimiento, esto puede afectar a la seguridad, aumentar los costes operativos y reducir la 

fiabilidad del sistema [4]. 

Para mitigar estos riesgos, se emplean sistemas de gestión de baterías (BMS) [4]. Como 
sistema de control central de una batería, se encargan de supervisar los parámetros de la 

batería, protegerla contra condiciones de funcionamiento inseguras, equilibrar los voltajes 

de las celdas y estimar los estados internos de la batería (p. ej., SoH) [5]. Entre ellos, la 
estimación precisa del SoH es fundamental para garantizar un funcionamiento seguro y 

fiable [6]. Dado que el SoH no se puede medir directamente, debe inferirse a partir de 
observaciones indirectas, como el voltaje, la corriente y la temperatura [5]. Para abordar este 

reto, los investigadores han desarrollado una amplia gama de técnicas, que pueden 

clasificarse en enfoques experimentales, basados en modelos e híbridos [5]. En particular, 
los métodos basados en modelos han ganado popularidad debido a su estimación en tiempo 

real y no invasiva [6]. 

2. Definicíon del proyecto 

La creciente variedad de métodos basados en modelos ha dado lugar a evaluaciones 

inconsistentes, que a menudo se centran en una única dimensión del rendimiento, 

normalmente la precisión [6]. Esto pasa por alto dimensiones críticas para la implementación 

práctica, como la eficiencia computacional o la robustez frente al ruido. Además, la mayoría 

de los métodos se validan con conjuntos de datos de laboratorio, que no logran captar la 



complejidad de la degradación en el mundo real [7]. En consecuencia, los métodos 

entrenados con estos datos suelen presentar importantes lagunas de generalización cuando 

se aplican a escenarios del mundo real [7]. 

Este estudio aborda estas limitaciones mediante el desarrollo de un marco de evaluación 

multicriterio replicable que permite comparar los métodos de estimación del estado de salud 
basados en modelos en múltiples dimensiones relevantes para el uso en el mundo real. 

Además, valida las evaluaciones cualitativas iniciales de los métodos utilizando conjuntos 

de datos del mundo real. El enfoque detallado se muestra en la Figura. 1. 

 

Figura. 1: Enfoque de cinco pasos para desarrollar y validar un marco de evaluación multicriterio para la 

selección de métodos de estado de salud específicos para cada caso de uso 

3. Desarrollo del marco de evaluación y evaluación cualitativa 

El marco se deriva de una amplia revisión bibliográfica, en la que se identifican cinco 

estudios adecuados. Estos se seleccionan en función de su uso de marcos de evaluación 
multicriterio, que se aplican a múltiples enfoques de estimación del SoH basados en 

modelos. Un análisis comparativo de estos estudios revela seis criterios clave: precisión, 

eficiencia computacional, interpretabilidad, requisitos de datos, fiabilidad y escalabilidad. 
Cada criterio se define formalmente y se introduce una escala de puntuación de cinco niveles, 

que va de “muy bajo” a “muy alto”, para facilitar un proceso de evaluación coherente y 

transparente. 

A continuación, se evalúan cualitativamente más de veinte métodos de estimación del SoH 
basados en modelos en función de estos seis criterios. Las calificaciones se asignan 

basándose en comparaciones empíricas de la bibliografía, los puntos fuertes y débiles de la 

metodología y las opiniones de expertos procedentes de revisiones comparativas.  

El resultado de esta evaluación destaca las redes neuronales artificiales (ANN) y el 

aprendizaje conjunto como los mejores métodos en los seis criterios, debido a sus altos 
niveles de precisión, fiabilidad y escalabilidad. Sin embargo, estas ventajas van 

acompañadas de mayores exigencias computacionales, requisitos de datos significativos y 

una interpretabilidad limitada. En el contexto de este estudio, la interpretabilidad y la 
disponibilidad de datos no son factores limitantes, ya que se puede acceder a conjuntos de 

datos públicos y se ha desarrollado una comprensión metodológica suficiente para construir 
dichos métodos. Dadas estas condiciones límite, se seleccionan RF (Random Forest), 

XGBoost y CNN (red neuronal convolucional) para la validación empírica. 

4. Validación cuantitativa del marco de evaluación 

Para validar los métodos seleccionados, se prepara un conjunto de datos del mundo real, 

compuesto por tres conjuntos de datos más pequeños. Tras el preprocesamiento, los datos se 

etiquetan, lo que constituye la base para entrenar los métodos seleccionados. El proceso de 
etiquetado comienza con la agrupación de los puntos de datos en función del ID del vehículo 

y el kilometraje, antes de concatenarlos en segmentos de carga que se producen en el mismo 
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kilometraje. Cada segmento de carga se utiliza para estimar la capacidad actual de la batería. 
Dividiendo la capacidad actual por la capacidad nominal de la batería, se calcula su SoH. 

Por último, el SoH se asigna a todos los fragmentos de carga dentro de ese segmento de 

carga. 

Para aplicar los tres métodos de estimación del SoH seleccionados al conjunto de datos 

etiquetado y validar las calificaciones cualitativas iniciales, cada método se implementa en 

Python. 

5. Resultados 

Dado que la precisión, la eficiencia computacional, la fiabilidad y la escalabilidad se 
utilizaron para guiar la selección de los métodos de estimación del SoH, para la validación 

empírica de las calificaciones cualitativas se les asignó una métrica cuantitativa 
correspondiente. La precisión se mide utilizando el error porcentual absoluto medio 

(MAPE), la eficiencia computacional a través del tiempo de entrenamiento e inferencia, la 

fiabilidad comparando el MAPE en múltiples conjuntos de datos y la escalabilidad 
comparando el MAPE y el tiempo de entrenamiento en varias proporciones de un conjunto 

de datos. 

Los resultados para cada uno de los cuatro criterios se muestran en la Figura. 2. En gran 

medida, validan las evaluaciones cualitativas, requiriendo solo ajustes menores. 

 

Figura. 2: Resultados cuantitativos de los cuatro criterios de selección: precisión, eficiencia computacional, 

fiabilidad y escalabilidad 

Estos resultados pueden utilizarse para recomendar la selección de métodos en la práctica, 
por ejemplo, RF para BMS a bordo en BEV, donde la estabilidad y la robustez del método 

en condiciones operativas variables son esenciales, o XGBoost para herramientas de 

diagnóstico y entornos con pocos recursos, que combina velocidad, precisión y fiabilidad. 
Al mismo tiempo, los resultados ponen de relieve las limitaciones de las métricas 
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cuantitativas seleccionadas. Si bien ofrecen información significativa, algunos aspectos de 
las definiciones iniciales de los criterios no están cubiertos y requieren un mayor 

refinamiento. 

6. Conclusión 

Este estudio desarrolló con éxito un marco de evaluación multicriterio que permite a los 

usuarios seleccionar métodos de estimación del SoH para su caso de uso específico. Además, 
evaluó un total de más de veinte métodos de forma cualitativa utilizando comparaciones 

empíricas y estudios comparativos encontrados en la literatura. Posteriormente, las 

calificaciones cualitativas de un subconjunto de los métodos evaluados se validaron 
utilizando datos del mundo real, lo que confirmó en gran medida las calificaciones 

cualitativas, con solo unos pocos ajustes necesarios.  

Para mejorar aún más el marco, las investigaciones futuras deberían centrarse en tres 

direcciones clave. En primer lugar, ampliar las métricas cuantitativas actuales para permitir 

una evaluación más completa de los criterios de evaluación. En segundo lugar, aplicar 
métodos adicionales de estimación del SoH basados en modelos al mismo conjunto de datos 

para desarrollar umbrales cuantitativos para la escala de calificación del marco y pasar de la 
evaluación cualitativa a un marco híbrido cualitativo-cuantitativo, lo que permitiría una 

comparación absoluta, en lugar de relativa, del rendimiento entre los distintos métodos. En 

tercer lugar, se debe hacer un mayor esfuerzo por obtener conjuntos de datos del mundo real 
que sean útiles para el desarrollo de métodos, ya que dichos conjuntos de datos son 

actualmente limitados, pero esenciales para probar la aplicabilidad práctica. 
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Chapter 1. INTRODUCTION 

As the opening chapter of this thesis, the introduction aims to establish a foundational 

understanding of the key topics and provide orientation for the reader. It begins by 

outlining the motivation behind the research (Chapter 1.1), followed by a discussion 

of the research context and the central guiding question (Chapter 1.2). Finally, the 

chapter presents the structure of the thesis, offering an overview of its organization and 

content (Chapter 1.3). 

1.1 MOTIVATION AND OBJECTIVES 

The global shift towards decarbonization has placed the electrification of transportation 

at the center of climate mitigation strategies [1]. This transition has led to a rapid 

increase in demand for high-performance battery systems, driven by the widespread 

adoption of battery electric vehicles (BEVs) [2–9]. To meet this demand, lithium-ion 

batteries (LiBs) have emerged as the preferred solution, due to their high energy density, 

efficiency and long cycle life, among other factors [3–6, 9–15]. However, LiBs degrade 

over time due to a series of irreversible internal chemical and physical processes, 

causing a gradual loss in power output and capacity [1, 3–6, 8–10, 13, 16–18]. Beyond 

reducing performance, it can impair safety, increase operational cost and reduce system 

reliability, potentially leading to premature failure or safety-critical incidents [4]. 

To mitigate these risks and extend battery life, Battery Management Systems (BMS) 

have become an essential component in LiB-based applications [4, 11, 19]. As the 

central control system of a battery, a BMS is responsible for monitoring battery 

parameters; protecting the battery against unsafe operating conditions; balancing of cell 

voltages; and estimating internal battery states, such as State of Charge (SoC) and State 

of Health (SoH) [2, 4, 5, 7, 9, 17–22]. Among these, accurate SoH estimation is critical 

to ensure safe and reliable operation [9, 23]. The SoH reflects the battery's ageing state 
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and helps predict its remaining useful life, enabling failure anticipation, predictive 

maintenance and battery replacement planning [2–4, 13, 19].  

Since SoH is not directly measurable, it must be inferred from indirect observations, 

such as voltage, current and temperature profiles under various load conditions [2, 4, 5, 

8, 13]. To address this challenge, researchers have developed a wide range of estimation 

techniques, which can be categorized into experimental, model-based and hybrid 

approaches [1–5, 8, 19, 21, 23, 24]. Among these, model-based methods have become 

particularly attractive as they can estimate SoH in real-time without disrupting battery 

operation [12]. 

Despite this progress, the evaluation and application of model-based SoH estimation 

methods remain challenging due to inconsistent assessment practices and a lack of 

consideration for real-world variability. This thesis aims to address these gaps by 

developing a comprehensive evaluation framework that supports the selection of 

appropriate SoH estimation methods for practical deployment. 

1.2 CONTEXT OF RESEARCH 

The increasing relevance of battery longevity, environmental impact, predictive 

maintenance and second-life planning has increased the importance of estimating a 

battery’s SoH in both academia and industry [25, 26]. In particular, model-based SoH 

estimation techniques, ranging from physics-informed approaches like equivalent 

circuit models (ECMs), to data-driven methods based on machine learning (ML) and 

neural networks (NNs), have become popular due to their potential for real-time, non-

invasive estimation [3, 8, 9].  

However, the growing variety of approaches has resulted in fragmentation and 

inconsistency in how SoH estimation methods are evaluated. Most studies assess 

approaches primarily on a single performance dimension, typically accuracy [4, 5, 9, 

14, 23, 24, 27]. This overlooks critical dimensions for practical deployment such as 
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computational efficiency, robustness to input noise and adaptability to different 

operating conditions. In addition, most methods are validated on laboratory datasets, 

which fail to capture the variability and complexity of real-world degradation in 

operational environments [8, 24]. Consequently, models trained on laboratory data 

often exhibit significant generalization gaps when applied to real-world scenarios [8]. 

This thesis addresses these limitations by developing and validating a replicable, multi-

criteria evaluation framework that allows model-based SoH estimation methods to be 

compared across multiple dimensions relevant to real-world use. The central research 

question guiding this thesis is: 

How can model-based SoH estimation methods be systematically evaluated across 

multiple practically relevant criteria? 

To answer the overarching research question, this thesis identifies the core performance 

dimensions relevant for real-world deployment of SoH estimation methods, formalizes 

them into a structured evaluation framework and applies this framework to compare 

selected approaches under identical conditions using real-world data. In doing so, the 

work bridges the gap between method development and operational deployment, 

offering both a theoretical contribution and a practical tool for evaluating and selecting 

SoH models across diverse use cases. 

1.3 STRUCTURE 

This thesis is structured into six chapters, developing, implementing and validating a 

comprehensive evaluation framework for model-based SoH estimation methods. After 

Chapter 1, introducing the research motivation, outlining current challenges in battery 

health diagnostics and defining the central objectives addressed in this work,  

Chapter 2 provides the theoretical foundation. It begins with an overview of LiB 

operation and ageing mechanisms, followed by a formal definition of SoH and its 

relevance to degradation assessment. It then gives an overview of different SoH 
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estimation methods, before focusing on model-based SoH estimation. The specific 

methods selected for further analysis in this thesis are introduced and briefly 

characterized. After that, Chapter 3 develops the proposed evaluation framework. 

First, a set of practically relevant evaluation criteria is derived from the literature and 

thoroughly defined. Each criterion is operationalized using a five-level scoring scale 

ranging from “Very Low” to “Very High”. In the second part of the chapter, the 

presented model-based SoH estimation methods are qualitatively assessed and ranked 

according to these criteria. Based on the resulting evaluation profiles, three high-

potential methods are selected for implementation and further empirical validation. In 

Chapter 4, the practical application of the selected methods is described. A real-world 

dataset is introduced, preprocessed and labelled with SoH values. In addition, the 

chapter outlines the implementation details of each of the selected SoH estimation 

methods in Python. Chapter 5 presents the comparative analysis of the implemented 

methods. Evaluation criteria that were qualitatively assessed in Chapter 3 are now 

translated into quantitative metrics and their values are obtained from the application 

on the real-world dataset. The results are analyzed across the defined criteria and used 

to refine and validate the initial qualitative assessment. The chapter concludes with a 

discussion on method feasibility in different use cases and identifies the most suitable 

approach. Lastly, Chapter 6 summarizes the main findings, reflects on the 

contributions of the thesis and outlines directions for future research topics. 
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Chapter 2. TECHNICAL FUNDAMENTALS 

This chapter aims to establish the theoretical framework of this thesis and highlight the 

need for a comprehensive selection framework that compares existing model-based 

SoH estimation methods for LiBs. First, Chapter 2.1 provides a comprehensive 

overview of LiBs. It details the internal components and operating principles at cell 

level, before discussing the different cell types and their integration into battery system 

architectures. The section concludes with an examination of BMS, which plays a pivotal 

role in monitoring battery degradation and ensuring safe and reliable operation. 

Chapter 2.2 focuses on the degradation mechanisms that lead to the deterioration of 

LiB performance. It explores processes occurring at both electrodes and within the 

electrolyte, highlighting the complex interactions between them. Following this, 

Chapter 2.3 defines the concept of SoH, which numerically specifies the battery 

degradation. It then introduces the principal methodologies used for its estimation. 

Among these, model-based techniques have gained relevance due to their non-invasive 

nature. Chapter 2.4 presents an in-depth review of commonly employed model-based 

SoH estimation methods. This section outlines a range of approaches, each with specific 

assumptions, advantages and limitations. Chapter 2.5 concludes by arguing for the 

necessity of a structured framework to compare the presented model-based SoH 

estimation methods. Such a framework would support the identification of optimal 

techniques for specific use cases, ultimately guiding the development of more robust 

and application-oriented BMS solutions. 

2.1 LITHIUM-ION BATTERY (LIB) 

LiBs are electrochemical storage systems that enable efficient, reversible energy 

conversion through the movement of Li-ions [28, 29]. Their widespread adoption across 
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applications is driven by their high energy density, long cycle life and favorable 

performance characteristics under varying operating conditions [14, 30]. 

2.1.1 BATTERY COMPONENTS AND FUNCTIONALITY 

Figure 1 illustrates the basic structure and operating principle of a LiB. The battery 

operates through the reversible movement of Li-ions between the anode and the 

cathode, which allows LiBs to store and release electrical energy [28, 31, 32]. 

Additional components include the electrolyte, separator and current collectors [31]. 

 

Figure 1: Schematic illustration of the discharging process of a LiB [15] 

The anode is typically made of graphite (e.g., LiC6), a material that can intercalate Li-

ions between its carbon layers [28, 32]. These ions are electrostatically balanced by 

electrons within the graphite structure, resulting in neutral lithium. During discharge, 

the lithium atoms in the anode are oxidized, releasing electrons and Li-ions (Eq. 2.1). 

𝐿𝑖𝑥𝐶₆ →  𝑥𝐿𝑖⁺ +  𝑥𝑒⁻ +  𝐶₆ Eq. 2.1 

4
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The released Li-ions migrate through the electrolyte, a commonly liquid medium, 

containing a dissolved conductive lithium salt (e.g., LiPF6) [28, 31, 32]. The electrolyte 

allows ionic conduction while blocking electrons [33]. As Li-ions move through the 

electrolyte, they pass through the separator, a porous polymer membrane that physically 

separates the electrodes while remaining permeable to ions [28, 31, 33]. It prevents 

electrical short circuits by avoiding direct contact between the anode and the cathode. 

At the same time, the released electrons travel from the anode to the cathode through 

the external circuit. This electron flow generates the usable electric current. Once the 

electrons reach the cathode, which is typically composed of a lithium oxide (e.g., 

LiCoO₂), they reduce the transition metal ions (Eq. 2.2). The arriving Li-ions 

intercalate into the cathode structure, maintaining charge balance. [28, 31, 33] 

𝐿𝑖₁₋ₓ𝐶𝑜𝑂₂ +  𝑥𝐿𝑖⁺ +  𝑥𝑒⁻ →  𝐿𝑖𝐶𝑜𝑂₂ Eq. 2.2 

Each electrode is coated onto a metal foil that serves as the current collector. Copper is 

used for the anode and aluminum for the cathode. These foils do not participate in the 

electrochemical reactions but ensure efficient electron transfer to and from the external 

circuit. [33] 

When the battery is charged, this process is reversed [28, 31]. An external power source 

forces Li-ions to deintercalate from the cathode and migrate back to the anode [15]. 

Electrons flow in the opposite direction through the circuit, reducing Li-ions at the 

anode surface and allowing them to re-enter the graphite structure [33]. 

2.1.2 BATTERY STRUCTURE 

The practical performance and reliability of LiBs are contingent not only on their 

internal chemistry but also on their physical arrangement. This encompasses the design 

of individual cells as well as their integration into modules and packs. 
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2.1.2.1 Cell types 

LiB cells are manufactured in three principal formats: cylindrical, prismatic and pouch 

(see Figure 2) [34, 35]. Each cell type offers distinct structural characteristics and trade-

offs that influence its suitability for specific applications. 

 

Figure 2: Standard cell formats: (a) cylindrical, (b) prismatic and (c) pouch cells [35] 

The primary differences among the three cell types lie in the configuration of the 

housing and the internal arrangement of the electrodes and separator. Cylindrical cells 

contain a spirally wound electrode array (jelly roll) that is surrounded by a rigid metal 

casing. This casing is typically made of stainless steel or aluminum. Prismatic cells 

arrange electrodes in either a flattened jelly roll configuration or in stacked layers. The 

casing material is like that of cylindrical cells. Finally, pouch cells utilize a stacked 

electrode configuration, which is enclosed in multiple layers of aluminum composite 

foils. [35] 

2.1.2.2 Battery system architecture 

To meet the voltage and capacity demands of BEVs, individual cells are not sufficient. 

They need to be assembled into battery packs [36]. Traditionally, multiple cells are 

consolidated into modules, which are then combined to form a battery pack [36]. 

However, an emerging approach is to directly integrate individual cells into the battery 

pack (cell-to-pack approach) [37]. Focusing on the modular approach, electrical 

5
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interconnections within the battery pack are configured in one of two ways. Either 

series-connected battery modules are arranged in parallel or parallel-connected battery 

modules are stacked in series (see Figure 3) [36].  

 

Figure 3: Battery pack structures. (a) Battery pack with series modules in parallel; (b) battery pack 

with parallel modules in series [36] 

Parallel connection enhances the capacity, while series connection increases the voltage 

of the battery pack. The type of connection affects the control effort. It is common 

practice to connect cells in parallel first and then in series, as connecting large series of 

battery modules in parallel requires increased voltage balancing effort. [28] 

The battery pack is embedded into the E/E-architecture of the vehicle, which enables 

communication, sensing and control. A crucial component of this architecture is the 

Battery Disconnect Unit (BDU) that manages high-voltage connections and isolates the 

pack if needed. Overseeing both the BDU and the broader battery systems is the BMS, 

which serves as the central control unit, ensuring safe operation, performance 

optimization and system protection. [28] 

2.1.3 BATTERY MANAGEMENT SYSTEM (BMS) 

As the central control unit, the BMS performs several critical functions. It regulates 

charging and discharging processes, balances individual cells and manages thermal 

conditions [23]. In addition, it protects the battery against operational risks such as 

overheating and deep discharge [23, 38]. Finally, it estimates several internal battery 

states, including SoH, state of charge (SoC) and state of power (SoP) [22, 28, 31].  
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Despite advanced control strategies, the BMS cannot prevent the gradual degradation 

of LiBs. Over time, complex chemical and physical changes alter the battery’s behavior, 

leading to reduced performance and complicating the estimation of internal states such 

as SoH [38]. While the BMS provides continuous SoH estimates to anticipate failure 

and optimize operation, the concept itself reflects a complex interplay of multiple 

degradation mechanisms. A precise understanding of these underlying processes is 

therefore essential to clearly define SoH. Both aspects are examined in the following. 

2.2 BATTERY DEGRADATION 

Capacity and power fade are the primary observable effects of LiB degradation [39, 

40]. Both effects are caused by two fundamental degradation modes: Loss of Lithium 

Inventory (LLI) and Loss of Active Material (LAM) at both the cathode and the anode 

[30, 41]. LLI refers to the irreversible consumption of cyclable lithium due to side 

reactions such as solid electrolyte interphase (SEI) formation, lithium plating and 

electrolyte decomposition [30, 40]. These reactions sequester Li-ions, preventing them 

from participating in further charge-discharge cycles [39]. LAM, in contrast, results 

from structural or chemical degradation of active electrode materials, including particle 

cracking, current collector corrosion and transition metal dissolution (TMD) [30]. 

These effects reduce the number of electrochemically active sites available for lithium 

intercalation and deintercalation [39]. Figure 4 graphically illustrates the degradation 

mechanisms leading to the two primary degradation modes described above. 
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Figure 4: Overview of battery degradation mechanisms in Li-ion cells [42] 

2.2.1 ANODE DEGRADATION 

As shown in Figure 4, the anode is subject to several side reactions that significantly 

contribute to battery degradation. These processes occur primarily due to interactions 

with the electrolyte and repeated lithium intercalation and deintercalation, leading to 

the formation and growth of the SEI, lithium plating and particle fracture [15]. 

2.2.1.1 Solid Electrolyte Interphase (SEI) formation and growth 

The SEI forms when the liquid electrolyte comes into contact with the conductive anode 

surface [15, 30, 41]. The anode surface typically operates below the electrochemical 

stability window of the electrolyte, which accelerates redox processes that break down 

the electrolyte and release Li-ions [39, 42]. Together with graphite, they form a 

passivation layer (SEI) that can be composed of various compounds (e.g., Li₂CO₃) [15, 

39]. This reaction particularly occurs during the initial charge cycles and leads to 

irreversible lithium consumption, contributing to a substantial loss in capacity [30, 39]. 
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The SEI layer is semi-permeable. That means, it allows Li-ion transport while blocking 

further electron flow, preventing continuous electrolyte decomposition [39]. However, 

its formation and evolution are highly dependent on factors such as graphite 

microstructure or electrolyte composition [41]. In addition, the SEI can crack due to 

volume changes during cycling, exposing fresh electrode surface leading to renewed 

SEI growth [15, 41]. This repetitive formation consumes active lithium, increases 

impedance and ultimately reduces the battery’s efficiency and lifespan [15, 39]. 

Although SEI formation is essential for initial cell stabilization, it remains a dynamic 

structure. Elevated temperatures, high charging currents and prolonged cycling can 

accelerate its growth and deterioration, thereby exacerbating degradation and 

performance fade over time [15, 39]. 

2.2.1.2 Lithium Plating 

Lithium plating refers to the undesirable deposition of metallic lithium on the anode 

surface instead of Li-ion intercalation into the graphite. This phenomenon occurs when 

the anode potential relative to the lithium falls below 0𝑉 which is reached more likely 

under high current rates, low temperatures or high SoCs [29]. Once deposited, metallic 

lithium may form dendritic structures that grow over successive cycles [29]. These 

dendrites can penetrate the separator, potentially leading to internal short circuits and 

cell failure. In addition, lithium plating contributes to capacity loss by forming 

electronically isolated "dead lithium", reducing the amount of active lithium in the 

system. To mitigate lithium plating, cells are designed with excess anode capacity. 

However, overcharging, uneven current distribution or localized defects can still result 

in its occurrence. [15, 39, 41] 

2.2.1.3 Particle Fracture 

Lastly, mechanical degradation of the anode is crucial. During cycling, the repeated 

lithiation and delithiation of graphite particles induce significant volumetric changes. 

This expansion and contraction generate internal mechanical stresses that can lead to 
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particle fracture [39]. Crack formation exposes fresh surface area, promoting further 

SEI growth and potentially detaching conductive additives. This leads to an increase in 

internal resistance and decrease in electronic conductivity. [15] 

2.2.2 ELECTROLYTE DEGRADATION 

The electrolyte is located between and within both the anode and the cathode, serving 

as a critical medium for Li-ion transport [15]. It is composed of organic solvents (e.g., 

DMC or DEC), lithium salts (e.g., LiPF₆) and additives if necessary [15, 41]. Its 

decomposition is initiated through both chemical and electrochemical pathways, 

particularly under high temperatures, overcharging and the presence of trace impurities 

such as moisture [15, 41]. A key degradation mechanism involves the breakdown of 

LiPF₆, especially in the presence of water. This leads to the formation of decomposition 

products such as di-fluorophosphate and phosphorus oxyfluoride [41]. These species 

are known to reduce ionic conductivity and increase the cell’s ohmic resistance, thereby 

deteriorating overall battery performance [41]. Overall, the degradation of the 

electrolyte leads to increased gas formation, reduced lithium inventory and diminished 

ionic transport, impairing both battery capacity and safety [30, 41]. 

2.2.3 CATHODE DEGRADATION 

Cathode degradation in LiBs is material-dependent, making it less predictable than 

anode side reactions. A key aspect is the formation of the cathode-electrolyte interphase 

(CEI). The CEI is a protective, yet resistive layer formed by oxidative decomposition 

of the electrolyte at the cathode surface. While the CEI suppresses further electrolyte 

breakdown and gas evolution, its poor Li-ion conductivity increases cell impedance and 

reduces energy efficiency. [29, 41] 

A second contributor to cathode aging is TMD. This includes the dissolution of 

transition metal oxides based on nickel, manganese or cobalt into the electrolyte. This 

process is accelerated by elevated temperature, high voltage and HF formation 
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following LiPF₆ hydrolysis. The dissolved metal ions migrate to the anode, where they 

catalyze unwanted SEI thickening and contribute to lithium dendrite growth. [29, 41] 

Furthermore, mechanical structural degradation is critical. Analogous to the anode, 

continuous lithiation and delithiation induce volume changes and mechanical stress in 

the cathode, which can lead to particle cracking and microcracking of the active material 

[29]. This exposes fresh active surfaces to the electrolyte, further promoting CEI growth 

and TMD. [41] 

Finally, cathode materials such as NMC are also prone to phase transitions, including 

Jahn-Teller distortions. This phenomenon occurs particularly at low states of charge 

and decreases lithium capacity and structural stability [29]. Acidic degradation can 

worsen these effects, especially under high temperatures (> 150°𝐶 ), leading to oxygen 

and gas release, active material deactivation and potential safety hazards. [41] 

2.2.4 DEGRADATION MECHANISMS INTERACTIONS 

The previously described individual degradation mechanisms generally do not act in 

isolation [15]. Instead, LiB degradation is driven by a complex interplay of 

electrochemical, chemical and mechanical processes [15]. As shown in Figure 5, 

various causes can simultaneously trigger multiple degradation pathways, which 

interact and reinforce each other. 
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Figure 5: Mapping between degradation causes, mechanisms, modes and effects [15] 

For example, particle cracking in the electrodes exposes fresh surfaces to the 

electrolyte, accelerating side reactions such as SEI or CEI growth. TMD from the 

cathode not only depletes active material but also leads to metal ion deposition on the 

anode, where it catalyzes further SEI thickening and lithium plating. These interactions 

amplify both LLI and LAM, ultimately resulting in measurable declines in capacity and 

power. In addition, the physical degradation of cell components can change internal 

resistance, alter lithium transport pathways and shift the electrode stoichiometry. As a 

result, the observed performance decline is often a combined outcome of multiple, 

interrelated degradation mechanisms. [15] 

These interdependencies complicate the modeling and prediction of battery aging but 

are essential for understanding system-level performance loss [15]. To capture the 

functional consequences of internal degradation, the concept of SoH is essential. 
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2.3 BATTERY STATE OF HEALTH (SOH) 

Battery SoH quantifies the measurable outcomes of degradation, specifically capacity 

and power fade, which arise from the complex interplay of degradation modes and 

mechanisms. This chapter first introduces standard SoH definitions, followed by an 

overview of commonly employed estimation approaches, including experimental, 

model-based and hybrid methods. 

2.3.1 SOH DEFINITION 

The SoH of a LiB describes its current performance relative to its original condition [9, 

38]. As seen in Chapter 2.2, battery degradation results in a capacity and a power fade 

[21]. Central to those effects are a decrease in capacity and an increase in internal 

resistance, which is why both parameters are typically used to define SoH [14]. The 

most commonly used metric is based on the reduction in charge capacity over time and 

is defined as follows [9, 14, 43]: 

𝑆𝑜𝐻 = 
𝑄𝑚
𝑄𝑟
∗ 100% Eq. 2.3 

𝑄𝑚  is the current maximum available capacity and 𝑄𝑟  is the initial maximum capacity 

[9, 14, 43]. This formulation reflects the loss of usable charge storage due to LLI and 

LAM. A second approach defines SoH based on the change in internal resistance [9, 

14, 43]: 

𝑆𝑜𝐻 =  
𝑅𝑒−  𝑅

𝑅𝑒 − 𝑅𝑛
∗ 100% Eq. 2.4 

Here, 𝑅 is the current internal resistance, 𝑅𝑛 is the initial resistance and 𝑅𝑒 is the 

resistance at the end-of-life [9, 14, 43]. This measure describes the increase in internal 

resistance that affects the transmission of energy by the battery [23]. A third definition 

is based on the lithium content within the anode, representing the material-level 

degradation. It is described by the following formula [9, 14, 43]: 
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𝑆𝑜𝐻 =  
𝑄

𝑄0
∗ 100% Eq. 2.5 

𝑄 denotes the current lithium capacity within the anode and 𝑄0 the initial lithium 

content [9, 14, 43]. This reflects the depletion of cyclable lithium and structural changes 

within the electrode material. Together, these definitions provide complementary views 

on battery aging and are selected based on application requirements, available 

measurements and modeling needs. 

2.3.2 SOH ESTIMATION METHODS OVERVIEW 

While SoH formulas define how to calculate the state of health of a battery, the 

parameters required for these calculations are not directly observable. Instead, they 

must be determined by experimental procedures or inferred from operating data. A 

variety of estimation methods are employed for this purpose, which are classified into 

three main categories: experimental, model-based and hybrid methods (see Figure 6). 

 

Figure 6: Overview of the three types of battery SoH estimation methods: Experimental, model-based 

and hybrid 

Experimental methods are based on physical measurements, either by direct or indirect 

observation. Direct measurement methods are generally employed to determine the SoH 

under controlled laboratory conditions. Typical methodologies include capacity tests, 
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internal resistance measurements and impedance spectroscopy. These methods are 

reliable but can be time-consuming and disruptive and making them unsuitable for 

continuous monitoring. Indirect measurements draw conclusions about the SoH based 

on voltage and capacity characteristics using techniques such as incremental 

capacitance analysis or differential voltage analysis. Although these methods are less 

invasive, their accuracy depends on noise, measurement resolution and operational 

variability. [23] 

Model-based methods are increasingly preferred as they allow for continuous online 

estimation of SoH. They can be categorized into three categories: physics-based 

models, adaptive algorithms and data-driven models. Physics-based models simulate 

the electrochemical behavior of batteries using mathematical formulas. Prominent 

examples are ECMs and electrochemical models (EMs). They provide information 

about the internal degradation mechanisms but often require detailed parameterization 

and considerable computing resources. Adaptive algorithms, including Kalman filters 

(KF) and particle filters (PF), continuously update the internal model parameters based 

on new data. This allows them to track changes in battery behavior in real-time and 

makes them robust against operational fluctuations [23]. Data-driven models rely on 

statistical learning techniques and are trained on historical or real-time battery data. 

These models can adapt to different application scenarios, but require large, high-

quality data sets to ensure generalizability. [14, 44] 

Finally, hybrid methods aim to combine the strengths of experimental and model-based 

approaches. Commonly, they integrate physical measurements with adaptive or ML 

models to improve accuracy and robustness. Another form of hybridization combines 

multiple model-based methods. These combinations can improve both interpretability 

and predictive power, especially under changing operating conditions. [45] 

With the increasing use of LiBs in BEVs, the focus of SoH estimation has shifted to 

model-based methods. These approaches combine physical accuracy with 

computational efficiency and real-time applicability. Unlike purely experimental 
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techniques, model-based methods can work in real-time without interrupting battery 

operation. In addition, the flexibility to incorporate adaptive behavior or leverage 

historical data sets allows for improved accuracy under different load conditions. [12] 

2.4 MODEL-BASED SOH ESTIMATION METHODS 

Due to their wide application and growing importance, model-based SoH estimation 

methods are the focus of this chapter. In the following, all three types are introduced in 

detail. The chapter starts with physics-based models, including ECM, EM and empirical 

models. It then discusses adaptive algorithms, which include Kalman and particle 

filters. In the final part, the chapter deals with data-driven methods. This last part is 

divided into statistical data models, rule-based models, classical ML models and 

artificial neural networks (ANN). 

2.4.1 PHYSICS-BASED MODELS 

The first category of model-based SoH estimation methods covers physics-based 

approaches. These approaches construct a mathematical model of the battery to estimate 

its SoH. The mathematical model includes multiple formulas that describe the 

electrochemical and physical processes within the battery driving its degradation. 

Standard methods include ECMs, EMs and empirical models. [9, 45, 46] 

2.4.1.1 Equivalent circuit model (ECM) 

The first physics-based model is the ECM. It is widely used in BMS due to its ability 

to simulate key battery behaviors with high computational efficiency [15, 23]. Rather 

than modeling electrochemical reactions in detail, ECMs abstract them into an electrical 

circuit consisting of resistors, capacitors and voltage sources [23, 46]. This captures 

essential characteristics such as open circuit voltage (OCV), internal resistance and 

transient responses during charge and discharge cycles [15]. 
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Depending on the desired balance between accuracy and computational efficiency, 

various ECM topologies are employed in literature and industry [9]. Common 

topologies include the Rint model, Thevenin model and dual polarization model (see 

Figure 7). [15, 38, 47] 

 

Figure 7: Common ECM topologies: (a) Rint model, (b) Thevenin model and (c) Dual polarization 

model [46, 47] 

The Rint model is the simplest form of ECMs. It consists of an ohmic resistor (𝑅0) and 

an ideal voltage source (𝑈0𝐶), which are connected in series to depict the internal 

resistance ageing of the battery. The Thevenin model extends the Rint model, adding a 

parallel RC network that includes the charge transfer impedance (𝑅𝐶) and capacitance 

(𝐶𝑝) to account for polarization characteristics. To further increase the accuracy, the 

dual polarization model adds an RC series to the Thevenin model, which simulates 

concentration and electrochemical polarization characteristics. [47] 

In ECMs, aging is typically reflected by tracking changes in model parameters over 

time, e.g., increasing internal resistance or reducing available capacity. [32, 47]. These 

parameters are identified from voltage-current responses during standard operation 

using algorithms like recursive least squares or KFs [46]. By mapping these parameters 

over the battery lifetime, the ECM is capable of inferring the SoH. 

Overall, ECMs are widely applied to estimate SoH due to their physical interpretability, 

computational efficiency and real-time capability [23, 32]. However, their applicability 

in high current and low temperature environments is limited [32]. In addition, ECMs 
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lack robustness and generalization across different battery chemistries and designs, 

requiring extensive development for each new application [32]. 

2.4.1.2 Electrochemical model (EM) 

EMs are the second category of physics-based approaches. These models simulate the 

internal chemical, physical and transport processes during battery operation [23, 46]. 

EMs are rooted in porous electrode theory and reaction kinetics [14]. They use 

differential equations to describe ion diffusion, charge transfer, heat generation and 

aging phenomena like SEI formation or lithium plating [9, 32]. 

Among existing EMs, the pseudo-two-dimensional (P2D) model and the Single Particle 

Model (SPM) are the most common [32, 38, 47]. Both are shown in Figure 8. 

 

Figure 8: Common EMs: (a) Pseudo-two-dimensional model (P2D) and (b) single particle model 

(SPM) [48] 

The P2D model provides the most detailed representation of both physical and chemical 

phenomena. It divides the cell into a negative electrode, separator and a positive 

electrode [49]. By solving partial differential equations, the P2D model can simulate 

ion diffusion and migration, electrochemical reactions on the surface of active particles 
11
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and several other phenomena [49]. Achieving such accuracy requires solving a large 

number of differential equations, making P2Ds computationally intensive and therefore 

impractical for real-time use. To reduce complexity, the SPM simplifies the battery 

model by treating both electrodes as active particles, assuming a uniform potential of 

solid and electrolyte and ignoring electrolyte concentration gradients. This makes them 

more suitable for technical applications, as the calculation costs are reduced. However, 

accuracy decreases considerably, especially at high C-rates and dynamic loads. [47, 48] 

In EMs, ageing is generally captured by internal mechanisms such as LLI and LAM, 

which evolve the parameters of the model over time [32]. To calibrate the parameters 

and estimate the internal states of the battery, techniques like genetic algorithms, 

pseudo-spectral methods and KFs are used [15, 46].  

Overall, EMs provide high physical interpretability and precisely depict actual 

degradation processes. This enables accurate tracking of SoH across diverse conditions. 

However, EMs are complex, slow to compute and require detailed knowledge of battery 

chemistry and structure [15, 23, 46]. This limits their use in real-time applications but 

makes them valuable for in-depth analysis, design optimization and offline diagnostics. 

[9, 32] 

2.4.1.3 Empirical model 

Empirical models are the third type of physics-based models. They describe degradation 

behavior using mathematical functions derived from experimental observations and do 

not model electrochemical mechanisms in detail [43, 46, 47]. Empirical models rather 

approximate capacity fade or internal resistance growth as a function of stress factors 

such as temperature, depth of discharge and cycle number [46]. Two empirical aging 

models are commonly used: capacity degradation models and internal resistance models 

[46]. 

On the one hand, capacity degradation models use the Arrhenius equation, which 

models temperature-dependent degradation using exponential terms. Extensions of this 
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model incorporate additional variables such as charge cutoff voltage and discharge rate. 

On the other hand, internal resistance models describe the growth of internal resistance. 

Common formulas include single or double exponential functions to reflect nonlinear 

growth over time. Advanced versions couple empirical resistance models with thermal 

or electrical sub-models to improve performance under varying environmental 

conditions. [36, 46] 

Overall, empirical models offer structural simplicity, low computational cost and real-

time capability. They are particularly effective in stable environments where 

degradation trends follow known patterns. However, external disturbances and complex 

environments substantially decrease the models accuracy, making it overall less 

reliable. [43, 46] 

2.4.2 ADAPTIVE ALGORITHMS 

The second category of model-based SoH estimation methods are adaptive algorithms. 

These algorithms optimize the estimation of battery parameters such as SoH based on 

real-time and empirical data [23, 31]. By continuously adapting the estimation based on 

the battery’s operational performance, they allow for precise SoH estimates [23]. The 

basis of adaptive algorithms is always a battery model, such as an ECM or EM [10]. 

Commonly employed methods include KFs, PFs and their extensions [31].  

2.4.2.1 Kalman filter (KF) 

KFs provide accurate, real-time estimates of the SoH of LiBs even under noisy and 

uncertain conditions [44, 50]. That is why they are commonly applied in BMS. To 

achieve these results, the algorithm combines a system prediction with actual 

measurements in a two-step process (see Figure 9) [44]. 
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Figure 9: Schematic illustration of the KF recursive steps [44] 

As illustrated in Figure 9, a KF consists of a prediction and an update step. First, the 

current state of the battery, including SoH, is predicted based on the initial state of an 

underlying battery model, which may be of mathematical, electrical or electrochemical 

nature [10]. In a second step, this state estimate is updated using real-time 

measurements, to achieve a more accurate result [10].  

While the traditional KF assumes linear system dynamics with Gaussian noise, most 

battery systems are inherently nonlinear, requiring advanced variants such as the 

Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF) [31, 44]. 

EKFs are the nonlinear version of KFs. Before the prediction step, EKFs linearize the 

model around the current state estimate using a first-order Taylor expansion [44, 51]. 

This allows them to estimate battery parameters like capacity and internal resistance 

with high precision in real-time, even under changing operating conditions [50]. 

However, the EKF’s reliance on linearization can introduce errors in highly nonlinear 

scenarios and its performance is sensitive to initial conditions and battery model 

accuracy [50]. Computational cost and tuning effort can also limit its applicability in 

resource-constrained embedded systems [44, 50]. 

To address these issues, the UKF offers a more robust alternative [32, 44]. It avoids 

linearization by using deterministic sampling (sigma points) to better capture the 

nonlinearities of the system [52]. This results in improved estimation accuracy and 

12

© PEM

Überschrift 11pt (fett)

Text 11pt

Arial

Linien:

1 ½

2 ¼

Initial state (𝑥0)

Initial covariance (𝑃0)

State prediction (𝑥   )

Covariance prediction (𝑃   )

Kalman gain (𝐾 )

Corrected state estimation (𝑥 )

Covariance update (𝑃 )

𝑘   𝑘 +  1

Initial state Prediction

Correction / Update



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

TECHNICAL FUNDAMENTALS 

25 

stability compared to EKFs, especially in systems with strong nonlinear behavior [44]. 

Nevertheless, UKFs are more computationally intensive, making real-time 

implementation on low-power platforms challenging [44]. 

Overall, Kalman Filter-based models offer a good balance between accuracy and 

adaptability, making them well-suited for real-time SoH monitoring in BEV 

applications. However, their dependence on detailed battery models and significant 

computational resources presents key limitations. [44, 51] 

2.4.2.2 Particle Filter (PF) 

PFs are a different approach for dealing with nonlinear systems [38]. Also known as 

sequential Monte Carlo approaches, PFs are advanced probabilistic techniques used to 

estimate the SoH of LiBs by representing the system state with a set of particles [50]. 

These particles collectively approximate the posterior probability distribution of the 

system’s state [23, 31, 32]. 

The PF operates through a recursive four-step process: initialization, prediction, weight 

update and resampling. First, a set of 𝑁 particles is drawn from the prior probability 

distribution of the battery’s state. Each particle represents a possible state of the system 

and is assigned a uniform initial weight (𝑤0 =
 

𝑁
). In the prediction step, the next state 

of each particle is predicted using an underlying battery degradation model. After that, 

the weight of each particle is adjusted according to the battery's actual state 

measurement. The weight reflects how well the particle predicts the actual state. Finally, 

in the resampling step, new particles are randomly selected from the set of weighted 

particles. The probability of selection is proportional to a particle’s weight. Therefore, 

particles with higher weights are more likely to be selected, while those with lower 

weights are more likely to be discarded. After the resampling step, the weight of the 

newly selected particles is reset to a uniform value [53] 

This cycle allows the filter to effectively handle both measurement noise and model 

uncertainties [50]. In addition, PFs are adaptable to different battery chemistries and 
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models and have demonstrated strong performance in accurately capturing complex 

battery dynamics and parameter degradation behavior in real-time [50]. However, this 

robustness comes at the cost of significant computational requirements [32, 50]. Many 

particles are often required to maintain estimation accuracy, especially in high-

dimensional state-space models [38, 50]. This increases the computational burden, 

making PF implementation challenging for resource-constrained embedded systems 

[50]. In addition, PFs are susceptible to particle degeneracy, where many particles carry 

negligible weight over time, reducing diversity and leading to reduced estimation 

accuracy [32, 50]. 

2.4.3 DATA-DRIVEN MODELS 

Due to their complex internal structure and unpredictable conditions, building an 

accurate battery model that captures the internal electrochemical and physical processes 

is highly challenging [9, 14, 23, 32]. Unlike model-based approaches, data-driven 

models do not require a deep understanding of battery working principles and 

degradation mechanisms [15, 23]. They are trained on historical battery aging data to 

accurately predict the battery’s SoH [9, 14, 15, 23]. Commonly employed approaches 

include statistical data models, rule-based models, classical ML models and artificial 

neural networks (ANNs). 

2.4.3.1 Statistical data models 

Statistical data models represent the first category of data-driven models. By using 

probability distribution functions, they cannot only provide an SoH estimate, but also 

confidence intervals that take into account the uncertainty of the battery degradation 

process [54]. The most prominent methods are the Gaussian Process Regression (GPR) 

and the Wiener Process (WP) [14, 54]. 
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2.4.3.1.1 Gaussian process regression (GPR) 

GPR is a non-parametric, probabilistic approach that is used to model nonlinear 

relationships in battery SoH estimation [15, 31, 46]. It is based on Bayesian theory and 

used under the assumption that the target function follows a multivariate Gaussian 

distribution, where correlations between data points are encoded by a kernel 

(covariance) function [15, 55]. This enables GPR to predict SoH values and provide 

uncertainty estimates in the form of confidence intervals [15, 31, 46]. 

Initially, a suitable kernel function that captures similarities between data points by 

mapping nonlinear data into a higher-dimensional space is selected. This transformation 

allows complex relationships to be more easily analyzed. Next, the initial values of the 

kernel’s hyperparameters are initialized and the prior model is created in the form of a 

probability distribution, comprising a mean function and a kernel function. The mean 

function is defined as the expected value of the function for a given input. In the prior 

model, the mean is often assumed to be zero for simplicity, as the posterior mean 

naturally becomes non-zero after observing data. After that, the prior model is trained 

on datasets collected in battery tests or real-world operation to obtain the optimal 

hyperparameters of the kernel function. The resulting regression prediction model 

(posterior distribution) is then applied to the test samples to make predictions for new, 

unseen data points. The final step is the output of these predictions, containing both the 

mean and variance to express uncertainty. [14, 55] 

Overall, the GPR’s strength lies in its ability to capture complex aging dynamics 

without requiring explicit physical modeling. In addition, it provides uncertainty 

quantification and is suitable for sparse or noisy data scenarios. Nevertheless, GPR is 

computationally intensive, making it less scalable for real-time or large-scale 

applications. Its accuracy also highly depends on the choice of kernel function and 

tuning of associated hyperparameters. [14, 56] 
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2.4.3.1.2 Wiener process (WP) 

Another widely used statistical model for SoH estimation is the WP, which is 

particularly effective due to its ability to represent uncertainty and irregularities in 

degradation behavior [14, 54]. Unlike deterministic models, the WP is well-suited to 

effectively capture nonlinear and non-monotonic patterns of battery degradation [54]. 

The basic WP uses Eq. 2.6 to describe battery degradation: 

𝑋(𝑡) = 𝑥0 + 𝜆𝑡 +  𝜎𝐵(𝑡) Eq. 2.6 

Here, 𝑥0 represents the initial capacity of the battery. 𝜆 is the drift coefficient 

representing the average degradation rate [57]. 𝜎 is the diffusion coefficient that 

captures random variations and 𝐵(𝑡) represents standard Brownian motion, which 

represents the stochastic dynamics of the degradation process [57]. The WP uses this 

formula to model both systematic trends in capacity fade and stochastic deviations 

caused by operational noise or internal battery phenomena. [58] 

A key strength of the WP is its ability to represent degradation as a continuous-time 

stochastic process with a probabilistic structure [59]. This allows it to capture gradual 

trends and abrupt deviations in battery behavior [54]. Moreover, WPs are able to 

explicitly model uncertainties, which makes them suitable for real-world applications 

where measurement noise, operational variability and incomplete observations are 

common [60]. However, parameter estimation remains a key challenge. The drift and 

diffusion coefficients must be accurately determined via methods such as maximum 

likelihood estimation or expectation maximization. Both approaches can be 

computationally intensive, especially if nonlinear behavior or measurement errors are 

taken into account. [61] 

2.4.3.2 Rule-based models 

Rule-based models are a second distinct category of data-driven models. In contrast to 

statistical or ML approaches, rule-based methods encode domain knowledge directly 
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into their structure through expert-defined if-then rules [62]. Among these methods, 

Fuzzy logic (FL) is the most prominent. 

FL is particularly suitable for systems with nonlinear, imprecise or incomplete data 

[63]. It does not require an underlying model of the battery system [38]. Instead, it uses 

linguistic rules and membership functions to map inputs such as temperature, current 

and voltage into SoH estimates [38]. This enables the abstraction of system equations 

and implementation based on empirical observations or expert knowledge. Figure 10 

illustrates the structure of an FL system. 

 

Figure 10: Components of an FL system [63] 

A FL system consists of four main components: fuzzification, rule base, inference 

engine and defuzzification [38]. During fuzzification, crisp numerical inputs are 

converted into fuzzy sets, consisting of multiple fuzzy variables that are assigned a 

degree of membership (a value between 0 and 1) by a membership function. The degree 

of membership describes the affiliation of the variable to a linguistic term (e.g., the 

temperature is ‘warm’). Examples of membership functions include triangular, 

trapezoidal and Gaussian functions. The rule base comprises a set of expert-derived or 

data-driven if-then rules that link inputs to outputs (e.g., “if temperature is warm and 

discharge rate is high then output is low” [64]). The inference engine applies fuzzy 

reasoning, commonly using either the Mamdani or Sugeno method, to evaluate these 

rules. Finally, defuzzification converts the fuzzy output into a single crisp value using 

output membership functions. [63, 64] 
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Overall, FL offers high flexibility in modeling complex, nonlinear battery behavior 

without reliance on mathematical models or ECMs [38, 63]. In addition, it provides 

good estimation accuracy, especially with well-designed if-then rules and membership 

functions [43]. However, its performance strongly depends on the quality of these rules 

and functions [43]. Finally, FL models are computationally intensive due to parallel 

rule evaluation and require expert input for initial rule design or tuning [7, 38]. 

2.4.3.3 Classical machine learning models 

Classic ML models are trained to recognize patterns in data, regardless of the underlying 

physical and electrochemical processes [38]. By analyzing historical battery data, they 

learn relationships between measurable characteristics such as voltage, current or 

temperature and the SoH of the battery [38]. To extract relevant indicators from the raw 

data that capture battery degradation, manual feature engineering is usually required 

[65]. Commonly used algorithms include support vector machines (SVM), k-nearest 

neighbors (kNN), decision trees (DT) and ensemble learning methods. 

2.4.3.3.1 Support Vector Machine (SVM) 

SVMs are widely used for battery SoH estimation because of their ability to handle 

nonlinear and high-dimensional data [9, 50]. SVMs are supervised learning algorithms 

which are primarily used for classification problems. Regression problems are handled 

by support vector regression (SVR), a variant of the conventional SVM [66]. The 

fundamental principles are shown in Figure 11. 
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Figure 11: Geometric representation of SVM and SVR [38] 

The core concept of an SVM involves determining an optimal hyperplane that 

differentiates between data from different classes (see Figure 11a) [31, 50, 66]. The 

optimal hyperplane is selected by maximizing the distance between the hyperplane and 

the closest data point of any class [44, 50]. In the example, hyperplane “𝑎” outperforms 

hyperplane “𝑏” because it effectively separates the two classes. To construct a 

hyperplane, a support vector is required. It represents the distance between the nearest 

sample point and the data plane. SVR follows the same principle (see Figure 11b), 

however, it aims to minimize the distance of the farthest sample point from the 

hyperplane. [38] 

To estimate a battery’s SoH the SVM model is trained using historical monitoring data 

and offline test results [23]. During training, the model builds an optimal hyperplane, 

which enables it to estimate SoH in real-time using parameters such as internal 

resistance and capacity. A key component of this approach is kernel functions. They 

map the input features in a higher-dimensional feature space, which allows the SVM to 

capture complex, nonlinear relationships by treating them as linear. [31, 38, 50] 

Although SVMs are very accurate and resistant to overfitting, they are sensitive to 

parameter settings and kernel selection [44, 50]. On the other hand, their ability to 

handle large datasets is limited because memory usage increases with the number of 

support vectors [43, 44]. Furthermore, the resulting models often lack interpretability, 
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limiting their ability to provide deeper insight into battery degradation mechanisms 

[50]. 

Relevance Vector Machines (RVMs) have emerged as a response to these limitations 

[31, 43]. RVMs are less reliant on the kernel function and require only a few correlation 

vectors as they naturally create sparse solutions based on Bayesian inference [31, 43]. 

This significantly simplifies the model and reduces computational cost [31]. However, 

RVM performance can decrease if the input data is sparse or noisy, potentially affecting 

consistency and repeatability [43]. 

In conclusion, SVM-based approaches are robust tools for estimating the SoH of LiBs, 

providing strong generalization abilities and effectively handling nonlinear dynamics 

[44, 50]. However, model performance depends heavily on kernel selection, feature 

engineering and hyperparameter tuning [9, 50]. Additionally, for high-dimensional 

feature spaces and large datasets, SVMs are computationally demanding [50]. 

2.4.3.3.2 K-nearest neighbors (kNN) 

The kNN algorithm is an instance-based learning method used to estimate the SoH of 

LiBs [56]. It operates based on the principle that the battery’s SoH can be inferred from 

the most similar past instances in a historical dataset [38]. A geometric representation 

of this approach is shown in Figure 12.  

 

Figure 12: Geometric representation of a kNN [38] 
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In this method, the SoH is estimated by identifying the 'k' most similar instances 

(neighbors) based on selected features such as voltage, current, temperature and 

capacity [3, 38]. This requires a dataset containing labeled instances, where the features 

are paired with known SoH values from batteries tested under similar operating 

conditions. The neighbors are identified by calculating the distance between the current 

sample and instances in the historical dataset [56]. Typical metrics include the 

Euclidean and Manhattan distance [56]. The SoH values of the nearest neighbors are 

then aggregated, typically through averaging, to predict the SoH of the current battery 

instance [38, 56]. 

kNN models offer several advantages. They are conceptually simple and able to capture 

complex, nonlinear relationships without requiring an explicit model of the underlying 

battery degradation processes [3, 56]. This makes them suitable for applications where 

the degradation mechanisms are not fully understood or are too complex to model 

analytically. 

However, the performance of kNN models strongly depends on the quality and 

representativeness of the historical dataset, as accurate SoH estimation requires the 

availability of sufficient similar samples [3, 38]. This dependency increases 

computational demands, as the algorithm requires calculating distances between the 

query instance and all instances in the dataset [38, 56]. Finally, kNN models are 

sensitive to noise and outliers, which requires thorough data preparation and careful 

selection of features [56]. 

2.4.3.3.3 Decision tree (DT) 

DTs are another class of supervised learning methods. They are a nonparametric 

technique with a hierarchical structure that contains the following elements: root node, 

branches, internal nodes and leaf nodes (see Figure 13). [67] 
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Figure 13: Representative structure of a decision tree [67] 

The tree begins at the root node, which represents the starting point of the decision-

making process. From the root node, branches guide through the DT, representing the 

different decisions. Internal nodes correspond to the various decision rules, while leaf 

nodes exhibit the different outcomes from the dataset. [67] 

In the context of battery SoH estimation, relevant features from battery operational data 

have to be determined, such as voltage, current, temperature and capacity measurements 

[56]. These features serve as input, enabling decision-making within the DT. Finally, 

each leaf node provides a different SoH estimate of the battery, allowing for an accurate 

health assessment. 

DTs offer several advantages, including simplicity, interpretability and ease of 

implementation. Furthermore, DTs are adaptable and perform well under varying 

conditions, effectively modeling complex, nonlinear and multivariate relationships. 

However, they are prone to overfitting, especially when the tree becomes too deep and 

captures noise in the training data. This can lead to poor generalization on unseen data. 

Moreover, model performance is sensitive to the initial parameter selection and often 

requires extensive experiments and tuning. As the dataset grows and relationships 

become more complex, the computational cost and training time also increase. [56]  
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2.4.3.3.4 Ensemble Learning Methods 

Ensemble learning methods are increasingly used for SoH estimation due to their ability 

to model complex degradation behaviors with high accuracy and generalization 

capability. They combine multiple base models, such as DTs, to produce a more robust 

and accurate output. Two commonly used ensemble methods are Random Forests (RF) 

and Gradient Boosting Machines, such as XGBoost and AdaBoost. [68, 69] 

RF is a bagging algorithm that constructs numerous DTs on randomly sampled subsets 

of the training data and averages their outputs (see Figure 14) [69]. It can directly utilize 

raw input features such as voltage, current and time, eliminating the need for complex 

preprocessing, which reduces computational cost. [14, 32] 

 

Figure 14: Schematic diagram of the RF [69] 

Developing an RF includes four steps. First, the original data is resampled and split into 

𝑇 sample sets with dedicated labels {𝑆 , 𝑆2,… , 𝑆𝑇}. Second, each sample is used to 

construct a corresponding DT. To assign attributes to the decision nodes, 𝑘 attributes 

are sampled from 𝑀 attributes. This introduces diversity among the trees, preventing 

strong correlation. The attributes are then split via the CART algorithm to partition each 

node optimally. The outcome is the RF model ℎ(𝑥) = 𝑦. Third, each regression tree is 

calculated, determining a multitude of predicted values. Finally, all of these values are 

averaged, resulting in the overall outcome of the RF model. [69] 
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RFs offer several important advantages in battery SoH estimation. They exhibit high 

accuracy even without a large number of parameters and little risk of overfitting [69]. 

Also, they do not require feature selection and provide strong generalization ability [32, 

69]. However, compared to other methods RFs, have longer operation times. [14] 

In contrast, boosting algorithms like XGBoost and AdaBoost build trees sequentially, 

where each tree corrects the errors of its predecessors [68]. XGBoost introduces 

regularization and second-order optimization to improve prediction accuracy and 

prevent overfitting, making it suitable for large datasets [14, 32]. AdaBoost adjusts 

weights on training samples based on previous errors, which improves sensitivity to 

challenging patterns but can make it vulnerable to noise [6]. Both methods offer 

accurate SoH estimation but require careful parameter tuning and are computationally 

less efficient compared to simpler models [32]. 

In summary, ensemble methods are practical tools for battery SoH estimation, offering 

high prediction accuracy and generalization ability. However, they are dependent on 

large datasets and require extensive computational resources. This limits their use in 

resource-constrained BMS environments. 

2.4.3.4 Artificial neural networks (ANN) 

ANNs are the fourth category of data-driven models. They present a specific type of 

ML that is inspired by the structure and function of the human brain [32, 50, 66]. ANNs 

consist of layers of interconnected nodes (neurons) that process input features such as 

voltage, current, temperature and charge cycles to estimate the battery’s SoH [50]. 

Compared to classical ML methods, ANNs are capable of automatically learning 

features from raw data. They are trained using large historical datasets to learn to predict 

a battery’s SoH for unseen operating conditions. The most prominent models include 

feedforward neural network (FFNN), convolutional neural network (CNN) and 

recurrent neural network (RNN). 
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2.4.3.4.1 Feedforward neural network (FFNN) 

FFNNs represent the simplest architecture of ANNs. In their structure, information 

flows unidirectionally from the input layer via all hidden layers to the output layer, 

without forming cycles or feedback loops (see Figure 15). Due to their ability to model 

complex nonlinear relationships, FFNNs are widely applied in BMS for tasks such as 

SoH estimation. [70] 

 

Figure 15: Structure of a three-layer FFNN [14] 

As shown in Figure 15, an FFNN in its simplest version consists of an input layer, a 

hidden layer and an output layer. Initially, a set of input variables (e.g., voltage, current, 

temperature) is selected and fed into the input layer [45]. These inputs are then passed 

to the hidden layer, where each neuron computes a weighted sum of its inputs, followed 

by the application of an activation function to introduce nonlinearity. During training, 

the network adjusts the utilized weights through backpropagation and gradient descent 

to minimize the prediction error. Finally, the resulting values are transferred from the 

hidden layer to the output layer, providing the overall SoH estimate. [71] 

Its simple architecture is a key advantage of FFNNs, as it enables straightforward 

implementation and training. They are particularly effective at predicting the state of a 

battery based on static input data. However, FFNNs have several limitations. Most 

notably, they struggle to capture time-dependent or sequential patterns in data, which 
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may reduce their effectiveness in managing the dynamic nature of battery degradation. 

In addition, training FFNNs often involves computationally expensive iterative 

optimization and hyperparameter tuning, hindering rapid deployment. Additionally, 

FFNNs cannot automatically extract and learn from raw sensor data, often requiring 

manual feature engineering. [70] 

2.4.3.4.2 Convolutional neural network (CNN) 

CNNs represent a second class of ANNs. They are designed to automatically extract 

hierarchical features from structured grid-like data by applying convolutional layers 

(see Figure 16). CNNs have become increasingly popular for SoH estimation due to 

their ability to process time-series data sampled at regular intervals. This allows them 

to detect subtle degradation trends without the need for manual feature engineering. 

[26] 

 

Figure 16: Structure of a CNN [3] 

As shown in Figure 16, CNNs comprise several components. The convolutional layer 

applies kernels that scan the input data, producing feature maps that capture local 

patterns relevant to battery degradation. Within the convolutional layer, these maps are 

passed through an activation function. This function introduces nonlinearity, enabling 

the model to learn complex relationships. Subsequently, a pooling layer reduces the 19
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dimensionality of the feature maps while preserving essential information. Common 

pooling operations include max pooling and average pooling. This sequence of 

convolution and pooling is repeated across multiple hidden layers, depending on the 

depth of the architecture. The output of the last hidden layer is passed to the fully 

connected layer. This layer integrates the extracted features and performs regression to 

estimate the battery's SoH. The final output layer then provides the SoH prediction, 

including a probability distribution. [3, 4, 26, 72] 

CNNs offer several advantages. They provide both high prediction accuracy and fast 

inference times [38]. In addition, their end-to-end learning capability eliminates the 

need for manual feature engineering and their local perception mechanism and 

parameter sharing mitigate overfitting. CNNs can also directly learn from raw data, 

which reduces reliance on domain expertise and enables consistent model performance 

across different battery types and usage scenarios. However, their performance depends 

on careful architecture design, including the number of layers, kernel sizes and pooling 

strategies. In addition, substantial amounts of training data are required to achieve 

optimal accuracy and generalization [70]. Finally, CNNs are less effective at capturing 

long-term temporal dependencies, which leads to suboptimal performance when 

analyzing extended time series data. [26, 32] 

2.4.3.4.3 Recurrent neural network (RNN) 

RNNs represent a third class of ANNs. Derived from FFNNs, they are specifically 

designed for modeling sequential data, which makes them well-suited for applications 

involving time-dependent patterns [3, 46, 70]. They distinguish themselves from 

FFNNs by incorporating feedback connections, which enable them to maintain a 

memory of previous inputs through internal hidden states (see Figure 17) [70]. At each 

time step, the RNN’s output is estimated using both the current input and previous 

hidden state [3, 70]. This ability is crucial for battery diagnostics, since historical usage 

has a significant impact on current performance. [26] 
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Figure 17: Structure of an RNN [32] 

As shown in Figure 17, an RNN has a similar architecture to FFNNs. It consists of an 

input layer, a hidden layer and an output layer. However, RNNs incorporate recurrent 

connections in the hidden layer, which enables the network to carry information across 

time steps. This allows RNNs to utilize the previous hidden state when estimating the 

current state. [3, 4, 26] 

A key advantage of RNNs is their ability to process and model time series data due to 

their feedback connection. Additionally, the weights of each connection stay constant 

across all time steps. This significantly reduces the number of model parameters and 

thereby the overall computational resources required. However, standard RNNs are 

limited in their ability to model long-range dependencies due to the vanishing and 

exploding gradient problems during training [46, 70]. These challenges reduce the 

network's capacity to retain information across long periods, which is critical for 

capturing the gradual degradation behaviors of battery systems. To address these 

challenges, more advanced RNN variants have been developed, including Long Short-

Term Memory (LSTM) networks and Gated Recurrent Units (GRUs). [3, 26] 

LSTMs address the vanishing gradient problem. Their architecture consists of a 

memory cell that is regulated by three gating mechanisms: the input gate, forget gate 

and output gate [38, 70]. These gates control the flow of information into, within and 

20

© PEM

Überschrift 11pt (fett)

Text 11pt

Arial

Linien:

1 ½

2 ¼

In
p
u
t 

p
ar

am
et

er

S
O

H

𝑤2

𝑤 

𝑤 

𝑤 

Input layer Hidden layer Output layer

𝑥 

𝑥2

𝑥 

𝑦 

𝑦2

𝑦 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

TECHNICAL FUNDAMENTALS 

41 

out of the cell, enabling the selective retention or discarding of temporal information 

[38]. This enables the model to efficiently store, update and manage information across 

sequences, which allows for robust modeling of temporal dependencies. [26] 

In the context of battery SoH estimation, LSTMs are particularly valuable due to their 

ability to model time-varying and nonlinear behaviors [38, 45]. In addition, LSTM-

based models have demonstrated high accuracy in predicting battery degradation [44]. 

However, the computational complexity increases with sequence length and hidden 

layer size [44]. Additionally, overfitting can occur when the model architecture is 

overly complex relative to the available training data [44]. 

GRUs offer a simplified structure compared to LSTMs, which reduces the 

computational complexity significantly. They consist of only two components: a reset 

and an update gate. GRUs merge the input and forget gates of a classic LSTM into a 

single update gate and combine the hidden states and cell states. This results in fewer 

parameters and reduced computational requirements. Despite their simpler architecture, 

GRUs often achieve performance comparable to LSTMs, which makes them attractive 

for SoH estimation, particularly in BMS where, computational resources are limited. 

[26] 

In summary, RNN-based architectures are effective tools for estimating battery SoH. 

This is attributable to the fact that they can model the sequential nature of battery 

degradation by incorporating feedback loops. However, the complexity of the model, 

the required training data and the necessary computational resources must be carefully 

considered to use them effectively. [44] 

2.5 INTERIM SUMMARY 

LiBs are widely used in BEVs due to their high energy density, long life and favorable 

performance characteristics under diverse operating conditions. However, LiBs are 

subject to degradation over time. This degradation is caused by a complex interplay of 
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several degradation mechanisms, mainly resulting in two modes: LLI and LAM. These 

phenomena contribute to a capacity and a power fade, the two primary effects that 

reduce battery performance over time. 

To extend battery life, ensure safe and reliable operation and maintain performance, 

BMSs are used. A key function of the BMS is to estimate the SoH of the battery, which 

indicates the current state of health and estimated remaining useful life. The SoH is 

typically characterized by parameters such as the remaining capacity and the internal 

resistance in relation to their initial values. However, these parameters are not directly 

observable; therefore, different methods are employed to determine them.  

A variety of methods are used to estimate these parameters, which can be divided into 

three categories: experimental, model-based and hybrid methods. Among them, model-

based approaches have gained prominence due to highly accurate, non-invasive SoH 

estimation during regular operation, which makes them ideal for real-time integration 

in BMS. Model-based approaches include physics-based models, adaptive algorithms 

and data-driven methods. 

Given the diversity of model-based approaches and their respective strengths and 

weaknesses, a comprehensive selection framework is crucial. Such a framework 

enables a systematic comparison of these methods and thereby facilitates the 

identification of the most appropriate approach for specific application requirements 

and operational constraints. The following chapter develops this framework by applying 

key evaluation criteria to support application-oriented decision making in the context 

of battery SoH estimation. 
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Chapter 3. SOH METHOD SELECTION 

To systematically assess and compare the in Chapter 2.4 presented model-based SoH 

estimation methods, this chapter develops a comprehensive evaluation framework. It is 

structured into two main parts. 

The first part focuses on the development of the mentioned framework. In 

Chapter 3.1.1 a structured literature review identifies five relevant studies that utilize 

multiple criteria to assess model-based SoH estimation methods. From these studies, 

six comprehensive criteria are derived that capture key performance and 

implementation aspects of said methods. Chapter 3.1.2 then defines the selected 

criteria and introduces corresponding 5-level scoring scales. Chapter 3.1.3 describes 

the structural implementation of the defined framework, including the evaluation 

process and the interpretation of results. 

In the second part, the proposed evaluation framework is applied across the SoH 

estimation methods described in Chapter 2.4. Subchapters 3.2.1 to 3.2.6 each address 

one of the six evaluation criteria, systematically rating the methods based on the defined 

5-level scale. Chapter 3.2.7 consolidates the results across all criteria and identifies the 

three most promising approaches for further analysis based on the boundary conditions 

given in this thesis. The selected methods are carried forward to Chapter 4 and 

Chapter 5, where they are applied to real-world datasets. The section concludes with 

Chapter 3.3, summarizing the key findings of the overall chapter and setting the stage 

for the subsequent practical implementation. 

3.1 EVALUATION FRAMEWORK CONSTRUCTION 

This section presents the structured development of the comprehensive evaluation 

framework introduced at the beginning of the chapter. It consists of three sequential 
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steps. First, relevant evaluation criteria are identified through an extensive literature 

review. Then, each criterion is formally defined and assigned a 5-step scoring scale, 

before the structural implementation of the framework is described. 

3.1.1 EVALUATION CRITERIA DERIVATION 

To define a comprehensive set of evaluation criteria for model-based SoH estimation 

methods, a structured literature review was conducted. From this review, five 

representative studies were selected for further analysis and comparison. These studies 

were chosen because they employ multi-criteria assessment frameworks rather than 

focusing on one single performance metric. This offers a strong foundation for 

identifying a set of practically relevant criteria for selecting an appropriate SoH 

estimation method for a given application. While several other relevant studies exist, 

most of them repeat the criteria covered in the selected works. Therefore, only these 

five studies were included in the analysis. They are presented in the paragraphs below. 

In [3], Sui et al. conducted a comparative analysis of multiple ML algorithms using five 

evaluation criteria: estimation accuracy, implementation easiness, computational 

complexity, training data size requirements and overfitting. They are defined as follows: 

• Estimation accuracy: Considers both the training error on known data and the 

generalization error on unseen data.  

• Ease of implementation: Refers to required computational resources and the 

extent of manual feature extraction.  

• Computational complexity: Evaluates the approach’s overall memory usage.  

• Data requirements: Measures the volume of data needed for development and 

training, independent of input dimensionality.  

• Overfitting: Examines the model’s tendency to closely fit limited training data, 

while estimation results on unseen data are poor. 
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In [13], Oji et al. proposed a broader set of seven evaluation criteria, which they apply 

to multiple model-based SoH estimation methods. These criteria are defined as follows: 

• Accuracy: Assesses the degree to which the models predicted SoH values align 

with the true values. 

• Confidence Interval: Evaluates whether the method provides a probabilistic 

output in the form of a confidence interval, which provides a range in which the 

true SoH value is expected to fall. 

• Ability to deal with nonlinearity: Examines the method’s capacity to model 

the strongly nonlinear battery degradation process.  

• Robustness: Measures the model’s performance and accuracy on data with a 

certain amount of noise. 

• Computation complexity: Assesses the inference latency and memory 

requirements during method deployment. 

• Capability to deal with sparse data: Evaluates the model’s performance, 

accuracy and computation time on incomplete datasets. 

• Generalization: Determines the ability of an approach to deal with unseen 

datasets or different battery types without extensive retraining. 

In [1], Eleftheriadis et al. applied five criteria in their assessment of model-based SoH 

estimation methods, including accuracy, time to tune, interpretability, flexibility and 

simplicity. They are defined as follows: 

• Accuracy: Examines how closely the predicted SoH values align with measured 

values. 

• Time to tune: Assesses the model’s total processing time, consisting of training 

and test time. 

• Interpretability: Assesses how easily experts can understand the model 

structure and explain its outputs. 
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• Flexibility: Evaluates the model’s adaptability to new data, including its ability 

to incorporate updates and process big data.  

• Simplicity: Measures the algorithm’s structural complexity based on the 

number of parameters and their respective value range.  

In [20], Guo and Ma applied five evaluation criteria to assess ANN-based SoH 

estimation methods: accuracy at a fixed temperature, algorithm generalization, 

robustness against noise, generalization to different battery materials and computing 

burden. These are described as follows: 

• Accuracy at a fixed temperature: Evaluates the prediction accuracy of the 

models when trained and tested on data collected at 25 °C. 

• Algorithm generalization: Assesses the predictive performance under varying 

temperature conditions. 

• Robustness against noise: Examines model performance in the presence of 

random sensor noise, simulating real-world conditions. 

• Generalization to different battery materials: Assesses the model’s 

transferability by applying the same network structure to a different battery type 

and retraining it using new datasets collected from the new chemistry. 

• Computing burden: Evaluates the calculating time that each method takes to 

perform the SoH estimation. 

Finally, in [50], Dar and Singh analyzed model-based SoH estimation methods using 

five criteria: accuracy and precision, computational complexity, real-time capability, 

robustness to environmental factors and model requirements. These are defined as 

follows:  

• Accuracy and precision: Measures how accurately and consistently the 

predicted SoH values reflect true values. 

• Computational complexity: Assesses resource demands during both model 

training and deployment. 
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• Real-time capability: Evaluates whether the model is suitable for real-time use, 

considering computational speed and complexity. 

• Robustness to environmental factors: Tests model performance under 

variable conditions, including noise and environmental changes. 

• Model requirements: Examines the prerequisites needed for model 

implementation, such as the necessity of a physical battery model, extensive 

training or measurement data or the use of optimization functions. 

Based on the analysis of the studies presented above, six evaluation criteria are 

identified that comprehensively capture the essential dimensions for assessing model-

based SoH estimation methods (see Figure 21). These criteria are accuracy, 

computational efficiency, interpretability, data requirements, reliability and scalability. 

They were derived by prioritizing aspects that are both frequently cited and 

methodologically significant across all sources.  
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Figure 18: Derivation of six evaluation criteria from five selected approaches found in the literature 

that apply evaluation frameworks to model-based SoH estimation methods 

Among the reviewed studies, accuracy and computational efficiency are the most 

consistently emphasized evaluation categories. The accuracy criterion integrates not 

only the predictive precision of the model on both training and test data, but also covers 

its capacity to manage overfitting, provide confidence intervals and handle nonlinearity. 

These aspects are consolidated under a single criterion, as they collectively contribute 

to the overall accuracy of the model. Similarly, computational efficiency encompasses 

several subdimensions, including computational resource demands, structural 

complexity, training and tuning time, inference latency, real-time applicability and 

memory requirements. 
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While referenced less consistently, additional criteria such as data requirements, 

reliability and scalability are also frequently cited and thus incorporated into the 

framework. Data requirements address the volume and quality of data necessary for 

model development and training, including the dependence on manual feature 

engineering or a physical battery model. Reliability combines resilience to sensor 

noise, performance under varying environmental conditions and the ability to operate 

effectively with incomplete or sparse datasets. Scalability captures the model’s 

generalization capability to unseen data and different battery chemistries. While not 

explicitly mentioned, the adaptability to increasing dataset size and system complexity 

is added to this criterion, as it is an essential characteristic in the context of large-scale 

battery systems. 

Finally, although mentioned only in one of the reviewed studies, interpretability is 

included as a sixth criterion due to its critical relevance in practical applications. It 

reflects the extent to which the model's structure and outputs can be understood and 

explained by humans, directly impacting the level of expert knowledge required for 

development, validation and deployment. 

Collectively, these six criteria form a comprehensive framework for the evaluation of 

model-based SoH estimation methods, which is further detailed in the following 

chapter. 

3.1.2 EVALUATION CRITERIA DEFINITION AND SCORING 

Within this chapter, the six previously identified evaluation criteria are formally defined 

and accompanied by a corresponding five-point scale. These scales later serve to 

evaluate each of the presented SoH estimation approaches in comparatively in  

Chapter 2.4. 
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3.1.2.1 Accuracy 

Accuracy assesses how closely the SoH values predicted by the model match the actual 

or reference SoH values [27, 70]. This reflects the main predictive capability of the 

model and is essential for ensuring safe and reliable battery management [1]. It includes 

the model's ability to deal with high-dimensional input spaces and nonlinear 

relationships in battery behavior, as models that can capture these characteristics 

typically achieve higher prediction accuracy [51]. In addition, it evaluates a model’s 

predictive performance on unseen test data drawn from the same distribution as training 

data, reflecting the model's ability to generalize and avoid overfitting. [13, 50] 

Based on this definition, the following scale is defined to categorize the different model-

based SoH estimation methods. It is presented in Table 1. 

Scale Description 

Very High Excellent accuracy on unseen test datasets; robust handling of 

nonlinear, high-dimensional data; minimal to no overfitting 

High Strong accuracy across unseen test datasets; effectively manages 

nonlinearity and high-dimensionality, rare overfitting 

Moderate Acceptable accuracy on training datasets; partial ability to deal with 

nonlinear, high-dimensional data; some overfitting 

Low Limited accuracy on training datasets; struggles with nonlinearity 

and high-dimensionality; prone to overfitting 

Very low Predictions consistently deviate from true SoH; no ability to manage 

nonlinearity/high-dimensionality; frequent overfitting 

Table 1: Scoring of the accuracy criterion 

3.1.2.2 Computational efficiency 

Computational efficiency measures the resource demand of a method during both 

training and inference, directly affecting its feasibility for real-time applications [30, 
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51]. It considers training time and inference latency as well as memory consumption. 

In addition, it covers the model’s structural complexity, including the number of 

parameters, functions and equations involved. Finally, computational efficiency reflects 

whether the method requires extensive iterations or optimization routines. [1, 13, 50] 

To assess computational efficiency, a corresponding scale is introduced. It is shown in 

Table 2. 

Scale Description 

Very High Computationally lightweight and real-time capable; minimal 

parameters and resource usage; negligible latency 

High Efficient training and fast inference; suitable for embedded or real-

time systems; minimal reliance on optimization routines 

Moderate Moderate training and inference time; real-time application possible; 

moderate memory demands; manageable model complexity 

Low Slow execution; moderate to high memory consumption; model 

includes multiple parameters/functions; may require optimization 

Very low Extensive training and inference time; very high memory usage; 

complex architecture with many parameters/functions; impractical 

for real-time usage 
Table 2: Scoring of the computational efficiency criterion 

3.1.2.3 Interpretability 

Interpretability refers to the degree of expert knowledge that is needed to understand 

the model [1]. This includes the transparency of the decision logic, ranging from opaque 

“black-box” models to fully transparent “white-box” models [36]. While some models 

provide insights into physical degradation mechanisms, it is treated separately as an 

optional attribute and does not directly influence the interpretability scoring. 

A classification scale focused on interpretability is constructed based on this definition 

to differentiate among the model-based SoH methods. It is outlined in Table 3. 
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Scale Description 

Very High Fully transparent (white-box) model; every step in the decision 

process is explicitly understandable 

High Clear and traceable logic; input-output relationships are explainable; 

most internal operations are understandable with reasonable expert 

effort 

Moderate Partially transparent model structure; provides limited but meaningful 

insights into decision logic 

Low Mostly opaque model; internal workings are difficult to access or 

explain 

Very low Fully opaque (black-box) model; decision logic is inaccessible or 

incomprehensible 

Table 3: Scoring of the interpretability criterion 

3.1.2.4 Data requirements 

The data requirements criterion assesses the quantity, diversity and preparation 

complexity of the data needed for the method to function effectively [50, 51]. This 

includes the type of measurements required, the necessity for high-resolution or long-

term datasets, the availability of ground-truth labels for SoH and the complexity of 

preprocessing steps such as signal filtering or transformation [50]. It also addresses 

whether extensive manual feature engineering is needed [70]. 

A scale is defined based on this definition to evaluate and compare the data 

requirements of different approaches. It is presented in Table 4. 
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Scale Description 

Very Low Learns effectively from scarce or noisy data; robust to input variability 

and missing values; minimal preprocessing and feature engineering 

required 

Low Performs well with relatively small or partial datasets; minimal 

preprocessing; low reliance on labeled data 

Moderate Requires moderate data volume; basic preprocessing; limited need for 

manual feature engineering 

High Needs large and diverse datasets; moderate preprocessing and labeling 

effort required 

Very High Demands extensive, high-resolution, labeled datasets; extensive 

preprocessing and manual feature engineering 

Table 4: Scoring of the data requirements criterion 

3.1.2.5 Reliability 

Reliability assesses how well the method maintains performance under noisy or 

incomplete data and across different operational scenarios [13, 36]. It focuses on 

robustness to changes in conditions that deviate from the training distribution, e.g., 

atypical operating temperatures or degraded sensor inputs. [50] 

A comparative scale is introduced based on this definition to capture the reliability of 

each model. It is outlined in Table 5. 
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Scale Description 

Very High Consistently reliable and adaptive; manages diverse conditions with 

minimal performance loss; self-adjusts to new data or environments 

without retraining 

High Performs well across different conditions and operational profiles; 

resilient to noise and incomplete data 

Moderate Generally stable in common use cases; tolerates minor variability in 

input or environment 

Low Operates reliably only under narrowly defined conditions; limited 

resilience to data disturbances or changing conditions 

Very low Highly sensitive to environmental factors (e.g., temperature); lacks 

resilience to noise or incomplete data 

Table 5: Scoring of the reliability criterion 

3.1.2.6 Scalability 

Scalability assesses the model’s ability to maintain performance and feasibility as the 

scope of application increases, whether in terms of data size, model input complexity 

or system scale (from cell to pack level) [13, 73]. This criterion evaluates how training 

and inference time, memory demand and accuracy evolve with growing dataset size or 

system complexity [1]. Furthermore, it encompasses the model’s resilience to high-

dimensional or multivariate inputs, ensuring that increased data complexity does not 

compromise stability or generalization. 

A scale for assessing scalability is designed based on this definition to evaluate how 

each method performs under varying conditions. It is presented in Table 6. 

 

 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

SOH METHOD SELECTION 

55 

Scale Description 

Very High Performance remains robust as data volume, dimensionality or system 

complexity grow, without requiring structural changes, tuning or 

significant resource scaling 

High Maintains strong performance with large datasets, multivariate inputs 

and complex system configurations; may require model tuning or 

moderate computational upgrades 

Moderate Handles modest increases in data volume or complexity; may require 

some tuning or resource scaling 

Low Struggles with increasing dataset size or system scale; performance 

deteriorates noticeably 

Very low Fails to maintain performance with growing datasets, system 

complexity or input dimensionality; retraining required 

Table 6: Scoring of the scalability criterion 

3.1.3 STRUCTURAL IMPLEMENTATION OF THE EVALUATION FRAMEWORK 

The evaluation of model-based SoH estimation methods across the previously defined 

criteria follows a qualitative approach. Each method presented in Chapter 2.4 (see 

Figure 19 for a condensed overview) is assigned a rating from “Very Low” to “Very 

High” for each of the six criteria, based on the defined indicator thresholds (as presented 

in Chapter 3.1.2). These thresholds are informed by literature benchmarks, 

comparative studies and performance indicators, e.g., estimation error metrics, 

computational benchmarks or structural model characteristics. Where available, 

existing multi-method comparison studies are used to calibrate the scoring scale, 

ensuring internal consistency and alignment with established assessments. 
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Figure 19: Overview of the model-based SoH estimation methods that are compared by the qualitative 

evaluation framework 

To promote consistency and reproducibility, the scoring process is predominantly based 

on published comparisons in which two or more SoH estimation methods are evaluated 

under common experimental or simulation conditions. Furthermore, qualitative insights 

from studies that review multiple SoH estimation methods are systematically 

interpreted to support the relative positioning of methods along the scoring scale. In 

cases where methods are not directly compared, their reported advantages and 

limitations are evaluated in the context of the criterion definitions. 
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To enhance transparency and enable traceability of the scoring decisions, summary 

comparison tables are used to document the scoring rationale for each method–criterion 

pair. They can be found in APPENDIX I to APPENDIX VI.  

The ratings across all six criteria are aggregated in a matrix structure (see Figure 20) to 

provide a cumulative performance profile for each method. On the one hand, these 

profiles enable a structured, evidence-based comparison that supports application-

oriented selection of estimation methods. On the other hand, they guide the selection of 

candidates for further empirical analysis. 

 

Figure 20: Matrix structure used to compare the model-based SoH estimation methods across the 

derived evaluation criteria 

Based on the boundary conditions present in this thesis, a subset of four criteria is 

chosen. Across this subset, the three highest-scoring methods are carried forward to 

Chapter 4 and Chapter 5, where they are implemented and evaluated on real-world 

battery datasets. This follow-up analysis serves as a quantitative validation of the 

framework’s effectiveness in identifying high-performing methods. It is used to confirm 

or refine the qualitative assessments, to close the loop between conceptual evaluation 

and applied validation. 
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3.2 EVALUATION FRAMEWORK APPLICATION 

Following the definition and construction of the evaluation framework in the previous 

chapter, this section applies it systematically to the model-based SoH estimation 

methods introduced in Chapter 2.4. Each of the subsequent subchapters evaluates these 

methods across one of the six defined criteria. 

For ECM and EM, a representative model type was selected for consistent and 

meaningful comparison, as there are significant differences between the existing 

topologies. The Thevenin model is used to represent ECMs, while the P2D model is 

selected for EMs. Both models are detailed in Chapter 2.4 and were chosen due to 

being commonly employed in literature and industry. In contrast, the remaining 

methods are evaluated as described, without the need for further model specification. 

3.2.1 ACCURACY 

The accuracy criterion is assessed based on the method’s ability to match predicted 

values with actual or reference SoH data on both training and test datasets. In addition, 

it covers the model’s ability to deal with high-dimensional, nonlinear battery behavior 

as well as its tendency to overfit. The results are shown in Table 7. 

Model-based SoH estimation method Accuracy 

ECM (Thevenin) Moderate 

EM (P2D) Very High 

Empirical model Low 

KF Moderate 

EKF Moderate 

UKF High 

PF High 

GPR Very High 
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WP Moderate 

FL Moderate 

SVM/SVR High 

RVM High 

kNN Low 

DT Low 

RF High 

XGBoost Very High 

AdaBoost High 

FFNN High 

CNN Very High 

RNN High 

LSTM High 

GRU High 

Table 7: Qualitative comparison of model-based SoH estimation methods for the accuracy criterion 

The rationale for each rating is presented in the following paragraphs. For clarity and 

coherence, methods are grouped and discussed according to their assigned rating 

category. Additional explanation details can be found in APPENDIX I. 

Very High Accuracy 

Methods rated “Very High” on the accuracy scale demonstrate robust performance on 

both training and test datasets as well as minimal tendency to overfit. In addition, they 

effectively capture nonlinear and high-dimensional battery dynamics. The methods 

belonging to this category are EM (P2D), GPR, XGBoost and CNN.  

EMs achieve very high accuracy through detailed physical modeling that inherently 

captures degradation processes and nonlinearities [15, 32, 46, 74]. GPRs, on the other 

hand, excel in handling high-dimensional and nonlinear data [29–31, 75]. They also 
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provide probabilistic outputs through confidence intervals, offering insight into 

predictive uncertainty [29–31, 75]. Despite moderate susceptibility to overfitting, it 

yields one of the highest accuracies, outperforming several other model-based SoH 

estimation methods across multiple studies [1, 17, 66, 76]. XGBoost algorithms achieve 

similar accuracies as GPR by effectively managing nonlinearity through ensemble 

learning and regularization techniques like sub-sampling [24, 32, 47, 77]. Its 

performance on smaller datasets, however, can suffer from overfitting [32]. CNNs excel 

by autonomously learning hierarchical features from raw input data, increasing their 

effectiveness in high-dimensional input spaces [29]. In addition, they consistently 

outperform most ML and ANN models in battery SoH estimation [1, 22, 29, 70]. 

High Accuracy 

Methods rated “High” demonstrate robust performance on training and test data with 

less accuracy than approaches in the previous category. Moreover, they are robust 

against overfitting, while also effectively managing nonlinear battery behavior. This 

category contains adaptive algorithms (UKF, PF), SVM, SVR and RVM, ensemble 

learning methods (RF, AdaBoost) and multiple ANNs (FFNN, RNN, LSTM and GRU). 

UKFs achieve high accuracy without requiring linearization techniques, which enables 

strong performance even under high-nonlinearity [2]. PFs yield comparable results to 

UKFs [27]. In addition, they can manage nonlinear and non-Gaussian systems while 

also providing confidence intervals [23, 27, 50]. SVMs and SVRs combine high 

predictive power with structural risk minimization to reduce overfitting, though they 

may degrade on unseen data [13, 27, 29, 31, 50, 56]. Their prediction accuracy rivals 

that of ANNs and RFs due to their capability to handle nonlinearity and high-

dimensionality [3, 19]. RVMs achieve similar accuracy to SVMs but offer the added 

advantage of probabilistic outputs and better control over underfitting and overfitting 

[14, 17, 75]. Among ensemble learning methods, RFs perform excellently on both 

training and test data [1]. Furthermore, they capture complex and nonlinear 

relationships with low overfitting risk [24, 27]. Similarly, AdaBoost achieves high 
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accuracy through model combination and careful tuning of weak learners, consistently 

outperforming weaker individual models (e.g., SVRs or DTs) [6, 14, 30, 68]. ANNs 

such as FFNN, RNN, LSTM and GRU also receive high accuracy ratings. Their 

predictive precision across multiple studies rivals that of CNNs [1, 3, 13, 16, 20, 22, 27, 

32, 46, 70]. However, while all are capable of modeling nonlinear dynamics, they tend 

to overfit more easily compared to CNNs [3, 47, 50]. 

Moderate Accuracy 

Methods rated “Moderate” exhibit reasonable accuracy on training data and partial 

ability to model nonlinear, high-dimensional phenomena. However, they suffer from 

limitations in generalization to unseen test data and overfitting. This category includes 

ECM, KF, EKF, WP and FL. 

ECMs offer moderate accuracy due to their simplified representation of battery 

dynamics and struggle to capture complex nonlinearities [9, 24]. KFs rely heavily on 

the underlying battery model and do not inherently account for nonlinearities [2, 10, 13, 

31, 43]. While EKFs improve KFs using linearization techniques that allow partial 

handling of nonlinearities, these approximations introduce errors and limit robustness 

under strong nonlinearity [2, 50, 51]. The WP offers good estimation accuracy due to 

its probabilistic structure, which allows it to capture gradual trends and abrupt 

deviations in battery behavior [17, 54, 59]. However, it is restricted to linear trends, 

limiting applicability in more complex systems [78]. Finally, FL performs moderately 

in both comparative and absolute terms, though capable of handling nonlinear 

relationships [2, 17, 22, 27, 43]. 

Low Accuracy 

The “Low” accuracy rating is assigned to models that show limited predictive ability 

and high overfitting tendencies, especially when exposed to unseen test datasets or 

complex dynamics. The empirical model, kNN and DT are part of this category. 
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Empirical models offer moderate accuracy, but lack robustness across datasets and 

perform poorly outside of training conditions [15, 36, 73]. kNNs demonstrate both low 

accuracy and a strong tendency toward overfitting [3]. Lastly, DTs are capable of 

modeling nonlinear relationships but often overfit and underperform relative to other 

methods, leading to their placement in this category [1, 30, 56]. 

No assessed method falls into the “Very Low” category of the accuracy criterion, as 

none consistently demonstrates both very inaccurate predictions and a complete 

inability to model complex battery behavior. 

3.2.2 COMPUTATIONAL EFFICIENCY 

Computational efficiency is evaluated based on the computation burden during both 

model development and operation. This covers the model’s structural complexity, 

training time, inference latency and memory consumption. Additionally, it reflects the 

model’s suitability for real-time applications. The results are shown in Table 8. 

Model-based SoH estimation method Computational efficiency 

ECM (Thevenin) High 

EM (P2D) Very Low 

Empirical model High 

KF High 

EKF Moderate 

UKF Low 

PF Low 

GPR Very Low 

WP Moderate 

FL Low 

SVM/SVR Moderate 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

SOH METHOD SELECTION 

63 

RVM Low 

kNN Moderate 

DT Moderate 

RF Moderate 

XGBoost Moderate 

AdaBoost Moderate 

FFNN Moderate 

CNN Very Low 

RNN Very Low 

LSTM Very Low 

GRU Low 

Table 8: Qualitative comparison of model-based SoH estimation methods for the computational 

efficiency criterion 

The rationale for each rating is presented in the following paragraphs. For clarity and 

coherence, methods are grouped and discussed according to their assigned rating 

category. Additional explanation details can be found in APPENDIX II. 

None of the evaluated methods have received a “Very High” computational efficiency 

rating. This can be attributed to the inherent structural complexity in all methods, which 

requires either prolonged training durations or slower inference times. 

High Computational Efficiency 

Methods rated as having “High” computational efficiency are characterized by efficient 

training and test times, low structural complexity and suitability for real-time 

deployment. This category includes the ECM, empirical model and KF. 

First, the ECM demonstrates high computational efficiency due to its simplicity and 

minimal parameter set, which enables fast computation and real-time deployment [5, 9, 

14, 23, 32, 47]. However, model training remains rather time-consuming due to the 
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required parameter initialization [15]. Empirical models are similarly efficient as they 

rely on simple equations and calculations, which makes them suitable for real-time 

applications [15, 30, 43, 46, 47]. Nonetheless, they require aging tests for parameter 

identification, which increases training time [15, 73]. KFs offer fast processing times, 

rapid model updates and simple calculations, making them highly efficient and real-

time capable [2, 31]. However, their development phase is often prolonged by the 

required model pre-validation [2, 10]. 

Moderate Computational Efficiency 

Methods within the “Moderate” computational efficiency category balance manageable 

training complexity and real-time feasibility, although with higher computational 

demands during development and, in some cases, during inference. This category 

includes the EKF, WP, multiple classical machine learning models (SVM/SVR, kNN, 

DT, RF, XGBoost, AdaBoost) and FFNN. 

EKFs support real-time operation through recursive estimation, but their ability to deal 

with nonlinearities requires additional computations, which elevate computational 

complexity [13, 50, 51]. While inference is efficient, training remains extensive due to 

careful parameter tuning [2, 44]. WP models are conceptually simple and parameter-

efficient post-training [14, 17, 57]. However, both parameter estimation and inference 

require mathematically intensive formulations, contributing to increased computational 

demand [17, 30, 57]. Similarly, SVM/SVR require extensive training due to complex 

mathematical operations, cross-validation and parameter tuning [3, 17, 27, 44, 50, 56]. 

In addition, their memory footprint is typically high, scaling with the number of support 

vectors [13]. However, after the model is trained, it offers fast inference suitable for 

real-time applications [17, 31, 50]. In contrast, kNN avoids a training phase entirely but 

utilizes significant computational resources during inference due to the distance 

calculations between the input sample and every point in the dataset [3, 56]. While 

execution is fast in small datasets, the method suffers from high memory consumption 

and increasing inference latency in high-dimensional spaces [79]. DTs and RFs offer 
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fast inference capabilities but suffer from computationally intensive training and 

hyperparameter tuning [1, 30, 56]. In addition, RFs demand more memory than methods 

such as SVM and kNN but benefit from the ability to process raw input data without 

preprocessing [3, 32]. The other ensemble models, XGBoost and AdaBoost, achieve 

moderate efficiency by leveraging parallelism and weak learner ensembles [32]. Both 

exhibit fast inference but also long training times, especially in large-scale applications 

[56, 68, 80, 81]. Lastly, FFNNs, while structurally simple, require intensive training 

phases [1, 50, 70, 72]. Additionally, inference is generally fast, making them suitable 

for real-time applications [1, 20, 50, 70, 82]. 

Low Computational Efficiency 

Methods categorized as having “Low” computational efficiency exhibit substantial 

memory usage and structural complexity. In addition, these methods pose slow 

execution and extended training times. This group includes the UKF, PF, FL, RVM and 

GRU. 

UKFs introduce increased computational burden through sigma point propagation, 

which elevates their complexity relative to KFs and EKFs [44, 52]. However, using a 

high-performance controller, UKFs are capable of real-time estimation [2]. Similarly, 

PFs are computationally demanding, with their efficiency being highly dependent on 

the number of particles used [13, 27]. Repetitive sampling and resampling further 

increase processing time and memory demands [14, 50]. FLs involve complex rule 

bases and operations such as exponentials and divisions, resulting in high memory 

consumption and often requiring specialized hardware for real-time use [10, 17, 27, 83]. 

RVMs benefit from sparse solutions through Bayesian inference, which simplifies the 

model compared to SVMs and reduces inference cost [31]. However, they suffer from 

long, iterative training and memory-intensive operations, which limit their suitability 

for real-time applications [17, 29, 31, 67]. Finally, GRUs improve on LSTMs regarding 

computational efficiency by simplifying their architecture, making them faster and 
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more efficient [22, 26]. However, they remain demanding, especially in terms of 

training and hardware requirements [22, 26]. 

Very Low Computational Efficiency 

The “Very Low” computational efficiency category includes methods characterized by 

high training complexity, large parameter sets, significant memory requirements and 

long inference times. This category includes the EM, GPR and multiple ANNs (CNN, 

RNN and LSTM). 

EMs are computationally demanding due to multiple partial differential equations and 

extensive parameterization [6, 30, 77]. They require long training and update times and 

are not suitable for real-time applications [9, 23, 24, 46, 74]. GPRs exhibit similarly 

high computational burdens. Their inference latency is high due to matrix operations 

and exponential functions, which also lead to high memory usage [1, 16, 29–31]. 

Additionally, tuning hyperparameters and kernels significantly extends training 

duration [1, 17]. CNNs are among the most computationally demanding models, with 

extensive training time, massive datasets and high parameter count leading to long 

processing times [1, 14, 16, 70]. RNNs also require extensive computational resources 

due to their recursive structure [3, 38, 46, 70]. They exhibit long training times and 

elevated memory consumption exceeding that of models such as RF, SVM or kNN [3]. 

Their deployment on embedded systems is limited [38]. Lastly, LSTMs surpass RNNs 

and GRUs in both time and memory needed for training and inference, which restricts 

them in their applicability in real-time settings [1, 20, 22, 44, 75]. 

3.2.3 INTERPRETABILITY 

The interpretability criterion is assessed via the transparency of the model’s decision 

logic. This ranges from opaque “black-box” models to fully transparent “white-box” 

models. The results of the evaluation are shown in Table 9. 
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Model-based SoH estimation method Interpretability 

ECM (Thevenin) High 

EM (P2D) Low 

Empirical model High 

KF High 

EKF High 

UKF Moderate 

PF Low 

GPR Low 

WP Moderate 

FL Very High 

SVM/SVR Low 

RVM Moderate 

kNN High 

DT Very High 

RF Low 

XGBoost Low 

AdaBoost Low 

FFNN Low 

CNN Very Low 

RNN Very Low 

LSTM Very Low 

GRU Very Low 

Table 9: Qualitative comparison of model-based SoH estimation methods for the interpretability 

criterion 
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The rationale for each rating is presented in the following paragraphs. For clarity and 

coherence, methods are grouped and discussed according to their assigned rating 

category. Additional explanation details can be found in APPENDIX III. 

Very High Interpretability 

Methods rated “Very High” on the interpretability scale are fully transparent. They 

exhibit easily understandable decision processes to the external observer without 

requiring in-depth technical expertise. FL and DT belong to this category. 

FL systems are based on explicit if-then rules containing linguistic variables and fuzzy 

sets, which make the internal reasoning process visible and intuitive [7]. This structure 

allows for easy traceability of the system’s decisions from inputs to outputs without 

requiring extensive analysis of complex mathematical models. Similarly, DTs provide 

clear, hierarchical and rule-based structures which are easily traceable from root to leaf 

[30, 56, 67].  

High Interpretability 

Models with “High” interpretability demonstrate clear and traceable logic with 

explainable input-output relationships. While not as inherently transparent as the 

previous category, these methods allow for meaningful insight into their internal 

operations with reasonable effort. This category features the ECM, empirical model, 

KF, EKF and kNN. 

Both the ECM and empirical model are conceptually simple [24, 43]. They are based 

on a limited set of parameters linked to degradation mechanisms and easy to interpret 

after expert parameter initialization [15, 23, 32, 73]. KF and EKF operate via 

transparent recursive updates based on known models and measurements, which enable 

full traceability of computations [44]. However, they require expertise to implement 

their equations, which are based on a detailed understanding of the battery parameters 

[44]. Lastly, the kNN algorithm achieves high interpretability by averaging the outcome 
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of the k most similar training instances, though this interpretability tends to decrease in 

high-dimensional spaces [79]. 

Moderate Interpretability 

Methods rated as having “Moderate” interpretability are partially transparent. They 

provide limited but meaningful insight into the decision logic. A degree of expert 

knowledge is required for understanding. This category includes UKF, WP and RVM. 

UKFs retain the Kalman structure but introduce less intuitive sigma points, reducing 

interpretability compared to KF and EKF [52]. In contrast, the WP is mathematically 

transparent with parameters linked to degradation trends [57, 58]. Nevertheless, its 

probabilistic output can be difficult to interpret for non-specialists. RVMs improve 

interpretability in comparison to SVM/SVRs by producing sparser solutions through 

fewer relevance vectors [29]. This simplifies the decision function and enhances the 

model’s transparency compared to standard SVMs [29]. 

Low Interpretability 

Methods with “Low” interpretability exhibit mostly opaque structures with limited 

insights into their decision logic. Their outputs are difficult to trace back to individual 

inputs without advanced expert knowledge. Methods included in this category are EM, 

PF, GPR, SVM/SVR, ensemble methods (RF, XGBoost, AdaBoost) and FFNN.  

EMs simulate complex coupled partial differential equations that capture detailed 

physical insights, but diminish the traceability of the internal decision logic [2, 14, 24, 

30]. Similarly, PFs estimate system states through a cloud of weighted particles, a 

process that lacks transparent rules and makes state estimation hard to interpret [23, 31, 

32]. GPRs offer some interpretability as they allow for inspection of kernel functions 

and provide explicit uncertainty quantification [1]. However, it relies on complex 

covariance calculations and lacks simple analytical forms. SVM/SVR models generate 

decision boundaries from complex support vector combinations, which creates an 

opaque internal structure [23, 24, 50]. Ensemble methods (RF, XGBoost and 
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AdaBoost) combine multiple base learners to enhance predictive performance. 

Although each base learner is individually interpretable, their combination forms 

complex, less transparent models [24, 47, 68]. Finally, FFNNs are typically considered 

black-box models but benefit from a simpler structure than CNNs and RNNs, placing 

them at the lower end of this category [32, 50]. 

Very Low Interpretability 

Methods rated “Very Low” function as opaque black-box models. In such models, the 

decision logic is inaccessible. This category features exclusively ANNs (CNN, RNN, 

LSTM and GRU). 

CNN exhibits highly abstract internal operations and parameter-heavy architectures that 

limit its interpretability [32, 47, 50]. RNN, LSTM and GRU networks introduce 

complex, nonlinear hidden states that evolve over time [38, 70]. While these structures 

capture long-term dependencies effectively, they hinder traceability and understanding 

[50]. 

3.2.4 DATA REQUIREMENTS 

The data requirements are evaluated in terms of the volume, heterogeneity and 

preparation complexity of the input data that are necessary for effective model 

performance. It also addresses the necessity for preprocessing or manual feature 

engineering before deployment. The results are shown in Table 10. 

Model-based SoH estimation method Data requirements 

ECM (Thevenin) Moderate 

EM (P2D) Very High 

Empirical model High 

KF High 

EKF High 
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UKF High 

PF High 

GPR Moderate 

WP Low 

FL High 

SVM/SVR High 

RVM Moderate 

kNN High 

DT High 

RF Moderate 

XGBoost High 

AdaBoost Moderate 

FFNN Very High 

CNN Very High 

RNN Very High 

LSTM Very High 

GRU Very High 

Table 10: Qualitative comparison of model-based SoH estimation methods for the data requirements 

criterion 

The rationale for each rating is presented in the following paragraphs. For clarity and 

coherence, methods are grouped and discussed according to their assigned rating 

category. Additional explanation details can be found in APPENDIX IV. 

No method was assigned a “Very Low” rating, as none are capable of learning 

effectively from scarce or noisy data while maintaining robustness in combination with 

minimal preprocessing and feature engineering. 
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Low Data Requirements 

Methods rated as having “Low” data requirements perform reliably with small or 

partially incomplete datasets. They require minimal preprocessing and have limited 

reliance on labeled data. Solely WPs are classified under this category. 

WP models typically require only a small amount of degradation data for offline 

parameter computation compared to other data-driven methods. Their structure does 

not depend on high-dimensional inputs or extensive labeling and their stochastic 

formulation allows for effective modelling under data sparsity [17, 30]. 

Moderate Data Requirements 

Models within “Moderate” data requirements need a reasonable amount of diverse data, 

basic preprocessing and limited manual feature engineering. The category includes 

ECM, GPR, RVM, RF and AdaBoost. 

ECMs have moderate data requirements, mainly due to identification and recalibration 

of the model’s parameters [9, 36]. GPRs operate effectively with small datasets, but 

they are sensitive to input feature quality and kernel selection, which requires careful 

tuning [24, 56, 75]. RVMs reduce the reliance on kernel and penalty factor selection 

found in SVMs, resulting in less manual configuration [13, 14]. However, to effectively 

initialize the model, diverse and labeled input data are beneficial [75]. RFs require 

larger datasets than simpler methods such as SVM or kNN, yet they compensate for 

that by offering automatic feature selection, which reduces preprocessing needs [3, 14, 

32]. Similarly, AdaBoost exhibits moderate data requirements, even though high-

quality input data is beneficial. In addition, they are less reliant on complex 

hyperparameter tuning and require only modest labeling [14, 24, 80]. 

High Data Requirements 

Methods with “High” data requirements rely on large, diverse and high-quality datasets. 

They often need moderate preprocessing, labeled data and significant effort in feature 
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selection. This group includes empirical models, adaptive algorithms (KF, EKF, UKF 

and PF) and multiple data-driven methods (FL, SVM/SVR, kNN, DT and XGBoost). 

Empirical models require extensive experimental testing to derive parameters and 

ensure accurate model calibration [5, 15]. In contrast, Kalman filters (KF, EKF and 

UKF) do not require training data per se but depend heavily on the development of 

precise underlying battery models which require experimental testing and datasets [43, 

44, 50, 74]. PFs are particularly data-intensive requiring large volumes of high-quality 

experimental measurements to accurately estimate system states and capture system 

dynamics under varying conditions [23, 74]. Furthermore, all data-driven methods of 

this category (FL, SVM/SVR, kNN, DT and XGBoost) rely on high-quality and 

diverse input data for optimal performance [2, 7, 10, 24, 32, 56, 74, 83, 84]. FL further 

depends on expert-defined rule sets, increasing the data burden [85]. In contrast, 

SVM/SVR and XGBoost involve extensive preprocessing, including kernel tuning and 

manual feature engineering [16, 30, 31, 50, 77, 80]. 

Very High Data Requirements 

Methods rated as having “Very High” data requirements rely on extensive, high-

resolution and labeled datasets. Furthermore, they need significant preprocessing and 

manual feature engineering. EMs and multiple ANNs (FFNN, CNN, RNN, LSTM and 

GRU) belong to this category. 

EMs demand extensive experimental data and expert knowledge for accurate parameter 

identification and model calibration [15, 23, 50, 74]. In contrast, ANNs require large 

volumes of diverse and high-quality datasets for effective training [3, 16, 22, 27, 38, 

50, 74]. Their performance depends on the completeness and stability of the input data, 

including relevant features [30, 38]. Moreover, FFNNs as well as RNNs and their 

extensions (LSTM and GRU) depend on careful hyperparameter tuning [3, 47]. CNNs, 

on the other hand, are capable of automatic feature extraction [3, 16]. While this 

eliminates the manual feature engineering process, for effective automated feature 

identification, it further increases the need for diverse and high-quality data [3, 16]. 
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Finally, temporal architectures such as RNN, LSTM and GRU are especially 

demanding in terms of datasets. They require high-resolution, long-term sequences with 

accurate SoH labels to capture the dynamics of battery degradation over time [3, 22, 

50]. 

3.2.5 RELIABILITY 

The reliability criterion is assessed by how well the model performs under changing 

conditions, noisy or incomplete data and across different operational scenarios. The 

comparative results are summarized in Table 11. 

Model-based SoH estimation method Reliability 

ECM (Thevenin) Moderate 

EM (P2D) Moderate 

Empirical model Very Low 

KF High 

EKF High 

UKF Very High 

PF High 

GPR Very High 

WP High 

FL High 

SVM/SVR High 

RVM High 

kNN Low 

DT Moderate 

RF Very High 

XGBoost High 
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AdaBoost Moderate 

FFNN High 

CNN Very High 

RNN Very High 

LSTM High 

GRU High 

Table 11: Qualitative comparison of model-based SoH estimation methods for the reliability criterion 

The rationale for each rating is presented in the following paragraphs. For clarity and 

coherence, methods are grouped and discussed according to their assigned rating 

category. Additional explanation details can be found in APPENDIX V. 

Very High Reliability 

Models in this category consistently exhibit high performance across diverse and 

dynamic operating conditions, demonstrating robustness to noise, incomplete data and 

environmental variability. This category includes the UKF, GPR, RF, CNN and RNN. 

The UKF offers improved robustness compared to both KF and EKF by incorporating 

nonlinear transformations through sigma points, enhancing accuracy under uncertain 

conditions [22, 27, 50]. While it remains sensitive to variations in current profiles or 

ambient temperature, it demonstrates strong adaptability when properly configured 

[54]. GPR provides a probabilistic framework with inherent uncertainty quantification, 

which enables handling of nonlinearities and sparse or noisy data [45, 56]. In addition, 

its flexibility in modeling complex, nonlinear relationships enhances reliability across 

different operating scenarios [56]. RF models are robust to outliers and noise, which 

allows raw sensor data to be directly fed into the trained model [3, 11, 30, 47]. This 

enhances the model’s resilience when handling heterogeneous data or incomplete 

datasets [68]. In addition, they are adaptable across diverse battery usage scenarios, 

supporting their classification in this group [68]. Finally, CNNs and RNNs are both 

adaptable to different operating conditions and exhibit superior generalization ability to 
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other ANNs [22, 38, 50]. For CNNs, these abilities are further supported through 

automatic feature extraction [50]. 

High Reliability 

Methods rated “High” on the reliability scale consistently perform well across a range 

of operational conditions and are resilient to moderate levels of noise and incomplete 

data. However, their robustness may depend on the accuracy of an underlying model or 

be affected by specific operating conditions. This category includes adaptive filters (KF, 

EKF and PF), WP, FL, classical machine learning approaches (SVM/SVR, RVM and 

XGBoost) and selected ANNs (FFNN, LSTM and GRU). 

The KF and EKF are recursive filters that perform well on noisy and sparse data [13, 

51, 86]. However, their predictive performance depends on the underlying battery 

model [50]. PFs and WPs both utilize probabilistic frameworks to effectively manage 

uncertainties in system behavior, which enables them to remain robust under 

operational variability and incomplete data [13, 23, 31, 50, 60]. While the WP 

demonstrates robustness towards measurement noise, PFs are rather sensitive to such 

conditions [23, 32, 60]. Similarly, FL systems manage uncertainty and imprecision 

well, outperforming methods such as SVM and FFNN in fluctuating conditions [27, 

83]. SVM/SVRs offer strong generalization across a wide range of operating conditions 

and an inherent robustness to noise [2, 13, 23, 27, 50]. They are effective with small 

datasets and maintain performance under complex and varying conditions [14, 56]. 

However, their sensitivity to kernel and hyperparameter selections can affect both their 

adaptability and tolerance to noise and data sparsity [3, 44, 56]. RVMs enhance noise 

resistance and adaptability beyond SVMs through probabilistic modeling [2, 13, 14, 

75]. Yet, this reliability is limited when the training data are overly sparse [14, 43]. 

Finally, ensemble and deep learning methods such as XGBoost, FFNN and 

LSTM/GRU networks maintain stable performance under noisy or incomplete inputs, 

though some susceptibility to temperature effects and data outliers exists [14, 20, 22, 

27, 32, 47, 50, 56, 80]. 
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Moderate Reliability 

Methods with “Moderate” reliability typically perform well under nominal conditions 

but have limited resilience to noisy or highly variable inputs. The ECM, EM, DT and 

AdaBoost are part of this category. 

ECMs are effective under steady-state conditions and struggle with extreme 

temperature or high-current scenarios [9, 24, 32]. Its noise resilience is often enhanced 

through integration with filtering techniques such as KFs [46]. EMs require 

comprehensive datasets covering multiple operating conditions to maintain robustness 

and performance for changing conditions [9, 32]. DTs and AdaBoost algorithms 

provide stable performance under standard operating conditions and can adapt to 

different operating profiles [6, 47, 56]. However, both methods are sensitive to noise 

and outliers [14, 56, 80]. Moreover, DTs heavily depend on the initial parameter 

selection, which limits their robustness [56]. 

Low Reliability 

Methods with “Low” reliability are only reliable under specific, controlled conditions. 

Their performance degrades significantly in the presence of noise, outliers or missing 

data. The kNN algorithm is representative of this category.  

kNN generally performs well under controlled conditions. To mitigate sensitivity to 

noise and outliers as well as increase its reliability in unseen operational conditions, it 

requires extensive data preprocessing and careful feature selection. [3, 56] 

Very Low Reliability 

Methods rated as having “Very Low” reliability are sensitive to multiple environmental 

factors and lack resilience to both noise and incomplete data. Empirical models are the 

sole models belonging to this category. 

Empirical models are calibrated on specific experimental datasets and tend to 

generalize poorly beyond the conditions represented in the training data [6]. 
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Furthermore, they lack robustness under changing conditions, further decreasing their 

overall performance [15, 36, 43, 46, 47, 69, 73]. 

3.2.6 SCALABILITY 

Scalability is evaluated based on each model’s ability to maintain predictive 

performance and computational feasibility as the complexity or scale of the application 

increases. This includes assessing how the model responds to larger datasets, more 

complex inputs and broader system-level deployment (from cell to pack). Key 

indicators include training time, inference speed, memory demand and accuracy. The 

results of the evaluation are presented in Table 12. 

Model-based SoH estimation method Scalability 

ECM (Thevenin) Low 

EM (P2D) Very low 

Empirical model Low 

KF Very High 

EKF Very High 

UKF Moderate 

PF Low 

GPR Moderate 

WP Moderate 

FL Low 

SVM/SVR Moderate 

RVM Low 

kNN Low 

DT Moderate 

RF High 

XGBoost Very High 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

SOH METHOD SELECTION 

79 

AdaBoost Moderate 

FFNN High 

CNN Very High 

RNN High 

LSTM High 

GRU High 

Table 12: Qualitative comparison of model-based SoH estimation methods for the scalability criterion 

The rationale for each rating is presented in the following paragraphs. For clarity and 

coherence, methods are grouped and discussed according to their assigned rating 

category. Additional explanation details can be found in APPENDIX VI. 

Very High Scalability 

Methods rated “Very High” on the scalability scale maintain robust performance across 

increasing data volumes, high input dimensionality or large-scale systems without 

requiring fundamental redesigns, extensive tuning or significantly increased 

computational resources. KF, EKF, XGBoost and CNN are included in this category. 

KF and EKF achieve excellent scalability due to their low computational complexity, 

which allows for efficient operation in larger battery systems [13]. In addition, both 

filters can accommodate multivariate inputs due to their use of state vectors and 

covariance matrices [44]. XGBoost shows very high scalability, being one of its key 

factors for its widespread success [80]. Combined with support for parallel and 

distributed training, it enables the model to learn fast on large and complex datasets 

while maintaining predictive accuracy [87]. CNNs also manage large scale datasets 

effectively [1, 3, 16]. Additionally, they can handle high-dimensional input via 

automatic feature extraction and scalable architecture. However, their larger parameter 

counts in deeper networks may increase computational demands with scale [26]. 
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High Scalability 

Methods with “High” scalability maintain strong performance when scaling to large 

datasets or complex system configurations, although they may require moderate tuning 

or computational upgrades. This category includes RFs and several ANNs (FFNN, 

RNN, LSTM and GRUs) 

RFs are well-suited for large-scale applications, managing large and high-dimensional 

datasets flexibly with fewer tuning parameters than SVR and several ANNs [1, 3, 69]. 

In contrast, the FFNNs’ scalability stems from effectively accommodating multivariate 

inputs and complex system configurations [50]. Compared to CNNs, their flexibility in 

model updating and adaptation to big data environments is slightly lower [1]. 

Nevertheless, they maintain stable performance on both large datasets and multivariate 

inputs [50]. Lastly, RNNs, along with their variants LTSM and GRU, capture temporal 

dependencies, making them suitable for applications involving sequential inputs [26]. 

These architectures scale well to larger datasets and complex system configurations [13, 

26]. However, the increase in model parameters with growing data volumes imposes 

greater computational and memory demands [13, 26]. LSTMs improve scalability over 

basic RNNs by mitigating vanishing gradient issues, while GRUs offer a more 

computationally efficient alternative with comparable performance [13, 16, 26]. 

Moderate Scalability 

Methods exhibiting “Moderate” scalability can accommodate some increase in data 

volume or input complexity but face computational or tuning challenges as system scale 

expands. They often require additional resources or adjustments to maintain 

performance. UKF, statistical data models (GPR, WP), FL and multiple classical 

machine learning approaches (SVM/SVR, DT and AdaBoost) fall in this category. 

UKFs scales moderately. On the one hand, they can handle multivariate inputs 

effectively and operate in parallel architectures [44]. On the other hand, its 

computational structure involves nonlinear transformations using sigma points, which 
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increases memory demand and inference time compared to KF and EKF and limits 

overall efficiency in larger systems [44, 50]. GPR is highly capable of managing large 

datasets but its computational cost increases cubically with dataset size, making scaling 

expensive despite approximation techniques and sparse representations [1, 29, 56]. The 

WP has a mathematically lightweight structure. However, larger battery systems and 

increased input dimensionality increase system complexity and require computationally 

demanding parameter identification and model tuning [88]. Furthermore, SVM/SVR 

exhibit strong generalization abilities, enabling effective performance on unseen data 

without extensive retraining [13]. However, their computational costs increase with 

large or high-dimensional datasets [22, 50, 75]. While DTs can handle moderately large 

datasets and multivariate inputs, their performance and efficiency degrade as the data 

volume or input dimensionality increases, which leads to longer training times and 

increased memory usage [56]. Finally, AdaBoost’s sequential training process slows 

scaling compared to parallelized methods like XGBoost, limiting scalability [68]. 

Low Scalability 

Methods with “Low” scalability struggle to maintain performance and computational 

efficiency as dataset size or system complexity increases, often requiring substantial 

resource increases or retraining. The ECM, empirical model, PF, RVM and kNN are all 

part of this category. 

The ECM is typically developed for individual cells and must be redesigned for 

modules or packs [36]. This redesign process increases complexity and complicates 

parameter identification, thus limiting scalability to large scale systems [36]. Similar to 

ECMs, empirical models require a dedicated model per cell, which increases 

complexity and computational demands when scaling to modules or packs [36]. While 

some studies have proposed aggregate empirical models for modules, these approaches 

have shown limited accuracy and have not yet been extended to full battery packs [36]. 

PFs suffer from scalability issues due to the exponential growth in the number of 

particles needed as system dimensionality increases, leading to substantial 
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computational demands [50]. FL also struggles with complex systems and high input 

dimensionality, requiring an exponential increase in rules and parameters, which leads 

to substantial design and tuning efforts [89]. RVMs, although sparser than SVMs, have 

longer training times and higher computational demands when working with large 

datasets or complex input structures [13, 29]. Lastly, kNN requires storing and 

comparing all training samples during inference [38]. As the dataset or input 

dimensionality grows, both memory and computational cost grow significantly, 

limiting scalability [3, 56]. 

Very Low Scalability 

Methods rated as having “Very Low” scalability fail to maintain performance or 

feasibility when scaling, often becoming impractical due to large computational 

demands or model complexity. The EM is the only method belonging to this category. 

Even for single cells, EMs simulate detailed electrochemical processes with significant 

computational complexity [13]. Since each cell ages differently, applying EMs to 

battery packs increases the complexity and computational effort significantly, making 

it impractical for large systems without major simplifications. [13] 

3.2.7 SELECTION OF SOH ESTIMATION METHODS FOR QUANTITATIVE 

ANALYSIS 

After finalizing the evaluation across the six criteria of the developed framework, the 

consolidated results are presented in Figure 21. To enhance interpretability, the 

individual ratings are color-coded according to the legend provided at the bottom of the 

figure. 
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Figure 21: Summary of the evaluation of each model-based SoH estimation method across six criteria 

As illustrated in Figure 21, data-driven methods, specifically ANNs and ensemble 

learning methods, pose the best overall performance across the six criteria. Their 

primary strength lies in their combination of high accuracy, strong reliability and 

scalability. However, these advantages come at the cost of significant data requirements 

and reduced computational efficiency. Furthermore, their inherent black-box 
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characteristics limit interpretability, which may hinder adoption in applications 

requiring transparency. 

Physics-based methods show highly variable performance depending on the complexity 

of the selected model. Advanced EMs and detailed ECMs offer high predictive accuracy 

but are constrained by heavy computational demands and substantial data requirements. 

Simpler alternatives, such as empirical models and basic ECMs, provide more efficient 

and accessible options, but their limited robustness and poor scalability undermine their 

overall suitability. 

Adaptive filters demonstrate a favorable trade-off between accuracy and reliability, 

with simpler implementations offering excellent interpretability and scalability. 

Nonetheless, their reliance on pre-established battery models (ECMs, EMs, or 

empirical) limits their applicability, as extensive model development is generally 

required beforehand. 

Within the spectrum of data-driven approaches, each subgroup presents distinct 

advantages. Statistical models like GPR provide probabilistic outputs that enhance both 

accuracy and robustness. However, their computational burden is high, limiting real-

time applicability. Rule-based methods such as FL exhibit moderate accuracy but are 

highly interpretable and perform reliably in noisy environments. Classical ML methods 

require less data than ANNs and offer simpler models, but they typically fall short in 

scalability and accuracy. However, ensemble learning techniques, RF and XGBoost, 

distinguish themselves by maintaining said accuracy and reliability with lower data and 

computational demands compared to deep learning approaches. 

To select a subset of methods for implementation and testing in Chapter 4 and  

Chapter 5, four key criteria are prioritized equally based on the boundary conditions 

given in this thesis: accuracy, computational efficiency, reliability and scalability. 

Interpretability is de-emphasized, as sufficient understanding of the model mechanisms 
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has been established. Importantly, the required dataset for training and validation is 

available, thus eliminating a common barrier to deploying data-driven approaches. 

Under these considerations, RF, XGBoost and CNNs are selected for further 

implementation. They offer the most balanced and robust performance across the 

prioritized criteria. CNNs demonstrate superior capabilities in handling complex, large-

scale data with high accuracy and reliability. RF and XGBoost, while showing slightly 

lower performance in these areas, offer a more favorable tradeoff between predictive 

power and computational efficiency. 

Although alternative methods such as GPR, SVM/SVR and adaptive filters also show 

considerable potential, their inclusion would extend the scope of the thesis beyond 

practical limits. Moreover, the dependence of adaptive filters on external battery models 

further complicates their deployment and limits their generalizability. 

3.3 INTERIM SUMMARY 

This chapter developed a comprehensive evaluation framework for the systematic 

assessment of model-based SoH estimation methods. The framework was derived 

through an extensive literature review, during which five suitable studies were 

identified. They were selected based on their use of multi-criteria evaluation 

frameworks applied to a range of model-based SoH estimation approaches. 

From a comparative analysis of these studies, six evaluation criteria were derived: 

accuracy, computational efficiency, interpretability, data requirements, reliability and 

scalability. Each criterion was formally defined and a corresponding five-level scoring 

scale was introduced, ranging from “Very Low” to “Very High”, to facilitate a 

consistent and transparent assessment process. 

In the second part of the chapter, the SoH estimation methods introduced in  

Chapter 2.4 were qualitatively evaluated against these six criteria. Ratings were 
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assigned based on empirical comparisons from literature, methodological strengths and 

weaknesses and expert insights from comparative reviews. The results were 

consolidated into a color-coded evaluation matrix to enhance interpretability and 

support high-level comparison. 

The outcome of this evaluation highlights ANNs and ensemble learning methods as the 

most promising candidates under the given boundary conditions, because they offer 

high levels of accuracy, reliability and scalability. However, these strengths are 

accompanied by increased computational demands, significant data requirements and 

limited interpretability due to their black-box nature. In the context of this thesis, 

interpretability and data availability are not limiting factors, as public datasets are 

accessible and sufficient methodological understanding has been developed to construct 

and deploy such models. 

Out of the ANNs and ensemble learning methods, RF, XGBoost and CNNs have been 

selected for further empirical validation in Chapter 4 and Chapter 5. These methods 

offer the most promising combination of accuracy, reliability and scalability and are 

subject to quantitative performance analysis in the following chapters to verify the 

qualitative findings established in this chapter. 
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Chapter 4. IMPLEMENTATION OF SOH METHODS 

To apply and evaluate the in Chapter 3 selected model-based SoH estimation methods, 

this chapter presents the complete implementation process. It is structured into two main 

parts. 

In the first part, the selected dataset is introduced. Chapter 4.1.1 provides a brief 

description of the dataset’s technical specifications and describes the collected raw data. 

As the dataset originates from real-world operations, several preprocessing and 

preparation steps are required before applying the SoH estimation methods.  

Chapter 4.1.2 outlines these preprocessing techniques, including data cleaning, 

interpolation, sliding and normalization. It then details the SoH labeling process 

required to generate the ground truth data for subsequent model training and evaluation. 

This includes data sorting, concatenation and the calculation of capacity and SoH 

values. 

The second part of the chapter details the implementation of the three selected 

estimation methods: RF, XGBoost and CNN. Chapters 4.2 to 4.4 each address one 

method, beginning with a theoretical background including mathematical formulations, 

followed by its implementation in Python.  

This section concludes with Chapter 4.5, providing an interim summary of the key 

implementation steps and forming the transition to Chapter 5, in which the 

performance of each method is evaluated based on the simulation results.  

4.1 DATASET 

This study uses real-world datasets for SoH estimation, as they accurately reflect 

operational conditions and battery aging behaviors encountered in practical battery use. 

Unlike laboratory datasets, real world data captures a broad spectrum of influencing 
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factors such as ambient temperature, current rates, SoC variations and user-specific 

driving or charging behavior [8, 24]. These variabilities are essential for training robust 

and generalizable data-driven models. Still, laboratory datasets remain prevalent in the 

literature as they are more readily available. Prominent examples include datasets from 

NASA, CALCE (Center for Advanced Life Cycle Engineering) and several universities 

[90]. 

Among the limited number of real-world datasets identified, a dataset compiled by 

Tsinghua University stands out for its scale and diversity. It contains a total of three 

datasets covering 464 vehicles across three different BEV types. In total, it includes 

over 1 2 million charging events (“snippets”) collected over timespans ranging from 

one to 2 5 years per vehicle [91]. This extensive and heterogeneous dataset forms the 

basis for implementing and testing the SoH estimation methods selected in Chapter 3. 

4.1.1 DESCRIPTION 

As described in the introductory paragraph of this chapter, the dataset contains three 

distinct subsets that collectively capture operating records of 464 vehicles across three 

different BEV types. The raw data consists of roughly 1 2 million charging snippets, 

each representing a discrete charging event with two main components: time- series 

measurements and associated meta information. The time-series data includes eight key 

variables: voltage (𝑉), current (𝐼), SoC, maximum and minimum cell voltage (𝑉𝑚𝑎𝑥, 

𝑉𝑚𝑖𝑛), highest and lowest cell temperature (𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛) and a timestamp (𝑡). These 

variables provide a comprehensive view of the battery’s electrical and thermal state 

during charging. Complementing the time-series data, the meta information includes 

identifiers such as vehicle number and mileage. An overview of the technical 

specifications and statistics of each dataset is shown in Table 13. [8] 
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Parameters Dataset 1 Dataset 2 Dataset 3 

BEV type A-commercial B-commercial C-private 

Fleet size 217 198 49 

Battery material NMC-C NMC-C NMC-C 

Rated battery capacity 145 Ah 155 Ah 153 Ah 

Sampling interval 30s 10s 10s 

Collecting period 2 2 years 1 0 year 2 5 years 

Charging snippets 629,121 472,829 176,327 

Table 13: Statistics of BEV battery systems and datasets [8] 

Datasets 1 and 2 represent commercial vehicle fleets, whereas Dataset 3 contains 

private vehicles. All vehicles are equipped with batteries of the same NMC-C (Nickel 

Manganese Cobalt Carbon) chemistry, with rated capacities ranging from 145 Ah to 

155 Ah. The datasets differ notably in both fleet size and data collection period. Dataset 

1 encompasses 217 vehicles, Dataset 2 includes 198 vehicles and Dataset 3 contains 

data from 49 vehicles. Regarding their collection period, Datasets 1 and 3 span over 2 

years, while Dataset 2 covers only a one-year period. These differences, along with 

differing sampling intervals, result in an uneven distribution of charging snippets across 

the three datasets, totaling ~630,000, ~470,000 and ~175,000, respectively. 

While discharge behavior is often irregular and random due to inconsistent driving 

patterns, charging events determined by the vehicle BMS and input conditions exhibit 

more consistency. In addition, ignoring the discharging data does not eliminate 

information needed to calculate the battery’s SoH, as it is solely based on the remaining 

battery capacity. Consequently, only charging segments were retained for further 

analysis in preparation of this dataset. Both slow and fast charging events are covered 

as illustrated in Figure 22 and Figure 23. 
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Figure 22: Visualization of an exemplary slow charging event within the dataset 

Slow charging events are characterized by a consistent average current between 10 A 

and 20 A. In this dataset, a negative sign in front of the current value suggests that the 

battery is charging. For a full charge, the overall duration can exceed 9 hours. In the 

example depicted in Figure 22, the vehicle charges from 40% to 100% over 4 5 hours. 

During this time, cell temperature remains relatively stable, ranging between 17°𝐶 and 

18°𝐶. 
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Figure 23: Visualization of an exemplary fast charging event within the dataset 

Higher and more variable current levels distinguish fast charging events. A full charging 

cycle requires approximately one hour. In the illustrated example, a charge from 50% 

to 100% takes roughly 40 minutes. As expected, the mean cell temperature varies more 

during fast charging than during slow charging, reflecting the greater thermal load.  

These visualizations are representative examples selected from different vehicles within 

the dataset. For a comprehensive description of the full dataset and its characteristics, 

the reader is referred to Lu et al., “Towards real-world state of health estimation: Part 

2, system level method using electric vehicle field data” [8]. 
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4.1.2 PREPARATION 

To address the incompleteness, variability and uncertainty inherent in real-world BEV 

charging data, the raw segments described in the previous chapter were preprocessed 

following the methodology outlined by Lu et al. in “Towards real-world state of health 

estimation: Part 2, system level method using electric vehicle field data”. This 

preprocessing is essential to ensure the quality and consistency of the input data for 

model training and evaluation. Once these segments are cleaned and normalized, each 

charging snippet is assigned a corresponding SoH label. This enables data-driven SoH 

estimation methods to infer patterns between observed input features and the battery’s 

health status, which is the basis for the subsequent training and evaluation. 

4.1.2.1 Preprocessing 

Lu et al. proposed a four step preprocessing procedure to address non-uniformity, noise, 

missing values and outliers, which are common challenges in large-scale, field-

collected battery datasets. The main steps include data cleaning, interpolation, sliding 

and normalization [8].  

In the initial stage, the charging segments are extracted from the raw data. Then, noise 

filtering techniques, typically based on smoothing filters, are used and outliers that 

deviate significantly from the statistical distribution of the data are identified and 

removed. To address the non-uniform time interval characteristic of Dataset 1, the 

second stage of preprocessing applies linear interpolation to the time series data. 

Originally collected with a timestamp interval of 30s, it is resampled to a uniform 10s 

to align with the temporal resolution of Datasets 2 and 3. In the third step, a sliding 

window approach extracts fixed length charging snippets consisting of 128 sampling 

points out of the collected charging segments. This results in a structured input matrix 

structure which is defined as follows [8]: 
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Eq. 4.1 

Finally, to ensure user privacy, the datasets underwent a desensitization and 

anonymization process. Key variables such as charging current, average cell voltage 

and cell temperature were perturbed and interpolated to mask exact values while 

maintaining structural characteristics. Additionally, metadata such as timestamps and 

vehicle mileage data were randomly shifted and scaled, eliminating reidentification of 

individual users or driving behaviors. Despite these transformations, Lu et al. assert that 

the usability of the dataset for meaningful analysis and modeling is preserved [8]. 

4.1.2.2 SoH labeling 

Following the preprocessing steps described in the previous chapter, the next essential 

phase involves labeling the charging snippets with corresponding SoH values. This 

labeling is a critical enabler for the learning process of data-driven SoH estimation 

methods, as it provides the ground truth required for training and testing.  

Lu et al. propose a four step methodology for SoH labeling in their study “Towards 

real-world state of health estimation: Part 2, system level method using electric vehicle 

field data” [8]. However, the successful application of this method relies on the 

availability of accurate vehicle mileage data, which, as described in the previous 

chapter, has been randomly shifted and scaled for anonymization. As a result, the 

original labeling procedure cannot be used and has to be adjusted to accommodate this 

limitation while preserving analytical validity. 

In a first step, all charging snippets are sorted by vehicle ID and then, within each 

vehicle ID, by mileage. Despite the perturbation applied to mileage data, empirical 

inspection reveals that charging snippets with identical mileage values are unaffected 
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by the relative shifts and scaling. Therefore, snippets that share the same mileage values 

can still be reliably grouped. The groups are then sorted by their respective SoC values 

to determine whether several charging snippets together constitute a complete charging 

segment. In most instances, this assumption holds true and multiple consecutive 

snippets at a given mileage collectively represent a full charging session. These grouped 

charging segments, ordered from lowest to highest SoC, represent the foundation for 

subsequent SoH calculation. 

Once full charging segments are identified, the battery’s SoH is computed using the 

capacity-based approach, which is the most widely used method in both academic and 

industrial contexts (see Chapter 2.3.1). The formula is defined as follows [9, 14, 43]:  

𝑆𝑜𝐻 = 
𝑄𝑚
𝑄𝑟
∗ 100% Eq. 4.2 

where 𝑄𝑚  is the current capacity of the battery and 𝑄𝑟  is the nominal rated capacity, 

which, depending on the dataset, has the following values: 145 Ah (Dataset 1), 155 Ah 

(Dataset 2) or 153 Ah (Dataset 3). 

The battery’s current capacity is calculated as the total charge delivered during a 

charging segment, divided by the corresponding change in SoC [8]: 

𝑄𝑚 =  
∫ 𝐼(𝑡) 𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡

𝑆𝑜𝐶𝑒𝑛𝑑 − 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡
 Eq. 4.3 

The total charge is determined by integrating the current 𝐼(𝑡) over time. The start and 

end time of that integral determine the corresponding SoCs by whose difference the 

charge is divided to calculate the battery’s current capacity. 

To ensure the reliability and accuracy of the computed SoH values, several filtering 

criteria are applied throughout the calculation to exclude segments that are physically 

implausible or statistically problematic. 
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The first criterion is a voltage range constraint. Only the data points within a charging 

segment that depict voltages between 3 75V and 4 10V are retained, as this range 

corresponds to the near-linear region of the OCV curve of NMC-C batteries, which is a 

critical factor for accurate capacity estimation [8]: 

𝑉 ∈ [3 75𝑉,  4 10𝑉] Eq. 4.4 

The second criterion tackles SoC and voltage stability within the charging segments. 

Those who exhibit sudden jumps in SOC or voltage are eliminated, as they are 

indicators of sensor noise, anomalies or data incompleteness and can lead to 

inaccuracies in SoH calculation:  

𝑆𝑜𝐶 𝑗𝑢𝑚𝑝𝑠 ≥ 2 5% 𝑜  𝑉 𝑗𝑢𝑚𝑝𝑠 ≥  100 𝑚𝑉 Eq. 4.5 

The third criterion addresses the SoC windows of the charging segments. With this 

filtering step, charging segments with insufficient SoC variation are removed, because 

they do not provide enough information to compute meaningful capacity: 

∆𝑆𝑜𝐶 ≥ 20% Eq. 4.6 

The final criterion addresses the SoH range of calculated values. It retains only these 

segments, which show realistic SoH values: 

𝑆𝑜𝐻 ∈ [0 7,  1 1] Eq. 4.7 

The lower bound of 70% reflects the typical end-of-life threshold for BEV batteries, 

while the upper bound of 110% accounts for early-life deviations above 100% due to 

initial conditioning and manufacturing variability [8]. 

Once the filtering steps are completed, the computed SoH values are assigned to each 

charging snippet that belongs to the associated charging segment. This results in a total 

of 𝟖𝟖𝟖, 𝟓𝟎𝟎 labeled charging snippets that can be used for the training and testing of 

the selected SoH estimation methods.  
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After the dataset preparation is completed, the selected SoH estimation methods, 

determined in Chapter 3, are implemented. The underlying methodology, as well as 

their implementation, is depicted in the following three subchapters. 

4.2 RANDOM FOREST 

RF is a bagging-based ensemble learning method that constructs multiple randomized 

DTs and aggregates their predictions, resulting in high prediction accuracy and 

robustness [80]. The algorithm uses bootstrap sampling to create diverse training 

datasets by resampling the original data. Each of these bootstrapped datasets is used to 

train an individual DT using the classification and regression tree (CART) algorithm. 

Once all trees have been constructed, their outputs are combined, typically through 

averaging, to provide the final model prediction. [69] 

4.2.1 METHODOLOGY 

The RF algorithm begins by generating 𝑇 bootstrap samples {𝑆 , 𝑆2,… , 𝑆𝑇} from the 

original training dataset 𝑆. Each sample 𝑆𝑡 is then used to train a decision tree 𝑅𝑡 using 

the CART algorithm. At each node split within a tree, rather than considering the full 

set of 𝑀 features, a random subset of 𝑘 features is selected, among which the optimal 

split is chosen [80]. This randomized feature selection introduces decorrelation among 

the trees, reducing variance without significantly increasing bias. [69] 

After all 𝑇 trees have been trained, the RF prediction for a new input 𝑥 is obtained by 

averaging the predictions from each individual tree, as defined below [80]: 

𝑦̂ = ℎ(𝑥) =  
1

𝑇
 ∑𝑅𝑡(𝑥)

𝑇

𝑡= 

 Eq. 4.8 

An important aspect of RF training is the use of out-of-bag (OOB) samples. Due to the 

bootstrap sampling process, each DT is trained on roughly two-thirds of the original 

dataset. The remaining unused samples form the OOB samples. They serve as an 
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internal validation set and enable an unbiased estimate of the model’s generalization 

error. The OOB mean square error (MSE) is computed as follows: 

𝑀𝑆𝐸𝑂𝑂𝐵 =  
1

𝑠
 ∑(𝑦̂(𝑥𝑖) −  𝑦𝑖)

2

𝑠

𝑖= 

 Eq. 4.9 

where s is the number of OOB samples and 𝑦̂(𝑥𝑖) and 𝑦𝑖(𝑥𝑖) are the predicted and true 

values of 𝑥𝑖. [69] 

Two key hyperparameters that significantly influence the RF’s performance are the 

maximum tree depth and the number of features 𝑘 considered at each split. The tree 

depth controls the model complexity and overfitting, while the number of features 𝑘 

balances diversity and accuracy of the individual trees. [69] 

4.2.2 IMPLEMENTATION DETAILS 

To implement the methodology described in the previous chapter in Python, the 

“RandomForestRegressor” class from the “scikit-learn” library is used. The parameter 

configuration is based on a combination of literature recommendations and best 

practices to balance predictive accuracy and computational efficiency. Table 14 

summarizes the hyperparameter choices used for this implementation. 
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Parameter Value Description 

n_estimators 200 Number of decision trees in the ensemble 

max_depth 4 Maximum tree depth to control model complexity 

max_features n_features Number of features considered at the split of each 

node 

min_samples_split 3 Minimum number of samples (data points) 

required to split an internal node 

random_state 0 Ensures reproducibility by fixing the random seed 

n_jobs -1 Enables parallelization, utilizing all available CPU 

cores for training and inference 

Table 14: RF selected hyperparameters 

The choice of “n_estimators = 200” and “min_samples_split = 3” is informed by 

findings from Nguyen et al., which found that increasing the number of trees beyond 

200 yields negligible accuracy improvements while increasing computational cost [92]. 

To not limit the model’s accuracy, “max_features” is set to the default value for 

regression problems, which considers all existing features (“n_features”). Limiting the 

tree depth to 4 intends to balance model accuracy and overfitting control [69]. Finally, 

setting “n_jobs = 1” ensures that both training and inference are fully parallelized, 

which improves computational efficiency. 

4.3 XGBOOST 

XGBoost is a boosting-based ensemble learning method built upon the gradient 

boosting decision tree (GBDT) framework [77, 80]. In contrast to RF, which builds DTs 

in parallel, XGBoost generates them sequentially, where each successive tree is trained 

to correct the residual error of its predecessor (see Figure 24) [68]. 
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Figure 24: Schematic diagram of the XGBoost [68] 

The fundamental modeling concept of XGBoost involves defining a generalized 

objective function. In each iteration, a new regression tree is fitted to the residuals from 

the previous iteration. This approach gradually minimizes the objective function, 

refining the model’s predictions and bringing them closer to the real values. [77] 

4.3.1 METHODOLOGY 

The XGBoost methodology was developed by Chen and Guestrin in 2016 and is 

presented in their paper “XGBoost: A Scalable Tree Boosting System“ [87]. Additional 

sources that explain the method and have been utilized for the following paragraphs are 

“State of Health Estimation for Lithium-Ion Batteries Using an Explainable XGBoost 

Model with Parameter Optimization” by Xiao et al. and “A Survey of Ensemble 

28
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Learning: Concepts, Algorithms, Applications, and Prospects” by Mienye and Sun [77, 

80].  

Let 𝑚 be the number of DTs and 𝑊 the functional space of all possible DTs. Then the 

predictive model of XGBoost can be expressed as: 

𝑦̂𝑖 =∑𝑓𝑚(𝑥𝑖)

𝑚

𝑖= 

,  𝑓𝑚 ∈ 𝑊 Eq. 4.10 

Each function 𝑓𝑚 ∈ 𝑊 represents an individual DT, defined as 𝑓(𝑥) = 𝑤𝑞(𝑥) , where 

𝑞(𝑥) is a mapping function that assigns the input 𝑥 to one of 𝑃 leaf nodes and 𝑤 is the 

corresponding weight at that leaf. 

The objective function to be minimized consists of two parts, a loss function 𝑙(𝑦𝑖 ,  𝑦̂𝑖), 

which measures the error between the predicted value 𝑦̂𝑖 and the real value 𝑦𝑖 , and a 

regularization term 𝛺(𝑓𝑚), which reduces the model’s variance and prevents overfitting 

by penalizing model complexity. The overall function is shown in Eq. 4.11, while the 

regularization term is further specified in Eq. 4.12: 

𝐿 = ∑𝑙(𝑦𝑖 ,  𝑦̂𝑖) +∑𝛺(𝑓𝑚)

𝑚

𝑖= 

𝑛

𝑖= 

 Eq. 4.11 

𝛺(𝑓𝑚) = 𝛾𝑃 +
1

2
𝜂 ||𝑤||2 Eq. 4.12 

Within the regularization term, 𝑓𝑚  represents the function of the 𝑚 − th tree. 𝑃 denotes 

the number of leaf nodes in a tree, while 𝛾 is a complexity parameter that controls the 

minimum loss reduction required for splitting an internal node. Lastly, 𝜂 is a penalty 

parameter on the leaf weights 𝑤. 

XGBoost adopts an additive training strategy. Given the predictions from the first  

𝑚 −  1 trees, 𝑦̂𝑖
(𝑚− )

 , the prediction after the 𝑚 − th iteration is:  
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𝑦̂𝑖
(𝑚) = 𝑦̂𝑖

(𝑚− ) + 𝑓𝑚(𝑥𝑖) Eq. 4.13 

This results in the following objective function: 

𝐿(𝑚) =∑𝑙 (𝑦𝑖 ,  𝑦̂𝑖
(𝑚− )

+ 𝑓𝑚(𝑥𝑖)) + 𝛺(𝑓𝑚)

𝑛

𝑖= 

 Eq. 4.14 

To efficiently optimize this function, a second-order Taylor expansion around the 

current prediction 𝑦̂𝑖
(𝑚− )

 is employed: 

𝐿(𝑚) ≈∑𝑙 (𝑦𝑖 ,  𝑦̂𝑖
(𝑚− ) + 𝑔𝑖𝑓𝑚(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑚

2(𝑥𝑖)) + 𝛺(𝑓𝑚)

𝑛

𝑖= 

 Eq. 4.15 

where the first and second order derivatives of the loss function are defined as follows: 

𝑔𝑖 = 𝜕𝑦̂𝑖
(𝑚− )

𝑙(𝑦𝑖 ,  𝑦̂𝑖
(𝑚− )

), ℎ𝑖 = 𝜕
2𝑦̂𝑖

(𝑚− )
𝑙(𝑦𝑖 ,  𝑦̂𝑖

(𝑚− )
) Eq. 4.16 

Let 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} be the sample set assigned to leaf node 𝑗. Then the objective 

function can be reformulated in terms of the weights 𝑤𝑗 of the leaf nodes: 

𝐿(𝑚) =∑[(∑𝑔𝑖
𝑖∈𝐼𝑗

)𝑤𝑗 +
1

2
(∑ℎ𝑖 + 𝜂
𝑖∈𝐼𝑗

)𝑤𝑗
2]

𝑇

𝑗= 

+ 𝛾𝑃  Eq. 4.17 

To find the optimal weight 𝑤𝑗
∗ for each leaf node, the first derivative is set to zero, 

yielding: 

𝑤𝑗
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖 + 𝜂𝑖∈𝐼𝑗

 Eq. 4.18 

Substituting 𝑤𝑗
∗ back into the objective function provides the optimal value for a given 

tree structure 𝑞(𝑥):  

𝐿(𝑚)(𝑞) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)
2

∑ ℎ𝑖 + 𝜂𝑖∈𝐼𝑗

+ 𝛾𝑃

𝑇

𝑗= 

 Eq. 4.19 
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This score is utilized to evaluate the quality of a given tree structure. However, 

enumerating all possible tree structures is computationally expensive. XGBoost 

addresses this by employing a greedy algorithm that iteratively adds branches. Suppose 

a candidate split divides the instance set 𝐼 into 𝐼𝐿 and 𝐼𝑅, the gain from this split is 

computed as: 

𝐿𝑠𝑝𝑙𝑖𝑡 =
1

2
[
(∑ 𝑔𝑖𝑖∈𝐼𝐿

)
2

∑ ℎ𝑖 + 𝜂𝑖∈𝐼𝐿

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)
2

∑ ℎ𝑖 + 𝜂𝑖∈𝐼𝑅

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖 + 𝜂𝑖∈𝐼
] − 𝛾 Eq. 4.20 

The algorithm selects the split point that maximizes 𝐿𝑠𝑝𝑙𝑖𝑡, which optimizes the tree 

structure. This process continues for each node until one of the following stopping 

criteria is met: the maximum tree depth is reached or the sum of sample weights falls 

below a predefined threshold. 

4.3.2 IMPLEMENTATION DETAILS 

To implement the XGBoost methodology in Python, the “xgb.train()” API from the 

“xgboost” library is used. Similar to the RF model, hyperparameters are selected based 

on standard practices for regression tasks and finetuned through prior benchmarking 

studies. Table 15 summarizes the exact parameters used in the final implementation. 

Parameter Value Description 

objective Reg:squarederror Standard regression loss using squared error 

eta 0.1 Learning rate controlling the contribution of 

each tree to the ensemble 

max_depth 3 Maximum depth of individual trees 

eval_metric rmse Root Mean Square Error used to monitor 

model performance 

num_boost_round 100 Total number of boosting rounds (number of 

trees) 

Table 15: XGBoost selected hyperparameters 
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The XGBoost model is trained using the “train()” function, with performance evaluated 

on the test set at each boosting round. The value for the maximum number of boosting 

rounds “num_boost_round” is selected based on the findings in [92]. As described in 

the methodology chapter, each boosting round introduces a new DT that corrects the 

residual error of the ensemble up to that point. More boosting rounds can improve the 

model fit, but they also increase the risk of overfitting and computational cost. To 

mitigate this, early stopping is implemented by tracking the RMSE (Root Mean Square 

Error) evaluation metric at each boosting round [93]. The iteration yielding the lowest 

RMSE is identified and then used for the final prediction. The learning rate “eta = 0.1” 

ensures gradual convergence, reducing the likelihood of overshooting the optimal 

solution [93]. Finally, the tree depth (“max_depth”) is selected based on the findings in 

[92], representing a balanced trade-off between accuracy and overfitting control. 

4.4 CONVOLUTIONAL NEURAL NETWORK 

CNNs are a class of ANNs designed to automatically extract hierarchical features from 

structured, grid-like input data using convolutional layers. Their effectiveness in SoH 

estimation stems from their ability to process time-series data and identify subtle 

degradation patterns without requiring manual feature engineering. By sequentially 

applying convolution and pooling operations, CNNs generate feature maps that capture 

local dependencies and spatial correlations. These learned features are then combined 

through fully connected layers to produce accurate SoH estimates. This end-to-end 

learning approach provides both high accuracy and robustness. [3, 26, 38] 

4.4.1 METHODOLOGY 

As introduced in Chapter 2.4, a typical CNN consists of at least one stack of 

convolutional and pooling layers, followed by a fully connected layer and an output 

layer. In contrast to fully connected layers, where each output neuron is connected to 

every input neuron, convolutional layers are characterized by sparse connectivity and 

parameter sharing. [3, 94, 95] 
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Sparse connectivity implies that each neuron in a convolutional layer is connected only 

to a subset of the input, determined by a sliding filter, rather than to the entire input 

space [3]. The calculation process between the filter and the subset of the input is called 

“convolution”. On the other hand, parameter sharing means that the same set of filter 

weights is applied across different regions of the input. This allows the CNN to detect 

features regardless of their position in the input space. Both characteristics are key to 

reduce and control overfitting. [94] 

The first operation of a CNN is the convolution. Given a 1D input, such as the time-

series data in the dataset of this study, and a filter 𝑓 ∈  𝑅𝐹 , the convolution output at 

position 𝑝 is defined as [3]: 

𝑜𝑐𝑜𝑣 𝑝 =∑𝑓𝑖 ∗ 𝑥𝑖 𝑝− 

𝐹

𝑖= 

 Eq. 4.21 

Here, 𝑥 represents the input matrix and 𝑜𝑐𝑜𝑣 𝑝 is the resulting value at the corresponding 

location of the feature map. This process is repeated across the entire input using the 

same filter until the entire feature map is created. The convolutional layer, therefore, 

maps the raw input data to a learned feature space. [3, 94] 

Following the convolution, a nonlinear activation function is applied to the feature map. 

The most commonly used activation function is the Rectified Linear Unit (ReLU) [3]: 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) Eq. 4.22 

After that, a pooling layer is applied to further downsample the size of the feature map, 

reducing dimensionality while retaining essential features. The pooling operation over 

a window of size 𝑙 is defined as [3]: 

𝑜𝑝𝑜𝑜𝑙 𝑝 = 𝑝𝑜𝑜𝑙 ((𝑜𝑝 𝑖− )𝑖∈ , 2, …, 𝑙) Eq. 4.23 

where pool(…) is the pooling function, which is typically either average (computes the 

average value within the window) or max pooling (takes the maximum value within the 

window). [3, 94] 
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At the end of the feature extraction process, the fully connected layer aggregates and 

integrates the extracted features. In these layers, each neuron is connected to every 

neuron of the previous layer, as in traditional ANNs. These layers integrate the learned 

features into a final representation used for prediction. [94, 95] 

4.4.2 IMPLEMENTATION DETAILS 

The CNN is implemented using the PyTorch deep learning framework in Python. The 

architecture follows a two layer design, similar to that proposed in [1], which offers a 

balanced trade-off between predictive accuracy and training time. In addition, the 

selected parameter values are based on multiple studies that implemented CNNs for 

SoH estimation [8, 96, 97]. Table 16 provides a summary of the architecture and 

training parameters used in this implementation. 

Parameter Value Description 

Input shape (8, 128) Multivariate input with 8 features and 

128 time steps 

Convolutional 

layer 1 

32 filters, kernel 

size 3 

Extracts local patterns from the input 

Pooling layer 1 Max pooling, kernel 

size 2 

Reduces the feature maps by a factor of 

2 

Dropout layer 1 Dropout rate 0.25 Regularizes the model to prevent 

overfitting 

Convolutional 

layer 2 

64 filters, kernel 

size 3 

Learns higher level abstractions 

Pooling layer 2 Max pooling, kernel 

size 2 

Further temporal dimensionality 

reduction 

Dropout layer 2 Dropout rate 0.25 Additional regularization 

Fully connected 1 100 units, ReLU 

activation 

Dense representation of extracted 

features 
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Fully connected 2 1 unit, linear 

activation 

Final output layer for regression (SoH) 

Table 16: CNN selected hyperparameters 

During data loading, the input tensors are reshaped from (128, 8) to PyTorch’s expected 

format (8, 128). The model begins with a 1D convolutional layer comprising 32 filters 

with a kernel size of 3. This is followed by a max-pooling layer with kernel size 2, 

halving the temporal resolution, and a dropout layer with a rate of 0 25 to reduce 

overfitting. The second convolutional layer increases the number of filters to 64, 

maintaining the kernel site of 3. It is again followed by max pooling and dropout with 

identical parameters as in layer 1. This improves the model’s capacity to capture more 

complex temporal structures. After the convolutional layers, the output is flattened and 

passed through a fully connected layer with 100 hidden units and ReLU activation, 

before the final layer, a single linear output unit, produces the regression prediction of 

the SoH target variable. 

The configuration is intentionally kept simple and quite standard to ensure stable 

convergence and computational efficiency while still enabling the CNN to learn 

complex temporal patterns, resulting in good predictive accuracy.  

4.5 INTERIM SUMMARY 

This chapter outlined the methodological steps undertaken to implement the three 

selected SoH estimation methods, RF, XGBoost and CNN, based on the qualitative 

framework established in Chapter 3, providing the foundation for the quantitative 

comparison that follows in Chapter 5. 

First, to ensure practical relevance, a real-world dataset was selected as the foundation 

for model development. Real-world datasets more accurately reflect operational 

variabilities that are often missing in laboratory datasets, which are predominantely 

employed when it comes to comparing SoH estimation methods. Before SoH labeling, 
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several preprocessing steps were applied, including data cleaning, interpolation, sliding 

and normalization. After that, data snippets were grouped based on vehicle ID and 

mileage and concatenated into charging segments occurring at the same mileage. Then, 

each charging segment was used to estimate the battery’s current capacity, from which 

the SoH was calculated by dividing the current capacity by the battery’s nominal 

capacity, as introduced in Chapter 2.3.1. The calculated SoH was then assigned to all 

corresponding charging snippets within that charging segment. 

Subsequently, the chapter introduced the core principles, architectures and 

mathematical formulas of the three selected SoH estimation methods. In addition, it 

described the implementation in Python, including key hyperparameter selection based 

on literature recommendations and best practices. 

All simulations based on that implementation, which are evaluated in the following 

chapter, are conducted using Python 3.13 on a local laptop with an Intel Core i7-1365U 

CPU (10 cores @ 1.80 GHz), 64 GB RAM and no discrete GPU (CPU-only training). 

The CNN was implemented using PyTorch 2.7.1, while RF and XGBoost utilized 

Scikit-learn 1.7.0 and XGBoost 3.0.2, respectively. 
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Chapter 5. TESTING RESULTS OF SOH METHODS 

After the data preparation and method implementation outlined in Chapter 4, this 

chapter presents the quantitative evaluation of the three selected SoH estimation 

methods: RF, XGBoost and CNN. 

First, Chapter 5.1 introduces the quantitative metrics employed to evaluate the 

qualitative criteria that were used to select the three SoH estimation methods: accuracy, 

computational efficiency, reliability and scalability. These metrics are used to translate 

the previously defined qualitative assessments into measurable results. 

In Chapter 5.2, the performance of each method is analyzed across the four criteria 

using the defined metrics. The results are compared both between methods and against 

the original qualitative ratings. This enables a critical validation of the qualitative 

framework and provides insight into the extent to which initial ratings align with real-

world performance. 

Finally, in Chapter 5.3, the findings are interpreted in the context of practical 

deployment. Conclusions are drawn regarding the suitability of each method for 

specific use cases and stakeholder needs, including implications for industrial, research 

and embedded system applications. 

5.1 SELECTED TESTING CRITERIA 

Accuracy, computational efficiency, reliability and scalability were introduced in 

Chapter 3 to guide the selection of SoH estimation methods for empirical validation. 

In this chapter, each of these criteria is assigned a corresponding quantitative metric to 

enable systematic and comparable evaluation across methods. While these metrics may 

not capture the entirety of the original qualitative definitions, they are selected to reflect 

the core aspects to support meaningful analysis and comparison. 
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5.1.1 ACCURACY 

As defined in Chapter 3.1.2.1, accuracy refers to the ability of a method to produce 

SoH predictions that closely match the actual SoH values. The criterion captures key 

aspects such as generalization to unseen test data, robustness to overfitting and the 

ability to model nonlinear and high-dimensional relationships in battery behavior. 

To quantitatively evaluate accuracy, the Mean Absolute Percentage Error (MAPE) is 

employed. MAPE offers a normalized measure of prediction error and is expressed as 

a percentage of the true SoH values, making it suitable for direct comparison across 

different models. It is defined as [1, 27]: 

𝑀𝐴𝑃𝐸 =
1

𝐾
∑

|𝑦𝑖 − 𝑦̂𝑖|

𝑚𝑎𝑥(𝜖, |𝑦𝑖|)

𝐾

𝑖= 
 Eq. 5.1 

where yi and ŷi represent the actual and predicted SoH value, 𝐾 is the total number of 

samples and 𝜖 is a small positive constant introduced to prevent division by zero. A 

lower MAPE value indicates higher accuracy. 

5.1.2 COMPUTATIONAL EFFICIENCY 

Computational efficiency refers to the resource demands of a SoH estimation method 

during both training and inference (see Chapter 3.1.2.2). This directly influences the 

method’s feasibility for real-time applications. Relevant aspects include training time, 

inference latency, memory usage and structural complexity. 

To quantitatively assess this criterion, both training and inference runtimes are 

measured for each method [1, 20]. These measurements are recorded using Python’s 

built-in “time” module, which captures the elapsed time required to complete the 

training and inference processes.  

While runtime represents only one dimension of computational efficiency, it serves as 

a direct and interpretable proxy, particularly when methods are executed under 
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consistent hardware and software conditions. In this context, shorter runtimes indicate 

that a method is more efficient. 

5.1.3 RELIABILITY 

Chapter 3.1.2.5 defines reliability as the ability of a method to maintain consistent 

performance across varied input conditions. It focuses on robustness to noise, missing 

data and changes in operational context (e.g., temperature or usage profiles).  

To evaluate this criterion, each of the selected SoH estimation methods is trained and 

tested independently on the three real-world datasets introduced in Chapter 4.1. These 

datasets represent varying operational conditions, enabling a systematic comparison of 

how each method performs under different boundary conditions. 

For each dataset, the MAPE is computed on the test portion. By analyzing its variation 

across the three datasets, this study assesses the method’s reliability. A method is 

considered more reliable if it achieves low and stable error across all datasets.  

5.1.4 SCALABILITY 

As outlined in Chapter 3.1.2.6, scalability evaluates a method’s ability to maintain 

predictive performance and computational feasibility as dataset size, input 

dimensionality and system scale increase.  

To assess scalability, the training dataset is increased incrementally at proportions of 

10%, 25%, 50%, 75% and 100%. Each method is trained and evaluated independently 

on these subsets. Two metrics are recoded: MAPE, to observe changes in predictive 

accuracy, and training time, to monitor computational demand as the dataset size grows. 

This enables a detailed analysis of each method’s response to increasing data volume. 

A method is considered scalable if accuracy is improved or maintained with more data 

while showing manageable growth in training time. Additionally, this analysis 

identifies diminishing returns in performance. For instance, if a method’s accuracy 
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plateaus after 50% of the data, further training may be unnecessary. Such insights are 

particularly relevant for real-world deployment, where computational resources or data 

availability may be limited. 

5.2 RESULTS AND DISCUSSION 

After defining the quantitative metrics for each evaluation criterion, this chapter 

presents and discusses the empirical results for the selected SoH estimation methods. 

To ensure a fair comparison, all methods were implemented using simple 

configurations without hyperparameter optimization or architectural tuning. This 

enables a controlled assessment of each method’s performance metrics under identical 

conditions. However, it is crucial to note that this may lead to non-optimal performance 

outcomes. As such, the reported results should be interpreted as representatives of 

baseline capability and not peak potential. 

In addition to the direct performance comparison, this chapter revisits the qualitative 

assessment framework introduced in Chapter 3, which enables a critical reflection on 

how well the initial qualitative ratings align with the empirical evidence obtained from 

real-world data. It is important to note that the analysis conducted only allows for 

relative comparison among the three selected methods, rather than an absolute 

evaluation against the full scoring scale. For absolute placement, a larger sample of SoH 

estimation methods is required to define statistically meaningful boundaries. 

5.2.1 ACCURACY 

The quantitative results of the accuracy criterion are presented in Figure 25. These 

results were obtained using Dataset 1, which is the largest of the three datasets 

introduced in Chapter 4.1, offering the most robust basis for reliable evaluation.  
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Figure 25: Results of MAPE (%) quantitatively measuring the accuracy of RF, XGBoost and CNN 

using dataset 1 

The findings indicate that CNN achieved the lowest MAPE at 3 17%, closely followed 

by XGBoost with 3 61%. RF exhibits slightly worse accuracy with a MAPE of 5 01%. 

This suggests that CNN and XGBoost provide similar levels of predictive precision, 

whereas RF’s performance is inferior under the current evaluation conditions. 

This performance confirms the qualitative assessments of the accuracy criterion 

outlined in Chapter 3. CNN, initially rated “Very High” due to its ability to 

automatically extract hierarchical features and subtle patterns in high-dimensional 

inputs, achieves the highest accuracy, thereby validating its rating. Similarly, XGBoost 

confirms its qualitative rating of “Very High”, demonstrating comparable accuracy with 

only marginally higher prediction error. Its strong predictive accuracy is based on its 

GBDT framework, which models nonlinearities effectively. Finally, RF, which was 

rated as “High”, also aligns with its expectation. Although it yields less accurate results 

than CNN and XGBoost, it still provides reasonably precise SoH estimates on the used 

dataset. 

While MAPE provides a normalized measure of average prediction error magnitude 

relative to true SoH values, it does not fully capture all facets of the accuracy criterion 

as defined in Chapter 3.1.2.1. For example, it summarizes average deviation but may 

not reflect how prediction errors evolve over time or vary across different stages of 

battery aging. To address this, complementary quantitative assessments are beneficial. 

Metrics such as RMSE can provide additional perspectives on the model’s overall fit 
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and ability to approximate the variance in SoH data. In addition, temporal analysis of 

prediction errors, such as evaluating error trends over cycles or calendar time, can reveal 

whether models maintain consistent accuracy or show systematic deviation during 

specific aging phases. 

In summary, the MAPE results quantitatively validate the qualitative assessment that 

CNN and XGBoost exhibit comparable and strong predictive accuracy, while RF 

achieves slightly reduced accuracy. 

5.2.2 COMPUTATIONAL EFFICIENCY 

The quantitative results for the computational efficiency criterion are summarized in 

Figure 26. Similar to the accuracy criterion, Dataset 1 is chosen to ensure comparability 

and consistency. 

 

Figure 26: Results of training and test time (in seconds) quantitatively measuring the computational 

efficiency of RF, XGBoost and CNN using dataset 1 

The findings show that XGBoost has the shortest training time (67s) compared to RF 

(3,802s) and CNN (10,980s). In addition, it also achieved the fastest inference time at 

0 055s. This indicates that XGBoost is the most computationally efficient among the 

three methods, with significantly lower resource demands for both training and 

inference. RF exhibits a notably higher computational load, particularly during training, 

while CNN shows the highest overall demand, with runtimes tripling those of RF. 
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These results correspond largely to the qualitative assessment of Chapter 3. CNN was 

categorized as “Very Low” due to its structural complexity and substantial training 

demands. The empirical results confirm this classification. RF was rated as “Moderate”, 

which is consistent with its comparatively low inference and long training time. 

XGBoost, however, previously also rated as “Moderate”, demonstrates substantially 

better performance than RF in terms of both inference and training time. This suggests 

that its qualitative rating may need to be reconsidered, potentially as “High”. 

It is important to note that runtime does not fully capture all aspects of the 

computational efficiency criterion. Additional dimensions, such as the number of model 

parameters, memory usage and reliance optimization routines, are also central to 

computational demand but are not reflected in the runtime metric. Furthermore, 

structural complexity, such as the depth of a CNN or the number of boosting rounds in 

XGBoost, can significantly affect hardware requirements. To provide a more 

comprehensive analysis, future evaluations should incorporate additional metrics such 

as peak memory usage or number of trainable parameters, which better capture 

structural complexity, particularly in embedded or real-time systems. 

In summary, XGBoost emerges as the most computationally efficient method based on 

runtime, followed by RF and CNN. This ordering results in minor adjustments to the 

rating of XGBoost in the qualitative categorization but overall supports the validity of 

the qualitative evaluation framework for this criterion. 

5.2.3 RELIABILITY 

The quantitative results of the reliability criterion are presented in Table 17. They were 

obtained by independently training and evaluating the selected SoH estimation methods 

on each of the three real-world datasets introduced in Chapter 4.1. These datasets differ 

in sampling frequency, fleet size and usage context, offering a meaningful basis for 

evaluating reliability under varied operational conditions. 
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Dataset 

 

RF XGBoost CNN 

1 5.01% 3.61% 3.17% 

2 8.46% 7.08% 6.09% 

3 7.13% 6.49% 9.63% 

Table 17: Results of MAPE (%) to quantitatively measure the reliability of RF, XGBoost and CNN 

across datasets 

The results indicate that XGBoost and RF exhibit similar performance (~3 5 p.p. MAPE 

variation) across the datasets, showing robust generalization. Although their absolute 

MAPE values differ slightly, their ability to maintain a comparably consistent error 

profile across operational contexts indicates strong reliability. On the other hand, CNN, 

while achieving the lowest error on Dataset 1, displays the largest variation across 

datasets, with MAPE rising from 3 17% to 9 64%. This fluctuation implies increased 

sensitivity to changing data characteristics, particularly in Dataset 3, which includes 

fewer vehicles and more heterogeneous charging behavior typical of private users. 

The observed reliability aligns partially with the qualitative assessments discussed in 

Chapter 3. CNN was rated “Very High” based on its adaptability and robustness to 

noise during training. However, the quantitative results suggest that while CNN 

performs well on complex data, its generalization across operational profiles, 

particularly in smaller or more heterogeneous datasets, may be limited. Therefore, its 

reliability rating may require reclassification from "Very High" to "Moderate" or 

"High". XGBoost and RF, initially rated as “High” and “Very High”, maintain more 

stability across all datasets and should both be rated as “High” after validation. 

While MAPE is effective for capturing average deviation, it does not reflect error 

volatility or sensitivity to specific operating conditions. Therefore, additional metrics 

should be considered for a more comprehensive reliability analysis. These include the 

standard deviation of MAPE across individual charging cycles, RMSE to capture 
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vulnerability to outliers or noise and controlled input perturbation experiments to test 

robustness under missing data scenarios. 

In summary, the reliability assessment reveals that RF and XGBoost maintain stable 

performance across varied datasets and fulfill their qualitative classification as “High” 

in reliability. CNN, despite its accuracy in controlled conditions, shows reduced 

stability under operational variation, indicating a need to revise its qualitative rating. 

5.2.4 SCALABILITY 

The quantitative results of the scalability criterion are shown in Table 18. As with the 

assessments of accuracy and computational efficiency, Dataset 1 was selected as the 

basis for analysis due to its size and comprehensiveness. To assess scalability, the 

training dataset size was incrementally increased from 10% to 100% and each method 

was trained independently on the subsets. 

 RF XGBoost CNN 

Fraction MAPE Training time MAPE Training time MAPE Training time 

0.1 4.95% 248.8s 3.76% 16.6s 3.56% 933.5s 

0.25 4.68% 802.8s 3.59% 29.9s 3.33% 3,556.8s 

0.5 4.95% 1,775.3 3.61% 57.5s 3.56% 4,934.9s 

0.75 5.00% 3,801.5 3.60% 51.3s 3.38% 7,308.6s 

1.0 5.01% 4,064.1 3.61% 76.5s 3.79% 9,962.4s 

Table 18: Results of MAPE (%) and training time (s) to quantitatively measure the scalability of RF, 

XGBoost and CNN using dataset 1 

XGBoost demonstrates the best scalability among the evaluated methods. Its training 

time increases linearly with dataset size but remains comparatively fast (< 80s). In 

addition, MAPE remains stable across all training sizes, varying only marginally 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

TESTING RESULTS OF SOH METHODS 

117 

between 3 59% and 3 76%. The early convergence (after 25%) reflects robust 

generalization and computational efficiency at scale. RF shows steeper increases in 

training time as the dataset grows, surpassing 4,000s at full dataset size. While its 

accuracy remains stable, the best result is achieved already at the 25% training fraction. 

This suggests early saturation in learning capacity. This plateau does not indicate 

performance degradation, but the high training times compared to marginal accuracy 

improvements signal limited efficiency at scale. Similarly to RFs, CNNs show a sharp 

increase in training time with dataset size, reaching nearly 10,000s at full scale. In 

contrast to RF and XGBoost, CNN shows non-monotonic trends in accuracy. MAPE 

improves slightly at the 25% level (3 33%) and again at 75% (3 38%) but worsens at 

full scale to 3 79%. This suggests sensitivity to optimization dynamics and potential 

overfitting or instability as the dataset size increases. While CNNs are structurally 

capable of handling large, high-dimensional data, these findings indicate that scalability 

in practice depends on proper model configuration and sufficient computational 

resources. 

The observed scalability results partially validate the qualitative assessments of 

Chapter 3. XGBoost, previously rated “Very High” in scalability, demonstrates 

consistent accuracy and low training times across dataset sizes, confirming its 

classification. Similarly, RF supports its previous rating (“High”) by scaling 

functionally, but with slightly diminishing accuracy and increasing computational 

demand. In contrast, the “Very High” rating of CNNs requires revision. While CNNs 

offer competitive accuracy, their rapidly increasing training time and nonlinear 

accuracy progression indicate practical limitations. A revised classification of “High” 

is more appropriate based on the findings. 
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5.3 USE CASE IDENTIFICATION BASED ON EMPIRICAL RESULTS 

The validation of the qualitative assessment of RF, XGBoost and CNN across accuracy, 

computational efficiency, reliability and scalability provides a strong foundation for 

aligning each method’s performance with potential real-world deployment scenarios. 

RF demonstrates consistent reliability across diverse datasets, maintaining stable 

accuracy, though with slightly higher prediction errors compared to XGBoost and CNN. 

Its inference efficiency is moderate, while training times increase notably with larger 

datasets. These results suggest that RF is suitable for applications where robustness and 

stability across varying operational conditions are required and inference has to be 

efficient, while training can be conducted offline. An example application is onboard 

BMS in BEVs, where predictable and reliable SoH estimation is critical under limited 

computational resources. 

XGBoost consistently achieves high accuracy with the shortest training and inference 

times among the evaluated methods. It scales well with dataset size and maintains stable 

predictive performance across different operational contexts. This balance between the 

criteria makes XGBoost the best option for scenarios requiring rapid inference, while 

having low resource demands. Representative use cases include third-party diagnostic 

tools or workshop-based SoH assessment devices. 

CNN achieves the lowest prediction errors, demonstrating strong capabilities in 

modeling complex battery degradation patterns. However, CNN training demands are 

significantly higher, and its accuracy varies more substantially across datasets. These 

findings imply CNNs are best suited for environments with access to large, high-quality 

datasets and sufficient computational resources, such as centralized fleet analytics 

platforms, predictive maintenance systems or academic research. 

While this analysis supports informed recommendations for method selection tailored 

to specific application contexts, it is important to recognize that the selected quantitative 
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metrics are limited in scope. They do not capture other crucial factors such as memory 

usage, noise sensitivity or time-dependency of prediction errors, elements that heavily 

influence deployment feasibility. Consequently, further refinement and expansion of 

the metrics are needed to incorporate these additional dimensions. Enhancing these 

metrics will enable more comprehensive decision support for selecting SoH estimation 

methods that optimally balance predictive performance with operational constraints 

across real-world scenarios. 
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Chapter 6. CONCLUSION AND OUTLOOK 

Accurate estimation of a battery’s SoH is critical to prevent failure and ensure reliable 

operation throughout its lifecycle [2–4, 13, 19]. Since SoH cannot be directly measured, 

a wide range of estimation techniques has been proposed in literature, which can be 

categorized into experimental, model-based, and hybrid approaches [1–5, 8, 19, 21, 23, 

24]. Among these, model-based SoH estimation methods have gained importance due 

to their non-invasive nature [12]. 

However, the increasing variety of model-based SoH estimation approaches has led to 

inconsistent and fragmented evaluation practices. Most studies focus on individual 

performance metrics like accuracy, which do not sufficiently capture the multi-

dimensional requirements for practical deployment [4, 5, 9, 14, 23, 24, 27]. In addition, 

the predominant reliance on laboratory datasets for model development often fails to 

reflect the operational variability and complexity of real-world environments, resulting 

in poor model generalization when deployed in practice [8, 24]. 

This thesis addressed these challenges by developing a multi-criteria evaluation 

framework that enables use-case specific selection of model-based SoH estimation 

methods. Afterwards, it validated the qualitative method assessments for selected 

estimation methods through empirical evaluation on a large, real-world battery dataset. 

Following the theoretical foundation presented in Chapter 2, which introduced the 

fundamental concepts of battery ageing and SoH estimation as well as characterized 

relevant model-based approaches, Chapter 3 developed the evaluation framework. 

Based on insights from five selected studies, six practically significant evaluation 

criteria were derived: accuracy, computational efficiency, interpretability, data 

requirements, reliability and scalability. Each model-based method introduced earlier 

was then qualitatively assessed across these six dimensions using literature benchmarks, 

comparative studies and performance indicators. To select candidates for 
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implementation, four of the six criteria (accuracy, computational efficiency, reliability 

and scalability) were prioritized given the availability of a large real-world dataset and 

the knowledge to implement the methods. Based on this assessment, RF, XGBoost and 

CNN were identified as the most suitable candidates. 

Chapter 4 detailed the empirical implementation, including preprocessing and SoH 

labeling of the dataset and the practical deployment of each method in Python. Chapter 

5 then presented the quantitative performance analysis, using defined quantitative 

metrics aligned with the four prioritized criteria. The empirical results largely validated 

the qualitative assessments from Chapter 3, requiring only minor adjustments. CNN 

achieved the highest accuracy, followed closely by XGBoost, while RF showed 

comparatively lower but acceptable predictive precision. XGBoost significantly 

outperformed expectations for computational efficiency, exhibiting fast training and 

inference times. RF showed moderate resource demands, while CNN was confirmed as 

the most computationally intensive model. In terms of reliability, both RF and XGBoost 

performed consistently across varying operational conditions, whereas CNN 

underperformed its qualitative assessment. Regarding scalability, XGBoost maintained 

high accuracy and efficiency across different dataset sizes, RF showed stable accuracy 

but increased training time on larger datasets and CNN’s scalability proved limited in 

both accuracy and runtime. 

These findings support differentiated recommendations for method selection in 

practice. RF is well-suited for embedded applications like onboard BMS in BEVs, 

where method stability and robustness under varying operational conditions are 

essential. XGBoost offers an efficient option for diagnostic tools and low-resource 

environments, combining speed, accuracy and reliability. CNNs are best deployed in 

data-rich, computationally flexible settings like fleet analytics platforms. 

At the same time, the results highlight the limitations of the selected quantitative 

metrics. While they offer meaningful insights, certain aspects of the initial criteria 

definitions are not covered. Deployment decisions in real-world systems also depend 
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on additional factors such as memory usage or noise sensitivity, which are currently not 

considered. Further expansion and refinement of the quantitative metrics across the four 

criteria are needed to comprehensively represent the initial criteria definition. 

Building on this limitation, further research should focus on three key directions. First, 

expand the current quantitative metrics by incorporating the described dimensions to 

enable a more complete and accurate assessment of the evaluation criteria. Second, 

apply more of the described model-based SoH estimation methods to the same dataset. 

This will allow for the development of quantitative thresholds for the framework’s 

rating scales, to transition the purely qualitative assessment to a hybrid qualitative-

quantitative framework, allowing for absolute, rather than relative, performance 

comparison across methods. And third, greater effort should be placed on obtaining 

usable real-world datasets for SoH estimation method development, as such datasets 

are currently limited yet essential for testing practical applicability. 
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APPENDIX I 

Reasoning behind the rating of the accuracy criterion for each model-based SoH estimation method 

Method Accuracy rating and rationale 

ECM 

(Thevenin) 

The Thevenin model offers “Moderate” accuracy due to 

oversimplification not accurately depicting complex dynamics or aging 

effects of the battery [9]. In addition, it struggles to represent nonlinear 

behaviors [24]. 

EM (P2D) The P2D model offers “Very High” accuracy as it closely depicts the 

battery’s degradation processes implicitly modeling nonlinear behavior 

[15, 32, 74]. 

Empirical 

model 

Empirical models offer low to moderate accuracy [15, 36]. However, 

its performance deteriorates for unseen test data, leading to “Low” 

overall accuracy rating. [73] 

KF KFs offer moderate to high accuracy depending on the underlying 

battery model [10, 43]. However, they are not capable to deal with 

nonlinearity resulting in the overall ranking of “Moderate”. [2, 13, 31] 

EKF EKFs offer higher accuracy than KFs [50]. In addition, they are able to 

handle nonlinearities by utilizing linearization techniques [2, 50, 51]. 

However, this introduces approximation errors which can lead to 

inaccuracies [50]. In addition, the EKF still struggles with very high 

nonlinearity [51]. Overall, the accuracy is rated “Moderate”. 

UKF UKFs accuracy is similar to that of EKFs [27]. However, it yields these 

results also under high nonlinearity as it does not use linearization 

techniques for approximation [2]. Therefore, its accuracy assessment is 

“High”. 
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PF PFs offer accuracies comparable to EKFs and UKFs [27]. The 

advantage it has on KFs and its extension is its confidence interval [13]. 

In addition, PFs effectively deal with nonlinear and non-gaussian 

scenarios [23, 50]. Overall, its rating is “High”. 

GPR GPRs offer one of the highest accuracies, outperforming multiple other 

approaches both on test and training data [1, 16, 17, 19]. It manages 

nonlinearity and high-dimensionality well and has the capacity to 

provide probabilistic forecasts, which provide insights into uncertainty 

levels [29–31, 75]. Finally, GPR has a moderate tendency to overfitting 

[19, 66, 76]. Overall, the rating is “Very High”. 

WP The WP offers good estimation accuracy due to its probabilistic 

structure which allows for capturing gradual trends and abrupt 

deviations in battery behavior [17, 54, 59]. However, the conventional 

WP is only suitable to model linear trends [78]. Overall, its accuracy 

rating is “Moderate”. 

FL FL offers moderate accuracy [22, 27]. Compared to different SoH 

estimation methods its results are average [17]. In addition, FL can deal 

with nonlinearity resulting in an overall score of “Moderate” [2, 43]. 

SVM/SVR SVM and SVR offer high accuracy rivaling that of ANNs and RFs [3, 

19]. It is able to deal with nonlinear as well as high-dimensional data 

and its structural risk minimization concept reduces overfitting [13, 27, 

29, 50, 56]. However, it does not have a confidence interval and its 

performance worsens for unseen test data [13, 31]. Overall, its rating is 

“High”. 
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RVM The accuracy of RVMs is similar to SVMs, but it also provides a 

confidence interval giving a probability estimate [17, 75]. It manages 

nonlinearities well and, compared to SVMs, it can achieve flexible 

control over overfitting and underfitting by adjusting parameters [14]. 

Overall, the rating is “High”. [13] 

kNN kNN receives a “Low” rating for the accuracy criterion. It has generally 

low accuracy and a high tendency for overfitting. [3] 

DT DTs have low to moderate accuracy compared to other methods [1]. In 

addition, it manages complex nonlinear relationships well, but tends to 

overfit [30, 56]. Overall, it receives a “Low” rating. 

RF RFs offer high accuracy on both training and test data [1]. The model 

can capture complex and nonlinear relationships and has a low tendency 

for overfitting [24, 27]. The overall rating is “High”. [3] 

XGBoost XGBoost offers very high accuracy compared to GPR or SVM [47, 77]. 

It can capture nonlinear relationships and performs well on test and 

training data with slightly less accuracy on the latter [24, 77]. Although, 

they use sub-sampling or column sampling reducing overfitting, on 

small datasets it still may occur [32]. The overall rating is “Very High”. 

AdaBoost AdaBoost algorithms achieve higher accuracies and have reportedly 

outperformed single data-driven models such as SVR and LSTM [6, 

68]. They are capable of capturing complex and nonlinear relationships 

[24]. In addition, the careful selection and tuning of weak learners avoid 

overfitting [14, 30]. Their overall rating is “High”. 

FFNN FFNNs are highly accurate, outperforming most other model-based 

approaches [1, 27]. They manage nonlinearity very well and can capture 

complicated correlation in battery data [47, 50]. However, among other 

ANNs it is the least accurate [20, 70]. In addition, it has a tendency for 

overfitting [47, 50]. The overall rating is “High”. 
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CNN CNNs offer very high accuracy compared to other ANNs and ML 

approaches [1, 16, 22, 70]. They are capable of modelling nonlinearity 

and deal with high-dimensionality [3, 50, 75]. One of their main 

advantages is the ability to automatically identify complicated patterns 

and correlations from battery data [29]. However, they are susceptible 

to overfitting [3]. The overall rating is “Very High”. 

RNN Similar to CNNs, RNNs offer very high accuracy and are able to model 

nonlinear and high-dimensional data as well as automatically identify 

complicated patterns and correlations from battery data [3, 22, 29, 32, 

46, 50, 70]. Overall, their rating is “High”, because their tendency to 

overfitting is higher than that of CNNs [3, 50, 70]. 

LSTM LSTM yields very high accuracy on both training and test data [1, 13, 

16, 20, 22]. They are able to capture nonlinear and complex 

relationships [24, 50]. However, they are prone to overfitting especially 

for sparse data and their performance on unseen test data worsens [24, 

29, 50]. Overall, the accuracy rating is “High”. 

GRU GRUs offer similar to RNNs and LSTMs very high accuracy [20, 22]. 

They effectively model nonlinearity and have a minimal risk of 

overfitting [50, 66]. The overall rating is “High”. 
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APPENDIX II 

Reasoning behind the rating of the computational efficiency criterion for each model-based SoH 

estimation method 

Method Computational efficiency rating and rationale 

ECM 

(Thevenin) 

Computationally, the Thevenin model offers “High” efficiency [9, 46]. 

It is a simple model with few parameters and therefore low 

computational complexity [5, 9, 32, 47]. Furthermore, it allows for real-

time application [5, 14, 23]. On the downside, its training is time-

consuming due to complex parameter initialization [15]. Finally, a high-

performance controller is needed to periodically update the model 

parameters [30, 43, 73, 98]. 

EM (P2D) The P2D model has “Very low” computational efficiency and requires 

significant memory storage, because of its complex structure consisting 

of multiple differential equations and parameters describing the battery 

characteristics [6, 30, 32, 77]. Building the model, identifying the 

parameters and subsequently updating the model periodically requires 

significant time and computational resources [9, 23, 46]. To deal with 

the complexity, a high performance controller is used [2]. Combined 

with the overall complexity of the system, this makes EMs not suitable 

for real-time application [24, 74]. 

Empirical 

model 

Empirical models offer “High” computational efficiency due to simple 

equations, few parameters and fast response speed. [15, 30, 43, 46, 47]. 

Their simple computation and structure make them suitable for real-

time SoH estimation [46, 47]. However, parameter identification is 

time-consuming, as they need to be determined via comprehensive 

aging tests [15, 73].  
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KF KFs provide “High” computational efficiency, because of simple 

calculations, fast processing times and rapid model updating [2, 31]. In 

addition, KFs allow for real-time estimation [17, 38, 74]. On the 

downside, the development phase may be extensive as KFs require pre-

validation [2, 10]. 

EKF EKFs allow for real-time implementation due to their recursive nature 

but in resource limited systems it is limited due to its computational 

complexity [50, 51]. This complexity stems from an increased number 

of calculations compared to KFs that are used to deal with nonlinearities 

[13]. However, using a high performance controller, the processing time 

is fast [2]. On the other hand, the development phase, similar to KFs, is 

extensive due to required pre-validation and the need for careful tuning 

of parameters [2, 44]. Overall, the computational efficiency is 

“Moderate”. 

UKF UKFs are computationally more demanding than both EKF and KF due 

to the propagation of multiple sigma points at each step [44, 52]. While 

they do not require derivates or Jacobian matrix calculation, their 

structural complexity and inference load are higher [13]. Using a high-

performance controller, they are real-time capable with fast processing 

times [2]. Overall, the rating is “Low”. 
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PF PFs are computationally demanding methods whose efficiency largely 

depends on the number of particles used [13, 27]. As this number grows, 

the computational complexity increases significantly and worsens 

runtime performance and memory demands, especially in online 

applications [14, 50]. Although PFs can be applied in real-time settings, 

this requires substantial computational resources and optimized 

implementations [17, 50]. While PFs benefit from fast training and do 

not require a learning phase in the conventional sense, the inference 

stage is complex and resource-intensive [21]. Consequently, PFs are 

rated as “Low” computational efficiency. 

GPR GPR exhibits moderate model simplicity but its inherent structure leads 

to high computational overhead [1, 75]. Logarithmic and exponential 

functions, along with matrix operations contribute to increased 

computational cost and memory demand [29–31]. This limits the 

models ability to anticipate battery degradation in real-time as 

computation is comparably slow [1, 16, 29]. In addition, extensive 

training time is required to tune kernels and hyperparameters which are 

need to achieve high precision [1, 17]. Overall, GPR is rated as “Very 

Low” for computational efficiency. 

WP The WP exhibits “Moderate” computational efficiency. While the 

model is conceptually simple and widely adopted due to its intuitive 

formulation, its implementation involves mathematically intensive 

operations, which can be computationally demanding, particularly 

during inference [17, 57]. Additionally, offline parameter estimation 

may require complex mathematical modeling [30]. Once the model is 

trained, it features very few parameters that need to be adjusted, leading 

to efficient runtime execution and low memory demands [14]. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

APPENDIX II 

139 

FL FL exhibits relatively high computational complexity due to operations 

involving multiplication, division and exponential functions [10, 17, 

27]. Although FL avoids complex mathematical models and can 

directly estimate SoH without intermediate transformations, the design 

and parameter selection process is often trial-and-error based, which 

adds development overhead [9, 74]. FL systems are real-time capable, 

but usually require a high-performance controllers or specialized 

computational units, as their memory consumption and execution 

complexity are substantial [17, 83]. Additionally, FL models may 

require a large number of rules and membership functions, further 

increasing the memory footprint and computational burden [27, 99]. 

Consequently, the computational efficiency is rated as “Low”. 

SVM/SVR SVM/SVR methods exhibit “Moderate” computational efficiency. This 

may vary depending on the selected kernel function and model 

parameters [29, 44]. The rating is rooted in computationally intensive 

training on the one hand and fast inference on the other hand [50]. 

Training is often time-consuming, especially for large datasets and 

high-dimensional feature spaces, as it involves complex operations like 

exponential functions and vector dot products, along with extensive 

cross-validation and parameter tuning [3, 17, 27, 44, 50, 56]. In 

addition, memory usage is generally high, but also varies depending on 

the number of support vectors [13]. Once trained, SVM/SVR can 

deliver fast and efficient inference suitable for real-time applications 

[17, 31, 50]. 
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RVM RVMs offer sparse solutions through Bayesian inference, often 

requiring very few correlation vectors, which simplifies the model 

compared to SVMs and reduces inference cost [31]. However, their 

training involves iterative optimization and computations such as 

exponential functions and vector dot products, resulting in high time 

and memory complexity [17, 29, 67]. Although their sparsity improves 

efficiency post-training, slow computation speed and long training 

times make them less appropriate for real-time applications compared 

to SVMs [31]. Overall, RVMs are rated as “Low”. 

kNN Compared to methods like SVMs or RNNs, kNN has moderate 

structural complexity [3]. Also, it does not require a formal training 

phase, which eliminates upfront computational overhead [3]. Its 

inference step, however, relies on calculating distances between the 

input sample and all points in the training dataset, which can become 

computationally intensive as the dataset grows [56]. While predictions 

are executed quickly in small datasets, the method suffers from high 

memory consumption and increasing inference latency in high-

dimensional spaces [79]. Overall, it is rated as “Moderate”. 

DT DTs exhibit “Moderate” computational efficiency. While inference is 

typically fast and lightweight, the training process is long and 

computationally expensive due to the iterative nature of tree 

construction [56]. Furthermore, DTs often require extensive 

experimentation and parameter tuning, such as adjusting maximum 

depth or employing pruning strategies to control model complexity and 

overfitting [30]. Despite this, the simple structure of DTs, combined 

with pruning techniques to manage complexity, ensures that the method 

remains computationally feasible. 
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RF RFs exhibit “Moderate” computational efficiency. Training involves 

building multiple decision trees, which can be time-consuming and 

computationally intensive, depending on the dataset size and number of 

estimators [30]. While the model structure is relatively simple, 

hyperparameter tuning, is necessary and increases computational 

burden [1, 30]. In addition, RFs tend to require more memory than SVM 

or kNN and less than RNN [3]. Lastly, RFs benefit from not requiring 

preprocessing, as raw data can be directly fed into the model, reducing 

overall computational overhead [3, 32]. 

XGBoost XGBoost exhibits “Moderate” computational efficiency. It outperforms 

traditional ML models such as SVM and SVR in terms of inference 

speed, making it highly suitable for real-time prediction tasks [56, 80, 

81]. Its architecture supports parallel computation and column 

sampling, in which a random subset of features is selected during each 

boosting round, enhancing training speed and scalability [32]. 

However, training times remain relatively long resource-intensive due 

to its higher model complexity compared to methods like RFs [68]. 

AdaBoost AdaBoost exhibits “Moderate” computational efficiency. The 

algorithm is relatively simple to implement, benefiting from a 

sequential ensemble structure that builds weak learners iteratively [80]. 

It delivers very fast inference, making it suitable for deployment in real-

time systems once trained [68]. However, the training process is 

typically long and computationally intensive, leading to increased 

runtime and memory demands [68]. Additionally, its model complexity 

tends to be higher than RF, particularly as the number of weak learners 

increases [68]. 
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FFNN FFNNs exhibit comparatively low structural complexity, characterized 

by a simple architecture with fewer parameters compared to RNNs [1, 

72]. Their inference phase is computationally efficient and fast, making 

them suitable for real-time applications [1, 20, 50, 70, 82]. However, 

training can be computationally intensive and slow due to the need of 

significant amounts of high-quality data for reliable parameter 

estimation [50, 70]. The overall computational efficiency is rated 

“Moderate”. 

CNN CNNs exhibit a complex and highly variable structure, requiring 

extensive parameter adjustments and the use of very large datasets for 

training, generally larger than for RNNs and FFNNs [14, 16, 70]. Their 

training process is computationally intensive, consuming significantly 

more time than models such as GPR, SVR and LSTM [1]. Furthermore, 

the number of parameters is considerably higher than in simpler 

architectures like FFNNs, resulting in high memory usage and longer 

processing times [1]. While real-time inference is possible on high-end 

hardware, the overall computational demands during model 

development and training make CNNs impractical for real-time 

applications [38]. Therefore, CNNs are rated as “Very Low”. 

RNN RNNs demonstrate very low computational efficiency, driven by their 

structural complexity, significant computational resource demands and 

substantial memory usage [3, 38, 46, 70]. Compared to simpler methods 

like RF, SVM or kNN, RNNs require significantly longer training time 

[3]. Although they typically demand slightly smaller datasets than 

CNNs, their reliance on high-performance computing platforms 

remains a bottleneck [38]. Therefore, RNNs are rated as having “Very 

Low” computational efficiency. 
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LSTM LSTMs are among the most computationally demanding ANNs. They 

exhibit a complex architecture and extensive training time [1, 22, 75]. 

The training efficiency is affected by the length of the input sequences 

and the size of hidden layers, which also drives up memory usage [13, 

44]. While LSTMs can operate in real-time with significant 

computational resources, their inference latency and power 

consumption are typically too high for such applications [44]. Among 

similar models, e.g., GRUs and FFNNs, they show the highest 

computing time [20]. Therefore, LSTMs are rated “Very Low”. 

GRU GRUs simplify the structure of LSTMs by reducing the number of 

gates, which improves computational efficiency while preserving 

temporal modeling capabilities [26]. Although GRUs remain 

computationally intensive, they are faster and more efficient than 

LSTMs, both in terms of training time and inference latency [22, 26]. 

GRUs are capable of real-time application on higher-end systems, but 

may struggle on constrained embedded platforms [22]. As a result, 

GRUs are assigned a “Low” rating. 
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APPENDIX III 

Reasoning behind the rating of the interpretability criterion for each model-based SoH estimation 

method 

Method Interpretability rating and rationale 

ECM 

(Thevenin) 

The Thevenin model is simple and easy to implement [24]. This 

structure based on few parameters and equations leads to “High” 

interpretability. The connection to degradation mechanism adds 

additional insights into the inner workings of the battery [23, 32]. Only 

the parameters themselves require expert knowledge to be initialized 

and periodically updated [23]. 

EM (P2D) The interpretability of the P2D model is rated as “Low”. Although the 

model offers deep physical insight by simulating electrochemical 

processes through coupled partial differential equations, its internal 

decision logic is not easily accessible [2, 14, 24, 30]. The complexity of 

its mathematical formulation makes it difficult for experts to trace how 

specific inputs lead to a particular SoH estimate, resulting in reduced 

transparency. 

Empirical 

model 

The interpretability of empirical models is “High”, because the 

formulas are simple and their implications can be read-off [43]. 

Expertise is required in understanding the parameters of the model as 

these require extensive modelling and testing to allow for improved 

model accuracy [15, 73]. 
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KF and 

EKF 

Both algorithms are highly interpretable, because each step of the 

computations can be traced making the logic transparent. Experts can 

tune noise covariances and examine the state estimates. The only 

expertise is required when implementing the equations which are based 

on detailed understating of the battery parameters and the dynamic 

models involved in charging and discharging [44]. Therefore, it is rated 

“High”. 

UKF Compared to KF and EKF; UKF is less interpretable and, therefore, 

rated “Moderate”. While the interpretable Kalman structure is 

maintained, the inner workings are less intuitive due to the use of sigma 

points and weightings [52]. 

PF PFs operate via a set of weighted particles, which makes them 

essentially black-box estimators [23, 31, 32]. Based on that, it is 

difficult to interpret how the filter arrives at a given estimate. Thus, 

interpretability is “Low”. 

GPR GPR is somewhat interpretable because the kernel function and the 

learned weights can be inspected. In addition, explicit uncertainty is 

provided and one can examine which past data points influence the 

estimate [1]. However, the fitted function does not have a simple 

analytic form and the predictions come from complex covariance 

computations. Overall, GPR rate “Low” on the interpretability scale. 
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WP The interpretability of the WP is “Moderate”. On the one hand, it offers 

a mathematically transparent structure based on a well-known 

stochastic differential equation [58]. In addition, its core parameters can 

be conceptually linked to average degradation trends, which makes the 

model's input-output relationships explainable and its internal logic 

traceable to informed users [58]. However, the stochastic nature of the 

model introduces probabilistic outputs rather than deterministic 

predictions, which may challenge practical interpretability [59]. 

FL FL is rated “Very High”. Their core structure is based on if-then rules 

that use linguistic variables and fuzzy sets, making the reasoning 

process explicit and transparent [7]. This design allows expert users to 

understand, trace and manually adjust the logic behind the system’s 

decisions without needing to analyze complex mathematical models. 

The rule-based structure clearly maps input conditions to output 

decisions, offering a direct and intuitive understanding of how SoH is 

estimated. 

SVM/SVR SVM/SVR are often considered black-box models, as their decision 

boundaries result from complex combinations of support vectors [24, 

50]. This opaque internal structure limits transparency and makes it 

difficult for experts to explain the model’s reasoning [23]. As a result, 

they are rated “Low”. 

RVM RVM provides sparser solutions than SVM/SVR by relying on fewer 

relevance vectors, which simplifies the decision function and improves 

transparency [29]. This sparsity enhances the model’s interpretability, 

allowing expert users to better understand the input-output 

relationships. Therefore, it is rated “Moderate”. 
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kNN The kNN algorithm provides a “High” level of interpretability. Its 

decision-making process is relatively transparent as predictions are 

made by averaging the outcomes of the k most similar instances in the 

training data [79]. In addition, experts can inspect which data points 

were most influential in a particular output. However, as the number of 

neighbors increases and the dimensionality of the data grows, the 

interpretability diminishes. 

DT DTs exhibit “Very High” interpretability due to their transparent, rule-

based structure [30, 56, 67]. Each decision path from root to leaf node 

represents a traceable and understandable logic that links input features 

to output predictions. The hierarchical splitting of data allows experts 

to follow the decision-making process step-by-step. Individual trees are 

inherently easy to visualize and interpret, enabling users to understand 

how specific predictions are made without requiring advanced 

mathematical knowledge [68]. 

RF RFs exhibit “Low” interpretability. While they are not fully transparent, 

their structure, based on an ensemble of DTs, provides insight into the 

model’s decision logic offering more interpretability than complex 

ANNs or GPR [1, 65]. However, the aggregation of numerous trees 

reduces this intuitive understanding, making the model appear as a 

“black box” [24, 47, 68]. 

XGBoost XGBoost exhibits “Low” interpretability. While its base learners, 

typically DTs, are individually interpretable, the overall model becomes 

opaque due to the aggregation of a large number of base models [24, 

47, 68]. Although the algorithm provides feature importance scores, 

which can support feature selection and offer some limited insight into 

input relevance, this does not compensate for the lack of transparent 

logic in its overall structure [80]. 
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AdaBoost AdaBoost is characterized by “Low” interpretability. Like XGBoost, it 

builds upon base learners like DTs, that are interpretable in isolation. 

However, the ensemble structure combines these weak learners through 

weighted aggregation over multiple iterations, resulting in a model 

whose logic is difficult to follow [24, 47, 68]. 

FFNN FFNNs are considered black-box models, as their internal decision-

making processes are generally opaque and difficult to interpret [32, 

50]. However, their structure is comparatively simpler than RNNs or 

CNNs. As a result, they are rated as having “Low” interpretability. 

CNN CNNs function as black-box models, offering very limited 

interpretability due to their highly abstract internal operations and 

parameter-heavy architecture [32, 47, 50]. In addition, the prediction 

process is opaque, making it hard to diagnose errors or justify outputs 

[16]. As a result, CNNs are assigned a “Very Low” rating for 

interpretability. 

RNN, 

LSTM and 

GRU 

RNNs, LSTMs and GRUs are all black-box models [24, 50]. RNNs 

contain hidden states that evolve over time [70]. This makes tracing the 

decision logic difficult, especially for long sequences. LSTMs add gates 

(input, forget, output) and memory cells, increasing complexity and 

making interpretation even harder [38, 70]. The internal state transitions 

are abstract and nonlinear. Like LSTMs, GRUs manage memory with 

gating mechanisms, though they are simpler than LSTMs [26]. Still, 

they remain black-box models with little interpretability [50]. 
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APPENDIX IV 

Reasoning behind the rating of the data requirements criterion for each model-based SoH estimation 

method 

Method Data requirements rating and rationale 

ECM 

(Thevenin) 

The Thevenin model has “Moderate” data requirements due to defining 

the model’s parameters and subsequent recalibration. [9, 36] 

EM (P2D) To build the P2D model and calibrate it, expert knowledge and 

extensive experimental data is required [23, 50]. This results from the 

difficulty of identifying several model parameters and the necessity of 

accurate parametrization [15, 74]. Conversely, data requirements are 

“Very High”. 

Empirical 

model 

Empirical models perform at acceptable accuracy only with large and 

high-quality data as input [5]. A sizable number of tests has to be 

conducted under specific decisions to derive the required parameters 

[15]. Therefore, the data requirements criterion is rated “High”. 

KF, EKF 

and UKF 

KF, EKF and UKF do not require any initial data for training their 

algorithm [43]. However, their accuracy depends on the underlying 

battery model which have to be constructed, requiring extensive 

experimental testing and datasets (see ECM and EM) [44, 50, 74]. 

Therefore, when implementing these methods, this additional effort of 

model development has to be considered. The rating for the data 

requirements criterion is “High”. 
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PF PFs have “High” data requirements. They require a large volume of 

high-quality experimental data to estimate system states effectively and 

capture system dynamics under various conditions [23, 74]. Compared 

to KFs, EKFs and UKFs, PFs do not rely heavily on explicit models, 

but they still require appropriate models or fitness functions [50].  

GPR GPRs do not require large datasets and are suitable for small sample 

sizes [75]. However, they rely heavily on the quality of the input data 

and the selected features [24, 56]. Model performance is highly 

sensitive to kernel choice and hyperparameter settings, requiring careful 

calibration or automated optimization [56, 75]. Overall, the data 

requirements are rated as “Moderate” due to the low data volume but 

high preparation complexity. 

WP The WP requires some training data for offline parameter computation. 

Depending on the application, it may also involve complex 

mathematical modeling and the use of degradation data to fit the 

underlying stochastic process [17, 30]. However, compared to data-

driven models, the overall volume of required data is typically lower 

and the model structure does not depend on high-dimensional input or 

extensive labeling. Therefore, data requirements are rated as “Low.” 

FL FL exhibits “High” data requirements. Its effectiveness and modeling 

accuracy depend heavily on the quality, precision and diversity of the 

input data used [2, 7, 10, 83]. Additionally, it requires domain expertise 

to design the rule base [7]. While preprocessing steps are generally 

moderate, the manual effort involved in rule formulation and validation 

further increases the data burden. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

APPENDIX IV 

151 

SVM/SVR SVM/SVR models are sensitive to the amount, quality and diversity of 

the training data, as prediction accuracy heavily depends on well-

prepared datasets [2, 24, 74]. While they can perform well with finite 

datasets, optimal performance typically requires a large volume of high-

quality training data [11, 50]. Additionally, careful kernel selection, 

hyperparameter tuning and manual feature engineering is crucial [16, 

30, 31, 50]. Overall, the data requirements of SVM/SVR are rated as 

“High”. 

RVM Compared to SVMs, RVM reduces reliance on kernel and penalty factor 

selection and automated operation is more feasible, reducing manual 

configuration effort [13, 14]. However, effective initialization still 

requires access to sufficient historical data [75]. Therefore, the data 

requirements of RVM are rated as “Moderate”. 

kNN The data requirements of kNN are rated “High”, because its 

performance depends heavily on the availability of high-quality, 

representative datasets [56]. The absence of such data can significantly 

degrade the models’ accuracy and generalization ability [100]. The size 

of the dataset is not as big as that of RNN or RF but exceeds that of 

SVM [3]. In addition, kNN requires manual feature extraction to 

construct effective input representations [3].  

DT DTs have “High” data requirements. As the model is sensitive to initial 

parameter selection, it often requires extensive experimentation data for 

appropriate tuning [56]. In addition, DTs tend to overfit on limited 

datasets [56]. On the other hand, their ability to manage both numerical 

and categorical input features reduces the need for extensive manual 

feature engineering [101]. 
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RF RFs exhibit “Moderate” data requirements. For optimal performance 

they require a larger dataset than SVM or kNN but smaller than that of 

more complex models like RNNs [3]. A key advantage of RFs is their 

low dependence on manual feature extraction and preprocessing, as it 

can directly use raw sensor data and automatically determine feature 

importance [3, 14, 32]. Nevertheless, careful tuning of hyperparameters 

is necessary to optimize performance and prediction accuracy strongly 

depends on the quality and diversity of the input data [24, 30]. 

XGBoost XGBoost demonstrates “High” data requirements due to its reliance on 

large, diverse and high-quality datasets [24, 32, 84]. While XGBoost 

requires minimal manual feature engineering, it involves a complex set 

of hyperparameters that must be carefully tuned across a wide range 

[24, 32, 84]. Techniques like histogram-based approximation improve 

the efficiency of feature selection and splitting, but the overall 

prediction accuracy remains strongly influenced by the quality of the 

input data [68]. 

AdaBoost AdaBoost has “Moderate” data requirements. Its prediction accuracy 

depends heavily on the quality of the input dataset, but it is easy to 

implement and requires little hyperparameter tuning [14, 24, 80]. 

Although it benefits from good-quality labeled data, it is less 

demanding than more complex models like XGBoost in terms of data 

diversity and volume. 
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FFNN FFNNs require a large volume of diverse and high-quality training data 

to achieve reliable SoH estimations [16, 22, 27, 50, 74]. Their 

performance depends strongly on the completeness and stability of 

input data, including relevant features like temperature and impedance 

[30, 38]. Hyperparameter tuning is necessary to optimize model 

accuracy, which adds to the data preparation complexity [47]. These 

factors collectively lead to a “Very High” rating for data requirements. 

CNN CNNs demand “Very High” data requirements, because they rely on 

large, labeled datasets to learn complex representations [3, 22, 38, 50]. 

In addition, the model performs automatic feature extraction from raw 

inputs, eliminating manual feature engineering but significantly 

increasing the need for diverse and high-quality data [3, 16].  

RNN, 

LSTM and 

GRU 

RNNs, LSTMs and GRUs exhibit “Very High” data requirements. 

These models rely on large datasets that capture the temporal dynamics 

of battery aging, requiring high-resolution, long-term sequences with 

accurate SoH labels [3, 22, 50]. Their performance heavily depends on 

the availability of reliable, diverse data to generalize across various 

degradation patterns and avoid overfitting [29, 38]. In addition, manual 

feature extraction is needed [3]. 
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APPENDIX V 

Reasoning behind the rating of the reliability criterion for each model-based SoH estimation method 

Method Reliability rating and rationale 

ECM 

(Thevenin) 

The Thevenin model is suitable for simulating battery behavior under 

various load conditions, however, its best performance usually is under 

steady-state conditions [9, 24]. Furthermore, as all ECMs, the model 

struggles in high-current and low temperature environments [24, 32]. 

To deal with noise, a Kalman filter is commonly employed [46]. 

Overall, the reliability of ECM models, similar to accuracy increases 

with model complexity [7]. The Thevenin model is rather simple and 

therefore offers “Moderate” reliability.  

EM (P2D) The reliability of the P2D model is “Moderate”. It is applicable and 

robust under extreme conditions, however, only while having complete 

data that covers multiple operating conditions [9, 32].  

Empirical 

model 

Empirical models are limited to the conditions similar to the 

experimental data [6]. It lacks robustness under changing conditions, 

leading to decreasing performance when the environment changes [15, 

36, 43, 46, 47, 69, 73]. The overall reliability is “Very Low”. 

KF KFs are a self-adaptive filtering method that can handle noise inference 

in the signal and estimate the battery SoH based on incomplete and 

noisy data [86]. However, its performance is limited by the accuracy of 

the underlying model [50]. In addition, operating conditions, such as 

time-varying current and ambient temperature can influence the 

accuracy of the algorithm [54]. Overall, it receives a “High” reliability 

rating. 
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EKF EKFs exhibit high robustness towards noise and are capable to deal with 

data sparsity [13, 51]. In addition, it is able to adapt to changing 

operating conditions due to its recursive nature. However, similar to the 

KF; it is limited by the underlying battery model [50]. In addition, in 

highly nonlinear systems the unprecise prediction of the noise 

covariance matrix of status and observation introduces a cumulative 

error worsening the models’ accuracy [7]. Overall, the rating is “High”. 

UKF UKFs are less sensitive to noise than both EKF and KF [27]. They offer 

high robustness and adaptability to changing battery conditions and 

uncertainty due to their model structure [22, 50]. Overall their reliability 

rating is “Very High”, but some operating conditions under varying 

current or ambient temperature can still influence the algorithm [54].  

PF PFs exhibit a “High” level of model reliability. Their probabilistic 

framework allows them to effectively handle uncertainty and manage 

multimodal distributions [50]. They also adapt well to data sparsity and 

changing battery conditions, showing high flexibility and applicability 

in different scenarios [13, 23, 31]. However, their robustness is 

compromised by a sensitivity to noise and model complexity, as well as 

susceptibility to particle degradation during operation, which can 

increase estimation errors [23, 32]. 

GPR GPR provides robust uncertainty quantification by modeling both mean 

predictions and predictive variances through a posterior distribution 

[56]. This allows it to effectively capture complex, nonlinear 

relationships and adapt to varying operational conditions [56]. Its 

inherent uncertainty estimation makes GPR resilient to noisy or sparse 

data, offering confidence intervals alongside predictions [45]. These 

features contribute to GPR’s “Very High” reliability. 
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WP WPs are suited to represent stochastic degradation phenomena and 

explicitly model uncertainties in system behavior [60]. This enables 

them to remain robust in the presence of measurement noise, 

operational variability and incomplete data [60]. As such, the reliability 

of the WP is rated “High.” 

FL Fuzzy Logic exhibits a “High” level of reliability due to its robustness 

in managing uncertainty, imprecision and noise in input data [27]. In 

addition, it offers high adaptability resulting in more consistent 

performances under fluctuating conditions compared to methods such 

as SVM or FFNN [22, 83]. 

SVM/SVR SVM/SVR methods demonstrate high reliability due to their inherent 

robustness to noise and strong generalization capabilities across a wide 

range of operating conditions [2, 13, 23, 27, 50]. They are effective with 

small datasets and maintain accurate predictions even under complex or 

fluctuating driving scenarios [14, 56]. However, reliability is somewhat 

constrained by sensitivity to kernel and hyperparameter choices, as 

incorrect configurations may reduce model adaptability and tolerance 

to noisy or incomplete data [3, 44, 56]. Although not entirely immune 

to data sparsity or outliers, SVM/SVRs remain generally resilient and 

stable in diverse real-world applications [13, 56, 75]. Therefore, their 

reliability is rated as “High.” 
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RVM RVMs offer high reliability through probabilistic modeling and a strong 

inherent robustness to noise and small data fluctuations [2, 13]. They 

outperform SVMs in adaptability and noise resistance, benefiting from 

their ability to discard irrelevant data and mitigate the impact of outliers 

[14, 75]. However, their reliability is limited when the training data are 

overly sparse, leading to reduced stability and poor repeatability [14, 

43]. Despite this, RVMs’ reduce dependence on strict kernel conditions 

and their automatic operation contribute to consistent performance 

across varied inputs [25]. Overall, RVMs are rated as “High”. 

kNN The reliability of the kNN method is rated as “Low.” While kNN can 

deliver accurate results under well-controlled conditions, it is sensitive 

to noise and outliers [3, 56]. In addition, kNN cannot extrapolate 

beyond training data, which limits its reliability in situations involving 

unseen operational conditions or battery degradation states [38]. As a 

result, extensive data preprocessing and careful feature selection are 

often necessary to mitigate these weaknesses [56]. 

DT DTs exhibit “Moderate” reliability. They are generally stable under 

standard operating conditions and can adapt to varying battery 

conditions [56]. However, DTs are sensitive to noise and outliers as 

well as the initial parameters selection [56]. In addition, they lack 

extrapolation capabilities, meaning they cannot reliably predict 

outcomes for input values that fall outside the range of the training data 

[65]. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

APPENDIX V 

158 

RF RFs demonstrate “High” reliability. First, they exhibit strong robustness 

to outliers and noise, allowing raw sensor data to be fed directly into the 

trained model without preprocessing [3, 11, 30, 47]. This enhances their 

resilience when handling heterogeneous or incomplete datasets [68]. 

Moreover, RFs maintain their estimation accuracy despite changes in 

charging and discharging protocols, supporting adaptability across 

diverse battery usage scenarios [68]. However, they share the common 

limitation of many data-driven models: an inability to extrapolate 

beyond training data [65]. 

XGBoost XGBoost exhibits strong generalization ability and robustness, 

allowing it to perform reliably across multiple battery operating 

conditions [32, 47, 56]. It can also handle missing values effectively 

enhancing its resilience to incomplete data [80]. Although, XGBoost is 

sensitive to outliers significantly impacting the models prediction 

results, its overall robustness is comparable to that of SVMs [32, 56, 

102]. Overall, XGBoost is rated “High” in reliability. 

AdaBoost AdaBoost demonstrates strong robustness compared to simpler models 

like DTs [6, 47]. However, it is sensitive to noisy data and outliers 

because its iterative learning approach can amplify errors from such 

irregularities [14, 80]. Therefore, its reliability is rated “Moderate”. 

FFNN FFNNs are capable of handling diverse input types and exhibit 

adaptability to different operating conditions and battery aging effects 

[22, 27, 50]. In addition, their generalization ability allows them to 

perform well even with incomplete or noisy data [50]. However, high 

ambient temperatures can degrade their estimation accuracy and small 

amounts of data reduce the models’ adaptability [14, 20]. Overall, the 

reliability rating is “High”. 
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CNN CNNs demonstrate adaptability across different applications and 

operational conditions, including changes in battery state and aging 

[50]. They have better generalization capabilities than FFNNs and are 

less sensitive to noise compared to LSTM and GRU architectures [22, 

38]. CNNs effectively handle incomplete and noisy data due to their 

robust feature extraction capabilities developed during training [50]. 

Overall, CNN offer “Very High” reliability. 

RNN RNNs are highly adaptable and well-suited for modeling battery 

performance across a wide range of operational conditions, including 

variations in usage patterns and aging effects [22, 50]. They can handle 

noisy and incomplete data effectively due to strong generalization, 

which is higher than that of FFNN [38, 50]. Therefore, RNNs are rated 

“Very High” on the reliability scale. 

LSTM and 

GRU 

LSTM and GRU networks are adaptable to changing operating 

conditions and can handle incomplete and noisy input data [50]. 

However, both networks are more susceptible to noise than FFNNs and 

low-temperature conditions can increase error rates [20]. Overall, their 

reliability rating is “High”. 
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APPENDIX VI 

Reasoning behind the rating of the scalability criterion for each model-based SoH estimation method 

Method Scalability rating and rationale 

ECM 

(Thevenin) 

The Thevenin model simulates one battery cell. To apply the model to 

modules or packs a redesign of the model is required increasing overall 

complexity. The battery pack has to be considered as a whole cell, 

which leads to difficulties in model parameter identification. Therefore, 

ECM models cannot provide highly accurate quantitative results at pack 

level. The overall rating is “Low”. [36]  

EM (P2D) P2D models have “Very Low” scalability. Each battery cell ages 

differently and would require a complex EM. As one EM is already 

computationally intensive, having multiple cells within a battery pack 

multiplies said complexity making its use impractical. [13] 

Empirical 

model 

The scalability of empirical models is “Low”. As every cell behaves 

differently, one model for each cell within a battery pack or module is 

necessary. On module level, some models exist that describe the 

charging and discharging responses at different SoH. However, 

empirical model for cell ageing in terms of charging cycles is not 

sufficient to describe the inconsistent degradation inside the battery 

modules. At pack level, the empirical model method is not suitable for 

SOH estimation. [36] 
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KF and 

EKF 

KF and EKF demonstrate “Very High” scalability. Their computational 

complexity scales linearly with dataset size, allowing for efficient 

operation in larger battery systems [13]. In addition, both filters can 

accommodate multivariate inputs due to their use of state vectors and 

covariance matrices [44]. 

UKF The UKF achieves “Moderate” scalability, primarily limited by its 

computational structure leading to higher memory usage and longer 

inference times [44, 50]. While it can still manage multivariate inputs 

and operate in parallel architectures, its resource requirements scale less 

efficiently than KF and EKF [44]. 

PF PFs exhibit “Low” scalability due to their inherent computational 

demands that grow significantly with system complexity [50]. As 

dimensionality increases, the number of required particles grows 

exponentially, which restricts PFs from scaling efficiently [50]. Overall, 

PFs are rated “Low”. 

GPR GPR is highly capable of handling large datasets [1]. However, its 

computational cost typically scales cubically with dataset size, resulting 

in high memory demands and longer processing times for very large 

datasets [29, 56]. Sparse representations and approximation techniques 

can partially reduce this burden but do not fully eliminate scalability 

challenges [56]. Overall, GPR’s scalability is rated as “Moderate”. 

WP The WP demonstrates “Moderate” scalability. On the one hand, its 

mathematical structure remains relatively lightweight. However, 

extending the WP to larger battery systems or higher-dimensional input 

spaces increase computational demands, as parameter identification 

becomes more complex [88].  
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FL Fl demonstrates “Low” scalability when applied to complex systems 

with high input dimensionality. As the number of input variables 

increases, the system requires exponentially more rules, leading to a rise 

in parameters and data volume needed to define them, resulting in 

extensive design and tuning efforts. [89] 

SVM/SVR SVMs and SVRs are known for their strong generalization capabilities, 

enabling effective performance with new batteries without extensive 

retraining [13]. However, their scalability is significantly limited by 

computational complexity, especially when managing large datasets or 

high-dimensional feature spaces (scaling cubically with dataset size) 

[13, 22, 50, 75]. Overall, the scalability is rated as “Moderate.” 

RVM RVMs exhibit similarly strong generalization to SVMs and can adapt 

to new data or batteries without substantial retraining [13]. However, 

their scalability is further limited compared to SVMs due to longer 

training times and higher computational demands when working with 

large datasets or complex input structures [29]. Hence, the scalability is 

rated as “Low.” 

kNN kNN exhibits “Low” scalability due to its inherent reliance on storing 

and comparing all training samples during inference [38]. As the dataset 

grows, both memory usage and computational cost increase 

significantly, since distance calculations must be performed for each 

query against the entire dataset [3, 56]. This issue worsens in high-

dimensional feature spaces [3]. 

DT DTs exhibit “Moderate” scalability. While they can handle large 

datasets and multivariate inputs, their performance and efficiency 

degrade as the data volume or input dimensionality increases, leading 

to longer training times and increased memory usage. [56]  
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RF RFs demonstrate “High” scalability due to their flexibility in handling 

large-scale and high-dimensional datasets [1, 3]. Unlike NNs and SVR, 

RFs require fewer optimization parameters, making it scale more 

efficiently [69]. 

XGBoost XGBoost is rated “Very High” in scalability, as it is one of the key 

factors behind its widespread success [80]. The algorithm incorporates 

several system-level and algorithmic optimizations that enable efficient 

learning on large and complex datasets. Additionally, XGBoost 

supports parallel and distributed computing, significantly accelerating 

training times and enabling rapid model exploration even as dataset 

sizes grow. [87] 

AdaBoost While AdaBoost is capable of handling larger datasets, its sequential 

model-building process makes it inherently slower than more optimized 

algorithms like XGBoost, especially as dataset size grows, which limits 

its scalability [68]. Therefore, AdaBoost is rated “Moderate”. 

FFNN FFNNs demonstrate “High” scalability. They can manage a wide range 

of input features and system configurations with reasonable accuracy 

[50]. Compared to CNNs, their flexibility in model updating and 

adaptation to big data environments is slightly lower [1]. Nevertheless, 

FFNNs maintain stable performance when applied to large datasets and 

multivariate inputs [50]. 

CNN CNNs exhibit “Very High” scalability, due to their ability to efficiently 

process high-dimensional inputs and large-scale datasets [1, 3, 16]. 

CNNs benefit from automatic feature extraction mechanisms, allowing 

them to adapt without manual reconfiguration as data complexity 

increases. However, as CNNs scale, the number of model parameters 

also grows, resulting in increased computational and memory 

requirements [26]. 
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RNN, 

LSTM and 

GRU 

RNNs, LSTMs and GRUs are all capable of capturing temporal 

dependencies, making them suitable for applications involving 

sequential inputs [26]. These architectures scale to larger datasets and 

complex system configurations, although the increase in model 

parameters imposes greater computational and memory demands [13, 

26]. LSTMs offer improved scalability over basic RNNs by mitigating 

issues like vanishing gradients in moderate-scale settings [16]. GRUs 

on the other hand, present a lighter alternative with similar 

generalization capabilities, but, like LSTMs, their performance stability 

depends on resource availability and careful tuning [13, 26]. Overall, 

they are rated “High” in scalability. 
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APPENDIX VII (SDG ALIGNMENT) 

This thesis contributes to the UN’s 2030 Agenda for Sustainable Development by 

providing a tool to enhance the practical deployment of LiBs in BEVs. The developed 

multi-criteria evaluation framework for model-based SoH estimation methods 

addresses key limitations in existing BEV battery diagnostics, offering a systematic 

approach to assess, compare and select suitable methods for real-world applications. 

The framework extends beyond conventional evaluations, by incorporating six 

practically relevant criteria (accuracy, computational efficiency, interpretability, data 

requirements, reliability and scalability) and being validated using a large, real-world 

dataset. This enables context-specific recommendations for method selection, bridging 

the gap between academic research and practical deployment in electric mobility. 

Specific Contributions to the SDGs 

SDG 7 – Affordable and Clean Energy 

The framework supports SDG 7 by improving both the reliability and energy efficiency 

of LiBs in BEVs. Accurate SoH estimation enables failure anticipation, predictive 

maintenance and battery replacement planning, ensuring batteries operate closer to their 

optimal performance throughout their lifecycle. This reduces energy losses, prolongs 

battery service life and contributes to more efficient and sustainable electric mobility, 

thereby supporting cleaner energy use in the transport sector. 

SDG 12 – Responsible Consumption and Production 

The research aligns with SDG 12 by promoting the responsible use of critical raw 

materials in BEV batteries, including lithium, cobalt and nickel. By reducing premature 

battery replacements and enabling second-life applications within the vehicle sector, 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER EN INGENIERÍA INDUSTRIAL 

 

APPENDIX VII (SDG ALIGNMENT) 

166 

the framework supports circular economy practices and mitigates environmental 

impacts associated with battery production, consumption and disposal. 

SDG 13 – Climate Action 

This thesis contributes to SDG 13 by facilitating the broader adoption of BEVs through 

improved battery health monitoring. Reliable and longer-lasting batteries reduce 

reliance on fossil fuel-based transportation, supporting the decarbonization of mobility 

systems and contributing to global efforts to mitigate climate change. 

Conclusion 

Through the development, validation and application of this multi-criteria evaluation 

framework, the thesis provides a practical tool for improving the deployment of LiBs 

in BEVs. By enhancing energy reliability, promoting responsible resource use and 

supporting the transition to low-carbon transport, the research directly advances the 

objectives of the UN SGDs. 


