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Abstract: Hamstring muscle injuries account for 12% of all injuries in soccer players. Sev-
eral studies claim that the hamstring/quadriceps (H/Q) strength ratio has the potential to
predict hamstring injuries, although the current evidence is not robust enough to defini-
tively support this claim. Therefore, the main objective of the present study is to analyze
whether there are changes in the H/Q ratio at different knee flexion angles and establish a
measurement protocol capable of reducing the high prevalence of hamstring injury. We
performed an observational study with 24 third-division soccer players. The conventional
isokinetic H/Q strength ratio and H/Q strength ratio were measured at different knee
flexion angles (15◦, 30◦, 45◦, 60◦, and 75◦) at 60◦/s and 180◦/s. The conventional H/Q ratio
differs from the H/Q ratios at 15◦ and 30◦ knee flexion at 60◦/s and from the H/Q ratios
at 15◦, 45◦, 60◦, and 75◦ at 180◦/s (p < 0.05). Based on the results obtained in this study,
we recommend calculating the H/Q ratios at 15◦ and 30◦ knee flexion in the protocol for
measuring the flexor and extensor strength of the knee. This additional data will establish
more specific cut-off points that could predict and prevent future hamstring muscle injuries.

Keywords: hamstring injury; strength ratio; hamstrings; quadriceps; soccer players

1. Introduction
Professional soccer has seen an increase in physical demand [1], leading to a rise in

muscle injuries [2], particularly in the hamstring muscles [2,3]. This type of injury accounts
for 12% of all injuries in professional soccer, and this figure rises to 33% for muscle injuries
alone [4,5]. Hamstring injuries occur with greater incidence during matches [6], and 56%
of hamstring injuries occur during the second hour of sports practice [7]. The incidence is
30% higher in men than in women [8]. Additionally, 20% of soccer players will experience
a hamstring injury during their career, with a 20% recurrence rate [9]. Recurrence is often
due to inadequate recovery or shortened rehabilitation periods [10], leading to more severe
re-injuries and prolonged loss of functionality [11,12]. Injuries occurring in the dominant
leg have a greater effect on muscle volume [13]. However, no strength asymmetries have
been found in soccer players between the dominant leg and the non-dominant leg in knee
flexion–extension movements [14].

Most cases of hamstring injuries are non-contact injuries [7], occurring in the last
swing phase during high-speed running, with the knee close to full extension [5,9] when
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the hamstring must contract very rapidly (<250 ms) to decelerate the inertia [15]. We
know that 80% of hamstring injuries occur in the biceps femoris, specifically in their long
portion [9], possibly due to structural factors, and kinematic factors of running [16].

There are several non-modifiable risk factors that may increase the risk of hamstring
injury: previous anterior cruciate ligament or hamstring injuries, age, weight, gender or
race [17] and a previous hamstring injury [18,19]. Other modifiable risk factors include a deficit
in hamstring or quadriceps muscle strength [4,19], decreased hamstring flexibility [20,21],
gluteal muscle inhibition [22,23], increased biceps femoris/semitendinosus muscle activation
ratio [24], muscle fatigue [25], and decreased hamstring/quadriceps (H/Q) strength ratio
below 0.47 [26]. However, some authors state that these data only predict 2.7% of injuries [27].
Brockett et al. [28] found that the angle at which the maximum peak strength of the hamstring
musculature was produced can be a predictive factor of hamstring injuries. Notably, the
maximum peak strength of the hamstring musculature is optimal the closer it is to 0◦ of
knee flexion [29]. Considering that the hamstring musculature reaches its maximum peak
strength at approximately 30◦ of knee flexion (in healthy subjects) [28], hamstring injuries
almost always occur with the knee in extension [9], the current measurement of the H/Q
strength ratio may not be entirely accurate in predicting hamstring injuries, and these tests
should be performed under more game-like circumstances [3].

In the measurement of knee strength, the angle where maximum torque occurs is
not the same for quadriceps (≈70◦ concentric) as for hamstrings (≈60◦ concentric and
≈30◦ eccentric) as shown in the study by Small et al. [30]. The maximum torque depends,
in part, on the lever arm, depending on the muscle length that varies depending on the
joint range. In the anterior and posterior thigh muscles, the H/Q ratio may be reduced in
clinical relevance for this reason [31] because when quantified at different joint angles, they
cannot determine the co-contraction capacity of these muscles [32]. To solve this problem,
measurements of the H/Q ratio can be made at specific knee flexion angles to improve
athlete evaluation data specificity and sensitivity. Studying these new H/Q ratios with an
emphasis on angles close to knee extension, where most hamstring injuries occur, can help
reduce the total number injuries since specific strength protocols can be performed at knee
angles where deficits have been found [31] since it has been seen that strength training at
specific angles improves strength at that angle [30].

Therefore, the present study evaluated different H/Q ratios in male soccer players at
various knee flexion angles and analyzed differences with the conventional ratio that could
be used to improve the prediction of hamstring injuries.

2. Materials and Methods
2.1. Experimental Design

A quantitative cross-sectional study was conducted where biomechanical strength
tests were performed. Subsequently, the differences between the conventional isokinetic
concentric H/Q strength ratio (at 60◦/s and 180◦/s) and isokinetic concentric H/Q strength
ratio at five different knee flexion–extension angles (15◦, 30◦, 45◦, 60◦, and 75◦ of knee
flexion) were analyzed.

Informed consent was obtained prior to the measurements for the analysis of the data
for research purposes. The study was based on the ethical principles for medical research
on human beings, which were declared in the Declaration of Helsinki in 1964 and the last
update in Brazil in 2013. Also, in relation to the use of databases, the principles of the Taipei
Declaration were considered. At all stages of the research, the respect and protection of
personal data were guaranteed in accordance with the provisions of the Organic Law 3/2018.

The study was approved by the Clinical Research Ethics Committee of the Hospital
Clínico San Carlos of Madrid, Spain, with approval number C.P.-C.I. 15/416-E.
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The isokinetic strength measurement tests were performed in the biomechanics labora-
tory of the San Juan de Dios School of Nursing and Physiotherapy, of the Comillas Pontifical
University. Upon arrival at the laboratory, data were collected on weight and height [with
which the body mass index (BMI) was subsequently calculated], age, dominance and
playing position.

2.2. Subjects

Twenty-four healthy Spanish third-division male soccer players who were 21 ± 2 years
old with a BMI of 22.06 ± 1.26 were evaluated. Subjects who had suffered knee and/or
muscle (quadriceps and/or ischiocrural) injuries in the last 6 months were excluded.

A sample size calculation was performed by observing means with respect to a refer-
ence. An alpha risk of 0.05 and a beta risk of 0.2 were chosen. For the standard deviation
and the minimum difference to be detected (10% of the mean), the variable measured in the
study by Risberg et al. [33], maximum knee flexion strength in the dominant leg of soccer
players [87.4 (13.6) Nm], was used. Ten percent was added for possible losses, and the final
sample calculation resulted in n = 22.

2.3. Measurements

A PRIMUS RS dynamometer from BTE Technologies (Hanover, MD, USA) was used
to perform the measurements. Participants were placed in a seated position with their
hip flexed at 90◦. Thigh straps were placed on the thigh to avoid hip offsets. It did not
stabilize the trunk with more straps. The dynamometer shaft was correctly aligned with the
femoral condyle. The pad was placed with a 30 cm lever arm in all subjects. Measurements
were performed at two different angular velocities: at 60◦/s, three flexion–extension
repetitions were performed, and at 180◦/s, five repetitions were performed. Before taking
the measurements, a warm-up of 10 submaximal repetitions at 180◦/s was performed to
become familiar with the device. A 2-min rest was allowed between each measurement. In
each test, the knee joint range varied from 100◦ knee flexion to 0◦ (full extension).

2.4. Statistical Analysis

The value of the conventional H/Q ratio was calculated by dividing the maximum
peak concentric strength, in Newton, of the ischiocrural musculature by the maximum peak
strength of the quadriceps musculature at each measurement. The ratios at the different
knee flexion angles were calculated by dividing the strength exerted by the ischiocrural
musculature by the strength exerted by the quadriceps musculature at each angle (15◦, 30◦,
45◦, 60◦, and 75◦ of knee flexion) at isokinetic speed (Appendix A (Table A1)).

Statistical analysis was performed using SPSS® Version 23 (IBM Corp., Armonk, NY,
USA). As the sample was smaller than 30 subjects, the results were shown according to
the median and interquartile range (Q1–Q3) using the highest value of each measurement.
The Friedmann nonparametric test was used to analyze whether there were significant
differences between the H/Q ratios measured (conventional and at established knee flexion
angles). Post hoc test used was Bonferroni. The statistical test was performed for both
velocities (60◦/s and 180◦/s). All statistical analyses used a significance level p > 0.05. To
assess the degree of agreement among the different conditions, Kendall’s W (coefficient
of concordance) was used. Kendall’s W ranges from 0 to 1, where W = 0 indicates no
agreement among raters, while W = 1 represents perfect agreement. Values between 0.1 and
0.3 indicate weak agreement, between 0.3 and 0.5 indicate moderate agreement, and values
greater than or equal to 0.5 suggest strong agreement. Kendall’s W was used to determine
the consistency of the rankings across the different experimental conditions. Subsequently,
for the different data pairs where significant differences were found, the Wilcoxon effect
size (Wilcoxon’s r) was based on Cohen’s classification: values between 0.1 and 0.3 indicate
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a small effect, between 0.3 and 0.5 indicate a moderate effect, and values greater than or
equal to 0.5 represent a large effect.

3. Results
In a seated position (with 90◦ of hip flexion), the H/Q ratio at 60◦/s decreases as

knee flexion increases (p < 0.001 and W = 0.594 (strong)). At 15◦ and 30◦ of knee flexion,
higher H/Q ratios are observed [1.03 (0.88–1.21) and 0.83 (0.7–0.87)] but without significant
differences between both angles (p = 0.105) compared to ratios obtained at 45◦ knee flexion
[0.63 (0.55–0.77)], 60◦ knee flexion [0.53 (0.48–0.61)], and 75◦ knee flexion [0.47 (0.43–0.62)]
(p < 0.05 and Wilcoxon’s r > 0.5 in all cases (large effect)) in all cases. As for the conventional
H/Q ratio of 0.6 (0.54–0.65), significant differences were found between this and the H/Q
ratio at 15◦ and 30◦ knee flexion (p < 0.001 and Wilcoxon’s r > 0.5 (large effect)) in both
cases; Table 1 and Figure 1).

Table 1. H/Q ratios at 60◦/s at different degrees of knee flexion (15◦, 30◦, 45◦, 60◦, and 75◦) and
conventional isokinetic H/Q strength ratio.

Variable Median
(Q1–Q3) 2 p-Value Kendall’s W Post Hoc p-Value Wilcoxon’s R

H/Q ratio 1 at
15◦ knee
flexion

1.03
(0.88–1.21)

<0.001 * 0.594

15◦-30◦ 0.105 -
15◦-45◦ <0.001 * 0.87
15◦-60◦ <0.001 * 0.86
15◦-75◦ <0.001 * 0.83

15◦-conventional <0.001 * 0.87

H/Q ratio at
30◦ knee
flexion

0.83
(0.7–0.87)

30◦-15◦ 0.105 -
30◦-45◦ 0.007 * 0.86
30◦-60◦ <0.001 * 0.8
30◦-75◦ <0.001 * 0.75

30◦-conventional <0.001 * 0.84

H/Q ratio at
45◦ knee
flexion

0.63
(0.55–0.77)

45◦-15◦ <0.001 * 0.87
45◦-30◦ 0.007 * 0.86
45◦-60◦ 0.064 -
45◦-75◦ <0.001 * 0.51

45◦-conventional 0.396 -

H/Q ratio at
60◦ knee
flexion

0.53
(0.48–0.61)

60◦-15◦ <0.001 * 0.86
60◦-30◦ <0.001 * 0.8
60◦-45◦ 0.064 -
60◦-75◦ 0.537 -

60◦-conventional 0.316 -

H/Q ratio at
75◦ knee
flexion

0.47
(0.43–0.62)

75◦-15◦ <0.001 * 0.83
75◦-30◦ <0.001 * 0.75
75◦-45◦ <0.001 * 0.51
75◦-60◦ 0.537 -

75◦-conventional 0.105 -

Conventional
H/Q ratio

0.6
(0.54–0.65)

Conventional-15◦ <0.001 * 0.87
Conventional-30◦ <0.001 * 0.84
Conventional-45◦ 0.396 -
Conventional-60◦ 0.316 -
Conventional-75◦ 0.105 -

1 The H/Q ratio at 60◦/s was calculated by dividing the maximum hamstring strength value of the repetitions
performed (measured in Newtons) by the maximum quadricep strength value of the repetitions performed. 2 Q1
is the first quartile data, and Q3 is the third quartile data. Friedman test. Post hoc Bonferroni. The sample size
was n = 24. The asterisk (*) indicates significant differences (p < 0.05).



Appl. Sci. 2025, 15, 3040 5 of 10

Appl. Sci. 2025, 15, 3040  4  of  10 
 

of concordance) was used. Kendall’s W  ranges  from 0  to 1, where W = 0  indicates no 

agreement among raters, while W = 1 represents perfect agreement. Values between 0.1 

and 0.3 indicate weak agreement, between 0.3 and 0.5 indicate moderate agreement, and 

values greater than or equal to 0.5 suggest strong agreement. Kendall’s W was used to 

determine  the consistency of  the rankings across  the different experimental conditions. 

Subsequently, for the different data pairs where significant differences were found, the 

Wilcoxon effect size (Wilcoxon’s r) was based on Cohen’s classification: values between 

0.1 and 0.3  indicate a small effect, between 0.3 and 0.5  indicate a moderate effect, and 

values greater than or equal to 0.5 represent a large effect. 

3. Results 

In a seated position (with 90° of hip flexion), the H/Q ratio at 60°/s decreases as knee 

flexion increases (p < 0.001 and W = 0.594 (strong)). At 15° and 30° of knee flexion, higher 

H/Q  ratios  are  observed  [1.03  (0.88–1.21)  and  0.83  (0.7–0.87)]  but without  significant 

differences between both angles (p = 0.105) compared to ratios obtained at 45° knee flexion 

[0.63 (0.55–0.77)], 60° knee flexion [0.53 (0.48–0.61)], and 75° knee flexion [0.47 (0.43–0.62)] 

(p  <  0.05  and Wilcoxon’s  r  >  0.5  in  all  cases  (large  effect))  in  all  cases.  As  for  the 

conventional H/Q ratio of 0.6 (0.54–0.65), significant differences were found between this 

and the H/Q ratio at 15° and 30° knee flexion (p < 0.001 and Wilcoxon’s r > 0.5 (large effect)) 

in both cases; Table 1 and Figure 1). 

 

Figure 1. H/Q ratios measured at 60°/s and 180°/s in a sitting position. The asterisk (*) represent 

extreme outliers, while circles (o) indicate mild outliers. 

Table 1. H/Q  ratios at 60°/s at different degrees of knee flexion  (15°, 30°, 45°, 60°, and 75°) and 

conventional isokinetic H/Q strength ratio. 

Variable 
Median 

(Q1–Q3) 2 
p‐Value  Kendall’s W  Post Hoc  p‐Value  Wilcoxon’s R 

H/Q ratio 1 at 15° knee flexion 
1.03 

(0.88–1.21)  <0.001 *  0.594 

15°-30°  0.105  - 

15°-45°  <0.001 *  0.87 

15°-60°  <0.001 *  0.86 

15°-75°  <0.001 *  0.83 

15°-conventional  <0.001 *  0.87 

H/Q ratio at 30° knee flexion  0.83  30°-15°  0.105  - 

Figure 1. H/Q ratios measured at 60◦/s and 180◦/s in a sitting position. The asterisk (*) represent
extreme outliers, while circles (o) indicate mild outliers.

Similarly, at 180◦/s, the H/Q ratios decreased as the knee flexed. At 15◦ and 30◦ of
knee flexion, higher H/Q ratios were observed [0.91 (0.6–1.11) and 0.7 (0.6–0.77)] without
significant differences (p = 0.226) comparatively to the ratios obtained at 45◦ knee flexion
[0.57 (0.51–0.65)], at 60◦ knee flexion [0.52 (0.41–0.64)], and at 75◦ knee flexion [0.53 (0.39–
0.64)] (p < 0.05 and Wilcoxon’s r > 0,5 (large effect) in all cases) As for the conventional
H/Q ratio [0.65 (0.6–0.74)], significant differences were found between this and the H/Q
ratio at 15◦, 45◦, 60◦, and 75◦ knee flexion (p < 0.05 and Wilcoxon’s r > 0.5 (large effect in all
cases; Table 2 and Figure 1).

Table 2. H/Q ratios at 180◦/s at different degrees of knee flexion (15◦, 30◦, 45◦, 60◦, and 75◦) and
conventional isokinetic H/Q strength ratio.

Variable Median
(Q1–Q3) 2 p-Value Kendall’s W Post Hoc p-Value Wilcoxon’s

R

H/Q ratio 1 at
15◦ knee
flexion

0.91
(0.6–1.11)

<0.001 * 0.357

15◦-30◦ 0.226 -
15◦-45◦ <0.001 * 0.69
15◦-60◦ 0.006 * 0.64
15◦-75◦ 0.026 * 0.59

15◦-conventional 0.04 * 0.58

H/Q ratio at
30◦ knee
flexion

0.7
(0.6–0.77)

30◦-15◦ 0.226 -
30◦-45◦ <0.001 * 0.86
30◦-60◦ 0.013 * 0.68
30◦-75◦ 0.044 * 0.61

30◦-conventional 1.0 -

H/Q ratio at
45◦ knee
flexion

0.57
(0.51–0.65)

45◦-15◦ <0.001 * 0.69
45◦-30◦ <0.001 * 0.86
45◦-60◦ 1.0 -
45◦-75◦ 1.0 -

45◦-conventional <0.001 * 0.8
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Table 2. Cont.

Variable Median
(Q1–Q3) 2 p-Value Kendall’s W Post Hoc p-Value Wilcoxon’s

R

H/Q ratio at
60◦ knee
flexion

0.52
(0.41–0.64)

<0.001 * 0.357

60◦-15◦ 0.006 * 0.64
60◦-30◦ 0.013 * 0.68
60◦-45◦ 1.0 -
60◦-75◦ 1.0 -

60◦-conventional 0.032 * 0.56

H/Q ratio at
75◦ knee
flexion

0.53
(0.39–0.64)

75◦-15◦ 0.026 * 0.59
75◦-30◦ 0.044 * 0.61
75◦-45◦ 1.0 -
75◦-60◦ 1.0 -

75◦-conventional 0.130 -

Conventional
H/Q ratio

0.65
(0.6–0.74)

Conventional-15◦ 0.04 * 0.58
Conventional-30◦ 1.0 -
Conventional-45◦ <0.001 * 0.8
Conventional-60◦ 0.032 * 0.56
Conventional-75◦ 0.130 -

1 The H/Q ratio at 180◦/s was calculated by dividing the maximum hamstring strength value of the repetitions
performed (measured in Newtons) by the maximum quadricep strength value of the repetitions performed. 2 Q1
is the first quartile data, and Q3 is the third quartile data. Friedman test. Post hoc Bonferroni. The sample size
was n = 24. The asterisk (*) indicates significant differences (p < 0.05).

4. Discussion
The relationship between isokinetic concentric strength at 60◦/s and 180◦/s of the

hamstring and quadriceps musculature (ratio) at different knee flexion angles was studied.
The results obtained in our study indicate that at low angular velocities in isokinetic tests
(60◦/s), in addition to the conventional H/Q ratio, the H/Q ratios at 15◦ and 30◦ knee
flexion should be considered since they are unique and provide more information on the
athlete’s muscular state.

Our results align well with those obtained by Figoni et al. [34]. Although the hip
flexion was slightly higher (120◦) and the measured velocities were different (15◦/s and
90◦/s) than in Figoni et al.’s [34] study, the relationships found in terms of the calculated
ratios were similar to ours. The H/Q ratios at 15◦/s decreased as the knee flexed. At
15◦ and 30◦ of knee flexion, higher H/Q ratios were observed (2.00 (0.37) and 1.43 (0.33))
than the ratios obtained with higher knee flexion angles (0.89 (0.19) and 0.50 (0.11)) and
comparatively with the conventional ratio obtained (0.70 (0.13)). The same occurred at
90◦/s, with 15◦ and 30◦ of knee flexion; higher H/Q ratios were observed (1.24 (0.32) and
0.90 (0.20)) than the ratios obtained with greater knee flexion angles (0.75 (0.18) and 0.65
(0.13)) and the conventional ratio (0.66 (0.11)). The results may improve for the hamstring
injuries risk assessment because evaluating H/Q ratios at 15◦ and 30◦ of knee flexion,
where hamstring injuries are more likely to occur, provides a more accurate assessment of
muscle imbalances than the conventional ratio.

Some authors claim that strength ratios measured with a dynamometer can predict
the risk of hamstring injury, and others claim the opposite [26]. In the systematic review
by Baroni et al. [35], the mean values of the conventional H/Q ratios of soccer players at
different angular velocities measured with the participant seated (hip with 90◦ of flexion)
were established. In the conventional H/Q ratio at 60◦/s, the values were 0.65 ± 0.12 and
at 180◦/s 0.67 (0.17), results similar to those obtained in our study (0.59 (0.08) and 0.67
(0.09), respectively).

The cut-off point of the conventional H/Q ratio (below these values, we can consider
the risk of muscle rupture) is 0.47 [26]. In contrast to the above, Dauty et al. [27] mentioned
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that these data should not be taken as the only reference for predicting hamstring injury
since, in their study, only 2.7% of the injured players were below these values. In relation
to the above, Grygorowicz et al. [36] determined that, regarding the conventional ratio,
taking a value of 0.658 as a cut-off point has greater sensitivity (and therefore fewer false
negatives) than a value of 0.47. However, taking 0.47 as the cut-off point has a higher
specificity than taking a value of 0.658 (therefore, there will be fewer false positives), so it is
difficult to determine what cut-off point to set.

When interpreting the strength values of the hamstring musculature and the H/Q
ratio, it is necessary to take into account the level at which the athlete we are evaluating
competes, since it has been indicated that second-division soccer players have a lower
concentric hamstring strength peak (measured at 60◦/s) than first-division soccer players
and, therefore, a lower conventional H/Q ratio at 60◦/s (0.59 (0.1) versus 0.62 (0.1)) [33]. In
the present study, third-division players were measured whose mean conventional H/Q
ratio at 60◦/s resembles second-division players.

Dauty et al. [26] stated that with the strength values obtained using the dynamometer,
more than one-third of hamstring injuries could be reduced. The results of their study
concluded that hamstring injuries can be predicted 36.9% of the time if the concentric
H/Q ratio at 180◦/s is less than 0.47. They also state that if the concentric hamstring
strength at 60◦/s is 15% lower than the contralateral side, injury can be prevented 34%
of the time. Additionally, Bourne et al. [9] reported that one-third of hamstring injuries
could be reduced by finding muscle imbalances between the hamstring and quadriceps
musculature.

Isokinetic knee dynamometric assessment in soccer players is usually performed
in a seated position [37], but in the studies of Guex et al. [16] and Kellis et al. [37], the
conventional H/Q ratio was found to be different according to the hip position. It seems
interesting, beyond the conventional H/Q ratio, to analyze in detail the strength graph of
the hamstring and quadriceps muscles to obtain ratios at different angles for predicting
more injuries, as shown with hand grip strength [38].

It will be necessary to continue this line of research by relating the H/Q ratios at
15◦ and 30◦ knee flexion with future muscle injuries, establishing new cut-off points for
predicting injuries with greater accuracy and reducing the incidence of hamstring injuries.

5. Conclusions
Ischiocrural muscle injuries are increasing annually, and while the conventional H/Q

ratio is used for prevention, its utility remains controversial due to the lack of consensus
on cut-off points. Our study suggests that H/Q ratios at 15◦ and 30◦ of knee flexion
differ from the conventional ratio. Since these injuries frequently occur near full extension,
incorporating these specific measurements into prediction protocols could be considered
for future research.

6. Limitations and Future Lines of Research
This study included only male third-division soccer players, which limits its applica-

bility to female athletes or higher-level professionals.
As this is an observational study, future research will need to be conducted to correlate

these data with the injuries that occur.
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Appendix A

Table A1. Flexion strength, extension strength, and H/Q ratios at 60◦/s and 180◦/s at different
degrees of knee flexion (15◦, 30◦, 45◦, 60◦, and 75◦) and the maximum strength and conventional
isokinetic H/Q strength ratio.

60◦/s Flexion
Median

(Q1–Q3) 2

60◦/s Extension
Median
(Q1–Q3)

60◦/s H/Q Ratio
1 Median
(Q1–Q3)

180◦/s Flexion
Median
(Q1–Q3)

180◦/s
Extension
Median
(Q1–Q3)

180◦/s H/Q
Ratio Median

(Q1–Q3)

15◦ 69.98
(48.58–88.72)

63.98
(55.29–76.66) 1.03 (0.88–1.21) 55.81

(36.91–86.94)
67.06

(53.89–85.95) 0.91 (0.6–1.11)

30◦ 81.82
(72.82–91.31)

95.17
(86.99–116.95) 0.83 (0.7–0.87) 63.28

(48.64–81.38)
96.95

(71.16–115.27) 0.7 (0.6–0.77)

45◦ 79.32
(74.36–94.19)

127.26
(116.34–157.71) 0.63 (0.55–0.77) 64.04

(43.19–79.54)
111.81

(79.24–134.78) 0.57 (0.51–0.65)

60◦ 76.86
(68.98–90.11)

149.13
(131.74–168.78) 0.53 (0.48–0.61) 56.94

(46.05–69.41)
115.73

(88.21–132.7) 0.52 (0.41–0.64)

75◦ 64.51
(58.03–74.44)

141.16
(107.11–162.51) 0.47 (0.43–0.62) 44.44

(36.97–55.86)
97.68

(72.56–116.37) 0.53 (0.39–0.64)

Maximum 96.10
(80.05–108.73)

165.38
(149.19–177.24) 0.6 (0.54–0.65) 79.34

(65.98–99.12)
124.43

(92.87–148.26) 0.65 (0.6–0.74)

1 The H/Q ratio at 60◦/s and 180◦/s was calculated by dividing the maximum hamstring strength value of
the repetitions performed (measured in Newtons) by the maximum quadricep strength value of the repetitions
performed. 2 Q1 is the first quartile data, and Q3 is the third quartile data.
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