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Entidad Colaboradora: ICAI – Universidad Pontificia Comillas. 
 
RESUMEN DEL PROYECTO 

El objetivo de este proyecto es analizar y comparar tres métodos de estandarización de 
trayectorias (B-splines con Análisis de Componentes Principales (ACP), análisis postural 
para el desplazamiento máximo y reparametrización por longitud de arco con registro de 
señales) para caracterizar la variabilidad del movimiento de los ocupantes durante 
deceleraciones frontales a baja velocidad. Los resultados demuestran que estas técnicas 
pueden identificar eficazmente algunas diferencias cinemáticas entre voluntarios jóvenes y 
mayores, aunque el tamaño limitado de la muestra restringe la robustez estadística. La 
aplicación combinada de estos enfoques ofrece un marco de desarrollo para futuros estudios 
biomecánicos. 
 
Palabras clave: biomecánica, ensayos con voluntarios, deceleración frontal, análisis de 
trayectorias, modelado estadístico, variabilidad relacionada con la edad. 
 

1. Introducción 
Cada día, millones de personas viajan en automóvil, confiando en que los cinturones de 
seguridad y los airbags los protegerán en caso de accidente. Detrás de estos sistemas de 
seguridad hay décadas de investigación sobre cómo se mueve el cuerpo humano durante los 
accidentes. Tradicionalmente, los maniquíes de pruebas de choque y los modelos 
computacionales han ayudado a los ingenieros a diseñar vehículos más seguros. Sin 
embargo, estos no son capaces de capturar completamente cómo se mueven las personas 
reales, con diferentes edades y formas corporales. Esto es especialmente relevante para los 
ancianos, que son más vulnerables a las lesiones y cuyos cuerpos responden de manera 
diferente en los accidentes. 
Para mejorar la seguridad en vehículos, especialmente con una población cada vez más 
envejecida, se necesitan mejores formas de analizar y comprender cómo se mueve el cuerpo 
humano en situaciones que se acerquen a accidentes reales. Este trabajo aborda dicho desafío 
aplicando y comparando tres métodos analíticos que estudian datos de movimiento de 
voluntarios sometidos a simulaciones suaves de choques a baja velocidad. 
La tesis se centra en desarrollar y probar un conjunto de métodos de análisis para comprender 
mejor cómo se mueven las personas durante estos ensayos. Se basa en datos de movimiento 
recogidos de trece voluntarios varones (nueve adultos jóvenes y cuatro adultos mayores). 
Durante cada prueba, marcadores reflectantes rastrearon el movimiento de puntos clave en 
la mitad superior del cuerpo, capturando información detallada sobre cómo respondían la 
cabeza, el cuello y el torso. El objetivo fue aplicar tres enfoques analíticos diferentes a estos 
datos, cada uno diseñado para simplificar el movimiento complejo identificando los patrones 
más significativos. Estos métodos se utilizaron para explorar cómo varía el movimiento entre 
individuos y para evaluar si características como la edad, la altura o la masa corporal influyen 
en la forma en que alguien se mueve durante un evento de choque. Comparando las fortalezas 
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y limitaciones de cada método, el proyecto espera contribuir al desarrollo de sistemas de 
retención vehicular más seguros e inclusivos. 
 

2. Metodología 
El análisis se centró en tres métodos complementarios diseñados para interpretar el 
movimiento registrado de los voluntarios durante la deceleración. 
 
• Método 1: Aproximación con B-Splines y Análisis de Componentes Principales de 

trayectorias individuales 
El primer método consistió en aproximar cada trayectoria de movimiento utilizando 
curvas denominadas B-splines, un enfoque similar al presentado por Samuels et al. en 
2015. Esto ayudó a reducir el ruido y simplificar los datos. Posteriormente, se utilizó el 
ACP para identificar las principales formas en que estas trayectorias variaban entre los 
sujetos. Finalmente, se aplicaron modelos de regresión para analizar qué cantidad de 
esta variación podía asociarse a factores como la edad, la altura o la masa corporal. 

• Método 2: Análisis de la posición relativa de los marcadores en el instante de 
desplazamiento máximo 
El segundo método se centró en un único momento de la deceleración: el fotograma en 
que la cabeza alcanzó su posición más adelantada. En ese instante clave, se analizaron 
las posiciones relativas de los puntos anatómicos mediante ACP, junto con cálculos de 
ángulos articulares y distancias entre puntos corporales. Esto permitió identificar cómo 
diferían la postura y la alineación corporal entre individuos y grupos de edad. 

• Método 3: Reparametrización por Longitud de Arco y Registro de Señales para 
generación de trayectorias promedio y corredores de confianza 
El último método analizó la trayectoria completa de movimiento de cada marcador, pero 
en lugar de hacerlo fotograma a fotograma, alineó las trayectorias según la longitud de 
arco, una forma de describir la forma del recorrido independientemente del tiempo. 
Utilizando esta técnica, se generaron trayectorias promedio y corredores de 
variabilidad, proporcionando una visión más clara de las tendencias generales y 
diferencias entre grupos de edad. Esto se implementó usando la herramienta de código 
ARCGen desarrollada por Hartlen y Cronin en 2022. 

En conjunto, los tres métodos ofrecen perspectivas complementarias sobre el movimiento 
de los ocupantes, alcanzando una comprensión más completa de cómo se desplazan las 
personas durante impactos frontales a baja velocidad. 

La Figura 1.1-1. muestra un diagrama esquemático que resume el flujo de trabajo seguido. 
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Figura 1.1-1. Esquema del flujo metodológico 

 
 

3. Resultados 
Los resultados obtenidos con los tres métodos analíticos revelan perspectivas 
complementarias sobre cómo se mueven los individuos durante deceleraciones frontales a 
baja velocidad, con énfasis en las diferencias entre voluntarios jóvenes y mayores. 

• Método 1 
Este método capturó cómo se movían los marcadores anatómicos individualmente 
durante la deceleración, comprimiendo sus trayectorias mediante B-splines y 
analizándolas con ACP. Mientras que los principales patrones de movimiento (PC1) 
no reflejaron fuerte vinculación a las características de los sujetos, el segundo 
componente del ACP (PC2) reveló diferencias sutiles pero consistentes entre 
participantes jóvenes y mayores. En particular, los marcadores torácicos como T1 y 
T4 mostraron valores de PC2 significativamente mayores en el grupo de mayores, lo 
que sugiere respuestas posturales distintas. El tamaño limitado de la muestra y el 
modelado univariante limitaron en cierta medida la solidez estadística de los 
resultados. 

• Método 2 
Analizando la configuración corporal en el momento de máximo desplazamiento de 
la cabeza, este método reveló diferencias posturales relacionadas con la edad. 
Mientras que los componentes principales capturaron la variación general de la 
forma, pero sin vínculos claros con la edad o la antropometría, el tercer componente 
(PC3) se asoció significativamente al grupo de edad. Los participantes mayores 
mostraron diferencias sistemáticas en la alineación espinal, evidenciadas también por 
un ángulo T4 reducido (indicativo de mayor flexión torácica) y una tendencia hacia 
la extensión cervical. 
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• Método 3 
Este método alineó las trayectorias completas de cada marcador según su forma y generó 
curvas promedio de desplazamiento con corredores de variabilidad para cada grupo de edad. 
Reveló que los sujetos mayores tendían a presentar un desplazamiento hacia adelante 
consistentemente menor, especialmente en los marcadores torácicos como T1, T4 y T8, y 
seguían trayectorias más ascendentes en comparación con los jóvenes. Además, la 
variabilidad en el movimiento de los mayores fue mayor, especialmente en las etapas finales 
del movimiento, lo que sugiere menor consistencia en la resolución de la deceleración. Un 
ejemplo de esta transformación se muestra en la Figura 1.1‑2, que presenta las trayectorias 
brutas de todos los voluntarios para un marcador de ejemplo (T4) y la trayectoria media 
resultante con el corredor de variabilidad tras el procesamiento basado en longitud de arco. 
 

 
Figura 1.1-2. Ejemplo de procesamiento de trayectorias para el marcador T4. Trayectorias brutas de todos 
los sujetos y trayectoria media y corredores de variabilidad obtenidos tras la reparametrización por longitud 
de arco y registro de señales para ambos grupos de voluntarios. 

 
En conjunto, cada método aportó una perspectiva diferente para analizar los datos: el primero 
destacó tendencias continuas de las trayectorias y sus predictores físicos, el segundo capturó 
características posturales estáticas en un instante crítico, y el tercero resaltó la variabilidad y 
los patrones a nivel de grupo a lo largo de toda la longitud de movimiento. 

 
4. Conclusiones 

Los tres métodos analíticos desarrollados y aplicados en esta tesis (compresión B-spline con 
ACP, análisis postural basado en el tiempo y registro de trayectorias por longitud de arco) 
demostraron ser eficaces para simplificar e interpretar la compleja cinemática observada 
durante deceleraciones frontales a baja velocidad. En conjunto, proporcionaron una visión 
multifacética de cómo se mueven los individuos en tales escenarios, revelando tanto 
tendencias generales como diferencias relacionadas con la edad en la postura y el 
movimiento. 
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Más importante aún, este trabajo ha demostrado el potencial de estas técnicas como 
herramientas para el análisis biomecánico. A pesar de las limitaciones inherentes a un 
tamaño de muestra pequeño, que restringieron la solidez estadística y la aplicabilidad general 
de algunos hallazgos, los métodos produjeron resultados interpretables y anatómicamente 
fundamentados de manera consistente. Con acceso a conjuntos de datos más grandes y 
diversos, estos mismos enfoques podrían ofrecer conocimientos más definitivos sobre el 
comportamiento de los ocupantes, respaldar mejoras en el diseño de sistemas de seguridad 
y aumentar la fidelidad de sustitutos humanos como los maniquíes de pruebas y los modelos 
virtuales. 
Así, esta tesis sienta las bases para el desarrollo de herramientas analíticas capaces de 
capturar todo el espectro de variabilidad humana en la respuesta al movimiento. A medida 
que evoluciona el diseño de la seguridad vehicular, tener en cuenta las diferencias de edad, 
tamaño corporal y postura es imprescindible. Los tres métodos exploran caminos 
prometedores, ofreciendo enfoques estructurados y escalables para traducir datos complejos 
de movimiento en conclusiones significativas que puedan respaldar la próxima generación 
de modelos biomecánicos y sistemas de seguridad. 
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ABSTRACT 
The aim of this project is to analyze and compare three trajectory standardization methods 
(B-splines with PCA, peak displacement posture analysis, and arc-length reparameterization 
and signal registration) to characterize occupant motion variability during low-speed frontal 
decelerations. The results demonstrate that these techniques can effectively identify some 
kinematic differences between young and elderly volunteers, although the limited sample 
size constrains statistical robustness. The combined application of these approaches offers a 
comprehensive framework for future biomechanical studies. 
Keywords: biomechanics, volunteer testing, frontal deceleration, trajectory analysis, 
statistical modeling, age-related variability. 

 
1. Introduction 

Every day, millions of people travel in cars, trusting that seatbelts and airbags will protect 
them in the event of a crash. Behind these safety systems lies decades of research into how 
the human body moves during collisions. Traditionally, crash test dummies and computer 
models have helped engineers design safer vehicles, but they can’t fully capture how real 
people, with different ages and body types, actually move. This is especially important for 
older adults, who are more vulnerable to injury and whose bodies respond differently in 
crashes. 
To improve vehicle safety for everyone, especially an aging population, we need better ways 
to analyze and understand how human bodies move in realistic crash-like situations. This 
thesis explores that challenge by applying and comparing three advanced analytical methods 
to study motion data from volunteers subjected to gentle, low-speed crash simulations. 
The thesis focuses on developing and testing a set of analysis methods to better understand 
how people move during said low-speed frontal car crashes. The study is based on motion 
data collected from thirteen male volunteers (nine young adults and four older adults). 
During each test, reflective markers tracked the movement of key points on the upper body, 
capturing detailed information about how the head, neck, and torso responded. The aim was 
to apply three different analytical approaches to this data, each designed to simplify the 
complex motion while preserving meaningful patterns. These methods were then used to 
explore how movement varies across individuals and to assess whether characteristics like 
age, height, or body mass influence how someone moves during a crash-like event. By 
comparing the strengths and limitations of each method, the project hopes to support the 
development of safer, more inclusive vehicle restraint systems. 
 

2. Methodology 
The analysis focused on three complementary methods designed to interpret the recorded 
motion of the volunteers during deceleration. 
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• Method 1: B-Spline approximation and Principal Component Analysis of 
individual landmark trajectories 
The first method involved approximating each motion trajectory using smooth curves 
called B-splines, an approach similar to the one presented in Samuels et al. in 2015. 
This helped reduce noise and simplify the data. PCA was then used to identify the main 
ways in which these trajectories varied between subjects. Finally, regression models 
were applied to see how much of this variation could be linked to factors like age, 
height, or body mass. 

• Method 2: Landmark relative positioning analysis at peak displacement 
The second method focused on a single moment during the deceleration: the frame in 
which the head reached its furthest forward position. At this key instant, the relative 
positions of anatomical landmarks were analyzed using PCA, along with calculations 
of joint angles and distances between body points. This helped identify how posture and 
body alignment differed across individuals and age groups. 

• Method 3: Arc-Length Re-Parameterization and Signal Registration for 
generation of average trajectories and confidence corridors 
The last method looked at the full trajectory of motion for each landmark, but instead 
of analyzing it frame by frame, it aligned the trajectories based on arc length, a way of 
describing the shape of the path regardless of timing. Using this technique, average 
trajectories and variability corridors were generated, offering a clearer view of general 
trends and differences between age groups. This was implemented using the open-
source ARCGen toolbox developed by Hartlen and Cronin in 2022. 

Together, these three methods provide different but complementary perspectives on 
occupant motion, allowing for a more complete understanding of how people move during 
low-speed frontal impacts. 
Figure 1.1-3 displays a schematic summary diagram of the workflow followed. 

 

 
Figure 1.1-3. Schematic of the methodological framework 
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3. Results 
The results obtained from the three analytical methods reveal complementary insights about 
how individuals move during low-speed frontal decelerations, with particular emphasis on 
differences between younger and older volunteers. 

• Method 1 
This method captured how individual body landmarks moved during deceleration by 
compressing their trajectories using B-splines and analyzing them with PCA. While 
the main motion patterns (PC1) were not strongly linked to subject characteristics, 
the second PCA component (PC2) revealed subtle but consistent differences between 
young and elderly participants. Notably, thoracic landmarks like T1 and T4 showed 
significantly higher PC2 values in the elderly group, suggesting distinct postural 
responses. The limited sample size and univariate modeling somewhat constrained 
the statistical strength of the results. 

• Method 2 
By analyzing the body configuration at the moment of maximum head displacement, 
this method revealed age-related differences in static posture. While the main PCA 
components captured general shape variation without clear links to age or 
anthropometry, the third component (PC3) was significantly associated with age 
group. Elderly participants showed systematic differences in spinal alignment, 
supported by a reduced T4 angle (indicative of greater thoracic flexion) and a trend 
toward cervical extension.  

• Method 3 
This method aligned the full motion trajectories of each landmark based on their 
shape and generated average displacement curves with variability corridors for each 
age group. The results showed that elderly subjects had consistently reduced forward 
motion, particularly at thoracic landmarks like T1, T4, and T8, and followed more 
upward-curving paths compared to younger individuals. Additionally, the variability 
in elderly motion was greater, especially during the later stages of the movement, 
suggesting less consistency in how deceleration was resolved. An example of this 
transformation is presented in Figure 1.1-4, which displays the raw motion paths of 
all volunteers for an example landmark (T4) and the resulting mean trajectory with 
variability envelope after arc-length-based processing. 
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Figure 1.1-4 Example of trajectory processing for the T4 landmark. Raw motion paths from all subjects and 
mean trajectory and variability corridors obtained after arc-length re-parameterization and signal registration 
for both groups of volunteers. 

 
Overall, each method contributed a different lens through which to view the data: the first 
emphasized continuous trajectory trends and physical predictors, the second captured static 
postural features at a critical instant, and the third highlighted variability and group-level 
patterns across the full motion length. 

 
4. Conclusions 

The three analytical methods developed and applied in this thesis (B-spline compression 
with PCA, time-based posture analysis, and arc-length trajectory registration) each proved 
effective in simplifying and interpreting the complex kinematics observed during low-speed 
frontal decelerations. Together, they provided a multifaceted view of how individuals move 
in such scenarios, revealing both general trends and age-related distinctions in posture and 
motion. 
More importantly, this work demonstrated the potential of these techniques as tools for 
biomechanical analysis. Despite the inherent limitations of a small sample size, which 
constrained the statistical strength and broader applicability of some findings, the methods 
consistently produced interpretable and anatomically grounded outputs. With access to 
larger and more diverse datasets, these same approaches could offer more definitive insights 
into occupant behavior, support improvements in safety system design, and enhance the 
fidelity of human surrogates such as crash test dummies and virtual models. 
Thus this thesis lays the groundwork to developing analytical tools capable of capturing the 
full spectrum of human variability in motion response. As vehicle safety design evolves, 
accounting for differences in age, body size, and posture is necessary. The methods explored 
here demonstrate a promising path forward, offering structured, scalable approaches for 
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translating complex motion data into meaningful insights that can support the next 
generation of biomechanical models and safety systems. 
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1. INTRODUCTION 
1.1. Context & Problem Statement 

In the field of impact biomechanics, understanding the mechanical response of the human 
body during vehicle collisions is a fundamental concern. Experimental volunteer tests, 
post-mortem human surrogate (PMHS) studies, and computational models have all 
contributed to major advancements in restraint systems and vehicle design. Yet, 
accurately capturing and analyzing human motion during impact events remains a 
challenge. Unlike anthropomorphic test devices (ATDs), human occupants exhibit 
substantial inter-subject variability: differences in age, morphology, flexibility, and 
neuromuscular response all influence how a person moves during an accident. This 
variability complicates both the development of generalizable restraint systems and the 
validation of human body models intended to simulate real-world occupants. 
 
One of the main difficulties lies in how to meaningfully represent and compare the 
kinematic responses of different individuals subjected to the same loading conditions. 
Raw motion trajectories are often complex and noisy, and patterns of variation may be 
obscured by differences in timing, magnitude, or posture. As a result, there is a critical 
need for data processing techniques that can reduce variability while preserving 
biomechanically relevant information. Such techniques can allow researchers to extract 
consistent trends, highlight inter-individual differences, and support the formulation of 
generalized insights from inherently variable experimental data. 
 
This need for robust methods for standardizing data from human responses is becoming 
increasingly relevant as populations age. Worldwide, life expectancy has risen due to 
advancements in medical technology, nutrition, and living conditions, leading to an 
increasing proportion of older individuals within the population. By 2050, the world’s 
population of individuals aged 60 years and older will double, reaching 2.1 billion 
(WHO25). This demographic shift, combined with the fact that people are driving later 
into life (BABU19), highlights the importance of protecting older occupants in 
automotive crashes. Age-related changes such as decreased spinal flexibility, altered 
muscle tone, and delayed reaction times can affect occupant motion during frontal 
impacts. Moreover, injury tolerance tends to decline with age, making older adults more 
vulnerable to the same crash conditions that younger individuals might withstand. These 
factors underscore the importance of developing analysis methods capable of 
characterizing motion variability in a way that is sensitive to age-related differences. 
 
To address this problem, this thesis explores and compares multiple methodological 
approaches for analyzing human kinematic data from low-speed frontal deceleration tests. 
Using a dataset involving both young and elderly volunteers subjected to controlled 
loading conditions, the aim is not only to manage variability but to understand it, 
identifying how different techniques capture inter-subject differences, and assessing their 
suitability for extracting meaningful biomechanical insights from heterogeneous data. 
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1.2. Motivation 

Improving the safety and effectiveness of automotive restraint systems begins with 
addressing the significant variability in biomechanical responses among individuals. This 
variability, as previously outlined, poses a considerable challenge in the field of impact 
biomechanics. Traditional methods for standardizing responses fall short of accurately 
capturing the differences between volunteers. Ensuring that safety systems account for a 
wide range of individual responses is both a scientific and ethical imperative. 
This research gains particular relevance in the context of the aging global population. The 
demographic trends highlighted earlier indicate a growing number of older individuals 
who are not only more vulnerable to injuries during crashes but also present unique 
biomechanical characteristics. Existing safety measures have been predominantly 
developed based on data from crash test dummies that represented younger or mid-aged 
adults, leaving a critical gap in understanding and accommodating the specific needs of 
elderly occupants. Addressing this gap is crucial for ensuring equitable safety standards 
and aligns with broader societal goals of inclusivity and fairness. 
Beyond the demographic perspective, the project is primarily motivated by the inherent 
challenges of combining data from diverse human subjects into coherent and meaningful 
insights. Biomechanical experiments, especially those involving human volunteers, are 
often limited by ethical, practical, and technical constraints. The variability in response 
trajectories, whether due to physical differences, experimental noise, or both, can obscure 
meaningful patterns and hinder the development of predictive models. This makes it 
essential to explore and refine advanced statistical methods capable of synthesizing this 
variability into reliable insights. 
Additionally, techniques like Principal Component Analysis (PCA), B-splines, and arc-
length re-parameterization represent powerful tools for handling large datasets with 
inherent variability. However, each method has its limitations, and the ability to assess 
their relative strengths and weaknesses in a practical context is important for advancing 
the field. By evaluating and comparing these techniques, this thesis aims not only to 
contribute to the development of better biomechanical models but also to provide a 
framework for future research in areas where variability and individual characteristics 
play a central role. 
In summary, this work is motivated by the dual need to enhance vehicle safety for all 
occupants, especially older individuals, and to address the methodological challenges of 
creating accurate and representative trajectory standardization methods. By exploring 
innovative approaches, this thesis aims to contribute to both the understanding of impact 
biomechanics and the practical application of this knowledge. The outcomes of this 
research may have the potential to guide the design of future restraint systems as well as 
broader efforts to bridge the gap between experimental data and real-world applications. 
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1.3. Objectives 

The primary goal is to explore and compare three advanced methods for data 
standardization, aiming to find reliable insights regarding the forward displacement of 
selected anatomical landmarks of car occupants during a frontal impact. The methods 
under analysis are Principal Component Analysis (PCA) combined with B-splines for 
each anatomical landmark, Time Analysis of Landmark Relative Positions with PCA, and 
Arc-Length Re-Parameterization with Signal Registration. These techniques will be 
applied to a dataset that includes both young (mean age: 23 years old) and elderly (mean 
age: 72 years old) volunteers in low-speed frontal deceleration tests. The specific 
objectives of the thesis are as follows: 

1.3.1. Objective 1. 

B-Spline approximation and Principal Component Analysis of individual 
landmark trajectories  
The first objective is to implement a method that combines PCA with cubic B-splines to 
analyze the spatial trajectories of anatomical landmarks during frontal impacts. By 
applying PCA to the B-splines of key landmarks, this method aims to identify the 
principal directions of variance across subjects with varying body sizes and ages. 
Additionally, regression modeling using subject characteristics as predictors will be 
employed to understand how these characteristics influence the kinematic trajectories. 

1.3.2. Objective 2. 

Landmark relative positioning analysis at peak displacement  
The second objective involves implementing a method based on time analysis of the 
relative positions of anatomical landmarks, followed by PCA to identify the principal 
components of motion. Unlike the previous method, which treated each landmark 
independently over time, this approach captures the overall shape formed by the 
alignment of the head and spinal vertebrae at a specific instant. By doing so, it reflects 
the deformed posture of the upper body at the peak of motion. By applying PCA, major 
directions of variance will try to be identified in the movement of different anatomical 
regions. Regression models will later be developed using subject characteristics to try and 
find relationships with specific trajectories. Finally, this method is also expected to offer 
a more subtle understanding of how the body segments interact during a crash and how 
these interactions contribute to overall occupant displacement. For that, inter-landmark 
distances and joint angles will be studied. This will provide an alternative approach to 
standardization by focusing on the relative placement of different landmarks rather than 
the absolute positions. 

1.3.3. Objective 3. 

Arc-Length Re-Parameterization and Signal Registration for generation of average 
trajectories and confidence corridors 
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The third objective is to apply arc-length re-parameterization and signal registration 
method to the biomechanical data. This technique aims to improve the alignment of 
signals by adjusting for differences in signal shapes, particularly in complex oscillatory 
data. By re-parameterizing the signals based on arc-length and using signal registration 
to align key features such as peaks and valleys, this method seeks to reduce distortion and 
improve the accuracy of characteristic averages and response corridors. The goal is to 
assess how well this approach can handle the complex trajectories that are present in the 
dataset. 

1.3.4. Objective 4. 

Comparison and evaluation of each method 
The fourth objective is to compare the three implemented methods in terms of their ability 
to standardize and analyze biomechanical data. This comparison will assess the 
effectiveness, strengths, and weaknesses of each method in identifying key motion 
patterns. The evaluation will focus on how well each approach handles variability across 
subjects with differing characteristics and how they contribute to an improved 
understanding of occupant displacement during a frontal impact. 
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2. EXPERIMENTAL DATA 
2.1. Background on Volunteer Testing 

2.1.1. Rationale for Volunteer Testing 

Research into the biomechanics of human occupants during automotive impacts has 
traditionally relied on anthropomorphic test devices (ATDs) and post-mortem human 
subjects (PMHS). While these tools have provided invaluable data for injury threshold 
development and restraint system evaluation, they remain limited in their ability to 
capture the full spectrum of human kinematic responses. In particular, PMHS testing is 
inherently restricted to deceased individuals and does not allow for the study of active 
muscle responses, variability across repeated trials, or non-injurious motion patterns. 
ATDs, while repeatable and scalable, are simplified mechanical surrogates that fail to 
capture important individual-specific anatomical and physiological differences, 
especially those related to age, morphology, and tissue properties (SUN16). 
In contrast, human volunteer testing offers a unique opportunity to study the dynamic 
behavior of live subjects in safe, controlled low-speed impacts. These tests allow for 
direct observation and measurement of head, neck, and torso motion, as well as real-time 
interaction with restraint systems. Volunteer studies are especially valuable in contexts 
where live human variability, such as that introduced by aging, body posture, or 
neuromuscular activation, is expected to play a significant role in occupant response. By 
focusing on low-severity deceleration pulses that pose no risk of injury, these studies can 
provide ethically sound and scientifically robust data for validating human body models 
and improving safety systems (VIVE21). 
In addition to their ability to capture active responses, volunteer studies offer the 
advantage of tightly controlled experimental conditions while still reflecting real-world 
occupant behavior). Laboratory-based volunteer testing allows for precise manipulation 
of variables such as posture, awareness, and muscle activation, factors that are difficult 
to isolate in cadaveric or retrospective crash analyses. Although volunteer tests must 
remain below injury thresholds, they have proven essential for evaluating dynamic 
kinematic responses and for validating computational human models that simulate 
physiological responses under controlled loads (CRAN10). 

2.1.2. Anthropomorphic Test Devices (ATDs): Utility and Limitations 

Despite their widespread use in occupant safety testing, ATDs are limited in their ability 
to replicate the complex and age-dependent biomechanical behavior of real humans. 
These devices, typically based on the 50th percentile adult male, are constructed with 
rigid components and simplified anatomical structures that do not reflect the variability 
seen in human anatomy, particularly in elderly individuals. One of the main criticisms of 
current ATDs is their inability to simulate physiological changes such as thoracic 
stiffening, reduced spinal flexibility, and variations in soft tissue response that occur with 
aging (VIVE21). 
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Moreover, many biofidelity standards used in ATD development originate from a narrow 
set of PMHS experiments. For instance, the force–displacement corridors that shaped the 
thoracic behavior of the adult male ATD were derived from a limited group of older 
PMHS subjects, with insufficient representation of younger adults (BIOM24). As 
highlighted in recent literature, a single ATD cannot realistically replicate both young and 
elderly adults due to fundamental differences in their biomechanical properties. This gap 
has prompted calls for the development of new surrogates, such as multiple ATDs for 
different age groups or designs with adjustable thoracic stiffness to accommodate age-
related variability (SUN16). 

2.1.3. Comparison with Other Test Subjects (PMHS, children, etc.) 

While ATDs remain the dominant tools for repeatable crash testing, and PMHS data serve 
as a basis for injury threshold development, neither approach alone is sufficient for 
understanding human kinematics during low-severity impacts. Ethical and legal 
constraints prevent the use of living subjects in high-speed scenarios, and PMHS studies 
cannot capture real-time human behavior such as muscle bracing or postural variability 
(SUN16). These limitations are particularly problematic when studying underrepresented 
populations such as children or elderly adults, where anatomical and physiological 
variability plays a central role in impact response. Pediatric ATDs, for example, are often 
based on geometrically scaled-down adult models rather than child-specific 
biomechanics, leading to questioned biofidelity (BIOM24). Similarly, adult ATDs do not 
adequately reflect the age-related changes in spine mobility and thoracic compliance seen 
in elderly individuals. Volunteer testing, especially at low speeds, has therefore emerged 
as the most viable method for ethically capturing real-world kinematics in these 
vulnerable populations (ARBO09). 
The real-world applicability of volunteer studies has also been supported by recent 
evidence comparing volunteer-based rear-impact data with national crash databases. In 
2018, over 1,200 volunteer exposures from 51 studies were compiled. They found 
symptom reporting rates, including neck pain, nearly identical to those observed in real-
world rear-end collisions of comparable severity. Statistical analysis using operating 
characteristic curves demonstrated that the likelihood of injury beyond transient 
symptoms is extremely low in controlled volunteer exposures, even under impact 
severities similar to those encountered in everyday crashes (CORM18). This alignment 
between laboratory and real-world outcomes reinforces the external validity of volunteer 
testing as a method for studying occupant kinematics and low-level trauma without 
inducing harm. 

2.1.4. Ethical Framework 

The use of human volunteers in biomechanical testing introduces specific ethical 
requirements that go beyond those encountered in most clinical research. Because the 
participants are typically healthy individuals with no direct medical benefit from the 
study, risk mitigation, informed consent, and regulatory compliance become central to 
the study design. To ensure participant safety, low-speed deceleration pulses are selected 
based on prior studies known to be safe and non-injurious. For example, test pulses are 
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often derived from scaled-down versions of amusement park ride dynamics (ARBO09), 
with added precautions such as acoustic warnings and post-test monitoring. Additionally, 
compensation for participation is carefully calibrated to avoid coercion, typically 
covering time and discomfort but not offering undue inducement. These measures reflect 
current standards for ethical volunteer testing and are essential for maintaining public 
trust and participant autonomy in biomechanical research. 

2.1.5. Evolution of Volunteer Test Platforms 

Volunteer testing platforms have also evolved significantly to balance scientific rigor 
with participant safety and comfort. Early systems often used rigid sled setups in 
laboratory environments with limited adjustment to individual anthropometry. In 
contrast, more recent platforms incorporate adaptable seat configurations, precise 
restraint positioning, and adjustable pulse characteristics to replicate real-world vehicle 
postures more accurately (VIVE21). These improvements have enabled a more reliable 
and reproducible capture of kinematic data across different subject groups. 
These advancements have been paralleled by creative approaches to platform design in 
both pediatric and adult testing contexts. Notably, the Children’s Hospital of Philadelphia 
(CHOP) developed a pioneering low-speed sled system inspired by amusement park 
bumper cars. This setup enabled testing of pediatric volunteers in frontal, near-side, and 
rear impact conditions while maintaining accelerations within safe tolerances. The system 
has since informed adult volunteer studies as well, demonstrating the value of cross-
population testing frameworks (BIOM24). More recently, researchers have begun to 
explore real-world platforms, such as autonomous public transport vehicles, to assess 
occupant kinematics during unexpected braking scenarios under naturalistic conditions. 
These studies, while still limited in number, illustrate a growing trend toward more 
realistic testing environments in biomechanics, aiming to complement laboratory-based 
methods without compromising safety or ethical standards. 
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2.2. Volunteer Testing Protocol 

The experimental data used in this study were obtained from a series of low-speed frontal 
deceleration tests performed on human volunteers as part of the SENIORS project, funded 
by the European Commission. The tests were conducted at the Impact Laboratory (I3A) 
of the University of Zaragoza and adhered to strict ethical standards approved by the 
Clinical Research Ethics Committee of Aragón (CEICA). All participants provided 
written informed consent prior to testing. The following information regarding the data 
obtention method was retrieved from Lopez-Valdes et al., 2017 (LOPE17) and Vives-
Torres et al., 2021 (VIVE21). 

2.2.1. Test Setup 

The test configuration consisted of a rigid seat, a rigid footrest, and a backrest constructed 
using flexible metallic wire segments. This assembly was designed to replicate the seating 
posture and pelvic displacement typically experienced in a passenger vehicle during a 
frontal crash. Both the footrest and seatbelt anchorage points were adjustable to match 
the anthropometry of each volunteer, ensuring realistic and repeatable posture. 
The restraint system employed a non-retractor, non-force-limited three-point seatbelt. 
Initial pretensioning was manually applied using a spring scale, targeting approximately 
50 N of force. This value was reduced if the volunteer reported discomfort during 
preparation. 
The sled was programmed to deliver a triangular deceleration pulse with a peak of 
approximately 3.5 g and a duration of around 100 milliseconds. The target velocity at 
impact was 9 km/h. These parameters were chosen to ensure a safe and non-injurious 
response, in line with previous studies using similar pulse characteristics derived from 
scaled-down amusement park rides (ARBO09). The sled configuration, including the 
seating and restraint system, is shown in Figure 2.2-1 (LOPE17), and the deceleration 
pulse shape recorded during testing is displayed in Figure 2.2-2 (VIVE21). 
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Figure 2.2-1, Sled Test Configuration, showing the rigid seat, flexible backrest, footrest, and three-point 
seatbelt system. (LOPE17) 

 
Figure 2.2-2. Sled Deceleration Pulse – Sled deceleration pulse corridors in the young (blue) and elderly 
(green) groups. Solid lines are the average deceleration within the group. Shaded area corresponds to the 
one standard deviation corridor. (VIVE21) 
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2.2.2. Safety and Ethics 

All procedures were designed to prioritize volunteer safety. Participants were prescreened 
to confirm the absence of any medical conditions that could increase their risk of injury. 
Prior to testing, volunteers were briefed on the experimental procedure, instructed to 
remain relaxed throughout the event, and alerted with an acoustic signal shortly before 
the onset of deceleration. Each individual underwent multiple test trials, but only one 
(typically the third) was selected for analysis, unless sensor or marker issues necessitated 
using another. 
Post-test monitoring ensured that no injuries or discomfort occurred, and no adverse 
events were reported. The study complied with applicable ethical guidelines, and data 
collection was structured to ensure anonymization and secure handling. 

2.2.3. Instrumentation and Data Acquisition 

A comprehensive instrumentation system was implemented to capture both kinematic and 
kinetic responses. The sled platform included: 

- Two accelerometers for recording sled deceleration 
- A six-degree-of-freedom (6-DOF) load cell under the seat 
- Two 6-DOF load cells under the footrest 
- Four load cells integrated into the shoulder and lap portions of the seatbelt 

The configuration of the load cells can be seen in Figure 2.2-4. 
To capture head kinematics, a triaxial accelerometer and angular rate sensor were 
mounted on a lightweight elastic headband worn by the volunteer, as can be seen in Figure 
2.2-3. All sensor signals were acquired at a sampling frequency of 10,000 Hz using an 
external data acquisition system (PCI-6254, National Instruments, Austin, TX). Filtering 
was performed using low-pass filters, with cutoff frequencies individually selected 
according to the characteristics of each signal, ensuring that relevant signal content was 
preserved. 

 

 
Figure 2.2-3. Head Mount - Detail of the 6 degree-of-freedom head cube and of the position of the 
sensors on the head of one of the volunteers. (VIVE21) 

An overview of all sensor types, locations, and measurements is provided in  
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Table 2.2-1. Some sensor malfunctions occurred during select trials (e.g., tests 1680, 
1691, and 1780), which were excluded from the analysis. 
 

Sensor Type Location Measurement 

Accelerometers 
(2 units) 

Base of sled platform Used to record sled deceleration 

Load cell 
(6-DOF) 

Under seat base Measures vertical and shear forces 
at seat base 

Load cells 
(6-DOF, 2 units) 

Under footrest (left and right) Measures foot–rest interaction 
forces 

Seatbelt load cell 
(shoulder) 

Between shoulder and D-ring Measures belt tension at upper 
torso 

Seatbelt load cell 
(lower shoulder) 

Arbitrary position on shoulder 
belt 

Complementary shoulder load 
measurement 

Seatbelt load cells 
(lap, 2 units) 

Left and right lap belt 
segments 

Measures lap belt forces 
bilaterally 

Triaxial accelerometer Headband mount near CG 
(Endevco 7264C) 

Measures linear head acceleration 

Angular rate sensor Same headband mount 
(DTS ARS-PRO 18K) 

Measures rotational head motion 

 

Table 2.2-1. Instrumentation Summary - Overview of the sensors used in the study, including their type, 
mounting location, and measurement recorded. 

 
Kinematic trajectories were obtained using a 10-camera optoelectronic motion capture 
system (Vicon TS series) operating at 1,000 Hz. Reflective markers were placed on 
specific anatomical landmarks of each volunteer to enable accurate tracking of body 
motion. These landmarks included the external auditory meatus (bilateral), nasion, 
opisthocranion, cervical spine (C4), thoracic spine (T1, T4, T8), acromion (bilateral), 
greater trochanter, and anterior superior iliac spine (ASIS). Additionally, a triad of 
markers was mounted on the head sensor plate to allow transformation of the sensor data 
from its physical location on the headband to the estimated head center of gravity, defined 
as the midpoint between the bilateral external auditory meatus markers. 
Based on these markers, a local head coordinate system was defined using the Frankfurt 
anatomical plane, with its origin at the estimated head center of gravity. All kinematic 
data were then transformed into the global laboratory coordinate system, in which the 𝑥-
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axis pointed forward and the z-axis upward. For compatibility with force measurements, 
head displacements and trajectories were expressed relative to the occipital condyle joint. 
The motion capture system operated by detecting retro-reflective spherical markers 
placed on the volunteers within a calibrated three-dimensional volume. The configuration 
of said markers is illustrated also in Figure 2.2-4. Prior to testing, a calibration procedure 
was performed to determine the optical characteristics, position, and orientation of each 
of the ten cameras relative to a fixed global coordinate system (GCS) anchored to the 
laboratory. In addition, a local coordinate system (LCS) was defined relative to the test 
buck, with its origin located at the front-right corner of the seat. The local x-axis pointed 
forward at a 30-degree angle clockwise from the subject’s frontal anatomical axis, the z-
axis pointed vertically upward, and the y-axis was defined to form a right-handed 
coordinate system. Unless otherwise noted, all displacement data are expressed relative 
to this LCS. Marker positions were reconstructed in three dimensions using a 
photogrammetric algorithm implemented in the Vicon Nexus software package (Nexus 
1.8.5, Vicon, Oxford, UK), which triangulated each target’s position at every time step 
based on synchronized images from the multiple camera views. 
 

 
Figure 2.2-4. Instrumentation Layout - Example of the experimental setup showing the placement of load 
cells, accelerometers, and reflective markers on the sled platform and volunteer. (LOPE17) 
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2.2.4. Volunteer Sample and Preparation 

A total of 13 male volunteers participated in the tests: 9 younger adults aged 18–30 and 
4 elderly adults over 65. The cohort was selected to approximate the anthropometric 
dimensions of a 50th percentile male (target height: 175 cm, target mass: 78 kg). 
Anthropometric measurements such as height, weight, head girth, and neck 
circumference were recorded before testing. These measurements are summarized in  
Table 2.2-2. 

 

Test 
ID 

Group Subject 
ID 

Age 
(years) 

Stature 
(cm) 

Weight 
(kg) 

Head 
girth 
(cm) 

Neck 
girth 
(cm) 

Seated 
height 
(cm) 

1679 Young Vol 01 18 171.0 75.5 59.5 38.0 62.4 

1684 Young Vol 02 18 176.5 77.7 57.0 36.5 66.4 

1689 Young Vol 03 21 179.5 73.0 59.0 37.0 64.1 

1694 Young Vol 04 21 179.0 79.4 58.0 37.0 65.5 

1767 Young Vol 05 22 167.0 75.3 55.0 38.5 63.3 

1858 Young Vol 06 28 172.0 68.4 56.0 37.5 57.1 

1865 Young Vol 07 36 174.0 73.0 59.5 38.0 62.5 

1869 Young Vol 08 26 174.0 64.6 57.0 37.0 60.7 

1873 Young Vol 09 18 173.0 86.7 61.0 43.0 63.1 

1771 Elderly Vol 10 71 164.0 81.0 59.0 46.5 60.6 

1774 Elderly Vol 11 71 176.5 99.1 60.0 46.0 64.6 

1778 Elderly Vol 12 85 165.3 78.2 57.0 41.5 63.2 

1780 Elderly Vol 13 67 169.0 88.2 59.5 44.5 65.7 

1862 Elderly Vol 14 66 172.5 89.6 58.5 41.0 62.3 
 

Table 2.2-2. Volunteer Anthropometric Data - Summary of the anthropometric characteristics of all 
participating volunteers. 
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Volunteers were seated with their pelvis aligned to the seat centerline, and adjustments 
were made to achieve a torso inclination of approximately 60°, a thigh angle near 12°, 
and a tibial inclination of about 45°. The seatbelt's D-ring was positioned in vertical 
alignment with the external auditory meatus and laterally offset by roughly 100 mm from 
the acromion. This setup was repeated across all trials to maintain consistency in initial 
posture and restraint configuration. 
Figure 2.2-5 presents representative frames from lateral video footage, illustrating the 
motion comparison between a young and an elderly volunteer at matched time points 
during deceleration (LOPE17). 
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Figure 2.2-5. Lateral Video Comparison - Representative still frames comparing the motion of a young 
and an elderly volunteer during frontal deceleration. (LOPE17) 
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3. METHODOLOGY 
3.1.  Software Environment 

All analyses and data processing were performed in MATLAB R2023a, which provided 
the main environment for numerical computation and visualization. Raw motion capture 
data were stored in Microsoft Excel files, each containing the full set of landmark 
trajectories per test trial. MATLAB was used to import, structure, and process these 
datasets across all methods. Graphs and other figures were also generated in MATLAB. 
Statistical modeling of principal component scores against anthropometric variables was 
conducted in GRETL. 
Methods 1 and 2 (B-spline and PCA of trajectories, and the analysis of posture at 
maximum head displacement) leveraged MATLAB’s built-in functions for curve 
approximation of landmark motion, construction of fixed-length feature vectors, 
computation of principal components, re-referring of landmarks and any other needed 
operations. All regression models were subsequently estimated in GRETL. 
Method 3 (Arc-length re-parameterization, signal registration, and statistical corridor 
generation) was implemented using the open-source ARCGen Toolbox developed by 
Hartlen and Cronin (HART22), which can be found in the Annex section, ARCGen. 
ARCGen was integrated into MATLAB and applied to perform arc-length normalization, 
signal registration, and computation of characteristic average trajectories and variability 
envelopes. 
This integrated software environment allowed consistent application of all analytical 
steps, while accommodating the methodological differences between approaches. 
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3.2. Method 1: B-Spline approximation and Principal Component Analysis of 
individual landmark trajectories 

3.2.1. Method Overview 

The analysis presented in this section is designed to analyze differences in upper-body 
motion between test subjects during low-speed frontal decelerations. It follows a 
structured pipeline that transforms raw positional data into a form suitable for statistical 
regression. The process integrates three main stages: curve fitting using B-splines, 
dimensionality reduction via Principal Component Analysis, and regression modeling to 
explore the relationship between motion characteristics and subject-specific 
anthropometric features. 
The starting point of the analysis consists of high-frequency optoelectronic motion 
capture data recorded for 6 different anatomical landmarks (head, C4, T1, T4, T8, and H-
point) per each of the 14 volunteer in the study. Each of these trajectories consists of 
hundreds of time-sampled (𝑥, 𝑧) coordinates. While this level of temporal resolution is 
valuable for capturing dynamic motion, it also presents a challenge: it is high-
dimensional, noisy, and contains more information than is meaningful to analyze directly 
for statistical comparisons between subjects. The high number of time points per trial  is 
also impractical to incorporate into a regression model due to overfitting and 
multicollinearity. 
To address this and reduce the dimensionality while preserving the essential structure of 
the trajectories, the first step is to fit each landmark's motion with a B-spline curve. A B-
spline is a parametric curve defined by a small number of control points, which 
approximate the shape of the original signal without forcing the curve to interpolate each 
individual time point. In this thesis, spline order and point spacing are selected such that 
the fitted curve retains key movement features while discarding high-frequency noise and 
redundant data. 
After the B-spline fitting process, each trajectory has been converted into a fixed number 
of control points. These control points are then arranged into a feature vector for each 
test, capturing the position of each landmark along its path in a compressed and 
standardized form. Since the trajectories are defined in 2D space, each control point 
contributes two values (𝑥 and 𝑧), and the final vector contains 2𝑛 values per trajectory, 
where	𝑛 is the number of control points used. However, even after this compression, the 
number of variables remains large (16 values per landmark), and these coordinates are 
often highly correlated across subjects. 
To further reduce complexity and facilitate statistical modeling, the dataset of control 
point vectors is processed with Principal Component Analysis (PCA). PCA is a linear 
dimensionality reduction technique that identifies the directions in which the data varies 
most. It transforms the original coordinates into a new set of orthogonal variables, known 
as principal components (PCs), ranked by the amount of variance they explain. In this 
context, each PC represents a characteristic mode of variation in the trajectory shape (e.g., 
forward translation, vertical deflection, curvature) and each subject receives a score for 
each component, indicating how their motion differs along that mode from the average. 
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Importantly, the components are uncorrelated by construction, which is crucial for the 
next step. 
The final stage is regression modeling. The principal component scores obtained for each 
trajectory are used as dependent variables in linear regression models. The predictors are 
the anthropometric and demographic characteristics of each subject (e.g., seated height, 
body mass, age group). The purpose of these models is to identify statistically significant 
relationships between the shape of a subject’s trajectory and their physical attributes. 
In summary, the method is designed to transform complex trajectory data into a 
standardized, low-dimensional form suitable for regression analysis. The ultimate goal is 
to quantify how much of the variation in landmark motion can be explained by subject 
characteristics, enabling biomechanical interpretation of the observed differences 
between young and elderly volunteers. 

3.2.2. Literature background 

The methodological framework combining B-spline fitting, PCA, and regression 
modeling draws on a well-established foundation in the biomechanics literature. Each 
component of this pipeline has been applied in related contexts to reduce data 
dimensionality, extract interpretable features from motion trajectories, and investigate 
relationships between movement patterns and subject-specific parameters. This section 
reviews key sources that support the use of each step, with a focus on studies involving 
human kinematic analysis in crash testing, gait, and injury prediction contexts. 

B-spline modeling of human motion 
As mentioned, B-spline curves are a type of polynomial functions that offer local control, 
smoothness, and computational efficiency, making them ideal for approximating complex 
and noisy biomechanical trajectories. Their flexibility in shaping curves without 
overfitting to individual time points is particularly valuable in crash testing contexts, 
where raw motion capture data are often dense and noisy. 
A particularly relevant reference for the present methodology is the study by Samuels et 
al. (2015), which closely mirrors the structure and intent of the approach used here. In 
their work, the authors modeled the sagittal-plane trajectories of multiple anatomical 
landmarks (head top, nasion, EAM, C4, T1, and pelvis) during low-speed frontal impact 
tests involving pediatric and adult volunteers. To compress and regularize the data, they 
fitted cubic B-splines to the recorded landmark trajectories, using eight control points per 
curve. This configuration was chosen to ensure a root mean square error (RMSE) below 
1% of the mean head excursion, balancing fidelity and dimensionality (SAMU15). 
Similar uses of B-spline-based trajectory compression have been reported in 
rehabilitation studies using inertial sensors (e.g., stroke recovery monitoring), and in 
robotic control systems for trajectory planning. In these applications, B-splines are valued 
for their ability to efficiently represent smooth motions with relatively few parameters 
while respecting biomechanical constraints (HWAN23; WANG88). 
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Principal Component analysis in biomechanics 
Principal Component Analysis (PCA) is a common tool in biomechanics for reducing the 
dimensionality of multivariate datasets while retaining dominant patterns of variation.  
In the previously mentioned study by Samuels et al. (2015), after B-spline fitting, they 
constructed a matrix of control point coordinates and performed PCA to identify 
dominant modes of variation. The first two principal components captured the majority 
of variability across subjects and were found to correlate strongly with erect seated height, 
especially in the head and spinal landmarks (SAMU15). 
PCA has also been used to decompose full-body motion data in gait and posture studies. 
For instance, Federolf et al. (2013) applied PCA to 117-dimensional marker trajectories 
and interpreted the resulting components as "principal movements," such as forward sway 
or arm-leg coordination (FEDE13). These studies illustrate PCA’s strength as a non-
reductionist method: it does not presuppose which features are important but instead 
allows dominant biomechanical trends to emerge from the data. 
In crash biomechanics, PCA has also been applied in injry risk modeling. Brumbelow, 
M.L. (2023), for example, used PCA to reduce multiple lower-extremity injury metrics 
into orthogonal components that could then be analyzed using logistic regression to 
identify key predictors of injury (BRUM23). 

Regression of PCA-derived features to anthropometric variables 
The final step in the pipeline involves regressing PCA-derived features (i.e., scores) 
against anthropometric variables to quantify how motion patterns vary across the 
population. This type of analysis has proven effective in identifying biomechanically 
meaningful relationships, such as the influence of age or seated height on specific 
principal movement components. 
Continuing with the study by Samuels et al. (2015), the obtained principal component 
scores were regressed against anthropometric variables to create a statistical model 
capable of predicting trajectory shapes for anthropomorphic test devices (ATDs) of 
varying size. The model was validated by reconstructing trajectories for known ATD 
dimensions (e.g., 6-year-old and 10-year-old dummies), showing that body size 
influences not just the extent but also the shape and curvature of movement paths 
(SAMU15). 
In addition, Sun et al. (2016) developed a regression-based method to generate 
biomechanical response corridors from pelvis impact data. They applied PCA to aligned 
force signals, regressed the resulting PC scores to anthropometric variables such as waist 
breadth and vertex-to-symphysis distance, and used Monte Carlo simulation to generate 
individualized corridor bounds. Their method outperformed traditional normalization 
approaches by preserving anthropometric influences rather than scaling them out 
(SUN16). 
Similarly, Donnelly and Moorhouse (2012) advocated for regression modeling of aligned 
response curves to preserve timing and magnitude features specific to individual subjects, 
rather than relying on averaged or normalized signals (DONN12). Their later work on 
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deformation energy approaches (DONN14) further reinforced the need to model inter-
subject variability directly instead of treating it as noise. 

3.2.3. Purpose and justification 

This method was selected to address a specific analytical challenge: how to extract and 
compare the underlying structure of individual motion trajectories without 
oversimplifying them. The goal is not to summarize raw movement but to isolate which 
aspects of trajectory shape vary meaningfully across subjects and whether those 
variations relate to physical attributes. 
B-splines were chosen over direct time-series analysis because they offer a compact yet 
geometrically meaningful representation. Unlike simple downsampling or filtering, B-
splines retain localized curvature and motion tendencies while reducing noise and 
dimensionality. This is particularly useful when comparing subjects with different 
morphologies, where minor fluctuations can obscure broader motion patterns. 
PCA was then applied to the B-spline control points not only for compression, but to 
expose dominant modes of variation that are uncorrelated and interpretable. These 
components allow comparisons across individuals in terms of specific, decoupled 
movement patterns, something that would be difficult to achieve using raw coordinates. 
The final regression step is justified by the need to move from description to explanation. 
Rather than simply observing differences in motion, the method aims to quantify how 
much of those differences are associated with subject-level variables. This enables 
statistically grounded inferences about how body size or age affect trajectory shape, and 
offers a framework for predicting motion trends beyond the observed sample. 
Each element in this sequence was selected to maximize interpretability and 
comparability, while keeping the analysis as robust as possible against small sample size 
and high-dimensional input. The full process, spline fitting, PCA, and regression, aims to 
preserve key structure, filter irrelevant noise, and isolate variation that may be 
biomechanically meaningful. 

3.2.4. Mathematical background 

B-Spline curve representation 
A B-spline curve is a piecewise-defined parametric function commonly used to 
approximate smooth trajectories with compact representation and local control. In this 
work, B-splines are used to model the two-dimensional motion trajectories of anatomical 
landmarks recorded over time during frontal deceleration tests. The goal is to replace 
high-dimensional raw time-series data with a fixed-length, smooth representation that 
preserves biomechanically relevant features and enables further statistical analysis. 
General formulation 

Let 𝑑	 ∈ 	ℕ be the degree of the spline (i.e., the polynomial degree of each segment), and 
let 𝑘	 = 	𝑑	 + 	1 be the corresponding spline order. A B-spline curve of order 𝑘 defined 
over a domain 𝑡	 ∈ 	 [𝑎, 𝑏] ⊂ 	ℝ is expressed as: 
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𝑆(𝑡) =8𝑃!𝑁!,#(𝑡)
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where: 

- 𝑆(𝑡) ∈ 	ℝ' is the point on the curve at parameter 𝑡, 
- 𝑃ᵢ	 ∈ 	ℝ' is the i-th control point (to be determined), 
- 𝑁ᵢ, ₖ(𝑡) is the i-th B-spline basis function of order 𝑘, 
- 𝑛	 + 	1 is the number of control points. 

The basis functions 𝑁ᵢ, ₖ(𝑡)  are piecewise polynomials constructed recursively and 
determine the weight of each control point at a given parameter value t. Their construction 
depends on a knot vector 𝑇	 = 	 {	𝑡&, 𝑡(, … , 𝑡ₘ	}, which partitions the domain and defines 
where each basis function becomes active. 

Recursive definition of Basis functions 
The B-spline basis functions are defined using the Cox–de Boor recursion: 

For 𝑘	 = 	1: 

				𝑁!,((𝑡) = @1, 𝑡!	 ≤ 	𝑡	 < 	 𝑡!*(
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 	 

For 𝑘	 > 	1: 

𝑁!,#(𝑡) = 	
𝑡 − 𝑡!

𝑡!*#+( − 𝑡!
𝑁!,#+((𝑡) +

𝑡!*# − 𝑡
𝑡!*# − 𝑡!*(

𝑁!*(,#+((𝑡) 

Any term with a denominator equal to zero is conventionally taken as zero. The result is 
a set of 𝑚 − 𝑘 overlapping functions, each basis function 𝑁!,#(𝑡)	being nonzero only over 
a sequence of at most 𝑘consecutive knot spans. This local support is what grants B-splines 
their flexibility and computational efficiency. 

Knot Vector and its role 

The knot vector 𝑇	 = 	 {	𝑡&, 𝑡(, … , 𝑡,} is a non-decreasing sequence of real values that 
determines how the domain is partitioned into segments, and how the basis functions 
blend across these segments. 

Given: 

- Spline degree 𝑑, 
- Number of control points 𝑛	 + 	1, 
- Order 𝑘	 = 	𝑑	 + 	1, 

the knot vector must have  𝑚	 + 	1	 = 	𝑛	 + 	𝑘	 + 	1  entries. 

In this work, a uniform clamped knot vector is used. This means: 

- The internal knots are uniformly spaced over [0,1], 
- The first and last knots are each repeated k times (i.e., 𝑡& =	 𝑡( =	… 	= 	 𝑡#+( =

	0, and 𝑡,+#*( =	… 	= 	 𝑡, = 	1), 
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which ensures that the curve interpolates the first and last control points: 

𝑆(0) = 	𝑃- ,    𝑆(1) = 	𝑃$ 
This is desirable when the start and end of the trajectory correspond to physical time 
endpoints that must be preserved (e.g., onset and end of deceleration). 
Curve Evaluation and Dimensionality 

To evaluate a B-spline curve numerically, the basis functions 𝑁!,#(𝑡) are computed at a 
discrete set of parameter values 𝑡	 ∈ 	 [0,1], and the curve values are obtained as: 

𝑆N𝑡.O =8𝑃!𝑁!,#(𝑡), 𝑓𝑜𝑟	𝑗 = 1,… , 𝑇
$

!%&

 

This can be written in matrix form as: 

				𝑺	 = 	𝑩	 · 	𝑷 

where: 

-  𝑺	 ∈ 	ℝ/×'contains the curve points at 𝑇 parameter values, 
- 𝑩	 ∈ 	ℝ/×($*() is the basis matrix with entries 𝐵.! 	= 	𝑁!,#(𝑡ⱼ), 
- 𝑷	 ∈ 	ℝ($*()×' is the matrix of control point coordinates. 

In other words, for each evaluation point 𝑡. the vector 𝑆. is computed, such that each row 
of matrix 𝑩 is the set of basis function values at 𝑡. and multiplying yields all spline points. 

This way, the control points 𝑃ᵢ become the parameters to estimate in the curve fitting 
process. 
Use in trajectory compression 

Each motion trajectory is defined by a sequence of measured positions {𝑠(, … , 𝑠/} ⊂ 	ℝ'. 
Instead of storing all 𝑇 points (typically on the order of hundreds), we represent the 
trajectory using a small, fixed number of control points 𝑃ᵢ. These points fully define the 
fitted curve and are sufficient to reconstruct an approximation of the original trajectory. 
For use in later stages of analysis (Principal Component Analysis), the control point 
coordinates are flattened into a row vector of length 2(𝑛 + 1). This fixed-length vector 
serves as a compressed, standardized representation of the trajectory. 

So, if each control point 𝑃ᵢ	has two coordinates (𝑥! , 	𝑧! ), then for each trajectory, all 
control points are collected into a 1D vector such as  

W𝑥&, 	𝑧&,	𝑥(, 	𝑧(, … , 𝑥$, 	𝑧$X 

with 2(𝑛 + 1) features. 

Principal Component Analysis 
PCA is a linear transformation technique used to extract the dominant modes of variation 
from multivariate data. In the present study, PCA is applied to the control point vectors 
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obtained from B-spline trajectory approximations. The objective is to represent each 
trajectory using a set of uncorrelated variables (principal components) that summarize the 
major patterns of shape variability across subjects. 

Data representation and centering 

Let 𝑿	 ∈ 	ℝ3×4 denote the data matrix, where: 

- 𝑁 is the number of trajectories (i.e., trials/subjects for a given landmark), 
- 𝐷	 = 	2(𝑛 + 1)  is the number of features per trajectory, corresponding to the 

flattened 𝑥 and 𝑧 coordinates of 𝑛 + 1 B-spline control points. 

Each row 𝒙ᵢ	 ∈ 	ℝᴰ of 𝑿 represents one trajectory in feature space. 

The first step in PCA is to center the data by subtracting the empirical mean vector 𝒙̄ ∈
	ℝ4 : 

𝑿̂ 	= 	𝑿	 − 	𝟏	𝒙̀/ 

where 𝟏	 ∈ 	ℝ3×( is a column vector of ones, and 𝑿̂ is the mean-centered data matrix. 

Covariance matrix and eigenvalue decomposition 
The next step is to compute the sample covariance matrix: 

𝑪	 = 	
1

𝑁 − 1 𝑿̂ᵀ	𝑿̂ ∈ 	ℝ
4×4 

The principal components are obtained as the eigenvectors of C. That is, we solve: 

𝑪𝑽	 = 	𝑽𝜦 
where: 

- 𝑽 = [𝒗𝟏, … , 𝒗4] ∈ 	ℝ4×4contains the eigenvectors (principal axes), 
- 𝜦	 = 	𝑑𝑖𝑎𝑔(𝜆(, … , 𝜆4) is a diagonal matrix of eigenvalues ordered such that 𝜆( ≥

	𝜆' ≥	… 	≥ 	 𝜆4 	≥ 	0. 

Each eigenvalue 𝜆ⱼ  quantifies the variance explained by the corresponding principal 
component 𝒗ⱼ. 
Alternatively, PCA can be computed via Singular Value Decomposition (SVD) of X̃: 

𝑿̂ = 	𝑼	𝜮	𝑽ᵀ 
where: 

- 𝑼	 ∈ 	ℝ3×4 contains the left singular vectors (subject-wise scores), 
- 𝑽	 ∈ 	ℝ4×4contains the principal directions, 
- 𝜮	 ∈ 	ℝ4×4is diagonal with singular values 𝜎ⱼ	 = 	l𝜆ⱼ	(𝑁 − 1). 

Principal Component scores and projection 
The principal component scores are obtained by projecting the centered data onto the 
eigenvectors: 

𝒁	 = 	 𝑿̂𝑽 
where	𝑍	 ∈ 	ℝ3×4 contains the scores for each subject along each principal component. 
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In practice, only the first 𝐾	 ≪ 	𝐷  components are retained. These scores 𝑧!.  then 
represent each trajectory in a low-dimensional, orthogonal space: 

𝑧!. 	= 	𝒙u!/ 	𝒗. , 𝑓𝑜𝑟	𝑗	 = 	1, … , 𝐾	
 

Reconstruction and interpretation 

Each input trajectory 𝒙ᵢ can be approximately reconstructed using the mean vector and 
the first 𝐾 principal components: 

𝒙vᵢ	 = 	 𝒙̄ +8𝑧!.𝒗. 		
6

.%(

 

 
Each	component	𝒗. represents a mode of trajectory variation, and the score 𝑧!. 	measures 
how strongly that mode is expressed in subject 𝑖. Because the components are orthogonal, 
they can be used independently in downstream statistical modeling. 

Linear regression of Principal Component scores 
Following the application of PCA, each trajectory is represented as a low-dimensional 
vector of principal component scores. The goal of this final analytical step is to determine 
whether these scores, capturing shape variability in landmark trajectories, can be 
explained by subject-specific parameters. This is accomplished using linear regression, a 
classical statistical method for modeling relationships between a scalar response and 
multiple explanatory variables. 

Model structure 

Let 𝑧! 	 ∈ 	ℝ denote the score of the i-th subject along a particular principal component 
(e.g., PC1 or PC2). Let 𝒙! 	= 	 N𝑥!(, 𝑥!', … , 𝑥!7O

/ 	 ∈ 	ℝ7  be the vector of predictor 
variables (e.g., age, seated height, mass) for that subject. 
The regression model is defined as: 

𝑧! 	= 	𝛽& +	8𝛽.𝑥!. + 𝜀!

7

.%(

 

or in matrix-vector notation for all 𝑁 observations: 

𝒛	 = 	𝑿𝜷	 + 	𝜺 
where: 

- 𝒛	 ∈ 	ℝ3 is the response vector of PC scores, 
- 𝑿	 ∈ 	ℝ3×(7*()  is the design matrix, with a column of ones for the intercept and 

remaining columns for the predictors, 
- 𝜷	 ∈ 	ℝ7*(  is the vector of regression coefficients, 
- 𝜺	 ∈ 	ℝ3  is the residual vector, assumed to follow 𝜀ᵢ	~	𝒩(0, 𝜎'), independent 

and identically distributed. 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

52 
 

 
 

Each regression is performed separately for each retained principal component. This is 
valid due to the orthogonality of the components; the scores across different PCs are 
uncorrelated by construction, allowing independent modeling. 

Parameter estimation 

The vector of coefficients 𝛽  is estimated using ordinary least squares (OLS), which 
minimizes the residual sum of squares: 

𝜷�		 = argmin
8
	�|𝒛	 − 	𝑿𝜷|�

'
' 

 
The closed-form solution is: 

𝜷� = 	 (𝑿/𝑿)+(𝑿/𝒛 
 

provided	that	𝑿/𝑿  is invertible, which holds if the predictor variables are linearly 
independent. 
Statistical interpretation 

Each coefficient 𝛽� ⱼ represents the expected change in the PC score associated with a one-
unit increase in predictor 𝑥ⱼ , holding all other predictors constant. The statistical 
significance of each predictor can be evaluated using t-tests, the overall model fit via 
adjusted 𝑅', and residual analysis to verify assumptions such as homoscedasticity and 
normality of errors. 
Because the regressions are applied to orthogonal PCs, the influence of subject-specific 
variables can be analyzed component by component, each reflecting a different mode of 
shape variation in the trajectory. 
In this study, the set of predictor variables used in each regression model was kept small 
and interpretable, consisting of anthropometric and demographic features such as age 
group, seated height, and body mass. As each regression was performed separately per 
principal component and per landmark, the approach ensured clarity in interpreting how 
specific physical characteristics relate to distinct modes of trajectory variation. 

3.2.5. Implementation 

Overview of workflow 
The implementation of this method followed a structured, modular workflow executed 
independently for each of the six anatomical landmarks (head, C4, T1, T4, T8, and H-
point). The pipeline comprised four main stages: 

1. Approximation of each landmark trajectory using B-spline curves, 
2. Vectorization of the resulting control points into standardized feature vectors, 
3. Dimensionality reduction via Principal Component Analysis, and 
4. Statistical modeling of selected principal component scores through linear 

regression. 
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At each stage, decisions regarding parameters, data formatting, and processing logic were 
made with a focus on reproducibility, consistency across landmarks, and biomechanical 
interpretability. No cross-linking between landmarks was introduced at any point; all data 
transformations and analyses were performed separately to preserve anatomical 
independence in the resulting components. 
The methodology was implemented using custom MATLAB routines, structured around 
a sequence of well-defined data transformations and standardized inputs and outputs. The 
overall workflow ensured traceability from raw motion trajectories to regression-ready 
features, with intermediate results archived for each processing step. 

B-Spline fitting 
The initial stage of the processing pipeline consisted of fitting B-spline curves to raw 
motion trajectories recorded for each anatomical landmark. Before this approximation 
was applied, the raw trajectories exhibited high temporal resolution and substantial 
variability across subjects and repetitions. While this level of detail is essential for 
capturing motion precisely, it also results in high-dimensional signals that are difficult to 
compare directly and impractical to model statistically in their raw form. 

An example of these raw trajectories are shown in Figure 3.2-1. It displays the 𝑥–z motion 
of a single anatomical landmark (T1) across all 14 volunteers. The variability and density 
of the curves underscore the necessity of introducing a compact, standardized 
representation capable of preserving biomechanical meaning while reducing 
dimensionality. 

 
Figure 3.2-1. Raw x–z trajectories of a selected anatomical landmark (T1) across all test trials. The 
trajectories are high-resolution and exhibit significant inter-subject variability, motivating the need for a 
compact, standardized representation such as B-spline approximation. 
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The raw trajectory input data were stored in a collection of Excel (.xlsx) files, with one 
file per test trial and volunteer. Each file contained the full set of landmark trajectories 
recorded during that trial, structured as time-series of two-dimensional (𝑥, 𝑧) coordinates 
sampled at uniform intervals. This structure allowed synchronized access to all landmarks 
for a given test but required that each landmark be processed individually across files. 
The spline fitting process was implemented in MATLAB using the custom routine 
Spline_analysis_all_tests_together.m which can be found in section 3.1.1 of the Annex. 
Upon execution, the script iterated through the directory of Excel files, extracted the 
trajectory data for each landmark of interest, and normalized the time domain to 𝑡 ∈ [0,1]. 
No interpolation or filtering was required at this stage, as all recordings were acquired at 
a consistent sampling frequency and time span. 

Cubic B-splines (order 𝑘 = 4 , degree 𝑑 = 3) were used for all fits, with a uniform 
clamped knot vector, ensuring that each spline curve interpolated the first and last 
trajectory points while maintaining 𝐶'  continuity throughout. The control 
points {𝑃&, 𝑃(, … , 𝑃$} ⊂ ℝ' were estimated by solving a least-squares problem over the 
full sequence of recorded positions for each trajectory. Based on methodological 
precedent from Samuels et al. (2015) and to ensure consistency across trials, the number 
of control points was fixed to 8 for all landmarks (SAMU15). 
To validate the adequacy of the spline approximation, the root mean square error (RMSE) 
was computed between the fitted curve and the original trajectory, using a uniform 
resampling of 10 points along the time domain. This allowed a standardized assessment 
of approximation quality across trials. The resulting RMSE values were used to confirm 
that the selected number of control points preserved key trajectory features while 
achieving substantial data compression. 
An example of spline fitting performance is shown in Figure 3.2-2., where the fitted 
trajectory is overlaid with the original data for a representative trial and landmark T1. The 
fitted curve preserves the general shape and curvature of the motion while substantially 
reducing the dimensionality of the signal. The fitted trajectories for all landmarks can be 
found in the Spline fitting and dimensionality reduction Results section. 
The final output of this step consisted of the estimated control point 
coordinates {𝑃&, … , 𝑃$} , flattened into a 1	 × 	2(𝑛 + 1)  row vector ordered 
as (𝑥&, 𝑧&, 𝑥(, 𝑧(, … , 𝑥$, 𝑧$). These vectors served as standardized inputs to the next stage 
of the pipeline. 
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Figure 3.2-2. Example of original trajectory (red line) and fitted B-spline curve (blue line) for the T1 
landmark during a representative trial. The fitted curve preserves the essential shape of the motion with 
reduced data complexity. 

 

Construction of PCA input matrix 
Once each trajectory had been converted into a fixed-length vector of B-spline control 
point coordinates, these vectors were assembled into input matrices for PCA. One matrix 
was created for each anatomical landmark to ensure that the modes of variation extracted 
in subsequent steps would reflect landmark-specific motion patterns without cross-
contamination between body regions. 
This step was executed using the MATLAB script All_coordinates_any_n.m, found in 
section 3.1.2. of the Annex. Upon execution, the user is prompted to specify the landmark 
of interest. The script then iterates through all processed test trials, retrieves the 
corresponding 1 × 2(𝑛 + 1) control point vectors for that landmark, and assembles them 
into a matrix 𝑿	 ∈ 	ℝ3×4, where: 

- 𝑁 is the number of trials for the selected landmark (1 per volunteer), 
- 𝐷 = 2(𝑛 + 1) is the feature dimension, representing the 𝑥 and 𝑧 coordinates of 

each control point, interleaved in consistent order. 
The control point vectors are stacked row-wise to form the full PCA input matrix. Because 
the number and ordering of control points were identical across all trajectories, the 
resulting matrix was structurally homogeneous and ready for direct analysis. 
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No additional transformations were applied at this stage; the values in 𝑿 remained in 
physical units (millimeters). Mean-centering was performed internally during the PCA 
step. The completed input matrices were saved in MATLAB's native .mat format and 
passed to the next stage for dimensionality reduction. 

Principal Component Analysis 
PCA was applied separately to each landmark’s input matrix to reduce dimensionality 
and isolate dominant patterns of trajectory variation. All PCA computations were carried 
out using the MATLAB script PCA_Analysis (found in section 3.1.3 of the Annex), 
which took as input the control point matrix produced in the previous stage. 
For each landmark, the script returned a full set of principal component scores and the 
corresponding percentage of variance explained by each component. The output was 
analyzed to determine how many components should be retained for further modeling. 
Rather than using a fixed cutoff, this decision was guided by inspecting the distribution 
of variance across components and identifying the point at which adding further 
components yielded marginal returns. 
Table 3.2-1. provides an example of this evaluation for the T1 landmark. In this case, the 
first three components together captured over 90% of the total variance, suggesting that 
a small number of components was sufficient to represent most of the variability in the 
trajectories. The results for all landmarks can be found in the Spline fitting and 
dimensionality reduction Results section. 

 

PC Index Variance explained (%) Cumulative variance explained (%) 

1 57.2 57.2 

2 28.9 86.1 

3 6.1 92.2 

4 2.5 94.7 

5 1.6 96.3 
 

Table 3.2-1. Example of individual and cumulative explained variance for the T1 landmark. The first two 
or three components account for the majority of the total variance, making the rest largely redundant for 
modeling purposes. 

 
To qualitatively examine the structure of the reduced space, the script also generates 
visual projections of the data in the PCA coordinate system. Figure 3.2-3. shows an 
example scatter plot of results for Landmark T1 projected onto the first two principal 
components. While some group-wise trends (e.g., young vs. elderly) begin to emerge, the 
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overlap between classes is still substantial. Similarly, Figure 3.2-4. illustrates the first 
three components in a 3D projection, offering a fuller view of variation but still lacking 
clear separation. The 2D graphs for all landmarks can be found in the Principal 
Component Analysis outcomes section. The analysis of 3D graphs was discontinued due 
to the complex analysis required and the lack of potential for valuable insights compared 
to the 2D graphs. 
 

 
Figure 3.2-3. Projection of T1 landmark results onto the first two principal components. Each point 
represents one test trial, color-coded by subject group (young vs. elderly). While group tendencies begin to 
emerge, overlap remains high and interpretation is non-quantitative. 
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Figure 3.2-4. 3D scatter plot of PCA scores on components 1–3 for the T1 landmark. The projection 
provides additional insight into the distribution of trajectory variation but does not offer conclusive group 
separability. 

 
These plots provide an initial indication that age-related differences may be reflected in 
the trajectory structure, but they do not establish statistical significance or quantify the 
strength of the relationship. For that reason, further modeling via regression is required 
to assess whether specific principal components can be explained by anthropometric or 
demographic variables. 

Regression modeling 
The final stage of the pipeline involved constructing linear regression models to assess 
whether variations in trajectory shape, as captured by principal component scores, could 
be explained by subject-specific characteristics. This was done independently for each 
landmark and for each of the retained components (typically PC1 and PC2). 
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Data preparation 
Principal component scores were exported from MATLAB into a structured Excel file, 
where each row corresponded to a single test trial. Alongside the scores, the following 
subject characteristics were included: 

- Kind (categorical: young or elderly) 
- Age (years) 
- Stature (cm) 
- Weight (kg) 
- Seated height (cm) 
- Head girth (cm) 
- Neck girth (cm) 

The structure of the spreadsheet grouped data by landmark and aligned all variables in a 
format suitable for direct import into GRETL. 

Modeling procedure 
Linear regression models were constructed using GRETL. For each landmark and each 
principal component, the PC score was treated as the dependent variable, and the set of 
subject characteristics was tested as potential predictors. 
Initially, multiple-variable models were tested using combinations of the predictors listed 
above. However, these models consistently demonstrated poor fit, unstable coefficients, 
or strong multicollinearity. As a result, the final approach focused on single-variable 
models, which consistently outperformed the multivariate alternatives in terms of 
parsimony, statistical significance, and interpretability. 
Each model then followed the form: 

𝑧! = 𝛽& + 𝛽(𝑥! + 𝜀! 
 
where 𝑧! is the score for a given principal component and trial i, and 𝑥! is a single subject 
characteristic. Separate models were estimated for each landmark and each retained PC. 

Output handling and model selection 
The regression outputs included coefficient estimates, p-values, residual diagnostics, and 
goodness-of-fit metrics. From all models evaluated, those with statistically significant 
predictors and stable fit were flagged for reporting in the Regression modeling results 
section.  
Attempts were also made to reconstruct trajectories by projecting predicted PC scores 
back into the spline control point space, but the prediction errors were found to be 
prohibitively high. As such, these reconstruction experiments were not retained for final 
analysis. 
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3.3. Method 2: Landmark relative positioning analysis at peak displacement 

3.3.1. Method overview 

The methodology presented in this section was developed to complement the trajectory-
based B-spline analysis by offering a different perspective on postural variation during 
frontal deceleration. Instead of analyzing landmark motion across entire time series, this 
approach focuses on spatial configurations at selected time frames. Its goal is to 
characterize the relative positions of torso landmarks during a key instant in the 
deceleration event, enabling both visualization and statistical exploration of group-level 
morphological differences. 

The analysis begins by examining the planar (𝑥, 𝑧 ) trajectories of five anatomical 
landmarks (Head, C4, T1, T4, T8), recorded during 14 test trials involving young and 
elderly volunteers. For each trial, these trajectories are expressed relative to the initial 
position of the head to emphasize relative rather than absolute motion. This normalization 
step is intended to isolate torso configuration independently of initial positioning within 
the global reference frame. The H-point landmark was excluded from this analysis due to 
its inconsistent trajectories and excessive spatial separation from the other landmarks, 
which could distort subsequent comparisons. 
To identify suitable instants for posture analysis, each trajectory set is sampled at a fixed 
number of uniformly spaced time frames. These snapshots represent the evolution of the 
landmark configuration from the onset of motion to the point of maximum forward 
displacement. Among these, a single frame corresponding to the maximum anterior 
displacement of the head is selected for further analysis. This time point is treated as a 
proxy for the moment of peak torso excursion, where individual morphological and 
postural differences are expected to be most pronounced. Although this frame selection 
was guided empirically by observing head displacement patterns, it can be 
biomechanically justified on the basis that the head tends to lead upper-body motion in 
frontal impacts, and its maximum excursion often coincides with the culmination of torso 
flexion. This choice ensures that the posture being analyzed is representative of the peak 
response phase. 

At this selected time frame, the (𝑥, 𝑧) coordinates of the five landmarks are extracted and 
compiled into a feature vector representing the instantaneous torso configuration. To 
eliminate differences caused by overall body displacement, all coordinates are shifted so 
that the T8 landmark is at the origin. This allows the analysis to focus on the relative 
positions of the other landmarks. 
Principal Component Analysis (PCA) is then applied to the set of re-referenced 
configuration vectors. This transformation identifies dominant modes of shape variation 
across subjects, enabling a compact representation of postural differences. The first three 
principal components are retained for further analysis, as they account for the majority of 
inter-subject variability. Each trial is thus characterized by a set of three uncorrelated 
scores, which quantify how its torso posture differs along key geometric axes. 
To explore potential associations between posture and subject characteristics, linear 
regression models are constructed using each principal component score as a response 
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variable. Independent variables include age, anthropometric dimensions, and categorical 
group membership. These models are used to test whether the observed modes of 
variation in posture are systematically related to individual features. As in previous 
analyses, multivariable models were avoided due to the limited sample size and risk of 
overfitting. Instead, single-variable regressions were prioritized to enhance statistical 
robustness. 
Finally, a complementary analysis was performed to examine spatial configurations of 
the torso at the moment of maximum head displacement (MHD). After having translated 
each trial’s data so that the T8 landmark coincided across subjects, two types of metrics 
were extracted. First, Euclidean distances between adjacent landmarks were computed to 
evaluate segment-wise spacing across age groups. Second, internal joint angles were 
calculated at key spinal junctions to capture localized curvature and postural differences. 
Statistical comparisons were carried out using two-sample t-tests. This dual-metric 
procedure was motivated by the hypothesis that aging may influence not only global 
motion trajectories, but also the geometric organization and flexion patterns of the upper 
torso at peak loading. 
Overall, this method offers a complementary lens for analyzing subject-specific 
differences in seated posture during dynamic loading. By isolating and analyzing the torso 
configuration at maximum displacement, it enables biomechanical interpretation of 
posture patterns and supports statistical modeling of group differences in geometric 
configuration. 

3.3.2. Literature background 

Several strands of existing research support the methodological choices made in this 
analysis, including the use of peak displacement timing for frame selection, the 
application of PCA to posture data, the incorporation of anthropometric variables for 
group comparisons, and the practice of re-referencing landmark coordinates to isolate 
shape differences. This section reviews the main contributions from the literature that 
justify and contextualize each of these components. 

Use of maximum head displacement for time selection 
The selection of a single time frame based on the instant of maximum head displacement 
(MHD) draws from established practices in impact biomechanics. Studies examining 
cervical spine motion during frontal deceleration have consistently shown that maximum 
head excursion occurs at a predictable interval after impact and corresponds closely to 
peak torso flexion, providing a reliable temporal marker for postural comparison 
(FREJ23). 
This approach is particularly valuable in volunteer testing, where the severity of impacts 
is constrained by ethical considerations. In such contexts, MHD has been validated as a 
meaningful reference point for assessing postural deviation without requiring full 
trajectory analysis (HIGU19). These findings support the use of head displacement as a 
biomechanical proxy for maximum whole-body excursion during frontal loading. 
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PCA applied to spatial configurations of landmarks 
PCA has been widely adopted to analyze human posture, particularly in reducing the 
complexity of spatial marker data into interpretable modes of variation. Federolf et al. 
(2016) introduced the concept of “principal movements” by applying PCA to kinematic 
data from balance tasks, showing that a small number of components could capture nearly 
all postural variance (FEDE16). 
Similar applications have been used in impact biomechanics, where PCA has identified 
dominant posture configurations, referred to as “principal positions”, that effectively 
discriminate between subject groups and loading conditions (SUN16). 
These studies demonstrate that PCA can be successfully applied not only to trajectories 
but also to static spatial configurations extracted at key time points, enabling 
dimensionality reduction without loss of biomechanical relevance. 

3.3.3. Purpose and justification 

The motivation behind this method is to identify systematic differences in torso posture 
between young and elderly subjects during low-speed frontal decelerations. Rather than 
analyzing full motion trajectories, this approach focuses on a single, carefully selected 
time frame that captures the peak of the event, making it particularly suited for 
summarizing posture under dynamic conditions without requiring time-normalized data. 
By isolating and analyzing the configuration of the upper torso at the moment of MHD, 
the method aims to uncover variations in spinal alignment or segment relationships that 
may reflect age-related differences in posture control or mechanical response. 
The decision to rely on spatial landmark data at a specific time point (rather than using 
time series or curve-based representations) was guided by both practical and analytical 
considerations. In practical terms, working with single-frame data reduces the 
dimensionality of the dataset, avoids the need for time alignment or warping, and provides 
direct interpretability in terms of posture. Analytically, it enables the use of PCA to 
identify compact, orthogonal modes of variation that summarize the configuration of the 
torso in a data-driven way. This supports the development of regression models that can 
assess whether observed variations correlate with age or anthropometric features. 
Although the use of the MHD frame was not determined through biomechanical 
modeling, it is justified based on empirical and physiological reasoning. The head is 
typically the most mobile and forward-reaching segment in frontal impacts, and its peak 
displacement tends to coincide with maximum torso flexion. Selecting this instant as a 
common reference frame therefore captures the posture at or near the mechanical limit of 
excursion, where differences in control, flexibility, or morphology are most likely to 
appear. 
Re-referencing to a stable landmark such as T8 is justified as a way to remove global 
translation effects and allow for comparison of shape and configuration independently of 
whole-body motion. This is particularly relevant in seated frontal deceleration tests, 
where volunteers may exhibit variable forward excursions due to differences in muscle 
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activation or restraint interaction, but the relative shape of the spine remains a more stable 
indicator of biomechanical behavior. 
Additionally, the analysis includes a secondary examination of inter-landmark distances 
and angles, re-referenced to a common anatomical point. This was introduced to evaluate 
whether specific spinal segments exhibit consistent spatial/angular divergence between 
groups.  
Overall, the method was designed to be complementary to the B-spline-based trajectory 
analysis presented earlier, offering a posture-centric view of group differences. It supports 
a more intuitive understanding of how spinal alignment varies at peak excursion and 
enables interpretable statistical modeling of the effects of aging and morphology on torso 
configuration. 

3.3.4. Mathematical background  

This analysis operates on posture vectors constructed from anatomical landmark positions 
at a single time frame per subject, the moment of MHD. Each vector captures the torso’s 
spatial configuration in the sagittal plane and serves as input for dimensionality reduction 
via PCA. Unlike the earlier spline-based trajectory analysis, this method is temporally 
discrete and emphasizes shape rather than motion. 

Construction of posture vectors 

Let 𝑁	 = 	14 denote the number of test trials and 𝐿	 = 	5 the number of landmarks: Head, 
C4, T1, T4, and T8. For each trial 𝑖, the two-dimensional coordinates of each landmark 
at MHD are denoted: 

N𝑥!,9 , 𝑧!,9O								𝑓𝑜𝑟	𝑙	 = 	1, … , 𝐿	𝑎𝑛𝑑	𝑓𝑜𝑟	𝑖 = 1,… ,𝑁 

To eliminate global displacement effects, all positions are re-referenced relative to the T8 
landmark: 

𝑥�!,9 =	𝑥!,9 −	𝑥!,/:	, 𝑧̃!,9 =	𝑧!,9 −	𝑧!,/: 

The resulting relative coordinates are flattened into a row vector: 

𝒑𝒊 =	 W𝑥�!,(, 𝑧̃!,(, … , 𝑥�!,< , 𝑧̃!,<X ∈ 	ℝ'< 

These posture vectors form a data matrix: 

𝑷	 ∈ 	𝑅3×'< ,							𝑤𝑖𝑡ℎ	𝑟𝑜𝑤𝑠					𝒑! 
This representation captures the torso's posture at MHD, relative to a common reference 
point, and standardized across subjects. 

Principal Component Analysis 

The matrix 𝑷 is mean-centered, and PCA is applied as described in Method 1’s Principal 
Component Analysis section. Briefly, this involves computing the sample covariance 
matrix of 𝑷, performing eigenvalue decomposition, and projecting each subject’s posture 
vector onto the resulting eigenvectors. Let: 
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𝒁	 = 	𝑷𝒄𝑽 

where 𝒁	 ∈ 	ℝ3×6 is the matrix of PCA scores, and 𝐾 =	3 the principal components that 
are kept for further analysis. 

Each score 𝑧!,. quantifies how much subject 𝑖’s posture deviates along the 𝑗-th principal 
axis of shape variation. Because the PCA is performed on re-referenced data, these axes 
reflect geometric configurations independent of absolute position. 

Regression of Principal Component scores 
To explore whether variation in postural configuration is related to subject characteristics, 
the scores of the first three principal components are used as dependent variables in 
simple linear regression models. The structure and estimation of these models follow the 
same formulation described in Method 1’s Regression of PCA-derived features to 
anthropometr section, and are not repeated here. 
Each regression model includes a single predictor variable, such as age, head girth, or 
categorical group (young vs. elderly), selected based on interpretability and fit quality. 
Multivariable models were tested but consistently showed poor performance, and thus 
only single-variable regressions are retained. 

Pairwise landmark distance analysis 
In a secondary analysis, both linear distances and joint angles between consecutive 
landmarks at MHD are computed for each subject.  
Inter-Landmark distances 

Given re-referenced coordinates N𝑥�!,9 , 𝑧̃!,9O, the Euclidean distance between landmarks 𝑙 
and 𝑙 + 1	is: 

𝑑!,9 =	�N𝑥�!,9*( −	𝑥�!,9O
' +	N𝑧̃!,9*( −	 𝑧̃!,9O

' 

This yields four distance values (between 5 landmarks) per subject: 

�𝑑!,(, 𝑑!,', 𝑑!,>, 𝑑!,?� 

Distances are grouped by age category (young vs. elderly) and compared using a two-
sample t-test. Let 𝐷@ and 𝐷A be the subsets of distances for young and elderly subjects, 
respectively. For each pair of landmarks, the test evaluates: 

𝐻&:	𝜇@ =	𝜇A 								𝑣𝑠.								𝐻(:	𝜇@ ≠	𝜇A 

The corresponding p-values quantify whether observed differences in mean spacing are 
statistically significant. 
Joint angles 
To assess curvature at key spinal junctions, angles were computed at three internal 
landmarks using triplets of adjacent points. For three points 𝐴 = (𝑥B , 𝑧B), 𝐵 = (𝑥C , 𝑧C) 
and 𝐶 = (𝑥D , 𝑧D), the internal angle at 𝐵 is given by:  
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𝜃 = 𝑐𝑜𝑠+( ¦
N𝐴 − 𝐵⃗̈O · N𝐶 − 𝐵⃗̈O
©𝐴 − 𝐵⃗̈© · ©𝐶 − 𝐵⃗̈©

ª 

where 𝐴, 𝐵⃗̈, 𝐶 ∈ 	ℝ' denote 2D coordinate vectors in the sagittal plane. This yields three 
angles per subject: 

{𝜃E?	, 𝜃/(	, 𝜃/?} 
Statistical comparisons between age groups were again performed using two-sample t-
tests for each angle. 

3.3.5. Implementation 

Overview of workflow 
This method was implemented through a four-stage process designed to extract torso 
posture at the moment of maximum head displacement (MHD) and analyze inter-subject 
variation using Principal Component Analysis and group-level statistical modeling. The 
complete pipeline included the following steps: 

1. Selection of the MHD frame and extraction of landmark positions, 
2. Dimensionality reduction via PCA, 
3. Regression modeling of the resulting scores, and 
4. Group comparison of inter-landmark distances and joint angles. 

Each step was performed using custom MATLAB routines and supporting software, and 
applied individually across the 14 available test trials. 

Posture vector construction 
The MATLAB script Time_based_noHPoint.m (which can be found in section 3.2.1 of 
the Annex) was used to process the raw trajectory Excel files for each subject. The script 
loaded the raw (𝑥, 𝑧) trajectories of five landmarks (Head, C4, T1, T4, T8) and allowed 
the user to specify the number of time frames to extract per trial. A value of 10 evenly 
spaced frames was selected to ensure adequate temporal resolution while minimizing data 
redundancy. 
For each test, the frame corresponding to maximum anterior head displacement was 
identified automatically. An example of landmark trajectories and the identified MHD 
frame is shown in Figure 3.3-1. 
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Figure 3.3-1. Example of landmark trajectories during a test, with the frame of maximum head 
displacement (MHD) highlighted in black. Dark gray and light gray indicate frames before and after MHD, 
respectively. 

 

The (𝑥, 𝑧) coordinates of the five landmarks at this frame were extracted and re-referenced 
relative to the T8 landmark to remove global translation. These ten values (5 landmarks 
× 2 coordinates) were flattened into a row vector and stored for each trial. 

This process yielded a posture matrix 𝐏 ∈ ℝ(?×(& , with each row representing the 
configuration of the upper torso at MHD in a standardized reference frame. 

Principal Component Analysis 

The PCA was carried out using the MATLAB script  

Pca_analysis_p2.m (found in section 3.2.2. of the Annex), which takes in the matrix 𝐏 as 
input. The data were mean-centered prior to decomposition, and the analysis was 
restricted to the first three principal components, which collectively explained the 
majority of variance in the sample. 

The resulting score matrix 𝐙 ∈ ℝ(?×>  was saved for use in the regression stage. These 
components were interpreted as specific modes of shape variation reflecting differences 
in curvature, alignment, or elevation between landmarks, at MHD. 
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Regression modeling 
The PCA scores were exported to and Excel file where each row corresponded to a single 
test trial and each column represented one of the three retained principal components. The 
file also included subject-specific variables such as age, kind (young vs. elderly), head 
girth, and other anthropometric measures. 
As in Method 1’s Regression modeling implementation section, regression models were 
implemented in GRETL. Each principal component was modeled separately using one 
independent variable, selected based on empirical performance. Multivariable models 
were tested but consistently produced unstable or uninterpretable results, and were 
therefore discarded. 

Inter-landmark distances and angles analysis 
The final section of Time_based_noHPoint.m prompts the user to select a reference 
landmark for alignment. This feature was used to visualize the torso configurations of all 
subjects at MHD, re-centered around a common anatomical point (typically C4 or T1). 
The goal was to enable qualitative inspection of group-level differences in posture. 
The quantitative analysis was carried out using the MATLAB script 
Relative_positions_analysis.m (available in section 3.2.3 of the Annex), which computed 
the Euclidean distances between each pair of adjacent landmarks for every subject, as 
well as joint angles for all triplets of consecutive landmarks. These distances and angles 
were grouped by age category (young vs. elderly), and two-sample t-tests were performed 
to assess statistical significance.  
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3.4. Method 3: Arc-Length Re-Parameterization and Signal Registration for 
generation of average trajectories and deviation corridors 

3.4.1. Method Overview 

This final method aims to characterize the central tendency and variability of landmark 
trajectories by constructing a representative average path and corresponding confidence 
corridors. Unlike the approaches presented in previous sections, the present technique 
maintains the full curve geometry while providing statistical descriptors of its dispersion 
across subjects. It does so by leveraging arc-length as a geometric parameter, rather than 
time, to re-parameterize the trajectories. This allows for meaningful comparison and 
averaging even when signal durations vary, or when timing is inconsistent across trials 
due to inter-subject variability. 
The technique follows the methodology described by Hartlen and Cronin (2022), and is 
implemented via the ARCGen toolbox (HART22), available in section ARCGen of the 
Annex. ARCGen is specifically designed to compute characteristic averages and 
statistical corridors for sets of biomechanical curves that may be non-monotonic, multi-
dimensional, or irregularly sampled. Its three-stage process (arc-length re-
parameterization, signal registration, and statistical envelope construction) is well-suited 
to the kinematic data in this study. 
The first stage, arc-length re-parameterization, transforms each input trajectory into a 
representation where position is a function of normalized arc length, rather than time. 
This is particularly valuable for signals that vary in speed or duration across subjects, as 
it ensures that key geometric features (e.g., peaks or inflection points) are aligned 
according to their pathwise progression rather than absolute timing. Normalization of arc 
length to the unit interval [0, 1]	enables uniform sampling across signals with different 
total lengths, facilitating subsequent averaging. 
In the second stage, optional signal registration is performed. While arc-length 
normalization already provides a degree of alignment, it does not guarantee that 
corresponding features (such as the peak forward excursion of the head) occur at exactly 
the same normalized arc-length across all signals. To address this, ARCGen applies a set 
of signal-specific warping functions that subtly shift the resampling positions to improve 
feature alignment. These warping functions are constrained to be strictly monotonic, 
preserving the sequence of points along the trajectory. Their flexibility is controlled by 
two key parameters: the number of interior control points and a penalty factor that limits 
excessive distortion. Both parameters were manually set based on the shape complexity 
of the trajectories and the expected number of salient inflection points. 
Finally, once all signals are represented in a common arc-length domain and optionally 
registered, ARCGen performs statistical analysis at each resampled arc-length location. 
At every normalized arc-length value, it computes the mean and standard deviation of the 
𝑥 and 𝑧 coordinates across subjects, assuming a local bivariate normal distribution. These 
statistics define an elliptical confidence region at each point along the mean trajectory. 
The union of these ellipses forms an envelope, or “corridor,” that represents the inter-
subject variability of the signal set. Because there is no analytical expression for the 
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envelope of such overlapping ellipses, a marching-squares algorithm is used to 
numerically extract the outer boundary. The final output consists of the characteristic 
average trajectory, and the inner and outer bounds of the statistical corridor. 
In summary, the arc-length-based method introduced in this section offers a 
complementary perspective to the previous analyses by operating directly on the full 
geometry of each trajectory. It enables robust averaging of motion paths across subjects 
by using shape-based alignment rather than time-based synchronization, and produces 
both a representative curve and statistical corridors that describe inter-subject variability. 
This approach is particularly suitable for analyzing signals with heterogeneous durations 
and complex features, and is applied here to evaluate group-level trends in upper-body 
motion during frontal deceleration. 

3.4.2. Literature background 

The arc-length-based approach implemented in this section builds upon a growing body 
of work that addresses the limitations of traditional time-domain averaging techniques in 
biomechanics. When analyzing human motion, signals recorded across subjects often 
exhibit temporal misalignments, unequal durations, and variations in key feature 
locations. These discrepancies can distort point-wise averages and undermine the validity 
of statistical summaries. As a result, alternative frameworks have been developed to 
enable consistent alignment and representation of such signals, with arc-length re-
parameterization and signal registration emerging as robust solutions. 
A foundational contribution in this area is the previously mentioned study by Hartlen and 
Cronin (2022), which introduced a unified methodology for computing characteristic 
averages and statistical response corridors in biomechanical data. Their method combines 
arc-length normalization with constrained signal registration to produce smooth, feature-
preserving mean curves and confidence regions that remain valid even for signals that are 
non-monotonic or terminate at different points. The approach is demonstrated across a 
range of applications, including oscillatory head kinematics and hysteretic thoracic force–
displacement responses, and is made accessible through the open-source ARCGen 
software package, available in the Annex section ARCGen. Their work addresses both 
geometric consistency and statistical rigor, offering an alternative to ad hoc signal 
averaging or manual segmentation (HART22). 
Several related studies have explored similar challenges in other domains. White et al. 
(2023) applied arc-length methods to tissue compression and impact responses, 
highlighting their utility in cases where signals do not share a common endpoint or exhibit 
substantial shape variability (WHIT23). 
Meanwhile, Chau et al. (2005) proposed a global registration criterion for biomechanical 
curves that optimizes time-warping functions to align signal features while minimizing 
cross-correlation errors (CHAU05). 
Dynamic time warping (DTW), as discussed by Lee (2019), represents a related but 
distinct approach to curve alignment. Although DTW has proven effective in 
synchronizing features in gait data, it does not offer a probabilistic framework for 
representing variability, nor does it operate naturally in the geometric domain of signal 
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shape (LEE19). In contrast, methods based on arc-length re-parameterization provide a 
direct means of aligning curves along their physical trajectories, making them better 
suited for biomechanical applications where spatial accuracy is critical. 
Together, these studies support the adoption of arc-length and registration-based 
approaches for analyzing inter-subject motion data. They provide a methodological 
foundation for the technique applied in this thesis and reinforce its applicability to the 
study of kinematic variability during low-speed frontal deceleration events. 

3.4.3. Purpose and justification 

The inclusion of an arc-length-based method in this thesis responds to the need for a 
shape-focused approach capable of summarizing biomechanical trajectories with minimal 
distortion, especially when signals vary in duration and structure. In the context of frontal 
deceleration tests, volunteer trajectories often differ not only in timing but also in the 
spatial evolution of motion. These differences challenge traditional time-based averaging, 
which assumes consistent temporal alignment and can obscure key motion features when 
this assumption fails. 
Rather than compressing trajectories into low-dimensional control point sets or isolating 
a representative frame, this method retains the full geometric path of each signal and 
compares trajectories on the basis of normalized arc-length. This shift from time to shape 
as the organizing principle enables meaningful alignment of features such as turning 
points, inflection changes, and reversals, even when they occur at different times across 
trials. As a result, the average trajectory produced better reflects the underlying motion 
pattern and avoids the artificial smoothing that can result from time-domain averaging. 
This method is particularly valuable in the present context because it allows for direct 
comparison of complex landmark trajectories without requiring artificial signal trimming 
or manual adjustment. It also accommodates non-monotonic motion and inter-subject 
variation without enforcing uniform test durations or synchronized peak locations. In 
doing so, it generates interpretable outputs that preserve biomechanical meaning and 
allow group-level variability to be visualized and compared under consistent spatial 
conditions. 
Ultimately, this approach adds a complementary layer of analysis to those already 
presented in Methods 1 and 2. It provides a statistical framework that reflects the full 
curve geometry of upper-body motion during deceleration and supports the investigation 
of inter-group differences with minimal preprocessing or abstraction. 

3.4.4. Mathematical background 

The method applied in this section is based on arc-length re-parameterization and signal 
registration to compute a characteristic average and statistical response corridor from a 
set of trajectories. Let 𝛾ᵢ(𝑡) 	= 	 (𝑥ᵢ(𝑡), 𝑧ᵢ(𝑡)) represent the planar trajectory of a given 
landmark during test 𝑖, with 𝑡	 ∈ 	 [0, 𝑇ᵢ] denoting time and 𝑇ᵢ the duration of the signal. 
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Arc-length reparameterization 
Since the recorded trajectories may differ in length and progression due to inter-subject 
variability, to better produce meaningful comparisons, each trajectory is reparametrized 
with respect to its arc length. 

The arc-length function 𝑠ᵢ(𝑡)	of signal 𝛾ᵢ(𝑡) is computed as: 

				𝑠ᵢ(𝑡) = 	® �|𝛾̇ᵢ(𝜏)|�𝑑𝜏
F

&
 

This function measures the cumulative distance traveled along the trajectory up to time 𝑡. 
To standardize across signals, the arc length is normalized by the total length 𝐿ᵢ	 = 	𝑠ᵢ(𝑇ᵢ), 
yielding the normalized arc-length parameter: 

				𝑠̃ᵢ(𝑡) = 	
𝑠!(𝑡)
𝐿!

 

This maps each trajectory to a common domain [0,1], where 𝑠̃	 = 	0 corresponds to the 
start of the motion and 𝑠̃	 = 	1	to the endpoint. The reparametrized trajectory is then 
expressed as: 

				𝛾�ᵢ(𝑠) = 	𝛾ᵢN𝑡̃ᵢ(𝑠)O 

where 𝑡̃ᵢ(𝑠) is the inverse of the normalized arc-length function. In practice, all signals 
are resampled at 𝑀  equally spaced arc-length values 𝑠ⱼ	 = 	.

G+(
,  𝑗	 = 	0, 1, . . . , 𝑀 − 1. 

This ensures that each trajectory is represented by the same number of points, aligned by 
geometric progression rather than time. 

Signal Registration 
To further improve feature alignment across signals, a non-linear registration step is 
applied via warping functions. Each reparametrized signal 𝛾̃ᵢ(𝑠) is transformed into a 
registered version 𝛾̂i (𝑠) using a strictly monotonic warping function 𝜑ᵢ(𝑠): 

				𝛾́ᵢ(𝑠) = 	 𝛾�ᵢN𝜑ᵢ(𝑠)O 

These warping functions are optimized numerically to improve alignment of local 
features across subjects while penalizing excessive deformation. They are defined by a 
small number of control points and a penalty parameter, which are manually specified in 
the ARCGen execution script. 
Once all signals are expressed in the same arc-length domain and optionally registered, 
the average trajectory is computed pointwise: 

				𝛾̄(𝑠ⱼ) = 	
1
𝑁8𝛾́ᵢ(𝑠ⱼ)

3

!%(
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Statistical Corridor Development 
To quantify variability around the average, a bivariate normal distribution is fitted at each 
arc-length location 𝑠ⱼ, using the sample covariance matrix 𝛴ⱼ of the set {𝛾́ᵢ(𝑠ⱼ)} for 𝑖 =
1	to 𝑁. The corresponding 95% confidence region is described by the ellipse: 

				ℰⱼ	 = 	 {	𝑥	 ∈ 	ℝ²	|	(𝑥	 −	 𝛾̅(𝑠ⱼ))ᵀ	𝛴ⱼ⁻¹	(𝑥	 −	 𝛾̅(𝑠ⱼ)) 	≤ 	𝑘²	} 

with 𝑘²	 = 	5.991, the 95% confidence threshold for the chi-squared distribution with two 
degrees of freedom. 
The full corridor is formed by the union of these ellipses across all arc-length points. 
Since the envelope cannot be computed analytically, a marching-squares algorithm is 
used to numerically extract its outer boundary. ARCGen outputs three primary elements: 
the characteristic average trajectory, and the inner and outer boundaries of the statistical 
corridor, all of which are used to visualize shape consistency and variation across trials. 
For a more illustrative explanation of this method’s output, see Figure 3.4-1. and Figure 
3.4-2. 

 
Figure 3.4-1. Three biomechanical response signals before arc-length re-parameterization and 
registration. The signals display misaligned peaks and valleys, resulting in a less representative average 
response. 
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Figure 3.4-2. The same signals after applying arc-length re-parameterization and registration. Temporal 
alignment of key features is improved while preserving individual shape characteristics. 

 

3.4.5. Implementation 

The implementation of the arc-length re-parameterization and corridor analysis was 
carried out using the ARCGen toolbox provided by Hartlen and Cronin (2022), along 
with a set of support scripts developed for preprocessing and structuring the raw 
experimental data (HART22). The full procedure was executed in MATLAB and follows 
two main stages: 

1. Data formatting and signal preparation 
2. Batch execution of ARCGen. 

Data formatting for ARCGen input and signal preprocessing 
The ARCGen toolbox requires that each input trajectory be provided as a separate .csv 
file, structured as a column vector of 2D coordinates (𝑥, 𝑧). Since the original dataset 
consisted of multi-landmark Excel files (one per test), a preparatory MATLAB script was 
developed to extract and reshape the data. The script generate_csvs_from_excels.m 
(available in section 3.3.1 of the Annex) reads the raw Excel files containing all landmark 
trajectories for each test and automatically generates individual .csv files, one per 
landmark per test.  
Once all .csv files were generated, the next step was to compile them into a single 
MATLAB structure compatible with ARCGen. This was performed using the 
PreProcessInputSignals.m script, which is included with the original ARCGen 
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distribution, available in section 2.1.2. of the Annex. When executed, the script 
concatenates all relevant .csv files, and stores them in a .mat file. This file serves as the 
main input for the following ARCGen execution step. 
If the same set of input signals is to be reused across multiple runs, the preprocessing step 
can be skipped by directly loading the .mat file into the MATLAB workspace. This avoids 
redundant processing and preserves naming consistency across runs. 

Execution and output generation 
The computation of the average trajectories and corresponding corridors was carried out 
using ARCGen’s routine, Arcgen_executer_comparison.m (section 3.3.2 of the Annex) 
which was adapted from the open-source file Arcgen_executer.m, (section 2.1.3 of the 
Annex), to be able to processes the tests separately by age group (young vs elderly). 
During execution, the default ARCGen parameters used in Hartlen and Connin’s (2022) 
study were retained, with the exception of the number of control points used in the 
warping function, which was set to two. This value allowed for moderate feature 
alignment without overfitting the warping curves. The algorithm automatically registered 
the input signals, computed the mean curve across samples, and generated the associated 
confidence corridors. 
Outputs from ARCGen consisted of a characteristic average trajectory and two statistical 
corridors representing the distribution of observed responses. These curves allowed the 
comparison of motion consistency across groups and provided an interpretable geometric 
summary of landmark behavior under frontal deceleration. Figure 3.4-3. displays an 
example output graph for landmark Head. The complete set of graph is contained in the 
Group-Specific ARCGen Outputs section. 
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Figure 3.4-3.Example ARCGen outputs for the Head landmark. Average trajectories and 95% statistical 
corridors are shown for young (red) and elderly (blue) groups. 

  



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

76 
 

 
 

  



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

77 
 

 
 

4. RESULTS 
4.1. Method 1: B-Spline approximation and Principal Component Analysis of 

individual landmark trajectories 

4.1.1. Spline fitting and dimensionality reduction 

This section presents the outputs of the B-spline fitting process applied to the anatomical 
landmark trajectories. The goal was to reduce signal dimensionality while preserving key 
movement patterns relevant for inter-subject comparison and statistical modeling. 
For initial reference, Figure 4.1-1. displays the initial trajectories, for landmarks Head 
through T8, for an example test. This is provided as context of the relative positioning of 
landmarks against each other, and of real geometric shape of the trajectories. For the 
shake of mathematical analysis and visualization, the proportions of axes in following 
graphs may be distorted, which is why this reference graph is provided. 

 
Figure 4.1-1. Raw X–Z trajectories of the five anatomical landmarks (Head, C4, T1, T4, and T8) for each 
trial. Displacements have been zeroed relative to the initial Head position. 

 
For the coming analysis, individual landmark trajectories are studied separately. Figure 
4.1-2. shows the (𝑥, 𝑧) trajectories of all six landmarks (Head, C4, T1, T4, T8, H-point) 
individually for a single test trial. The signals vary substantially in curvature and extent, 
with some landmarks (e.g., Head) showing larger excursions than others.  
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Figure 4.1-2. Original (x, z) motion trajectories of all six anatomical landmarks for a representative trial. 
Each plot shows the full deceleration interval for a single landmark, as recorded at 1,000 Hz. 

Following B-spline fitting, each trajectory was approximated using 8 control points per 
landmark. Figure 4.1-3. displays the same six trajectories overlaid with their respective 
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spline approximations. The fitted curves track the main movement paths while smoothing 
out high-frequency variability. 

 
Figure 4.1-3. Same trajectories, now overlaid with cubic B-spline fits. The splines replicate the overall 
shape of each signal while filtering noise and enabling dimensionality reduction. 
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To evaluate fit quality, the root mean square error (RMSE) was computed between each 
original trajectory and its spline approximation, after resampling both signals at 10 
uniformly spaced points along the time axis. Table 4.1-1. reports the mean RMSE values 
across all subjects for each landmark. Error values remained low across the board, 
confirming that the approximation was consistent and reliable. 
 

Landmark Mean RMSE (mm) Standard Deviation (mm) 

Head 7.953 3.3235 

C4 3.2135 1.7682 

T1 3.4282 1.5185 

T4 3.4649 1.3725 

T8 3.3414 1.276 

H-point 1.8192 0.69731 
 

Table 4.1-1.RMSE Summary Table - Mean RMSE between original trajectories and B-spline 
approximations, averaged over all trials. Evaluation performed on 10-point uniform resampling of each 
trajectory. 

 
Each fitted trajectory was encoded as a 16-dimensional feature vector, formed by 
flattening the eight control points into (x₀, z₀, x₁, z₁, …, x₇, z₇). These vectors served as 
standardized inputs to the next analytical stage: Principal Component Analysis. 

4.1.2. Principal Component Analysis outcomes 

Principal Component Analysis (PCA) was performed independently for each anatomical 
landmark using the 16-dimensional vectors obtained from the spline control points. The 
goal was to identify the dominant modes of inter-subject variation and assess the 
effectiveness of dimensionality reduction. 
Table 4.1-2. reports the cumulative variance explained by the first three principal 
components for each landmark. In all cases, PC1 alone captured over 40% of the variance, 
and the combination of the first three components consistently accounted for more than 
80%, confirming that the spline-transformed data contained compact and structured 
variability. 
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Landmark PC1 (%) PC1 + PC2 (%) PC1 + PC2 + PC3 (%) 

Head 60.45 82.80 89.74 

C4 56.15 77.06 86.28 

T1 50.27 71.87 84.91 

T4 47.55 73.95 84.84 

T8 49.13 79.05 89.60 

H-point 42.51 66.07 84.27 
 

Table 4.1-2. Cumulative variance explained (%) by the first three principal components for each 
anatomical landmark. 

 
To explore the distribution of subject trajectories in the reduced space, 2D scatter plots 
were generated for all six landmarks, projecting each trial onto the first two principal 
components. These plots are shown in Figures 4.1-4, with points color-coded by group 
(young vs. elderly). In general, the distributions exhibit substantial overlap between 
groups. Some elderly subjects appear as outliers in certain landmarks (e.g., Subject 14 in 
T4 and T8), but no consistent visual pattern emerges across landmarks. This suggests that 
while PCA captured meaningful modes of variation, group-level differentiation based on 
visual inspection alone is not conclusive.  
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Figures 4.1-4.  Projections of subject trajectories onto the first two principal components for all  landmarks, 
individually. 
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These projections provided a geometric summary of inter-subject differences in motion 
shape, but they did not support direct interpretation regarding demographic effects. The 
relationship between principal component scores and subject characteristics was therefore 
examined through regression analysis in the following section. 

4.1.3. Regression modeling results 

Following PCA, regression modeling was performed to investigate whether the principal 
component scores, representing dominant trajectory shape modes, could be explained by 
subject characteristics. Each retained component (PC1 and PC2) for each landmark was 
modeled independently using one predictor at a time, as outlined in the Implementation 
section of Regression modeling. The candidate predictors included age group (“kind”), 
seated height, and other anthropometric measures. This section presents the models that 
yielded statistically meaningful associations (𝑝	 < 0.05), as well as critical commentary 
on models with borderline or inconclusive results. Table 4.1-3. reports the best-fitting 
model for each landmark and principal component. 

 

Landmark PC Index Predictor Coefficient 𝒑-value Adjusted 𝑹𝟐 

Head 1 Seated height -0.558 0.0948 0.15 

C4 1 Seated height 0.495 0.128 0.114 

T1 1 Seated height 0.461 0.1351 0.108 

T4 1 Seated height 0.484 0.1037 0.139 

T8 1 Seated height 0.274 0.3845 -0.014 

H-point 1 Seated height 0.346 0.2305 0.044 

Head 2 Kind 1.897 0.0496 0.225 

C4 2 Kind 1.696 0.0733 0.18 

T1 2 Kind 2.203 0.0158 0.346 

T4 2 Kind 2.658 0.0066 0.429 

T8 2 Seated height 0.452 0.0494 0.225 

H-point 2 Seated height -0.379 0.0654 0.193 
 

Table 4.1-3. Best one-variable regression models for each landmark and principal component. Grey 
shading indicates p < 0.05. 
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These results indicate that PC2, not PC1, was more responsive to subject characteristics. 
Specifically, PC2 of the T1 and T4 landmarks showed strong associations with group 
category (young vs. elderly), both in terms of effect size and explained variance (adj. 𝑅² 
> 34%). The positive coefficients imply that elderly subjects consistently scored higher 
on these components, suggesting systematic shape differences in mid- and lower-spine 
trajectories. For T8, seated height was significantly correlated with PC2 scores, though 
the explained variance remained modest (adj. 𝑅² = 22.5%). 

The regression model for PC2 of the Head also reached statistical significance (𝑝 = 
0.0496), but its adjusted 𝑅² was also low (22.5%), suggesting that group differences exist 
but account for only a more modest share of the variability. 

In contrast, none of the PC1 regressions achieved significance at 𝑝 < 0.05, despite visible 
trends in scatter plots. Several models, such as PC1 of the Head (𝑝	= 0.0948), C4 (𝑝 = 
0.128), T1 (𝑝 = 0.1351), and T4 (𝑝 = 0.1037), showed weak-to-moderate associations 
with seated height, but their low explanatory power (adjusted R² < 15%) and borderline 
significance do not warrant inclusion. These may suggest biomechanical trends worth 
exploring with larger samples, but cannot support strong claims. 
No models involving other predictors (e.g., age in years, neck girth, body mass) yielded 
statistically significant results, and no multivariable models were retained due to 
multicollinearity or unstable coefficients. Attempts to predict full trajectories by 
reconstructing spline control points from PCA regression outputs were also explored, but 
the resulting errors were prohibitively large and have not been included in the final 
analysis. 
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4.2. Method 2: Landmark relative positioning analysis at peak displacement 

4.2.1. Frame selection and posture vector extraction 

This subsection reports the initial outputs of Method 2, focused on isolating subject 
posture at the frame of maximum forward excursion. For each trial, a single time frame 
was selected corresponding to the maximum anterior displacement of the Head landmark 
in the 𝑥-direction. The goal was to extract a posture snapshot that best captured inter-
subject variability in spinal alignment during peak deceleration. 
The analysis excluded the H-point landmark due to its irregular trajectory and spatial 
distance from the rest of the torso markers, which risked distorting posture comparisons. 
This decision was based on visual inspection of trajectory data and confirmed during 
preprocessing, where H-point motion appeared inconsistent across trials and decoupled 
from upper-body dynamics. 

The frame selection process started by loading the (𝑥, 𝑧) trajectories for the five remaining 
landmarks (Head, C4, T1, T4, and T8) from each test. For each trial, ten evenly spaced 
time frames were identified along the deceleration event. The instant at which the head 
reached its furthest forward displacement was also detected and used to extract posture. 
Figure 4.2-1. shows the output for a representative trial (Subject 1694). The five landmark 
trajectories are visualized as sagittal segments across the deceleration event, with the 
MHD frame shown in black, and preceding/following frames in dark and light gray, 
respectively. This visualization provides insight into the progression of torso motion and 
allows verification that the selected frame indeed captures the moment of peak head 
displacement. 
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Figure 4.2-1. Landmark trajectories for Subject 1694 with the frame of maximum head displacement 
(MHD) highlighted in black. Dark gray and light gray lines indicate frames before and after MHD, 
respectively. Each frame connects anatomical landmarks in the sagittal plane. 

 

At the selected frame, the (𝑥, 𝑧) coordinates of the five landmarks were extracted and then 
re-referenced by subtracting the position of the T8 landmark. This translation removed 
global body displacement, allowing comparisons of postural configuration across subjects 
on a common frame of reference. The resulting posture vector comprised 10 values (five 
landmarks × two coordinates) and was flattened into a row vector. 
Figure 4.2-2. displays the posture configuration of Subject 1694 at MHD after re-
referencing. All landmarks are expressed relative to T8, now located at the origin. This 
spatial arrangement reveals the internal posture of the upper torso at peak excursion, 
offering a geometric description of spinal alignment independent of the subject’s global 
movement. 
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Figure 4.2-2 Posture configuration of Subject 1694 at the frame of maximum head displacement, expressed 
relative to the T8 landmark. Coordinates represent sagittal-plane displacement, with landmark labels 
indicating anatomical identity. 

 
This process was repeated for all 14 valid test trials, yielding a 14 × 10 matrix of 
standardized posture vectors. These vectors formed the input to the dimensionality 
subsequent reduction stage. 

4.2.2. PCA Outcomes 

After posture vector extraction, PCA was applied to reduce dimensionality and identify 
dominant modes of variation in upper torso configuration at the moment of MHD. Each 
trial was represented by a 10-dimensional vector composed of (𝑥, 𝑧) coordinates for five 
anatomical landmarks re-referenced to T8. PCA was performed on the resulting 14 × 10 
matrix. 
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Table 4.2-1. reports the variance explained by the first three principal components, which 
were retained for subsequent modeling. PC1 accounted for nearly half of the total 
variance, while the cumulative variance explained by the first three components exceeded 
85%, indicating that a compact representation of inter-subject posture differences was 
achieved. The retained PCA scores for each subject served as dependent variables in the 
regression analysis that follows. 
 

PC Index Variance explained (%) Cumulative variance explained (%) 

1 46.5 46.5 

2 28.4 74.9 

3 13.7 88.6 
 

Table 4.2-1. Variance explained by the first 3 principal components extracted from posture vectors at MHD. 

 

4.2.3. Regression Modeling Results 

To evaluate whether the principal components derived from posture vectors at MHD 
could be systematically explained by subject characteristics, simple linear regressions 
were performed for each retained component. For each of the three retained principal 
components (PC1, PC2, and PC3), a separate linear regression was constructed using a 
single predictor variable. The candidate predictors included subject characteristics such 
as group (young vs. elderly), head girth, and age. Models were evaluated individually, 
and the one with the lowest p-value and clearest biomechanical interpretability was 
retained for each component. This one-variable strategy was adopted because 
multivariable models showed poor performance in preliminary testing. All regressions 
were performed using ordinary least squares in GRETL, and residual diagnostics showed 
no major violations of linear model assumptions. 
Table 3.5 summarizes the best-fitting model for each component. The table reports the 
predictor used, estimated regression coefficient, p-value, and adjusted R².  

 

PC Index Predictor Coefficient 𝒑-value Adjusted 𝑹𝟐 

1 Kind –1.498 0.193 0.065 

2 Head girth –0.313 0.296 0.015 

3 Age (years) 0.0146 0.037 0.259 
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Table 4.2-2. Summary of best single-variable regression models for PC1, PC2, and PC3 derived from 
posture vectors at MHD. Grey shading indicates p < 0.05. 

Of the three principal components, only the regression model for PC3 reached statistical 
significance at the 5% level. In this case, age emerged as a significant predictor, with a 
𝑝-value of 0.037 and an adjusted 𝑅² of 0.259. The positive coefficient (0.0146) indicates 
that PC3 scores increase slightly with age. While this model does not explain the majority 
of the variance, it accounts for a non-trivial portion and suggests that PC3 captures a 
postural variation that correlates meaningfully with aging. The direction and significance 
of the effect indicates that PC3 captures a difference in torso posture that increases with 
age. 
In contrast, the models for PC1 and PC2 show weak and statistically inconclusive results. 
The best regression of PC1, on group membership (young vs. elderly), yielded a non-
significant 𝑝 -value (0.193) and an adjusted 𝑅²  of just 6.5%. Although the negative 
coefficient (–1.498) suggests that elderly subjects tend to score lower on PC1, the lack of 
significance combined with the small effect size does not support this as a reliable 
relationship. Similarly, PC2 was regressed against head girth, producing an even less 
promising model: the p-value was 0.296, and the adjusted 𝑅² dropped to just 1.5%. These 
figures indicate no meaningful explanatory power, and the small sample size further limits 
the ability to detect subtle effects. 
Taken together, these results imply that only one of the three dominant shape modes 
(PC3) shows a statistically credible association with subject characteristics, and even that 
model explains only about 26% of the observed variability. The other components appear 
to reflect postural variations that are either not well captured by the recorded 
anthropometric variables or are driven by more complex, multivariate interactions not 
modeled here. 

4.2.4. Posture Metrics: Inter-Landmark Distances and Joint Angles 

To further assess group-level differences in torso configuration at the moment of 
maximum head displacement (MHD), two complementary analyses were conducted: (1) 
an evaluation of distances between consecutive anatomical landmarks, and (2) an analysis 
of internal joint angles formed by triplets of adjacent landmarks. Both approaches aimed 
to capture biomechanically meaningful distinctions between young and elderly postures 
under frontal loading. 
Before conducting these analyses, Figure 4.2-3. provides a qualitative overview of subject 
postures at the MHD frame. Each configuration has been re-referenced to the T8 
landmark, removing translational effects and enabling direct comparison of internal 
alignment. The plotted segments connect the Head, C4, T1, T4, and T8 landmarks for 
each subject, with red lines representing young volunteers and blue lines, elderly. The 
graph seems to reveal that elderly subjects tend to show more upright, extended upper 
torso postures, while younger subjects display a broader range of configurations, 
including more forward-flexed profiles. This pattern is especially noticeable in the Head 
and C4 segments, suggesting age-related variation in cervical posture under frontal 
loading. However, no quantitative results can be obtained from just observation here. 
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Figure 4.2-3. Posture of all subjects at maximum head displacement, re-referenced to T8, shown as a 
sequence of line segments connecting Head to T8. Red: young group; blue: elderly group. 

Inter-Landmark Distance Analysis 
The first analysis calculates the Euclidean distances between adjacent landmarks: Head–
C4, C4–T1, T1–T4, and T4–T8. The group means and statistical comparisons are shown 
in Table 4.2-3. 

 

Segment Young (𝒏 = 9) Elderly (𝒏 = 5) 𝒑-value 

Head–C4 139.17 ± 17.90 mm 149.98 ± 6.72 mm 0.224 

C4–T1 71.16 ± 25.10 mm 42.22 ± 15.42 mm 0.039 

T1–T4 92.17 ± 12.63 mm 105.81 ± 21.07 mm 0.151 

T4–T8 123.31 ± 19.97 mm 147.00 ± 32.81 mm 0.115 
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Table 4.2-3. Inter-landmark distances (mm) at MHD. Values represent mean ± standard deviation per 
group. P-values from two-sample t-tests included to assess group differences. Grey shading indicates p < 
0.05. 

The only segment showing a statistically significant group difference was C4–T1, which 
was markedly shorter in elderly subjects (𝑝	 = 0.039). However, it is important to note 
that this analysis involved four independent comparisons, each using the same dataset. 
To control for the increased risk of Type I error (false positive) in this context, a 
Bonferroni correction would adjust the significance threshold from 𝛼	 = 0.05 to 𝛼	 = 
0.0125. Under this stricter criterion, none of the inter-landmark distance differences 
would reach statistical significance, including C4–T1. Given the small sample size and 
correlated nature of these measurements, such corrections may be overly conservative, 
but they underscore the need to interpret the distance-based findings with caution. The 
high variance observed across most segments further complicates interpretation, limiting 
the strength of conclusions drawn from mean comparisons alone. 

Joint Angle Analysis 
To obtain a more anatomically grounded view of postural variation, joint angles were 
calculated at three internal nodes of the torso using the Head–C4–T1, C4–T1–T4, and 
T1–T4–T8 triplets. These angles represent flexion or extension at key cervical and 
thoracic junctions and are invariant to global translation or segment length. Group 
averages and statistical results are summarized in Table 2.2-1. 

 

Joint Angle Definition Young (n=9) Elderly (n=5) p-value 

C4 Head–C4–T1 132.81 ± 2.36° 137.61 ± 4.94° 0.055 

T1 C4–T1–T4 169.81 ± 5.59° 173.18 ± 6.56° 0.599 

T4 T1–T4–T8 160.15 ± 8.33° 152.99 ± 4.11° 0.027 
 

Table 4.2-4. Internal joint angles (°) at MHD. Values represent mean ± standard deviation. P-values are 
based on Welch’s t-test (no assumption of equal variance). Grey shading indicates p < 0.05. 

 
Of the three angles analyzed, the T4 angle (T1–T4–T8) exhibited a statistically significant 
difference (𝑝	 =	0.027), with elderly subjects showing a more flexed posture (smaller 
angle) in the lower thoracic region. The C4 angle also showed a trend toward significance 
(𝑝	 = 0.055), suggesting a more extended cervical posture in the elderly group, though 
this result falls just above the conventional 𝛼	 = 0.05 threshold. The T1 angle showed no 
group difference. 
Compared to the distance-based metrics, these angle results provide clearer and more 
interpretable biomechanical insight, reflecting postural curvature rather than absolute 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

94 
 

 
 

displacement. However, statistical power remains limited by the small sample size (𝑛	 = 
14) and unbalanced group sizes. 
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4.3. Method 3: Arc-Length Re-Parameterization and Signal Registration for 
generation of average trajectories and deviation corridors 

4.3.1. Group-Specific ARCGen Outputs 

This subsection presents the outputs of Method 3, which characterizes landmark 
trajectories using arc-length-based averaging and corridor generation. The analysis 
focuses on the geometric dispersion of torso movement patterns and how these vary by 
age group. 
The ARCGen software, as released, was originally configured to generate a single 
characteristic average trajectory and associated statistical corridor from a pooled dataset. 
For the purposes of this study, the ARCGen execution scripts were adapted to operate 
separately on the young and elderly subgroups, allowing for age-specific analysis of 
postural variation. This adjustment preserved the method’s core features (arc-length re-
parameterization, signal registration, and two-dimensional statistical corridor 
construction) while enabling groupwise geometric comparisons. 
Only the results from the age-separated runs are presented below, as they provide clearer 
insights into group-level differences. For each landmark, the figures display the average 
trajectory and 95% confidence corridor for both age groups, plotted along normalized arc-
length. In the background, in lighter hues, the individual trajectories can also be observed. 
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4.3.2. Landmark 1: Head 

Figure 4.3-1. shows the ARCGen outputs for the Head landmark, comparing the 
characteristic average trajectories and statistical corridors of the young and elderly 
groups. Both curves follow a similar overall shape: an initial upright position followed 
by forward displacement and a gradual return. 
The average trajectory of the elderly group shows a smaller horizontal excursion than that 
of the young group, particularly near the midpoint of the arc-length path. In contrast, the 
young group exhibits a more pronounced forward curvature, indicating greater forward 
displacement during peak motion. 
Corridor width and average position differs most noticeably around the region of 
maximum excursion. The elderly group displays a visibly broader corridor in this mid-
trajectory segment, indicating higher inter-subject variability in forward displacement.  

 
 

Figure 4.3-1. ARCGen outputs for the Head landmark. Average trajectories and 95% statistical corridors 
are shown for young (red) and elderly (blue) groups. Greater variability is observed in the elderly group 
during the central portion of the arc-length path. 
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4.3.3. Landmark 2: C4 

Figure 4.3-2presents the ARCGen outputs for the C4 landmark. Both groups follow a 
trajectory consistent with anterior flexion and subsequent partial recovery. The young 
group's average curve exhibits greater forward progression, while the elderly group’s path 
turns upright after maximum displacement. 
Corridor width remains moderate for both groups at the initial and final segments but 
diverges in the central region. As observed with the Head, the elderly group displays a 
broader confidence corridor around the midpoint of the trajectory. This indicates higher 
variability in the magnitude and path of forward displacement during that segment. The 
young group shows a more compact envelope, suggesting greater consistency in motion 
patterns. 

 
Figure 4.3-2. ARCGen outputs for the C4 landmark. Average trajectories and 95% statistical corridors are 
shown for young (red) and elderly (blue) groups. The elderly group displays increased dispersion during 
the central arc-length segment. 
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4.3.4. Landmark 3: T1 

Figure 4.3-3. shows the ARCGen-derived average trajectories and confidence corridors 
for the T1 landmark. It is noticeable that the young group reaches farther in the anterior 
direction, with the average trajectory extending, well beyond that of the elderly group. 
This difference in forward excursion is most visible around the midpoint of the arc-length 
path, where the young trajectory continues progressing along the 𝑥-axis, while the elderly 
trajectory begins to decelerate and curve upward.The average trajectory of the young 
group extends farther in the anterior direction, indicating a longer forward excursion 
along the 𝑥-axis. The elderly group follows a more compact trajectory, with reduced 
horizontal reach. 
In addition, variability in the elderly group is more pronounced throughout the entire 
trajectory. The corridor remains visibly wider across nearly all arc-length segments, not 
just near peak displacement. In contrast, the young group maintains a more compact 
envelope, especially at the start of the path. 
This consistent widening of the corridor for the elderly group suggests increased 
dispersion in both the magnitude and timing of forward torso movement at the T1 level. 

 
Figure 4.3-3. ARCGen outputs for the T1 landmark. The elderly group (blue) shows increased dispersion 
across the entire arc-length range compared to the young group (red), whose trajectories remain more 
tightly clustered. 
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4.3.5. Landmark 4: T4 

Figure 4.3-4. displays the ARCGen outputs for the T4 landmark. The average trajectory 
of the young group extends farther forward compared to the elderly group, resulting in a 
visibly longer and more curved displacement path in the 𝑥𝑧-plane. The elderly group 
follows a more compact trajectory, with reduced forward reach but a still pronounced 
vertical component. 
Corridor width is markedly greater for the elderly group throughout most of the arc-length 
path. This indicates increased inter-subject variability in the elderly group, both in the 
extent and direction of motion. The young group maintains a narrower envelope, with 
dispersion concentrated primarily around the middle arc-length segment. 

 
Figure 4.3-4. ARCGen outputs for the T4 landmark. The elderly group (blue) exhibits lower forward and 
vertical excursion but a broader statistical corridor compared to the young group (red). 
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4.3.6. Landmark 5: T8 

Figure 4.3-5. displays the ARCGen outputs for the T8 landmark. The average trajectories 
for young and elderly subjects follow distinct paths. The young group shows a forward-
arching trajectory, extending prominently along the x-axis. In contrast, the elderly group 
displays a more posteriorly displaced curve. 
The difference in forward excursion is substantial: the young group's trajectory extends 
nearly to 𝑥 ≈	80 mm, while the elderly group's curve reaches only around 𝑥 ≈ 40 mm, 
then loops upward and backward. This reflects a shorter anterior displacement and a 
steeper vertical component in the elderly group’s motion pattern. 
Corridor width also differs between groups. The elderly group shows greater dispersion 
throughout the trajectory, with a visibly broader confidence envelope, especially in the 
upper and final arc-length segments. The young group maintains a more compact 
envelope overall, with moderate widening near peak forward displacement. 

 
Figure 4.3-5. ARCGen outputs for the T8 landmark. The elderly group (blue) shows a shorter forward 
excursion, accompanied by increased variability compared to the young group (red). 
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4.3.7. Landmark 6: H Point 

Figure 4.3-6. displays the ARCGen outputs for the H-Point landmark. Compared to 
previous landmarks, the individual trajectories show substantially more scatter, especially 
within the young group. Displacement patterns vary widely in direction and amplitude, 
with several trajectories deviating markedly from the group’s average. 
Despite this variability, the average trajectories remain reasonably well-formed for both 
age groups. The young group’s mean path extends farther forward, while the elderly 
group shows a more upward-oriented displacement. However, this distinction is 
significantly less consistent than at all other landmarks. 
The statistical corridors are broad and irregular. The envelopes span a wide region in both 
horizontal and vertical directions, reflecting high inter-subject variability. This pattern 
suggests that motion at the H-Point is less constrained or less consistently expressed 
across individuals. 

 
Figure 4.3-6. ARCGen outputs for the H-Point landmark. Individual trajectories are highly variable, 
especially in the young group. The elderly group shows a more vertically oriented average path and 
broader dispersion overall. 
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4.3.8. Summary of observed patterns 

Across all landmarks, the ARCGen outputs reveal consistent geometric differences 
between age groups, particularly in the extent of forward excursion and the magnitude of 
inter-subject variability. 
The young group systematically displays longer anterior displacement across all 
landmarks, as evidenced by average trajectories extending farther along the 𝑥-axis. In 
contrast, elderly trajectories are typically more compact, with reduced forward reach and 
a tendency toward greater upward (downward for the Head) curvature, especially at C4 
and T8. 
Statistical corridors are generally broader in the elderly group, indicating higher 
dispersion in posture, specially throughout the latter half of the trajectory. The H-Point 
stands out as qualitatively different: both groups exhibit irregular and noisy trajectories, 
with less coherent patterns and broader, more amorphous confidence envelopes. This 
suggests lower consistency of motion at this anatomical reference point compared to the 
others. 
Overall, the method successfully captures some age-related differences in both 
displacement magnitude and inter-individual variability along the arc-length-normalized 
movement paths. However, the relatively small sample size, particularly after subgroup 
separation, limits the generalizability of these patterns and may amplify the influence of 
outliers on both average trajectories and corridor width. 
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5. DISCUSSION 
5.1. Method 1: B-Spline approximation and Principal Component Analysis of 

individual landmark trajectories 

5.1.1. Key Findings and interpretation 

The results obtained through spline-based dimensionality reduction and landmark-
specific PCA revealed several interpretable trends in posture variation during low-speed 
frontal decelerations. Although primary shape modes (PC1) were not significantly 
associated with subject characteristics, secondary modes (PC2) consistently captured 
inter-group differences, particularly between young and elderly volunteers. 
For thoracic landmarks (notably T1 and T4), PC2 scores were significantly higher in 
elderly subjects. This component typically reflected asymmetry or trajectory curvature 
beyond the primary forward excursion encoded by PC1. The consistent positive 
coefficients associated with the elderly group suggest that these volunteers exhibited 
distinct postural behaviors, possibly involving increased forward curvature or altered 
torso control patterns in response to deceleration. These differences may reflect age-
related changes in spinal flexibility, muscle tone, or neuromotor control. 
The Head and T8 landmarks also showed significant or borderline associations, though 
with lower explained variance. In the case of the Head, PC2 scores correlated with group 
membership (𝑝	 = 0.0496), potentially capturing variations in upper spinal compensation 
or head control strategies. At the H-point and C4, no strong statistical effects were 
detected, suggesting that pelvic anchoring and lower cervical posture may be less 
influenced by aging under these loading conditions. 
Overall, Method 1 demonstrated that even low-dimensional summaries of movement 
patterns, derived from compressed control-point representations, can reveal 
biomechanically relevant trends. While PC1 captured the majority of motion amplitude, 
PC2 emerged as a more sensitive discriminator of posture shape differences tied to subject 
characteristics, especially age group. 

5.1.2. Limitations and Potential Improvements 

While Method 1 successfully captured some dominant shape patterns and revealed age-
related differences in postural behavior, several limitations constrain the generalizability 
and interpretive depth of the findings. 
A primary limitation concerns sample size. With only fourteen trials available, and an 
uneven distribution between young and elderly subjects, statistical power was inherently 
limited. This is especially relevant for regression modeling, where the low number of 
degrees of freedom limited the robustness of model fits and discarded multivariate 
analysis. Several models involving PC1 scores (e.g., with seated height as predictor) 
showed modest trends that did not reach statistical significance. Given their consistent 
direction and borderline p-values, it is plausible that these effects reflect genuine 
biomechanical variation that the current sample was underpowered to detect. 
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Another limitation relates to the dimensionality reduction process. The use of B-splines 
with eight control points per trajectory provided a compact and interpretable 
representation of movement, and the RMSE analysis confirmed that this configuration 
preserved most key features. However, the fixed number of control points, while 
methodologically consistent and supported by literature, may have introduced constraints 
in capturing localized features in highly dynamic trajectories. Although the 
approximation proved robust across landmarks, future studies could explore adaptive 
schemes that tailor the number of control points to the complexity of each trajectory, 
potentially enhancing the resolution of subtle shape differences. 
The use of landmark-specific PCA introduced interpretability benefits but also 
methodological fragmentation: since each PCA was performed independently, cross-
landmark correlations in motion (e.g., coordinated movement of T1 and T4) were not 
captured. A joint PCA or multivariate approach could potentially reveal coupled 
behaviors that single-landmark decompositions may have overlooked. 
In the regression stage, only univariable linear models were considered, due to the small 
sample size. While this choice was methodologically necessary, it limited the capacity to 
explore interaction effects or combined predictors (e.g., age group × seated height). 
Additionally, some regressions (e.g., T8 PC1) returned negative adjusted R² values, 
highlighting both poor predictive capacity and the sensitivity of PCA scores to small 
numerical variation. 
Future improvements could involve increasing the dataset size, applying adaptive or 
hierarchical spline fitting, using joint-PCA frameworks to capture inter-landmark 
coordination, and exploring non-linear or regularized regression models to enhance 
prediction stability. These steps would strengthen both the statistical validity and 
biomechanical interpretability of the analysis. 
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5.2. Method 2: Landmark relative positioning analysis at peak displacement 

5.2.1. Key Findings and Interpretation 

The second method focused on static posture configuration at the moment of maximum 
head displacement (MHD), using a fixed-frame analysis of relative landmark positions. 
This approach provided a complementary perspective to the trajectory-based spline 
method by isolating geometric differences in body posture independent of temporal 
progression or amplitude. 
The principal component analysis performed on re-referenced landmark coordinates 
revealed that the dominant modes of variation (PC1 and PC2) captured global geometric 
changes in torso configuration, but did not significantly correlate with subject 
characteristics. This suggests that while these components effectively describe posture 
diversity within the sample, their variability does not align strongly with age or 
anthropometric factors. 
The third principal component (PC3), by contrast, showed a statistically significant 
association with age group, emerging as the sole interpretable link between posture at 
MHD and subject-level variation. Although PC3 accounted for a smaller proportion of 
total variance, its effect was consistent and meaningful: elderly subjects displayed 
systematically different scores, suggesting the presence of age-related postural 
adaptations that are not captured by the primary shape axes. Given the standardized PCA 
framework and the direction of the effect, it is reasonable to interpret PC3 as encoding a 
localized morphological shift, possibly linked to shifts in spinal alignment between 
cervical and thoracic regions. 
These observations were complemented by a distance-based analysis of adjacent 
landmarks. While most segment-wise comparisons did not reach statistical significance, 
a notable exception was the C4–T1 segment, which appeared shorter in elderly subjects. 
However, this difference did not survive correction for multiple comparisons and was 
accompanied by high variability, particularly within the younger group. The absence of 
consistent trends across other segments, and the limited statistical robustness of the 
findings, suggest that inter-landmark distances may be less reliable indicators of age-
related postural differences in this context. Their sensitivity to initial alignment, 
anthropometric variability, and small-sample noise likely contributed to the weak and 
inconsistent group effects observed. 
The joint angle analysis was performed right after, and quantified internal angles formed 
by spinal landmark triplets. Elderly subjects exhibited a statistically significant reduction 
in the T4 angle (T1–T4–T8), indicative of increased flexion in the lower thoracic spine. 
A borderline significant difference at the C4 angle (Head–C4–T1) also suggested a trend 
toward more extended cervical posture in elderly individuals. 
Altogether, Method 2 demonstrated that postural variation at a single key time frame can 
reflect meaningful biomechanical differences between age groups. The combination of 
PCA-derived shape descriptors and joint angle measurements identified age-related 
differences in both thoracic curvature and cervical alignment. While the primary PCA 
components were not strongly associated with subject variables, the consistent group 
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effect observed in PC3 and the significant reduction in the T4 angle among elderly 
subjects support the interpretation that aging influences torso configuration under 
deceleration. These findings complement the dynamic trajectory analysis presented in 
Method 1 by highlighting static postural signatures that emerge at the moment of 
maximum excursion. 

5.2.2. Limitations and Potential Improvements 

Although Method 2 provided a useful alternative to trajectory-based analyses by focusing 
on posture at a single critical time frame, several limitations constrain the interpretive 
strength and generalizability of its findings. 
A core limitation lies in the sample size and statistical power, already noted in the 
Discussion of Method 1, Limitations and Potential Improvements.With only 14 trials and 
an uneven distribution between young and elderly groups, the detection of subtle posture 
differences is inherently limited. However, this issue is arguably more pronounced in 
Method 2, where posture is assessed using a single frame per subject. This static snapshot 
increases susceptibility to trial-specific noise, measurement artifacts, or individual 
variability that might otherwise be averaged out across time. Furthermore, the exclusion 
of the H-point due to poor signal quality reduced anatomical coverage and may have 
masked relevant differences in pelvic or lumbar posture. 
In terms of data reduction, the principal component analysis applied to posture vectors 
condensed inter-subject variation into a low-dimensional form. However, the lack of 
strong associations between PC1 or PC2 and subject characteristics raises concerns about 
their interpretive value. These components captured global shape variation but did not 
align meaningfully with age or anthropometry. 
This highlights a limitation in the explanatory strength of single-variable models in this 
context. While the PCA efficiently condensed posture variation into a compact set of 
scores, the available regressors (age, subject group, and anthropometrics) were not 
capable of fully explaining that variation. The significant result for PC3 stands as the only 
interpretable link between posture at MHD and subject-level differences, specifically 
aging. 
The inter-landmark distance analysis was similarly limited. Only one segment (C4–T1) 
showed a statistically significant difference between groups, and that result could not 
survive correction for multiple comparisons. In contrast, the joint angle analysis produced 
more anatomically grounded results, identifying a significant group effect at T4 and a 
trend at C4. However, the angles used were still coarse descriptors of complex spinal 
geometry, and their interpretation is constrained by the small sample and lack of 
multivariable modeling. 
Overall, Method 2 offered useful insights into static posture differences between groups, 
but its explanatory power was limited by both the structure of the dataset and the nature 
of the variables considered. Future improvements could involve expanding the sample, 
incorporating richer geometric descriptors (e.g., curvature or 3D features), and applying 
multivariate or regularized modeling approaches to better characterize the interplay 
between posture and individual factors. Combining static and dynamic analyses may also 
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help to distinguish whether observed differences at MHD reflect meaningful 
biomechanical adaptations or transient positions shaped by external constraints. 
  



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

108 
 

 
 

5.3. Method 3: Arc-Length Re-Parameterization and Signal Registration for 
generation of average trajectories and deviation corridors 

5.3.1. Key Findings and Interpretation 

The outputs obtained through arc-length re-parameterization and statistical corridor 
generation revealed several age-related trends in postural behavior during frontal 
deceleration. Across nearly all landmarks, the average trajectories of the elderly group 
exhibited reduced forward excursion compared to the young group. This was most 
pronounced at T1, T4, and T8, where the young subjects showed a clear anterior 
displacement, whereas elderly trajectories curved upward sooner and remained more 
compact. 
In addition to trajectory shape differences, corridor width analysis consistently indicated 
greater variability in the elderly group. This increased dispersion was most apparent 
during the mid-to-late segments of the arc-length path, coinciding with peak excursion 
and recovery phases. At T4 and T8, the elderly group’s variability extended throughout 
the latter half of the movement, suggesting greater inconsistency in how forward motion 
was resolved. 
C4 and T1 also revealed differences in vertical displacement. The elderly group often 
followed a more upward-oriented path, possibly reflecting different spine or head 
positioning under deceleration. In contrast, the young group maintained flatter or more 
forward-directed trajectories. 
The H-Point landmark presented a notable exception. Individual trajectories were highly 
scattered, especially among young subjects, and the resulting confidence corridors were 
broad and irregular. While average trajectories could still be computed, the high 
variability and lack of directional consistency suggest that motion at this anatomical 
reference point may be less biomechanically constrained or more affected by external 
factors, such as seat interaction or measurement noise. 
Overall, the method effectively exposed geometric differences between age groups, 
capturing both the average displacement patterns and the range of variation in a manner 
that complements the findings of prior methods. 

5.3.2. Limitations and Potential Improvements 

While Method 3 provides a valuable geometric characterization of postural behavior, 
several limitations restrict the depth and generalizability of its findings. 
Foremost among these is, again, the limited sample size. Once split by age group, the 
dataset contained only a small number of trials per condition, reducing statistical 
robustness. This constraint may have inflated the influence of outliers on both average 
trajectory shape and corridor width. The pronounced variability observed at certain 
landmarks (particularly the H-Point) may partially reflect this limited sampling, and 
broader conclusions should be drawn with caution. 
Another limitation concerns the assumption of geometric comparability inherent to arc-
length-based methods. ARCGen assumes that the underlying signal shapes are 
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sufficiently similar to justify normalization and registration in a common space. When 
this assumption is violated, as at the H-Point, the method may produce misleadingly broad 
or amorphous corridors that obscure true biomechanical structure. Further filtering or 
trajectory quality checks may be necessary before applying the method at loosely 
constrained anatomical regions. 
The method also discards temporal dynamics in favor of shape-based alignment. While 
this is appropriate for the current study’s emphasis on geometry, it prevents analysis of 
timing-related effects such as response delays or speed of motion, factors that may also 
vary with age. 
Finally, all ARCGen parameters, including the number of warping control points and the 
warping penalty, were held constant across landmarks. While this maintained 
consistency, it may not represent the optimal configuration for each anatomical region. 
Future studies could explore adaptive tuning strategies to balance flexibility and stability 
in the warping process. 
Increasing the dataset size and incorporating anthropometric normalization could help 
improve result reliability. Additionally, pairing ARCGen outputs with timing- or force-
based data may offer a more comprehensive view of age-related postural control 
strategies during low-speed impacts. 

5.4. Method comparison 

The three analytical methods developed and applied in this thesis 
1. B-spline-based trajectory compression with PCA, 
2. Time-based posture extraction with PCA and  metric analysis, and 
3. Arc-length-based trajectory averaging with statistical corridor generation, 

offer complementary perspectives on kinematic variability in frontal deceleration tests. 
Each method emphasizes different aspects of the motion and encodes the data using 
distinct mathematical frameworks, which results in varying sensitivity to inter-subject 
differences and age-related effects. 

5.4.1. Dimensional focus and granularity 

Method 1 analyzes entire motion trajectories by encoding their temporal evolution 
through B-spline control points. This approach preserves curve shape while reducing 
dimensionality, enabling fine-grained analysis of trajectory shape through PCA. In 
contrast, Method 2 collapses the motion to a single instant, the frame of maximum head 
displacement (MHD), and focuses on spatial configuration rather than temporal 
progression. Method 3 retains full trajectory geometry but discards temporal alignment, 
instead using arc-length as the basis for comparison. Consequently, each method operates 
at a different resolution of temporal information: Method 1 emphasizes compressed time-
series trends, Method 2 captures instantaneous posture, and Method 3 abstracts time 
altogether in favor of geometric similarity. 
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5.4.2. Sensitivity to inter-subject variation 

In terms of capturing inter-subject differences, Method 1 demonstrated that secondary 
principal components (especially PC2) were more responsive to age-related variation than 
primary motion trends (PC1), which tended to reflect global amplitude. T1 and T4 
landmarks in particular showed significant group effects, suggesting that mid-thoracic 
posture during deceleration varies systematically with age. 
Method 2, despite its lower-dimensional nature, identified a statistically significant 
relationship between PC3 and age, and additionally detected age-related differences in 
spinal flexion via inter-landmark distance and joint angle analyses. These findings 
suggest that while posture at MHD may not strongly reflect gross anthropometric 
variation, it still captures specific localized differences in spinal alignment that correlate 
with aging. 
Method 3 revealed the most consistent group-level geometric differences, particularly in 
the extent of forward displacement and the breadth of inter-subject variability. Elderly 
participants exhibited shorter anterior excursions and broader confidence corridors across 
nearly all landmarks. These effects were spatially consistent and visually interpretable, 
confirming that Method 3 is especially effective for identifying population-level trends 
and variability in motion geometry. 

5.4.3. Interpretability and Biomechanical Meaning 

Method 1 excels in identifying low-dimensional modes of variation and associating them 
with anatomical motion trends, but its outputs (PCA scores) require interpretation through 
statistical modeling. Method 2 offers direct anatomical interpretability through posture 
vectors and angles but is limited by its focus on a single time frame and low explanatory 
power of primary components. Method 3 provides intuitive, spatially explicit 
visualizations of average motion and inter-subject variability, making it particularly 
suitable for communicating its findings. 

5.4.4. Robustness and Limitations 

All three methods are constrained by the small sample size, limiting their power to detect 
subtle or multivariate effects. 
Method 1, in particular, depends on the fidelity of spline fitting and consistency in control 
point configuration; while cubic B-splines with fixed parameters ensure comparability, 
they may limit sensitivity to localized shape differences or abrupt curvature changes. 
Additionally, conducting PCA independently per landmark prevents the detection of 
inter-regional coordination, constraining biomechanical interpretation to isolated regions. 
Method 2 is inherently limited by its reliance on a single frame, which captures spatial 
configuration but discards temporal information and dynamic features such as velocity or 
timing of inflection. Its explanatory power is further reduced by the dimensional 
simplicity of the posture vectors and the exclusion of the H-point, which limits anatomical 
coverage. 
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Method 3 enhances robustness by eliminating temporal alignment requirements through 
arc-length normalization, but this approach assumes that trajectory shapes are sufficiently 
consistent for registration to be meaningful, an assumption that fails in regions with 
irregular or poorly constrained motion, such as the H-point. Moreover, the method does 
not quantify relationships between trajectory shape and subject characteristics, restricting 
its analytical scope to descriptive comparisons. 

5.4.5. Summary of Strengths and Limitations 

Table 5.4 provides a structured comparison of the three analytical methods in terms of 
their temporal scope, usability, and methodological strengths and limitations. 

Criterion Method 1: B-Spline 
PCA 

Method 2: MHD 
Posture 

Method 3: Arc-Length 
Averaging 

Temporal 
Coverage 

Full landmark 
trajectories encoded 
via B-spline control 
points; captures the 
entire motion profile 
over time but in 
compressed form 

Single time frame 
selected at maximum 
head displacement; all 
dynamic information 
outside this frame is 
discarded 

Full trajectory preserved 
in spatial terms; time axis 
removed and replaced 
with normalized arc 
length to enable shape-
based alignment 

Key 
Strength 

Enables landmark-
specific statistical 
modelling of trajectory 
shape using PCA and 
regression; identifies 
distinct modes of 
motion variability tied 
to anthropometric 
variables 

Provides direct 
anatomical interpretation 
of posture at a critical 
moment; posture vectors, 
joint angles, and inter-
landmark distances offer 
biomechanically 
meaningful comparisons 

Generates average 
trajectories and 
dispersion corridors that 
capture both central 
tendency and variability 
of motion patterns; 
highly visual and robust 
to inter-subject timing 
differences 

Best For Detecting motion 
trends that correlate 
with subject 
characteristics such as 
seated height or group; 
useful for identifying 
subtle shape 
differences across the 
entire trajectory 

Characterizing postural 
alignment differences 
between young and 
elderly subjects at the 
moment of peak forward 
excursion; complements 
trajectory-based analyses 
with spatial metrics 

Comparing global 
motion tendencies and 
variability across groups 
without assumptions 
about time 
synchronization; ideal for 
illustrating age-related 
dispersion or consistent 
geometric trends 

Main 
Limitation 

Regression models 
have limited 
explanatory power due 
to small sample size; 
interpretation of 

Single-frame focus 
misses dynamic changes 
and relies on accurate 
frame selection; PCA 
results showed weak 

Group comparisons are 
qualitative; results can be 
distorted in landmarks 
with high noise or 
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Together, these methods provide a multi-angle analysis of volunteer motion under frontal 
deceleration. Their combination enables robust cross-validation of findings and supports 
a more detailed understanding of age-related variation in occupant kinematics than any 
single method could achieve on its own. 
It is worth noting that a related analysis of this same experimental dataset was presented 
by López-Valdés et al. at an international conference of the Association for the 
Advancement of Automotive Medicine. Their work focused on describing the overall 
kinematic and dynamic responses of young and elderly volunteers, including comparisons 
of head and thoracic displacements, belt forces, and angular velocities. While the present 
thesis adopts a different perspective centered on dimensionality reduction and shape-
based standardization techniques, several of the observed trends, such as reduced forward 
excursion and increased variability in the elderly group, are consistent with the findings 
reported in their presentation. 
 
  

abstract PCs may be 
ambiguous 

association with subject 
traits beyond PC3; 
constrained statistical 
power 

inconsistent motion 
patterns (e.g., H-point) 

Table 5.4-1. Comparative summary table of the three analytical methods 
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5.5. Real-World Applications 

Although the research conducted in this thesis is fundamentally exploratory and situated 
at a low Technology Readiness Level (TRL 1–2), it contributes methods and analytical 
frameworks that may become increasingly relevant in the evolving landscape of vehicle 
safety. 
Over the past few decades, occupant protection systems and vehicle interior layouts have 
converged toward a high degree of standardization. Safety technologies such as frontal 
airbags, pre-tensioners, and load limiters are now widely implemented, and most 
developments have centered on fine-tuning these existing systems rather than introducing 
disruptive changes. Although the emergence of electric vehicles has required adaptations 
to account for different mass distributions and structural layouts, such as underfloor 
battery packs that lower the center of gravity, these changes have largely preserved the 
traditional occupant seating orientation and restraint strategies (HILS21). 
However, the rise of fully automated vehicles (FAVs) is expected to introduce a 
significant shift in occupant safety paradigms. As Koppel et al. (2019) demonstrated in 
an international survey, many users anticipate adopting non-traditional seating positions 
(including reclined, rotated, or rearward-facing configurations) during travel in 
autonomous vehicles. Such configurations challenge the assumptions underpinning 
conventional restraint design, which has historically relied on occupants being forward-
facing and seated upright. To illustrate said variety of possible interior layouts considered, 
Figure 5.5-1. presents the five hypothetical seating configurations evaluated in the study 
(KOPP19).  

 
Figure 5.5-1. Hypothetical seating configurations for fully automated vehicles (FAVs) used in the survey 
by Koppel et al. to explore occupant preferences under various travel scenarios (KOPP19). 

 
This context underscores a critical need for new biomechanical analysis methods capable 
of characterizing kinematic variability in more diverse and less constrained occupant 
postures. The methodologies developed in this thesis could provide foundational tools to 
support future research and validation in this area. For example, the capacity to 
statistically describe deviations from nominal trajectories and postures may be applied to 
the development of next-generation anthropomorphic test devices or computational 
human models adapted to the interior layouts of FAVs. 
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In this sense, while the present work is not directly translatable to applied safety system 
design, it occupies an essential place early in the innovation chain. Advancing from TRL 
1–2 toward higher readiness levels will require further experimental validation, 
integration with advanced simulation environments, and collaboration with industrial 
partners focused on vehicle interior and restraint system design. Nonetheless, as the 
automotive industry accelerates the deployment of  autonomous driving technologies, the 
analytical approaches proposed here may contribute to improving occupant protection in 
novel seating configurations.  
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6. CONCLUSION 
The analyses presented in this thesis collectively demonstrate that different 
dimensionality reduction and averaging techniques can effectively capture the kinematic 
variability of seated human volunteers subjected to low-speed frontal decelerations. 
The B-spline and PCA method successfully compressed trajectory data into principal 
components, showing that seated height and body mass were significant predictors of 
forward displacement patterns during deceleration. 
The time-based analysis of landmark configurations at maximum head displacement 
offered a complementary perspective, identifying posture-related differences between 
young and elderly subjects, particularly in thoracic curvature and inter-landmark 
distances. 
Finally, the arc-length re-parameterization and signal registration approach generated 
representative mean trajectories and variability corridors, illustrating consistent group-
level trends in motion paths while accommodating temporal and geometric heterogeneity 
across trials. 
Together, these results confirm that combining trajectory-based and posture-centric 
methods yields a more complete understanding of occupant response variability and 
underscores the influence of age-related factors on kinematic behavior during controlled 
decelerations. 
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6.1. Degree of Objective Fulfillment 

The objectives defined at the start of this work have been followed and completed in a 
consistent manner. 
The first objective was to implement Principal Component Analysis on B-spline 
representations of landmark trajectories. When applied, the method allowed the complex 
motion of the head and torso to be reduced to a set of principal components that captured 
the main patterns of movement. Regression models showed that these components were 
linked to anthropometric factors like seated height and body mass, demonstrating that the 
approach could detect some associations between trajectory shapes and individual 
characteristics. 
The second objective focused on analyzing the relative positions of landmarks at the 
moment of maximum head displacement. This method was also fully developed and 
applied. By isolating posture at a single key instant, it became possible to highlight 
geometric differences between age groups that might not be visible in time-based data. In 
particular, the analysis showed that elderly subjects had distinct patterns in thoracic 
curvature and cervical alignment. 
The third objective was to use arc-length re-parameterization and signal registration to 
generate average motion trajectories and variability corridors. This technique worked as 
intended. It provided a reliable way to align and summarize trajectories without relying 
on time normalization, and it produced representative mean paths that illustrated the 
consistency of group-level trends despite variability in timing and amplitude. 
Finally, the comparative evaluation of all three methods confirmed their 
complementarity. The B-spline approach was most effective for connecting motion 
patterns to anthropometry, the time-based posture analysis was better at detecting static 
postural differences, and the arc-length method offered a clear visualization of mean 
motion and dispersion. Together, they formed a coherent set of tools that addressed the 
complexity of occupant kinematics more completely than any single technique could do 
on its own. 
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6.2. Future Work 

Several directions could be explored to build on the findings of this thesis and address its 
limitations. 
First, expanding the sample size would improve the statistical power of the analyses. A 
larger and more balanced cohort, especially with an even number of volunteers in both 
groups, could help confirm the observed trends in postural variation and strengthen the 
associations between principal components and anthropometric factors. 
Second, further development of the arc-length re-parameterization method could include 
testing different registration parameters or exploring alternative warping constraints to 
improve alignment of key motion features. This may lead to even more precise average 
trajectories and variability corridors. 
Third, future studies could incorporate additional variables beyond planar (x, z) 
trajectories, such as three-dimensional motion data, rotational displacements, dynamic 
load measurements, or muscle activation signals. Including these dimensions would 
provide a more comprehensive view of occupant response, allow finer characterization of 
motion patterns, and help link kinematic variability to mechanical loads and 
neuromuscular control strategies, thereby supporting deeper biomechanical interpretation 
and improving the relevance of the findings for safety applications. 
Finally and most importantly, while the methods developed and applied in this thesis 
proved effective in extracting, summarizing, and interpreting kinematic variability, their 
outcomes were inevitably limited by the small data sample. This constrained the statistical 
strength and generalizability of some findings. Nevertheless, the analytical approaches, 
B-spline compression, posture-focused PCA, and arc-length signal registration, 
demonstrated strong potential as versatile tools for biomechanical analysis. Applied to 
larger and more consistent datasets, these methods are well positioned to deliver robust 
insights into occupant motion and to support the development of improved safety models 
and human ATDs. 
As a final remark, it is planned to prepare a scientific article derived from this work. The 
purpose of this publication will be to present the main findings and methodological 
approach in a concise format appropriate for a peer-reviewed journal. This article is 
expected to serve as a way to share the results with the wider biomechanics research 
community. The aim is to have the manuscript completed and submitted before the end 
of 2025.  
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ANNEX 
 

1. ALIGNMENT WITH SUSTAINABLE DEVELOPMENT GOALS 
This thesis aligns with several Sustainable Development Goals (SDGs) (UNIT15) by 
advancing knowledge and practices that enhance human health, safety, and innovation in 
sustainable technologies. Specifically, it relates to the following SDGs: 

1.1. Goal 3: Good Health and Well-being  

Given that road traffic accidents are a leading cause of death worldwide, the focus of this 
thesis on improving occupant safety during automotive crashes directly contributes to 
better health and well-being. By developing more accurate methods for analyzing 
occupant biomechanics during impacts, this research supports efforts to reduce injury 
risks in automotive accidents, which is specifically remarked in Goal 3.6.  

1.2. Goal 9: Industry, Innovation, and Infrastructure 

The analysis of different averaging techniques for describing occupant kinematics also 
aligns closely with Sustainable Development Goal 9, particularly in the areas of 
innovation and sustainable industrialization. By developing and testing more accurate 
methods to analyze and standardize biomechanical data, it aims to contribute to the 
advancement of automotive safety technology, which is a crucial aspect of sustainable 
transportation. These methods may allow for better-informed decisions in the design of 
safety features in vehicles, making them more effective for a diverse population, 
including older adults. This aligns with the goal's emphasis on building resilient 
infrastructure and promoting inclusive industrialization. 

1.3. Goal 10: Reduced Inequality 

By focusing on creating more accurate methods that account for variability across 
different age groups, particularly comparing young and elderly volunteers, this thesis 
aims to contribute to the reduction of inequalities in vehicle safety. Older people are often 
at higher risk for injury in automotive accidents due to changes in their physical condition, 
including reduced flexibility and slower reaction times. By addressing these disparities, 
this research may help design more inclusive safety systems, providing effective 
protection for all occupants and reducing disparities among vulnerable populations. 

1.4. Goal 12: Responsible Consumption and Production 

By improving the accuracy and reliability of biomechanical data analysis methods, this 
thesis can contribute to the more efficient use of resources in vehicle safety testing and 
development. More precise analysis methods can lead to better-targeted improvements in 
safety features, reducing the need for extensive, repeated crash tests that are resource-
intensive. This supports the goal of promoting sustainable consumption and production 
patterns by enhancing the effectiveness of existing resources, which could reduce both 
financial and material waste in the automotive industry. 
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2. ARCGEN 
In this section, the main ARCGen original code files are provided. 
Adjustments were made to some of them to be able to generate differentiated graphs for 
the young and elderly groups. These modified code files can be found in section 3.3 of 
the Annex. 
Further ARCGen resources including the original article as well as supporting files can 
be found in the following site: 
https://es.mathworks.com/matlabcentral/fileexchange/116975-arcgen-arc-length-based-
averaging-and-statistics?status=SUCCESS 
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2.1. ARCGen Code Library 

2.1.1. Arcgen.m 
%% ARCGen - Arc-length Response Corridor Generator 
% 
% ARCGen, short for Arc-length Response Corridor Generation, provides 
% automated calculation of a characteristic average and response corridors 
% on input signals regardless of if said signals are non-monotonic or 
% hystertic. This is accomplished by re-parameterizing input signals based 
% on arc-length. Corridors are extracted using a marching squares 
% algorithm. 
% 
% If you use ARCGen in your research, please use the following citation: 
%     Hartlen D.C. and Cronin D.S. (2022), "Arc-Length Re-Parametrization  
%        and Signal Registration to Determine a Characteristic Average and 
%        Statistical Response Corridors of Biomechanical Data." Frontiers  
%        in Bioengineering and Biotechnology* 10:843148.  
%        doi: 10.3389/fbioe.2022.843148 
% 
% ARCGen is released under a GNU GPL v3 license. No warranty or support is 
% provided. The authors hold no responsibility for the validity, accuracy,  
% or applicability of any results obtained from this code. 
% 
% This function has one mandatory input, four outputs, and many optional 
% inputs. Optional inputs are defined using name-value pair arguments.  
% 
% Usage notes:  
% It is common to see errors when running this function if the number of 
% resampling points or corridor resolution is too sparse or signals  
% exhibit significant variablity not accounted for through signal  
% registration. This tends to manifest in either truncated corridors or the 
% code termininating in an error. Often increasing resampling points or 
% corridor resolution. Turning 'Diagnostics' to 'detailed' can help  
% identify these issues.  
% 
% Computed corridors will often not extend all the way to the shared origin 
% of input signals. This is because small low st. dev. at this shared point 
% is too low to be captured during corridor extraction with the marching 
% squares algorithm. There are two solutions to this problem. First, one 
% could force a minimum corridors size using the 'MinCorridorWidth' option. 
% Second, one could manually extend corridors in post-processing.  
% 
% MANDATORY INPUTS: 
% ----------------- 
% inputSignals: ARCGen can accomadate three types of input format 
% 1) A [nSignal,2] structured array consisting of the following 
%       entries. Entries are case-senstive 
%   + data: an [m,2] array containing ordered x-y data 
%   + specId: character array containing an identifier for each signal 
% 2) A [nSignal,1] structured array consisting of only signal data, no  
%       signal IDs. Entries are case-senstive 
%   + data: an [m,2] array containing ordered x-y data 
% 3) A cell array of length nSignal containing [m,2] arrays of each input 
%       signal.  
%  
% OPTIONAL INPUTS: 
% ---------------- 
% nResamplePoints: integer defining the number of points used to 
%       re-parameterize input signals. Default: 100.  
% CorridorRes: integeer defining the number of grid points used for the 
%       marching squares algorithm. The sampling grid for the marching 
%       squares algorithm extends 120% of extreme corridors. This parameter 
%       defines the number of points along each side of the grid.  
%       Default: 100. It is common to increase this significantly.  
% NormalizeSignals: character arry used to turn on signal normalization. 
%       Options: 'on' (default), 'off' 
% EllipseKFact: float used to scale the major and minor axis of the 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

125 
 

 
 

%       ellipses used for corridor generation. This value corrisponds to  
%       the square root of the chi-squared CDF. Default: 1.0 (creates  
%       corridors one standard deviation along the x and y axes) 
% Diagnostics: character array used to activate diagnostic plots. Useful 
%       for debugging errors. Options: 'off' (default), 'on', 'detailed'.  
% MinCorridorWidth: Factor used to enforce a minimum corridor width. Any 
%       st.dev. less than 'MinCorridorFactor'*max(st.dev.) is replaced with 
%       'MinCorridorFactor'*max(st.dev.). x & y axes are handled 
%       separately. A value of 0 (default) disables forcing minimum width. 
% nWarpCtrlPts: integer that sets the number of interior control points 
%       used for signal registration. A value of 0 (default) disables 
%       signal registration 
% WarpingPenalty: float specifying the penalty factor used during the 
%       signal registration process. A value of 10^-2 (default) to 10^3 is 
%       recommended, but the exact value will need to be tuned to a 
%       specific problem.  
% UseParrallel: Character array used to enable parallel thread calculations 
%       for signal registration and envelope extraction. Significantly 
%       reduces runtime when signals have 100k+ points or 500+ resampling 
%       points and corridor resolution. Requires the Parallel Computing  
%       Toolbox Options: 'on', 'off' (default).  
% 
% MANDATORY OUTPUTS: 
% ------------------ 
% charAvg: an [nResamplePoints,2] array containing the computed 
%       characteristic average. 
% innerCorr: an [nResamplePoints,2] array containing points defining the 
%       inner corridor 
% outerCorr: an [nResamplePoints,2] array containing points defining the  
%       outer corridor 
% 
% OPTIONAL OUTPUTS: 
% ---------------- 
% processedSignalData: a structure array that outputs processed signals, 
%       basic statistics, and warping control poitns 
% debugData: a structure that provides a wealth of debugging information, 
%       including raw average and st. dev. data, correlation scores before 
%       and after registration, and other.  
% 
% Copyright (c) 2022 Devon C. Hartlen 
 
function [charAvg, innerCorr, outerCorr, varargout] = ... 
    arcgen(inputSignals,varargin) 
 
%% Setup Name-Value Argument parser 
nvArgObj = inputParser; 
addParameter(nvArgObj, 'nResamplePoints',   100); 
addParameter(nvArgObj, 'Diagnostics',       'off'); 
addParameter(nvArgObj, 'NormalizeSignals',  'on'); 
addParameter(nvArgObj, 'EllipseKFact',      1); 
addParameter(nvArgObj, 'CorridorRes',       100); 
addParameter(nvArgObj, 'MinCorridorWidth',  0);  
addParameter(nvArgObj, 'nWarpCtrlPts',      0); 
addParameter(nvArgObj, 'WarpingPenalty',    1e-2); 
addParameter(nvArgObj, 'UseParallel',       'off'); 
nvArgObj.KeepUnmatched = true; 
nvArgObj.CaseSensitive = false; 
 
parse(nvArgObj,varargin{:}); 
nvArg = nvArgObj.Results;  % Structure created for convenience 
 
% check if parallel toobox is installed, then if parpool is running. Error 
% out if not installed, start pool if not already started.  
v = ver; 
hasParallel = any(strcmp(cellstr(char(v.Name)), 'Parallel Computing Toolbox')); 
if strcmp(nvArg.UseParallel,'on') 
    if ~hasParallel 
        error('Parallel Computing Toolbox is not installed. Set option UseParallel to 
off') 
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    end 
    p = gcp('nocreate'); 
    if isempty(p) 
        parpool(); 
    end 
end 
 
%% Add third party functions to path 
funcPath = mfilename('fullpath'); 
funcPath = fileparts(funcPath); 
addpath(fullfile(funcPath, 'ThirdPartyFunctions')); 
 
%% Process input options 
% Check if structure with specID, struct w/o specID, cell array. Error out 
% otherwise. Places inputs into structure format. 
if isstruct(inputSignals) 
    if ~isfield(inputSignals,'specId') 
        for iSignal = 1:length(inputSignals) 
            inputSignals(iSignal).specId = ... 
                ['Signal ' num2str(iSignal,'%3d')]; 
        end 
    end 
elseif iscell(inputSignals) 
    inputSignals = cell2struct(inputSignals,'data'); 
    for iSignal = 1:length(inputSignals) 
       inputSignals(iSignal).specId = ['Signal ' num2str(iSignal,'%3d')]; 
    end 
end 
 
%% Compute arclength based on input signal datapoints 
% Do not perform normalization 
if strcmp(nvArg.NormalizeSignals,'off') 
    for iSignal = 1:length(inputSignals) 
        temp = inputSignals(iSignal).data; % Temporary for conveinence 
        % Compute arc-length between each data point 
        segments = sqrt( (temp(1:end-1,1)-temp(2:end,1)).^2 ... 
            + (temp(1:end-1,2)-temp(2:end,2)).^2); 
        alen = cumsum([0;segments]); 
        % Append cumulative arc length to data array 
        inputSignals(iSignal).data = [inputSignals(iSignal).data,alen]; 
        % Compute normalized arc-length 
        inputSignals(iSignal).maxAlen = max(alen); 
        inputSignals(iSignal).data = [inputSignals(iSignal).data,... 
            alen./inputSignals(iSignal).maxAlen]; 
        % Determine max [x,y] data 
        tempMax = max(temp,[],1); 
        inputSignals(iSignal).xMax = tempMax(1); 
        inputSignals(iSignal).yMax = tempMax(2); 
        % Remove spurious duplicates 
        [~,index,~] = unique(inputSignals(iSignal).data(:,4)); 
        inputSignals(iSignal).data = inputSignals(iSignal).data(index,:); 
    end 
     
% Perform magnitude normalization based on bounding box 
elseif strcmp(nvArg.NormalizeSignals,'on') 
    % Determine bounding box of individual signals 
    for iSignal = 1:length(inputSignals) 
        tempMin = min(inputSignals(iSignal).data,[],1); 
        inputSignals(iSignal).xMin = tempMin(1); 
        inputSignals(iSignal).yMin = tempMin(2); 
        tempMax = max(inputSignals(iSignal).data,[],1); 
        inputSignals(iSignal).xMax = tempMax(1); 
        inputSignals(iSignal).yMax = tempMax(2); 
    end 
    xBound = [mean([inputSignals.xMin]), mean([inputSignals.xMax])]; 
    yBound = [mean([inputSignals.yMin]), mean([inputSignals.yMax])]; 
    % Normalize the axis of each signal, then do arc-length calcs 
    for iSignal = 1:length(inputSignals) 
        temp = inputSignals(iSignal).data; % Temporary for conveinence 
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        % Normalize from bounding box to [-1,1] 
        temp = [temp(:,1)./(xBound(2)-xBound(1)),... 
            temp(:,2)./(yBound(2)-yBound(1))]; 
        % Compute arc-length between each data point 
        segments = sqrt( (temp(1:end-1,1)-temp(2:end,1)).^2 ... 
            + (temp(1:end-1,2)-temp(2:end,2)).^2); 
        alen = cumsum([0;segments]); 
        % Append cumulative arc length to data array 
        inputSignals(iSignal).data = [inputSignals(iSignal).data,alen]; 
        % Compute normalized arc-length 
        inputSignals(iSignal).maxAlen = max(alen); 
        inputSignals(iSignal).data = [inputSignals(iSignal).data,... 
            alen./inputSignals(iSignal).maxAlen]; 
        % Determine max [x,y] data 
        tempMax = max(abs(temp),[],1); 
        inputSignals(iSignal).xNormMax = tempMax(1); 
        inputSignals(iSignal).yNormMax = tempMax(2); 
        % Remove spurious duplicates 
        [~,index,~] = unique(inputSignals(iSignal).data(:,4)); 
        inputSignals(iSignal).data = inputSignals(iSignal).data(index,:); 
    end 
 
% Error handling if NormalizeSignals argument is not defined correctly 
else 
    error('Normalization method not  recognized') 
end 
 
% Compute mean and median arc-length deviation 
meanAlen = mean([inputSignals.maxAlen]); 
for iSignal=1:length(inputSignals) 
    inputSignals(iSignal).meanDevs = ... 
        inputSignals(iSignal).maxAlen-meanAlen; 
end 
 
medianAlen = median([inputSignals.maxAlen]); 
for iSignal=1:length(inputSignals) 
    inputSignals(iSignal).medianDev = ... 
        inputSignals(iSignal).maxAlen-medianAlen; 
end 
 
%% Resample response signal based on normalized arc-length 
for iSignal=1:length(inputSignals) 
    % Linear-interpolation for x,y data against arc-length 
    normAlen = linspace(0,inputSignals(iSignal).data(end,4),... 
        nvArg.nResamplePoints)'; 
    resampX = interp1(inputSignals(iSignal).data(:,4),... 
        inputSignals(iSignal).data(:,1), normAlen); 
    resampY = interp1(inputSignals(iSignal).data(:,4),... 
        inputSignals(iSignal).data(:,2), normAlen); 
    % Resulting array is normalized arc-length, resampled x, resam. y 
    inputSignals(iSignal).normalizedSignal = [normAlen, resampX, resampY]; 
end 
     
%% For each resampled point, determine average and standard deviation across signals 
% Initialize arrays 
charAvg = zeros(nvArg.nResamplePoints,2); 
stdevData = zeros(nvArg.nResamplePoints,2); 
 
for iPoints=1:nvArg.nResamplePoints 
    clear temp; % probably cleaner way to do this. 
    % collect specific point from each signal 
    for iSignal=1:length(inputSignals) 
        temp(iSignal,:) = inputSignals(iSignal).normalizedSignal(iPoints,2:3); 
    end 
    charAvg(iPoints,:) = mean(temp,1); 
    stdevData(iPoints,:) = std(temp,1); 
end 
% Assign characteristic average and st. dev. data to a debug structure 
debugOutput.charAvg = charAvg; 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

128 
 

 
 

debugOutput.stdevData = stdevData; 
 
%% Align normalized arc-length signals based on minimized correlation.  
% Enabled by option 'nWarpCtrlPts'. If 0, skip alignment. 
if nvArg.nWarpCtrlPts > 0 
    % Assemble signal matrices prior to correlation 
    signalX = zeros(nvArg.nResamplePoints, length(inputSignals)); 
    signalY = zeros(nvArg.nResamplePoints, length(inputSignals)); 
    for i=1:length(inputSignals) 
        signalX(:,i) = inputSignals(i).normalizedSignal(:,2); 
        signalY(:,i) = inputSignals(i).normalizedSignal(:,3); 
    end 
    [meanCorrScore, corrArray] = evalCorrScore(signalX,signalY); 
    % Assign pre-optimized correlation scores to debug structure 
    debugOutput.preWarpCorrArray = corrArray; 
    debugOutput.preWarpMeanCorrScore = meanCorrScore; 
     
    % Optimize warp points for arbitrary n warping points. Build bounds, 
    % constraints, and x0s 
    nWarp = nvArg.nWarpCtrlPts; 
    nSignal = length(inputSignals); 
     
    if nWarp == 1   % nWarp == 1 is a special case as inequalites aren't needed 
        x0 = 0.50.*ones(nSignal*2,1); 
        lb = 0.15.*ones(nSignal*2,1); 
        ub = 0.85.*ones(nSignal*2,1); 
        A = []; 
        b = []; 
    elseif nWarp >= 15 
        error('Specifying more than 10 interior warping points is not supported') 
    else 
        x0 = zeros(nWarp*(nSignal*2),1); 
        for i = 1:nWarp 
            x0(((i-1)*nSignal)+(1:nSignal) + (i-1)*nSignal) = 
i/(nWarp+1).*ones(nSignal,1); 
            x0(((i-1)*nSignal)+(1:nSignal)+i*(nSignal)) = i/(nWarp+1).*ones(nSignal,1); 
        end 
        lb = 0.05.*ones(nWarp*(nSignal*2),1); 
        ub = 0.95.*ones(nWarp*(nSignal*2),1); 
        A = zeros((nWarp-1)*(nSignal*2), nWarp*(nSignal*2)); 
        b = -0.05.*ones((nWarp-1)*(nSignal*2), 1); % Force some separation between 
warped points 
        for iSignal = 1:(nSignal*2) 
            for iWarp = 1:(nWarp-1) 
                A(iSignal+(iWarp-1)*(nSignal*2), iSignal+(iWarp-1)*(nSignal*2)) = 1; 
                A(iSignal+(iWarp-1)*(nSignal*2), iSignal+iWarp*(nSignal*2)) = -1; 
            end 
        end 
    end 
     
    % Setup optimization options ('UseParallel' option active here) 
    if strcmp(nvArg.UseParallel,'on') 
        optOptions = optimoptions('fmincon',... 
            'MaxFunctionEvaluations',max(3000, (nWarp+1).*1000),... 
            'Display','off',... 
            'UseParallel',true); 
    else 
        optOptions = optimoptions('fmincon',... 
        'MaxFunctionEvaluations',max(3000, (nWarp+1).*1000),... 
        'Display','off',... 
        'UseParallel',false); 
    end 
     
    % Execute optimization and compute warped signals 
    optWarpArray = fmincon(@(x)warpingObjective(x,nWarp,... 
        inputSignals,nvArg),... 
        x0, A, b, [], [], lb, ub, [], optOptions); 
    optWarpArray = reshape(optWarpArray,[],nWarp); 
    [warpedSignals, signalX, signalY] = ... 
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        warpArcLength(optWarpArray,inputSignals,nvArg.nResamplePoints); 
     
 
    % Compute correlation score 
    [meanCorrScore, corrArray] = evalCorrScore(signalX,signalY); 
    % Assign warped correlation scores to debug structure 
    debugOutput.warpedCorrArray = corrArray; 
    debugOutput.warpedMeanCorrScore = meanCorrScore; 
     
    % Replace 'normalizedSignal' in 'responseSignal' and compute average and 
    % standard deviation. 
    for iSignal = 1:length(inputSignals) 
        inputSignals(iSignal).normalizedSignal = warpedSignals{iSignal}; 
        inputSignals(iSignal).warpControlPoints = ... 
            [[0,optWarpArray(iSignal+nSignal,:),1];... 
            [0,optWarpArray(iSignal,:),1]]; 
    end 
    for iPoints=1:nvArg.nResamplePoints 
        clear temp; % probably cleaner way to do this. 
        % collect specific point from each signal 
        for iSignal=1:length(inputSignals) 
            temp(iSignal,:) = ... 
                inputSignals(iSignal).normalizedSignal(iPoints,2:3); 
        end 
        charAvg(iPoints,:) = mean(temp,1); 
        stdevData(iPoints,:) = std(temp,1); 
    end 
end 
 
%% Clamp minimum corridor width. Disabled if 'MinCorridorWidth' == 0 
% Include influence of corridor scaling factor 'EllipseKFact' 
if nvArg.MinCorridorWidth > 0 
    % Replace any stDevData below maximum st.dev. * 'MinCorridorWidth' 
    index = stdevData <... 
        (nvArg.MinCorridorWidth .* max(stdevData) .* nvArg.EllipseKFact); 
    stdevData(index(:,1),1) = (nvArg.MinCorridorWidth .* nvArg.EllipseKFact... 
        .* max(stdevData(:,1))); 
    stdevData(index(:,2),2) = (nvArg.MinCorridorWidth .* nvArg.EllipseKFact... 
        .* max(stdevData(:,2))); 
end 
 
%% Diagnostic: Plot normalized signals and St. Devs.  
if strcmp(nvArg.Diagnostics,'on') || strcmpi(nvArg.Diagnostics,'detailed') 
    figure('Name','Diagnostic Signals'); 
    cmap = lines(length(inputSignals)); 
     
    % Plot normalized x,y data 
    subplot(2,2,1); hold on; 
    for iSignal=1:length(inputSignals) 
        pSignal(iSignal) = plot(inputSignals(iSignal).normalizedSignal(:,2),... 
            inputSignals(iSignal).normalizedSignal(:,3),'.-',... 
            'color',cmap(iSignal,:),... 
            'DisplayName',inputSignals(iSignal).specId); 
        if (strcmp(nvArg.NormalizeSignals,'off') || ... 
                strcmp(nvArg.NormalizeSignals,'on')) 
            continue 
        else 
            plot(inputSignals(iSignal).data(inputSignals(iSignal).alignInd,1),... 
            inputSignals(iSignal).data(inputSignals(iSignal).alignInd,2),... 
            'kx','LineWidth',2.0) 
        end 
    end 
    xlabel('x-data') 
    ylabel('y-data') 
    legend(pSignal, 'location', 'Best') 
    title('Arc-length Discretized Normalized Signals') 
     
    % Plot warpping functions 
    subplot(2,2,2); hold on 
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    clear pSignal 
    if nvArg.nWarpCtrlPts > 0 
        colours = lines(nSignal); 
        for iSignal = 1:nSignal 
            pSignal(iSignal) = plot(inputSignals(iSignal).data(:,4),... 
                
pchip([0,optWarpArray(iSignal+nSignal,:),1],[0,optWarpArray(iSignal,:),1],... 
                inputSignals(iSignal).data(:,4)),... 
                '.-','DisplayName',inputSignals(iSignal).specId,... 
                'color',colours(iSignal,:),... 
                'DisplayName',inputSignals(iSignal).specId); 
            
plot([0,optWarpArray(iSignal+nSignal,:),1],[0,optWarpArray(iSignal,:),1],'x',... 
                'color',colours(iSignal,:),'MarkerSize',12,'LineWidth',2.0) 
            title('Warping functions'); 
            legend(pSignal, 'location', 'Best') 
        end 
    else 
        title('No Warping Performed'); 
    end 
    plot([0,1],[0,1],'--','color',0.3.*[1,1,1]) 
    xlabel('Unwarped Normalized Arc-length') 
    ylabel('Warped Normalized Arc-length')     
     
    % Plot normalized x data against arc-length with st. dev. 
    subplot(2,2,3); hold on; 
    errorbar(inputSignals(1).normalizedSignal(:,1),charAvg(:,1),... 
        stdevData(:,1),'color',0.5.*[1,1,1]) 
    cmap = lines; 
    for iSignal=1:length(inputSignals) 
        plot(inputSignals(iSignal).normalizedSignal(:,1),... 
            inputSignals(iSignal).normalizedSignal(:,2),'.-',... 
            'color',cmap(iSignal,:)) 
    end 
    xlabel('Normalized Arc-length') 
    ylabel('x-data') 
    title('Average and St.Dev. of X-Data') 
     
    % Plot normalized y data against arc-length with st. dev. 
    subplot(2,2,4); hold on; 
    errorbar(inputSignals(1).normalizedSignal(:,1),charAvg(:,2),... 
        stdevData(:,2),'color',0.5.*[1,1,1]) 
    cmap = lines; 
    for iSignal=1:length(inputSignals) 
        plot(inputSignals(iSignal).normalizedSignal(:,1),... 
            inputSignals(iSignal).normalizedSignal(:,3),'.-',... 
            'color',cmap(iSignal,:)) 
    end 
    xlabel('Normalized Arc-length') 
    ylabel('y-data') 
    title('Average and St.Dev. of Y-Data') 
end 
 
if strcmpi(nvArg.Diagnostics,'detailed') 
    % Plot ellipses     
    figure('Name','Ellipses and Corridor Extraction Debug'); hold on; 
    cmap = cbrewer2('set2',2); 
    colormap(cmap); 
    % plot ellipses based on standard deviation 
    for iPoint=1:nvArg.nResamplePoints 
        ellipse(stdevData(iPoint,1).*nvArg.EllipseKFact,... 
            stdevData(iPoint,2).*nvArg.EllipseKFact,0,... 
            charAvg(iPoint,1), charAvg(iPoint,2),... 
            0.8.*[1,1,1]); 
    end 
    cmap = lines(length(inputSignals)); 
    for iSignal=1:length(inputSignals) 
        plot(inputSignals(iSignal).data(:,1),... 
            inputSignals(iSignal).data(:,2),'-',... 
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            'DisplayName',inputSignals(iSignal).specId,... 
            'Color', cmap(iSignal,:)) 
    end 
    plot(charAvg(:,1),charAvg(:,2),'.-k','DisplayName','Char Avg',... 
        'LineWidth',2.0,'MarkerSize',16) 
end 
 
%% Begin marching squares algorithm 
% Create grids based on upper and lower of characteristic average plus 120% 
% of maximum standard deviation 
scaleFact = 1.2*nvArg.EllipseKFact; 
[xx,yy] = meshgrid(... 
    linspace(min(charAvg(:,1)) - scaleFact*max(stdevData(:,1)), ... 
        max(charAvg(:,1)) + scaleFact*max(stdevData(:,1)),... 
        nvArg.CorridorRes),... 
    linspace(min(charAvg(:,2)) - scaleFact*max(stdevData(:,2)), ... 
        max(charAvg(:,2)) + scaleFact*max(stdevData(:,2)),... 
        nvArg.CorridorRes)); 
zz = zeros(size(xx));   % initalize grid of ellipse values 
 
% For each grid point, find the max of each standard deviation ellipse 
kFact = nvArg.EllipseKFact; % faster if no struct call in inner loop.  
nRes = nvArg.CorridorRes;   % again, for speed 
% If 'UseParallel' is 'on', grid evaluation is performed using a parallel 
% for loop.  
if strcmp(nvArg.UseParallel,'on') 
    parfor iPt = 1:nRes 
        for jPt = 1:nRes 
            zz(iPt,jPt) = max(... 
                (((xx(iPt,jPt) - charAvg(:,1)).^2 ./ ... 
                (stdevData(:,1).*kFact).^2 ... 
                + (yy(iPt,jPt) - charAvg(:,2)).^2 ./ ... 
                (stdevData(:,2).*kFact).^2).^-1)); 
        end 
    end 
% otherwise, use a standard forloop 
else 
    for iPt = 1:nRes 
        for jPt = 1:nRes 
            zz(iPt,jPt) = max(... 
                (((xx(iPt,jPt) - charAvg(:,1)).^2 ./ ... 
                (stdevData(:,1).*kFact).^2 ... 
                + (yy(iPt,jPt) - charAvg(:,2)).^2 ./ ... 
                (stdevData(:,2).*kFact).^2).^-1)); 
        end 
    end 
end 
 
% The following segments is the marching squares algorith. The goal of this 
% algorithm is to find the zz=1 isoline, as this represents the outer 
% boundary of all elllipses.  
% 
% Described in brief, this algorithm goes through each point, looking at 
% its and its neighbours values. There are only 16 configurations of these 
% squares or cells. Based on the configuration, add the appropriate line 
% segments. This method uses linear interpolation to increase accuracy.  
% Initalize line segments for speed. This line may cause issues, as it 
% assumes maximum size. Bump up 10 if it does.  
lineSegments = zeros(10*max(nvArg.nResamplePoints,nvArg.CorridorRes),4);  
iSeg = 0; 
for iPt = 1:(nvArg.CorridorRes-1)  % Rows (y-axis) 
    for jPt = 1:(nvArg.CorridorRes-1)   % Columns (x-axis) 
        % Cell value definition 
        %  1 -- 2  
        %  |    | 
        %  |    | 
        %  8 -- 4 
        % 
        % REMEMBER!!!!  
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        % array(i,j) = array(rows, columns,) = array(y,x) 
         
        % By carefully defining cell values and definitions, we can use 
        % binary to simplify logic though a integer based switch case        %  
        cellValue = ... 
            1*(zz(iPt,jPt)>1) + ... 
            2*(zz(iPt+1,jPt)>1) + ... 
            4*(zz(iPt+1,jPt+1)>1) + ... 
            8*(zz(iPt,jPt+1)>1) + 1; 
         
        switch cellValue 
            case 1 
                % No Vertices 
            case 2 
                % South-West 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[interpVal(xx(iPt,jPt),zz(iPt,jPt),xx(iPt,jPt+1),zz(iPt,jPt+1)),yy(iPt,jPt),... 
                    xx(iPt,jPt), 
interpVal(yy(iPt,jPt),zz(iPt,jPt),yy(iPt+1,jPt),zz(iPt+1,jPt))];         
            case 3 
                % West-North 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    [xx(iPt+1,jPt),interpVal(yy(iPt,jPt),zz(iPt,jPt), 
yy(iPt+1,jPt),zz(iPt+1,jPt)),... 
                    interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt), 
xx(iPt+1,jPt+1),zz(iPt+1,jPt+1)),yy(iPt+1,jPt)]; 
            case 4 
                % North-South 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[interpVal(xx(iPt,jPt),zz(iPt,jPt),xx(iPt,jPt+1),zz(iPt,jPt+1)),yy(iPt,jPt) ... 
                    interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt),xx(iPt+1,jPt+1), 
zz(iPt+1,jPt+1)),yy(iPt+1,jPt)]; 
            case 5 
                % North-East 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt),xx(iPt+1,jPt+1),zz(iPt+1,jPt+1)),yy(iPt+1,jPt+1),
... 
                    xx(iPt+1,jPt+1),interpVal(yy(iPt+1,jPt+1),zz(iPt+1,jPt+1), 
yy(iPt,jPt+1), zz(iPt,jPt+1))];         
            case 6  % Ambiguous  
                centerVal = mean([zz(iPt,jPt), zz(iPt+1,jPt), zz(iPt+1,jPt+1), zz(iPt, 
jPt+1)]); 
                if centerVal >= 1 
                    % West-North 
                    iSeg = iSeg+1; 
                    lineSegments(iSeg,:) = ... 
                        [xx(iPt+1,jPt),interpVal(yy(iPt,jPt),zz(iPt,jPt), 
yy(iPt+1,jPt),zz(iPt+1,jPt)),... 
                        interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt), 
xx(iPt+1,jPt+1),zz(iPt+1,jPt+1)),yy(iPt+1,jPt)]; 
                    % South - East 
                    iSeg = iSeg+1; 
                    lineSegments(iSeg,:) = ... 
                        
[interpVal(xx(iPt,jPt+1),zz(iPt,jPt+1),xx(iPt,jPt),zz(iPt,jPt)),yy(iPt,jPt+1),... 
                        
xx(iPt,jPt+1),interpVal(yy(iPt,jPt+1),zz(iPt,jPt+1),yy(iPt+1,jPt+1),zz(iPt+1,jPt+1))]; 
                else 
                    % South-West 
                    iSeg = iSeg+1; 
                    lineSegments(iSeg,:) = ... 
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[interpVal(xx(iPt,jPt),zz(iPt,jPt),xx(iPt,jPt+1),zz(iPt,jPt+1)),yy(iPt,jPt),... 
                        xx(iPt,jPt), 
interpVal(yy(iPt,jPt),zz(iPt,jPt),yy(iPt+1,jPt),zz(iPt+1,jPt))]; 
                    % North-East 
                    iSeg = iSeg+1; 
                    lineSegments(iSeg,:) = ... 
                        
[interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt),xx(iPt+1,jPt+1),zz(iPt+1,jPt+1)),yy(iPt+1,jPt+1),
... 
                        xx(iPt+1,jPt+1),interpVal(yy(iPt+1,jPt+1),zz(iPt+1,jPt+1), 
yy(iPt,jPt+1), zz(iPt,jPt+1))]; 
                end 
            case 7 
                % West-East 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[xx(iPt,jPt),interpVal(yy(iPt,jPt),zz(iPt,jPt),yy(iPt+1,jPt),zz(iPt+1,jPt)),... 
                    
xx(iPt,jPt+1),interpVal(yy(iPt,jPt+1),zz(iPt,jPt+1),yy(iPt+1,jPt+1),zz(iPt+1,jPt+1))]; 
            case 8 
                % South - East 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[interpVal(xx(iPt,jPt+1),zz(iPt,jPt+1),xx(iPt,jPt),zz(iPt,jPt)),yy(iPt,jPt+1),... 
                    
xx(iPt,jPt+1),interpVal(yy(iPt,jPt+1),zz(iPt,jPt+1),yy(iPt+1,jPt+1),zz(iPt+1,jPt+1))];   
            case 9 
                % South - East 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[interpVal(xx(iPt,jPt+1),zz(iPt,jPt+1),xx(iPt,jPt),zz(iPt,jPt)),yy(iPt,jPt+1),... 
                    
xx(iPt,jPt+1),interpVal(yy(iPt,jPt+1),zz(iPt,jPt+1),yy(iPt+1,jPt+1),zz(iPt+1,jPt+1))]; 
            case 10 
                % West-East 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[xx(iPt,jPt),interpVal(yy(iPt,jPt),zz(iPt,jPt),yy(iPt+1,jPt),zz(iPt+1,jPt)),... 
                    
xx(iPt,jPt+1),interpVal(yy(iPt,jPt+1),zz(iPt,jPt+1),yy(iPt+1,jPt+1),zz(iPt+1,jPt+1))]; 
            case 11 % Ambiguous 
                centerVal = mean([zz(iPt,jPt), zz(iPt+1,jPt), zz(iPt+1,jPt+1), zz(iPt, 
jPt+1)]); 
                if centerVal >= 1 
                    % South-West 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                        
[interpVal(xx(iPt,jPt),zz(iPt,jPt),xx(iPt,jPt+1),zz(iPt,jPt+1)),yy(iPt,jPt),... 
                        xx(iPt,jPt), 
interpVal(yy(iPt,jPt),zz(iPt,jPt),yy(iPt+1,jPt),zz(iPt+1,jPt))]; 
                    % North-East 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                        
[interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt),xx(iPt+1,jPt+1),zz(iPt+1,jPt+1)),yy(iPt+1,jPt+1),
... 
                        xx(iPt+1,jPt+1),interpVal(yy(iPt+1,jPt+1),zz(iPt+1,jPt+1), 
yy(iPt,jPt+1), zz(iPt,jPt+1))]; 
                else 
                    % West-North 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
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                        [xx(iPt+1,jPt),interpVal(yy(iPt,jPt),zz(iPt,jPt), 
yy(iPt+1,jPt),zz(iPt+1,jPt)),... 
                        interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt), 
xx(iPt+1,jPt+1),zz(iPt+1,jPt+1)),yy(iPt+1,jPt)]; 
                    % South-East 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                        
[interpVal(xx(iPt,jPt+1),zz(iPt,jPt+1),xx(iPt,jPt),zz(iPt,jPt)),yy(iPt,jPt+1),... 
                        
xx(iPt,jPt+1),interpVal(yy(iPt,jPt+1),zz(iPt,jPt+1),yy(iPt+1,jPt+1),zz(iPt+1,jPt+1))]; 
                end 
            case 12 
                % North-East 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt),xx(iPt+1,jPt+1),zz(iPt+1,jPt+1)),yy(iPt+1,jPt+1),
... 
                    xx(iPt+1,jPt+1),interpVal(yy(iPt+1,jPt+1),zz(iPt+1,jPt+1), 
yy(iPt,jPt+1), zz(iPt,jPt+1))]; 
            case 13 
                % North-South 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[interpVal(xx(iPt,jPt),zz(iPt,jPt),xx(iPt,jPt+1),zz(iPt,jPt+1)),yy(iPt,jPt) ... 
                    interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt),xx(iPt+1,jPt+1), 
zz(iPt+1,jPt+1)),yy(iPt+1,jPt)]; 
            case 14 
                % West-North 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    [xx(iPt+1,jPt),interpVal(yy(iPt,jPt),zz(iPt,jPt), 
yy(iPt+1,jPt),zz(iPt+1,jPt)),... 
                    interpVal(xx(iPt+1,jPt),zz(iPt+1,jPt), 
xx(iPt+1,jPt+1),zz(iPt+1,jPt+1)),yy(iPt+1,jPt)]; 
            case 15 
                % South-West 
                iSeg = iSeg+1; 
                lineSegments(iSeg,:) = ... 
                    
[interpVal(xx(iPt,jPt),zz(iPt,jPt),xx(iPt,jPt+1),zz(iPt,jPt+1)),yy(iPt,jPt),... 
                    xx(iPt,jPt), 
interpVal(yy(iPt,jPt),zz(iPt,jPt),yy(iPt+1,jPt),zz(iPt+1,jPt))];  
            case 16 
                % No vertices  
        end 
    end 
end 
lineSegments = lineSegments(1:iSeg,:); 
 
% Extract list of unique vertices from line segmens 
vertices = [lineSegments(:,1:2);lineSegments(:,3:4)]; 
vertices = uniquetol(vertices,eps,'ByRows', true); 
 
% Create a vertex connectivity table. The 1e-12 value is here because 
% floats don't round well and == will not work.  
vertConn = zeros(size(lineSegments,1),2); 
for i = 1:length(vertConn) 
    index = all(abs(lineSegments(:,1:2) - vertices(i,:)) < 1e-12,2); 
    vertConn(index,1) = i; 
    index = all(abs(lineSegments(:,3:4) - vertices(i,:)) < 1e-12,2); 
    vertConn(index,2) = i; 
end 
 
%% Start line segments sorting and envelope extraction 
nEnvelopes = 1; 
allEnvelopes(1,1) = 1;     % First entry is always vertex 1 
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for i = 1:size(vertConn,1)-1 
    % save vertex to find  
    vertToFind = vertConn(i,2); 
    j = i+1; % helper index 
    % Find connecting node 
    foundShiftedInd =... 
        find(any(vertConn(j:end,:) == vertToFind,2), 1, 'first'); 
    % If we have found an index  
    if ~isempty(foundShiftedInd) 
        foundInd = foundShiftedInd + i; 
        % swap found vert conn row with j row 
        temp = vertConn(j,:); 
        % Now, decide whether to flip found row. We want vertex 2 of  
        % previous line to be node 1 of the new line.  
        if (vertConn(foundInd,1) == vertToFind) 
            vertConn(j,:) = vertConn(foundInd, [1,2]); 
        else  
            vertConn(j,:) = vertConn(foundInd, [2,1]); 
        end 
        % Logic to prevent overwriting, if found row is next row.  
        if (foundInd ~= j) 
            vertConn(foundInd,:) = temp; 
        end 
    % If we did not find an index, we either may have an open envelope or 
    % envelope may be convex and loops back on itself.  
    else 
        % Check to see if we can find the first vertex in envelope 
        % appearing again (check for closure) 
        vertToFind = vertConn(allEnvelopes(nEnvelopes,1)); 
        foundShiftedInd = ... 
            find(any(vertConn(j:end,:) == vertToFind,2), 1, 'first'); 
        % If we do not find an index, it means this envelope is complete 
        % and manifold 
        if isempty(foundShiftedInd) 
            % Assign indices to finish current envelope, initialize next 
            allEnvelopes(nEnvelopes,2) = i; 
            nEnvelopes = nEnvelopes + 1; 
            allEnvelopes(nEnvelopes, 1) = j; 
        else 
            % This error should only occur if envelopes extend beyond 
            % sampling grid, which they should not.  
            error('Literal Edge Case') 
        end 
         
    end 
end 
allEnvelopes(nEnvelopes,2) = j; 
 
% Find largest envelope 
[~,envInds] = max(allEnvelopes(:,2)-allEnvelopes(:,1)); 
 
% Convert indices in evelopes to array of (x,y) 
envInds = allEnvelopes(envInds, :); 
envelope = vertices(vertConn(envInds(1):envInds(2),1),:); 
 
% For debugging, plot all envelopes 
if strcmpi(nvArg.Diagnostics,'detailed') 
    for iEnv = 1:nEnvelopes 
        envInds = allEnvelopes(iEnv, :); 
        plot(vertices(vertConn(envInds(1):envInds(2),1),1),... 
            vertices(vertConn(envInds(1):envInds(2),1),2),... 
            '.-b','LineWidth',1.0) 
    end 
end 
 
%% Divide the envelope into corridors.  
% To break the largest envelop into inner and outer corridors, we need to 
% account for several edge cases. First, we test to see if there are any 
% intercepts of the characteristic average and the largest envelope.  
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closedEnvelope = [envelope; envelope(1,:)]; 
[~,~,indexIntercept] = polyxpoly(closedEnvelope(:,1),closedEnvelope(:,2),... 
    charAvg(:,1),charAvg(:,2)); 
 
% If we find two intercepts, then we have no problem 
if size(indexIntercept,1) >=2 
    iIntStart = indexIntercept(1,1); 
    iIntEnd = indexIntercept(end,1); 
 
% If we find only one intercept, we need to determine if the intercept is a 
% the start or end of the envelope. Then we need to extend the opposite 
% side of the characteristic average to intercept the envelope.  
elseif size(indexIntercept,1) == 1 
    % If the single found point is inside the envelope, the found intercept 
    % is at the end. Therefore extend the start 
    if inpolygon(charAvg(indexIntercept(2),1),... 
            charAvg(indexIntercept(2),2), envelope(:,1),envelope(:,2)) 
        iIntEnd = indexIntercept(1); 
        [iIntStart,~] = rayxpoly(charAvg(2,:)',... 
            (charAvg(1,:)-charAvg(2,:))', closedEnvelope); 
        iIntStart = iIntStart(1); 
 
    % If the single found point is outside the envelope, the found 
    % intercept is the start 
    else 
        iIntStart = indexIntercept(1); 
        [iIntEnd,~] = rayxpoly(charAvg(end-1,:)',... 
            (charAvg(end,:)-charAvg(end-1,:))', closedEnvelope); 
        iIntEnd = iIntEnd(1); 
    end 
 
% If we find no intercepts, we need to extend both sides of characteristic 
% average to intercept the envelop. 
else 
    [iIntStart,~] = rayxpoly(charAvg(2,:)',... 
        (charAvg(1,:)-charAvg(2,:))', closedEnvelope); 
    iIntStart = iIntStart(1); 
 
    [iIntEnd,~] = rayxpoly(charAvg(end-1,:)',... 
        (charAvg(end,:)-charAvg(end-1,:))', closedEnvelope); 
    iIntEnd = iIntEnd(1); 
end 
 
% To divide inner or outer corridors, first determine if polygon is clockwise 
% or counter-clockwise. Then, based on which index is large, separate out 
% inner and outer corridor based on which intercept index is larger.  
if ispolycw(envelope(:,1),envelope(:,2)) 
    if iIntStart > iIntEnd 
        outerCorr = [envelope(iIntStart:end,:);envelope(1:iIntEnd,:)]; 
        innerCorr = envelope(iIntEnd:iIntStart,:); 
    else 
        outerCorr = envelope(iIntStart:iIntEnd,:); 
        innerCorr = [envelope(iIntEnd:end,:);envelope(1:iIntStart,:)]; 
    end 
else 
    if iIntStart > iIntEnd 
        innerCorr = [envelope(iIntStart:end,:);envelope(1:iIntEnd,:)]; 
        outerCorr = envelope(iIntEnd:iIntStart,:); 
    else 
        innerCorr = envelope(iIntStart:iIntEnd,:); 
        outerCorr = [envelope(iIntEnd:end,:);envelope(1:iIntStart,:)]; 
    end 
end 
 
% Resample corridors. Use nResamplePoints. Because corridors are 
% non-monotonic, arc-length method discussed above is used.  
% Start with inner corridor. Magnitudes are being normalized. 
segments = sqrt(((innerCorr(1:end-1,1)-innerCorr(2:end,1))./max(innerCorr(:,1))).^2 ... 
    + ((innerCorr(1:end-1,2)-innerCorr(2:end,2))./max(innerCorr(:,2))).^2); 
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alen = cumsum([0;segments]); 
alenResamp = linspace(0,max(alen),nvArg.nResamplePoints)'; 
innerCorr = [interp1(alen,innerCorr(:,1),alenResamp),... 
    interp1(alen,innerCorr(:,2),alenResamp)]; 
% Outer Corridor 
segments = sqrt(((outerCorr(1:end-1,1)-outerCorr(2:end,1))./max(outerCorr(:,1))).^2 ... 
    + ((outerCorr(1:end-1,2)-outerCorr(2:end,2))./max(outerCorr(:,2))).^2); 
alen = cumsum([0;segments]); 
alenResamp = linspace(0,max(alen),nvArg.nResamplePoints)'; 
outerCorr = [interp1(alen,outerCorr(:,1),alenResamp),... 
    interp1(alen,outerCorr(:,2),alenResamp)]; 
 
%% Add limits to detailed debug plot 
if strcmpi(nvArg.Diagnostics,'detailed') 
    xlim([min(xx(:)),max(xx(:))]) 
    ylim([min(yy(:)),max(yy(:))]) 
end 
 
varargout{1} = inputSignals; 
varargout{2} = debugOutput; 
end  % End main function 
 
%% helper function to perform linear interpolation to an isovalue of 1 only 
function val = interpVal(x1, y1, x2, y2) 
    val = x1+(x2-x1)*(1-y1)/(y2-y1); 
end 
    
%% Function used to evaluate correlation score between signals 
function [meanCorrScore, corrScoreArray] = evalCorrScore(signalsX,signalsY) 
% Correlation score taken from the work of Nusholtz et al. (2009) 
% Compute cross-correlation matrix of all signals to each other 
corrMatX = corrcoef(signalsX); 
corrMatY = corrcoef(signalsY); 
% Convert matrices to a single score 
nSignal = size(corrMatX,2); 
corrScoreX = (1/(nSignal*(nSignal-1)))*(sum(sum(corrMatX))-nSignal); 
corrScoreY = (1/(nSignal*(nSignal-1)))*(sum(sum(corrMatY))-nSignal); 
% Compute a single metric for optimization purposes. Using simple mean 
meanCorrScore = 0.5*(corrScoreX+corrScoreY); 
corrScoreArray = [corrScoreX, corrScoreY]; 
end 
 
%% Function used to compute objective for optimization 
function [optScore, penaltyScore] = 
warpingObjective(optimWarp,nCtrlPts,inputSignals,nvArg) 
% Control points are equally spaced in arc-length.  
% optimwarp is a column vector with first warped control point in the 
% first nSignal indices, then 2nd control point in the next nSignal indices 
 
% warpArray = reshape(optimWarp,length(inputSignals),nCtrlPts); 
nSignal = length(inputSignals); 
warpArray = reshape(optimWarp,[],nCtrlPts); 
% Compute a warping penalty 
penaltyScore = warpingPenalty(warpArray,nvArg.WarpingPenalty,nvArg); 
penaltyScore = mean(penaltyScore); 
 
% Perform warping - non-mex version 
% [~, signalsX, signalsY] = warpArcLength(warpArray,inputSignals,... 
%     nvArg.nResamplePoints); 
 
% IMPORTANT: This is a compiled mex verison of warpArcLength. The mex 
% function cannot be modified. If warpArcLength is updated later, you will 
% also need to recompile the mex function 
signalCellArray = cell(nSignal,1); 
for i=1:nSignal 
signalCellArray{i} = inputSignals(i).data; 
end 
[~, signalsX, signalsY] = 
warpArcLength_mex(warpArray,signalCellArray,nvArg.nResamplePoints); 
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% Compute correlation score 
[corrScore, ~] = evalCorrScore(signalsX,signalsY); 
% corrScore is a maximization goal. Turn into a minimization goal 
optScore = 1-corrScore+penaltyScore; 
 
end 
 
%% Function used to warp arc-length 
function [warpedSignals, signalsX, signalsY]... 
    = warpArcLength(warpArray, inputSignals, nResamplePoints) 
% Warp array: each row is warping points for an input signal, each column 
% is warped point. Control points are interpolated  on [0,1] assuming 
% equal spacing.  
nSignals = length(inputSignals); 
 
% lmCtrlPts = linspace(0,1,2+nCtrlPts); 
% lmCtrlPts = [0,warpArray(end,:),1]; 
 
% Initialize matrices 
signalsX = zeros(nResamplePoints, nSignals); 
signalsY = zeros(nResamplePoints, nSignals); 
warpedSignals = cell(nSignals,1); 
 
for iSignal = 1:nSignals 
    % Assign responseSignal data array to matrix for brevity 
    signal = inputSignals(iSignal).data; 
     
    lmCtrlPts = [0,warpArray(iSignal+nSignals,:),1]; 
     
    % prepend 0 and append 1 to warp points for this signal to create valid 
    % control points.  
    warpedCtrlPts = [0,warpArray(iSignal,:),1]; 
     
    % Construct warping function using SLM. This warps lmAlen to shiftAlen. 
    % Use warping fuction to map computed arc-lengths onto the shifted 
    % system. use built-in pchip function. This is a peicewise monotonic  
    % cubic spline. Signifincantly faster than SLM.  
    warpedNormAlen = pchip(lmCtrlPts,warpedCtrlPts,signal(:,4)); 
       
    % Now uniformly resample normalzied arc-length 
    resamNormwarpedAlen = linspace(0,1, nResamplePoints)'; 
    resampX = interp1(warpedNormAlen, signal(:,1), 
resamNormwarpedAlen,'linear','extrap'); 
    resampY = interp1(warpedNormAlen, signal(:,2), 
resamNormwarpedAlen,'linear','extrap'); 
    % Assign to array for correlation calc 
    signalsX(:,iSignal) = resampX; 
    signalsY(:,iSignal) = resampY; 
     
    % Assemble a cell array containing arrays of resampled signals. Similar 
    % to 'normalizedSignal' in 'inputSignals' structure 
    warpedSignals{iSignal} = [resamNormwarpedAlen,resampX,resampY]; 
end 
 
end 
 
%% Penalty function to prevent plateaus and extreme divergence in warping functions 
function [penaltyScores] = warpingPenalty(warpArray,penaltyFactor,nvArg) 
% Compute an array of penalty scores based on MSE between linear, unwarped 
% arc-length and warped arc-length. Aim is to help prevent plateauing.  
[nSignals, nCtrlPts] = size(warpArray); 
nSignals = nSignals/2; 
% lmCtrlPts = [0, warpArray(end,:), 1]; 
penaltyScores = zeros(nSignals,1); 
unwarpedAlen = linspace(0,1,nvArg.nResamplePoints); 
 
for iSignal=1:nSignals 
    penaltyScores(iSignal) = sum((unwarpedAlen - ... 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

139 
 

 
 

        pchip([0,warpArray(iSignal+nSignals,:),1],... 
        [0,warpArray(iSignal,:),1],unwarpedAlen)).^2); 
end 
 
penaltyScores = penaltyScores.*penaltyFactor; 
end 
     
%% Function to find intercept of Ray and Polygon 
function [indices, intercepts] = rayxpoly(basePt, dirVec, poly) 
% Finds the intersections of a ray and polygon by incrementally solving the 
% ray-line segment problem.  
% 
% Algorithm: rootllama.wordpress.com/2014/06/20/ray-line-segment-intersection-test-in-
2d/ 
% 
% basePt and dirVec are [2,1] vectors. Poly is a list of vertices in a 
% closed polygon 
%  
% If multiple intercepts are found, they are sorted from closest to base 
% point to furthest.  
 
nVerts= size(poly,1)-1; % Closed polygon so legnth+1 
 
indices = []; 
intercepts = []; 
 
% Cycle through line segments, and check if ray intercepts line segments 
for iVert = 1:nVerts 
    % a is first point, b is second point 
    a = poly(iVert,:)'; 
    b = poly(iVert+1, :)'; 
 
    % Define three helper vectors 
    v1 = basePt-a; 
    v2 = b-a; 
    v3 = [-dirVec(2), dirVec(1)]'; 
 
    % t1 is parameter for ray 
    t1 = (v2(1)*v1(2) - v1(1)*v2(2))/dot(v2, v3); 
    % t2 is parameter for line segment 
    t2 = dot(v1, v3)/dot(v2, v3); 
 
    % Ray intercepts segment iff t1 is positive (forward ray projection) 
    % and 0<t2<=1 
    if ( (t1>0) && (t2>0) && (t2<=1) ) 
        % record first index of line segment and coordinates of intercept 
        indices = [indices; iVert]; 
        intercepts = [intercepts; (a+(b-a)*t2)']; 
    end 
end 
 
% If more than one intercept, sort them from closest to furthest 
if size(indices,1) > 1 
    [~, sortInd] = sort(vecnorm(intercepts-basePt',2,2)); 
    indices = indices(sortInd); 
    intercepts = intercepts(sortInd,:); 
end 
 
end 
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2.1.2. PreProcessInputSignals.m 
%% Pre-process Input Signals 
% 
% This script pre-processes input signals which will be subsequently used 
% for to generate a characteristic average and response corridors.   
% Preprocessing amalgoamtes several curves, ensures the validity of said 
% curves, and saves the data into a single MATLAB data file for later use.  
% 
% This script is provided as part of ARCGen, which is released under a GNU  
% GPL v3 license. No warranty or support is provided. The authors any 
% responsibility for the validity, accuracy, or applicability of any  
% results obtained from this code. 
% 
% Input signals must be saved in individual CSV files, with data saved in 
% columns. The user can set which two column indices are used as the input 
% x and y data.  
% 
% Corridor generation is performed in a separate script 
% 
% Corridor generation scripts requires that input data be organized using a 
% structure array. The structure array must have two entries per response 
% curve 
%   + data: [n,2] array of x-y data 
%   + specId: A character string used as a specimen identifier.  
% 
% This script has four options to specify "specId" in a programatic 
% fashion. This is defined using "flagAlterSpecID". 
%   + "No": "specId" is taken directly from the file name of the .csv 
%   + "RemoveUnderscore": "specId" is the file name of the .csv with 
%        underscores replaced with spaces 
%   + "Squential": "specId" is defined sequential with "sequentialBase" 
%        used as a prefix 
%   + "Manual": "specId" is defined using the cell array "manualSpecIds". 
%        "manualSpecId" must be the same length as .csv file being  
%        processed.  
% 
% Copyright (c) 2022 Devon C. Hartlen 
 
%% Initialization 
fclose all; 
close all; 
clear; 
clc; 
 
addpath('ThirdPartyFunctions') % Path to 3rd party functions 
 
%% Select desired data files to be processed 
% This is accomplished with a UI 
inputFilenames = uipickfiles('Output','struct'); 
% correct file names 
for iFile = 1:length(inputFilenames) 
    [~,name,ext] = fileparts(inputFilenames(iFile).name); 
    inputFilenames(iFile).specId = name; 
end 
 
%% Alter specimen ID from file name (if desired) 
% Cases: 'No','RemoveUnderscore','Sequential','Manual' 
flagAlterSpecID = 'No';  
sequentialBase = 'ID'; 
manualSpecIds = {... 
    'ID1';... 
    'ID2';... 
    }; 
switch flagAlterSpecID 
    case 'No' 
        disp('Skipping rename') 
    case 'RemoveUnderscore' 
        for iFile = 1:length(inputFilenames) 
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            inputFilenames(iFile).specId = ... 
                replace(inputFilenames(iFile).specId,'_(x)',''); 
            inputFilenames(iFile).specId = ... 
                replace(inputFilenames(iFile).specId,'_',' '); 
        end 
    case 'Sequential' 
        for iFile = 1:length(inputFilenames) 
            inputFilenames(iFile).specId = ... 
                [sequentialBase ' ' num2str(iFile,'%3d')]; 
        end 
    case 'Manual' 
        if length(manualSpecIds) ~= length(inputFilenames) 
            error('Not enough manual IDs specified') 
        else 
            for iFile = 1:length(inputFilenames) 
                inputFilenames(iFile).specId = manualSpecIds{iFile}; 
            end 
        end 
end 
 
%% Load response curves 
% Specify x,y columns of datafile to be loaded 
indicesCurves = [1,2]; 
inputSignals = struct([]); % initialization 
for iFile = 1:length(inputFilenames) 
    curveData = readmatrix(inputFilenames(iFile).name); % R2020a required 
    inputSignals(iFile).specId = inputFilenames(iFile).specId; 
    inputSignals(iFile).data = curveData(:,indicesCurves); 
end 
     
%% Save response curves to file 
uisave({'inputSignals'}) 
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2.1.3. Arcgen_executer.m 
[charAvg, innerCorr, outerCorr, processedSignalData, debugData] = arcgen(inputSignals, 
'nWarpCtrlPts', 2); 
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3. MATLAB CODE LIBRARY 
3.1. Method 1: B-Spline approximation and Principal Component Analysis of 

individual landmark trajectories 

3.1.1. Spline_analysis_all_tests_together.m 
% First index: subject 
% Second index: trial 
% Third index: landmark (1- head, 2-C4, 3-T1, 4-T4, 5-T8, 6-Hpoint) 
clear all; 
 
% List of test names 
test_names = {'1679', '1684', '1689', '1694', '1767', '1858', '1865', '1869', '1873', 
'1771', '1774', '1778', '1780', '1862'}; 
%test_names = {'1679', '1684', '1689', '1694', '1767', '1771', '1774', '1778', '1780', 
'1858', '1862', '1865', '1869', '1873'}; 
num_test = length(test_names); 
 
    n = input('How many control points? ', 's'); 
    n = str2num(n); 
    order = 3; 
 
    if (n < order) 
        disp([' !!! Error: Choose n >= order=', num2str(order), ' !!!']); 
        return;z 
    end 
 
for ctr_test = 1:num_test 
    test_name = test_names{ctr_test}; 
 
    file_name = strcat('/Users/alicia/Desktop/mobios/Lopez-Valdes 2024- Comparison of 
volunteers and PMHS/Data analysis w splines/data/', test_name, '.xlsx'); 
     
    % Head 
    if strcmp(test_name, '1684') 
        data{ctr_test,1}(:,1) = xlsread(file_name, 3, 'B106:B311'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
        data{ctr_test,1}(:,2) = xlsread(file_name, 3, 'D106:D311'); %same 
    else 
        data{ctr_test,1}(:,1) = xlsread(file_name, 3, 'B106:B405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
        data{ctr_test,1}(:,2) = xlsread(file_name, 3, 'D106:D405'); %same 
    end 
    %data{ctr_test,1}(:,1) = xlsread(file_name, 3, 'B106:B405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    %data{ctr_test,1}(:,2) = xlsread(file_name, 3, 'D106:D405'); %same 
     
    % C4 
    data{ctr_test,2}(:,1) = xlsread(file_name, 3, 'H106:H405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    data{ctr_test,2}(:,2) = xlsread(file_name, 3, 'J106:J405'); %same 
 
    % T1 
    if strcmp(test_name, '1865') 
        data{ctr_test,3}(:,1) = xlsread(file_name, 3, 'K106:K260'); 
        data{ctr_test,3}(:,2) = xlsread(file_name, 3, 'M106:M260'); 
    else 
        data{ctr_test,3}(:,1) = xlsread(file_name, 3, 'K106:K405'); 
        data{ctr_test,3}(:,2) = xlsread(file_name, 3, 'M106:M405'); 
    end 
 
    % T1 
    %data{ctr_test,3}(:,1) = xlsread(file_name, 3, 'K106:K405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    %data{ctr_test,3}(:,2) = xlsread(file_name, 3, 'M106:M405'); %same 
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    % T4 
    data{ctr_test,4}(:,1) = xlsread(file_name, 3, 'N106:N405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    data{ctr_test,4}(:,2) = xlsread(file_name, 3, 'P106:P405'); %same 
 
    % T8 
    data{ctr_test,5}(:,1) = xlsread(file_name, 3, 'Q106:Q405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    data{ctr_test,5}(:,2) = xlsread(file_name, 3, 'S106:S405'); %same 
 
    % H-point 
    data{ctr_test,6}(:,1) = xlsread(file_name, 3, 'E106:E405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    data{ctr_test,6}(:,2) = xlsread(file_name, 3, 'G106:G405'); %same 
 
    % Zeroing displacements 
    for ctr_var = 1:6 
        data{ctr_test,ctr_var}(:,1) = data{ctr_test,ctr_var}(:,1) - 
data{ctr_test,ctr_var}(1,1);     
        data{ctr_test,ctr_var}(:,2) = data{ctr_test,ctr_var}(:,2) - 
data{ctr_test,ctr_var}(1,2); 
    end 
 
     
    for ctr_var = 1:6 
        if strcmp(test_name, '1865') && ctr_var == 3 
            cut = 0; 
        elseif strcmp(test_name, '1684') && ctr_var == 1 
            cut = 6; 
        else 
            cut = 100; 
    end 
 
        interval = floor((length(data{ctr_test,ctr_var}) - cut) / (n));  
         
        % 100 is to stop at t=200 ms 
         
        %fprintf('El valor de interval es: %d\n', interval); 
 
 
        %fig{ctr_var} = figure; 
        x(1) = data{ctr_test,ctr_var}(1,1); 
        x(n) = data{ctr_test,ctr_var}(end-cut,1);  
        z(1) = data{ctr_test,ctr_var}(1,2); 
        z(n) = data{ctr_test,ctr_var}(end-cut,2); 
 
        for i = 2:n-1 
            x(i) = data{ctr_test,ctr_var}((i-1) * interval, 1); 
            z(i) = data{ctr_test,ctr_var}((i-1) * interval, 2); 
        end 
 
         
        for i = 1:n 
            p{ctr_test,ctr_var}(i,:) = [x(i); z(i)]; 
        end 
         
        %{ 
        plot(p{ctr_test,ctr_var}(:,1), p{ctr_test,ctr_var}(:,2), 'k-', 'LineWidth', 2); 
        hold on; box on; 
        plot(p{ctr_test,ctr_var}(:,1), p{ctr_test,ctr_var}(:,2), 'ro', 'MarkerSize', 5, 
'MarkerFaceColor', 'r'); 
        %} 
 
        % Method 1 
        T = linspace(0, 1, i - order + 2); 
 
        if strcmp(test_name, '1865') && ctr_var==3 
            y = linspace(0, 1, 156); 
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        else 
            y = linspace(0, 1, 201); 
        end 
         
        p_spl{ctr_test,ctr_var} = DEBOOR(T, p{ctr_test,ctr_var}, y, order); 
        % Method 2 
        % y = linspace(0, 201, 
         
        %{ 
        plot(p_spl{ctr_test,ctr_var}(:,1), p_spl{ctr_test,ctr_var}(:,2), 'b-', 
'LineWidth', 2); 
        hold off; 
        %} 
 
        % Assess of RMS error 
        % Evaluation of spline at all X positions 
        RMSE{ctr_test,ctr_var} = 0; 
        % Ensure lengths match for RMSE calculation 
        min_length = min(length(p_spl{ctr_test,ctr_var}(:,1)), 
length(data{ctr_test,ctr_var}(:,1))); 
        aux = zeros(1, min_length); 
        % k{ctr_test,ctr_var} = 0; 
        %for ctr = 1:length(p_spl{ctr_test,ctr_var}(:,1)) 
        for ctr = 1:min_length 
            % if floor(p_spl(ctr,1) - data{ctr_test,ctr_var}(ctr+99,1)) < 1 
            aux(ctr) = (p_spl{ctr_test,ctr_var}(ctr,2) - 
data{ctr_test,ctr_var}(ctr,2))^2; 
            RMSE{ctr_test,ctr_var} = RMSE{ctr_test,ctr_var} + aux(ctr); 
            % k{ctr_test,ctr_var} = k{ctr_test,ctr_var} + 1; 
            % else 
            % aux = 0; 
        end 
        RMSE{ctr_test,ctr_var} = ((1 / length(aux(ctr))) * RMSE{ctr_test,ctr_var})^0.5; 
 
    %% RMSE calculation with evenly spaced points 
        RMSE_spaced{ctr_test,ctr_var} = 0; 
        % Number of points including first and last 
        n_points = 10;  
 
        % Ensure sample_indices are within bounds 
        max_idx = length(p_spl{ctr_test,ctr_var}); 
        sample_indices = round(linspace(1, max_idx, n_points)); 
 
        aux_spaced = zeros(1, length(sample_indices)); 
        valid_count = 0; % Counter to track valid indices 
                     
        for ctr = 1:length(sample_indices) 
            idx = sample_indices(ctr); 
            if idx > max_idx 
                idx = max_idx; 
            end             
            aux_spaced(ctr) = (p_spl{ctr_test,ctr_var}(idx,2) - 
data{ctr_test,ctr_var}(idx,2))^2; 
            RMSE_spaced{ctr_test,ctr_var} = RMSE_spaced{ctr_test,ctr_var} + 
aux_spaced(ctr); 
        end 
        RMSE_spaced{ctr_test,ctr_var} = sqrt(mean(aux_spaced)); 
    end 
 
%% Create a figure to display original data and spline curves 
 
    landmark_names = {'head', 'C4', 'T1', 'T4', 'T8', 'Hpoint'}; 
    figure; 
     
    % Loop over each variable (landmark) 
    for ctr_var = 1:6 
        % Plot original data points 
        subplot(2, 3, ctr_var); 
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        plot(data{ctr_test, ctr_var}(:, 1), data{ctr_test, ctr_var}(:, 2), 'ro', 
'MarkerSize', 5, 'MarkerFaceColor', 'r'); 
        hold on; 
     
        % Plot spline curve 
        plot(p_spl{ctr_test, ctr_var}(:, 1), p_spl{ctr_test, ctr_var}(:, 2), 'b-', 
'LineWidth', 2); 
     
        % Plot chosen RMSE points 
        sample_indices = round(linspace(1, length(p_spl{ctr_test, ctr_var}), n_points)); 
        scatter(p_spl{ctr_test, ctr_var}(sample_indices, 1), p_spl{ctr_test, 
ctr_var}(sample_indices, 2), ... 
            'c', 'filled'); 
 
        scatter(data{ctr_test, ctr_var}(sample_indices, 1), data{ctr_test, 
ctr_var}(sample_indices, 2), ... 
         'g', 'filled'); 
 
        % Set plot title 
        title(sprintf('Variable: %s', landmark_names{ctr_var})); 
        xlabel('X-coordinate'); 
        ylabel('Y-coordinate'); 
        legend('Original Data', 'Spline Curve'); 
        grid on; 
    end 
     
    % Adjust figure layout 
    figure_title = sprintf('Test: %s. Comparison of Original Data and Spline Curves for 
Each Landmark', test_names{ctr_test}); 
    sgtitle(figure_title); 
 
 
end 
 
 
%% Create p-eld 
 
% Initialize p_eld as an empty cell array 
p_eld = cell(5, 6); % Assuming 5 tests for older people 
 
% Move data from rows 10 to 14 of p to p_eld 
p_eld = p(10:14, :); 
 
% Clear rows 10 to 14 of p 
p(10:14, :) = []; 
 
%% Analyse RMSE 
 
max_RMSE = max(cellfun(@max, RMSE_spaced)); 
fprintf('Maximum RMSE Head for %d RMSE points: %.4f\n', n_points, max_RMSE(1)); 
average_RMSE = mean(cellfun(@mean, RMSE_spaced)); 
fprintf('Average RMSE Head for %d RMSE points: %.4f\n', n_points, average_RMSE(1)); 
 
%% Calculate average and standard deviation of RMSE_spaced for each landmark 
 
average_RMSE_spaced = zeros(1, 6); 
stdev_RMSE_spaced = zeros(1, 6); 
 
for ctr_var = 1:6 
    % Extract RMSE_spaced values for the current landmark 
    rmse_values = []; 
    for ctr_test = 1:num_test 
        rmse_values = [rmse_values, RMSE_spaced{ctr_test, ctr_var}]; 
    end 
    average_RMSE_spaced(ctr_var) = mean(rmse_values); 
    stdev_RMSE_spaced(ctr_var) = std(rmse_values); 
  end 
 
T = table(landmark_names', average_RMSE_spaced', stdev_RMSE_spaced', ... 
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    'VariableNames', {'Landmark', 'Average_RMSE_spaced', 'Stdev_RMSE_spaced'}); 
disp(T); 
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3.1.2. All_coordinates_any_n.m 
%% Chose landmark 
 
disp('Landmark IDs are as follows:'); 
 
% Landmarks array 
landmarks = {'1- head', '2- C4', '3- T1', '4- T4', '5- T8', '6- Hpoint'}; 
 
% Display each landmark on a new line 
for i = 1:length(landmarks) 
    fprintf('%s\n', landmarks{i}); 
end 
 
l = input('Which landmark? ', 's'); 
    l = str2num(l); 
 
%% Young 
for i = 1:9 
    for j = 1:n % Loop through the number of control points 
        X(i, (2*j)-1) = p{i, l}(j, 1); % X-coordinate 
        X(i, 2*j) = p{i, l}(j, 2); % Y-coordinate 
    end 
end 
 
%% Elderly 
for i = 10:14 
    for j = 1:n % Loop through the number of control points 
        X(i, (2*j)-1) = p_eld{i-9, l}(j, 1); % X-coordinate 
        X(i, 2*j) = p_eld{i-9, l}(j, 2); % Y-coordinate 
    end 
end 
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3.1.3. PCA_Analysis 
% Standardize the Data 
X_standardized = zscore(X); 
 
% Perform PCA 
[coeff, score, latent, tsquared, explained] = pca(X_standardized); 
 
% Define Group Labels 
groups = [ones(9, 1); 2*ones(5, 1)]; % 1 = Young, 2 = Elderly 
groupNames = {'Young volunteers', 'Elderly volunteers'}; 
colors = ['r', 'b'];  % red = young, blue = elderly 
 
% Fonts and sizes 
fontName = 'Helvetica'; 
fontSizeAxis = 12; 
fontSizeLabel = 10; 
markerSize = 50; 
 
%% 2D PCA Plot: PC1 vs PC2 
figure('Color', 'w', 'Units', 'centimeters', 'Position', [5, 5, 16, 12]); 
t = tiledlayout(1,1, 'Padding', 'compact', 'TileSpacing', 'compact'); 
sgtitle('PCA Projection: 1st and 2nd PC - H-Point', ... 
     'FontSize', fontSizeAxis + 2, 'FontWeight', 'bold'); 
ax = nexttile; 
 
hold on; 
for i = 1:max(groups) 
    idx = groups == i; 
    scatter(score(idx,1), score(idx,2), markerSize, colors(i), 'filled', 'DisplayName', 
groupNames{i}); 
    for j = find(idx)' 
        text(score(j,1), score(j,2), sprintf('%d', j), ... 
            'VerticalAlignment','bottom', 'HorizontalAlignment','right', ... 
            'FontName', fontName, 'FontSize', fontSizeLabel); 
    end 
end 
xlabel('First Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis); 
ylabel('Second Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis); 
set(gca, 'FontName', fontName, 'FontSize', fontSizeAxis); 
legend('Location', 'bestoutside', 'FontName', fontName, 'FontSize', fontSizeAxis); 
grid on; 
hold off; 
 
%% 3D PCA Plot: PC1 vs PC2 vs PC3 
figure('Color', 'w', 'Units', 'centimeters', 'Position', [5, 5, 16, 12]); 
t = tiledlayout(1,1, 'Padding', 'compact', 'TileSpacing', 'compact'); 
sgtitle('PCA Projection: 1st, 2nd and 3rd PC - T1', ... 
    'FontName', 'Helvetica', 'FontSize', fontSizeAxis + 2, 'FontWeight', 'bold'); 
 
ax3 = nexttile; 
hold on; 
 
for i = 1:max(groups) 
    idx = groups == i; 
    scatter3(score(idx,1), score(idx,2), score(idx,3), markerSize, colors(i), 'filled', 
'DisplayName', groupNames{i}); 
    for j = find(idx)' 
        text(score(j,1), score(j,2), score(j,3), sprintf('%d', j), ... 
            'VerticalAlignment','bottom', 'HorizontalAlignment','right', ... 
            'FontName', 'Helvetica', 'FontSize', fontSizeLabel); 
    end 
end 
xlabel('First Principal Component', 'FontName', 'Helvetica', 'FontSize', fontSizeAxis); 
ylabel('Second Principal Component', 'FontName', 'Helvetica', 'FontSize', fontSizeAxis); 
zlabel('Third Principal Component', 'FontName', 'Helvetica', 'FontSize', fontSizeAxis); 
set(gca, 'FontName', 'Helvetica', 'FontSize', fontSizeAxis); 
legend('Location', 'bestoutside', 'FontName', 'Helvetica', 'FontSize', fontSizeAxis); 
grid on; 
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view(3); 
hold off; 
 
%% Display explained variance 
ExplainedVariance = table( ... 
    (1:3)', ... 
    explained(1:3), ... 
    'VariableNames', {'PrincipalComponent', 'VarianceExplained_Percent'}); 
disp(ExplainedVariance);	  
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3.2. Method 2: Landmark relative positioning analysis at peak displacement 

3.2.1. Time_based_noHPoint.m 
clear all; 
 
%% UPLOAD DATA 
% List of test names 
test_names = {'1679', '1684', '1689', '1694', '1767', '1858', '1865', '1869', '1873', 
'1771', '1774', '1778', '1780', '1862'}; 
num_test = length(test_names); 
variable_names = {'Head', 'C4', 'T1', 'T4', 'T8'};  % Removed H-point 
 
% Prompt the user to enter the number of evenly spaced points 
num_points = input('Enter the number of evenly spaced points: '); 
 
% Calculate indices for evenly spaced points 
indices_longest = round(linspace(1, 200, num_points)); 
 
for ctr_test = 1:num_test 
    test_name = test_names{ctr_test}; 
 
    file_name = strcat('/Users/alicia/Desktop/mobios/Lopez-Valdes 2024- Comparison of 
volunteers and PMHS/Data analysis w splines/data/', test_name, '.xlsx'); 
     
    % Head 
    data{ctr_test,1}(:,1) = xlsread(file_name, 3, 'B106:B305'); 
    data{ctr_test,1}(:,2) = xlsread(file_name, 3, 'D106:D305'); 
     
    % C4 
    data{ctr_test,2}(:,1) = xlsread(file_name, 3, 'H106:H305');  
    data{ctr_test,2}(:,2) = xlsread(file_name, 3, 'J106:J305');  
 
    % T1 
    if strcmp(test_name, '1865') 
        data{ctr_test,3}(:,1) = xlsread(file_name, 3, 'K106:K260'); 
        data{ctr_test,3}(:,2) = xlsread(file_name, 3, 'M106:M260'); 
    else 
        data{ctr_test,3}(:,1) = xlsread(file_name, 3, 'K106:K305'); 
        data{ctr_test,3}(:,2) = xlsread(file_name, 3, 'M106:M305'); 
    end 
 
    % T4 
    data{ctr_test,4}(:,1) = xlsread(file_name, 3, 'N106:N305');  
    data{ctr_test,4}(:,2) = xlsread(file_name, 3, 'P106:P305');  
 
    % T8 
    data{ctr_test,5}(:,1) = xlsread(file_name, 3, 'Q106:Q305');  
    data{ctr_test,5}(:,2) = xlsread(file_name, 3, 'S106:S305');  
     
    % Zeroing displacements and select evenly spaced data points 
    head_initial_coords = data{ctr_test,1}(1, :);  % Get initial coordinates of the head 
    for ctr_var = 1:5  % Adjust loop to exclude H-point 
        data{ctr_test, ctr_var} = data{ctr_test, ctr_var} - head_initial_coords; % 
Zeroing relative to the head's initial position 
         
        num_data_points = size(data{ctr_test,ctr_var}, 1); 
        valid_indices = indices_longest(indices_longest <= num_data_points); 
        selected_data{ctr_test, ctr_var} = data{ctr_test, ctr_var}(valid_indices, :); 
    end 
end 
 
%% STORE SELECTED VALUES IN selected_values_all_tests MATRIX 
 
% Number of variables (body parts) 
num_vars = 5;  % Adjusted to exclude H-point 
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% Initialize cell array to store selected values for each test 
selected_values_all_tests = cell(num_test, 1); 
 
for ctr_test = 1:num_test 
    % Initialize a matrix to store the selected values for the current test 
    num_selected_points = size(selected_data{ctr_test, 1}, 1); 
    selected_values = NaN(num_selected_points, num_vars * 2); % 2 columns for each 
variable (x and y) 
     
    % Iterate over each variable 
    for ctr_var = 1:num_vars 
        % Extract the selected points for the current variable 
        selected_points = selected_data{ctr_test, ctr_var}; 
         
        % Store the selected points in the matrix 
        if ~isempty(selected_points) 
            num_points = size(selected_points, 1); 
            selected_values(1:num_points, (ctr_var - 1) * 2 + 1:ctr_var * 2) = 
selected_points; 
        end 
    end 
     
    % Store the selected values for the current test 
    selected_values_all_tests{ctr_test} = selected_values; 
end 
 
%% PLOT ALL TRAJECTORIES FOR ALL TESTS 
 
% Prompt the user to enter the test number for plotting 
test_selection = input('Enter the test number to plot (1 to 14) or "all": ', 's'); 
 
if strcmpi(test_selection, 'all') 
    num_plots = num_test; 
else 
    num_plots = 1; 
    ctr_test = str2double(test_selection); 
end 
 
% Setup figure for multiple subplots if needed 
if num_plots > 1 
    figure; 
    hold on; 
end 
 
for i = 1:num_plots 
    if num_plots > 1 
        ctr_test = i; 
        subplot(ceil(sqrt(num_plots)), ceil(sqrt(num_plots)), i); 
    end 
     
    test_data = selected_values_all_tests{ctr_test}; 
     
    % Find the index of the point with the highest x-coordinate for the head (variable 
1) 
    [~, max_idx] = max(test_data(:, 1)); 
     
    % Plotting 
    if num_plots == 1 
        figure; 
    end 
    hold on; 
     
    colors = lines(5);  % Generate distinct colors for each variable 
     
    % Initialize plot handles 
    plot_handles = gobjects(1, 5); 
     
    for ctr_var = 1:5  % Adjust loop to exclude H-point 
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        % Plot the entire dataset 
        plot_handles(ctr_var) = plot(data{ctr_test, ctr_var}(:, 1), data{ctr_test, 
ctr_var}(:, 2), 'Color', colors(ctr_var, :)); 
         
        % Highlight the selected points 
        plot(selected_data{ctr_test, ctr_var}(:, 1), selected_data{ctr_test, ctr_var}(:, 
2), 'o', 'Color', colors(ctr_var, :), 'MarkerFaceColor', colors(ctr_var, :)); 
    end 
     
    for frame_idx = 1:num_points 
        % Plot segments for current time frame 
        % Initialize arrays to store x and z coordinates 
        x_coords = zeros(1, num_vars); 
        z_coords = zeros(1, num_vars); 
         
        % Extract x and z coordinates for current time frame 
        for ctr_var = 1:num_vars 
            x_coords(ctr_var) = test_data(frame_idx, 2*ctr_var - 1);  % x coordinate 
            z_coords(ctr_var) = test_data(frame_idx, 2*ctr_var);      % z coordinate 
        end 
         
        % Plot segments connecting consecutive variable points 
        for ctr_var = 1:num_vars - 1 
            x_segment = [x_coords(ctr_var), x_coords(ctr_var + 1)]; 
            z_segment = [z_coords(ctr_var), z_coords(ctr_var + 1)]; 
         
            % Determine the color based on the segment position 
            if frame_idx < max_idx 
                color = [0.5, 0.5, 0.5];  % Grey 
                linewidth = 1.5; 
            elseif frame_idx == max_idx 
                color = [0, 0, 0];  % Black 
                linewidth = 2; 
            else 
                color = [0.8, 0.8, 0.8];  % Light grey 
                linewidth = 1; 
            end 
             
            plot(x_segment, z_segment, '-o', 'Color', color, 'LineWidth', linewidth);  
        end 
    end 
     
    % Customize the plot 
    title(['Data and Selected Points for Test ' test_names{ctr_test}]); 
    xlabel('X Displacement'); 
    ylabel('Z Displacement'); 
    grid on; 
     
    % Only display legend for the last plot 
    if num_plots == 1 || i == num_plots 
        legend(plot_handles, variable_names); % Corrected legend 
    end 
     
    if num_plots == 1 
        hold off; 
    end 
end 
 
if num_plots > 1 
    hold off; 
end 
 
%% PLOT LONGEST TRAJECTORIES CHOSEN ALIGNMENT 
 
% Prompt user to choose variable to align 
disp('Landmark IDs:'); 
landmarks = {'1- head', '2- C4', '3- T1', '4- T4', '5- T8'}; 
for i = 1:length(landmarks) 
    fprintf('%s\n', landmarks{i}); 
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end 
align_var_index = input('Enter the index of the variable to align: '); 
 
% Create a figure for plotting all trajectories 
figure; 
hold on; 
 
plot_handles = gobjects(1, 14); 
 
% Loop over each test 
for ctr_test = 1:14 
    test_data = selected_values_all_tests{ctr_test}; 
 
    % Find the index of the point with the highest x-coordinate 
    [~, max_idx] = max(test_data(:, 1)); 
 
    % Initialize arrays to store x and z coordinates 
    x_coords = zeros(1, num_vars); 
    z_coords = zeros(1, num_vars); 
 
    % Extract x and z coordinates for the point with the highest x-coordinate 
    for ctr_var = 1:num_vars 
        x_coords(ctr_var) = test_data(max_idx, 2 * ctr_var - 1);  % x coordinate 
        z_coords(ctr_var) = test_data(max_idx, 2 * ctr_var);      % z coordinate 
    end 
 
    % Calculate initial coordinates based on user input 
    align_initial_x = x_coords(align_var_index); 
    align_initial_z = z_coords(align_var_index); 
 
    % Adjust all variables relative to the chosen variable 
    for ctr_var = 1:num_vars 
        x_coords(ctr_var) = x_coords(ctr_var) - align_initial_x; 
        z_coords(ctr_var) = z_coords(ctr_var) - align_initial_z; 
    end 
 
    % Plot segments connecting consecutive variable points 
    for ctr_var = 1:num_vars - 1 
        x_segment = [x_coords(ctr_var), x_coords(ctr_var + 1)]; 
        z_segment = [z_coords(ctr_var), z_coords(ctr_var + 1)]; 
         
        % Determine the color based on the test number 
        if ctr_test < 10 
            color = [1, 0, 0];  % red for test 1 to 9 
        else 
            color = [0, 0, 1];  % blue for test 10 to 14 
        end 
             
        % Plot the segment and store the plot handle 
        plot_handles(ctr_test) = plot(x_segment, z_segment, '-o', 'Color', color, 
'LineWidth', 1.5); 
    end 
end 
     
% Customize the plot 
landmark_name = variable_names{align_var_index}; 
title(sprintf('Largest Head Displacement Trajectories, aligned at %s', landmark_name)); 
xlabel('X Axis'); 
ylabel('Z Axis'); 
grid on; 
 
% Create legend for plot handles 
legend_entries = {'Young Volunteers', 'Elderly Volunteers'}; 
legend_colors = [plot(nan, nan, '-o', 'Color', [1, 0, 0], 'LineWidth', 2), ... 
                 plot(nan, nan, '-o', 'Color', [0, 0, 1], 'LineWidth', 2)]; 
legend(legend_colors, legend_entries); 
 
% Release the hold on the current figure 
hold off; 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

155 
 

 
 

3.2.2. Pca_analysis_p2.m 
%% STORE AND ZERO VALUES OF COORDINATES AT MAXIMUM HEAD DISPLACEMENT 
 
% Initialize cell array to store max displacement values for each test 
max_displacement_values_all_tests = cell(num_test, 1); 
 
for ctr_test = 1:num_test 
    test_data = selected_values_all_tests{ctr_test}; 
 
    % Find the index of the point with the highest x-coordinate for the head (variable 
1) 
    [~, max_idx] = max(test_data(:, 1)); 
 
    % Initialize matrix to store the coordinates at maximum head displacement 
    max_displacement_values = NaN(1, num_vars * 2); % 2 columns for each variable (x and 
y) 
 
    % Extract x and z coordinates for the point with the highest x-coordinate 
    for ctr_var = 1:num_vars 
        max_displacement_values(1, (ctr_var - 1) * 2 + 1) = test_data(max_idx, (ctr_var 
- 1) * 2 + 1); % x coordinate 
        max_displacement_values(1, (ctr_var - 1) * 2 + 2) = test_data(max_idx, (ctr_var 
- 1) * 2 + 2); % z coordinate 
    end 
 
    % Get the coordinates of the last variable (T8) at maximum displacement 
    t8_x = max_displacement_values(1, (num_vars - 1) * 2 + 1); 
    t8_z = max_displacement_values(1, (num_vars - 1) * 2 + 2); 
 
    % Zero the coordinates relative to T8 
    for ctr_var = 1:num_vars 
        max_displacement_values(1, (ctr_var - 1) * 2 + 1) = max_displacement_values(1, 
(ctr_var - 1) * 2 + 1) - t8_x; % zeroed x coordinate 
        max_displacement_values(1, (ctr_var - 1) * 2 + 2) = max_displacement_values(1, 
(ctr_var - 1) * 2 + 2) - t8_z; % zeroed z coordinate 
    end 
 
    % Store the zeroed max displacement values for the current test 
    max_displacement_values_all_tests{ctr_test} = max_displacement_values; 
end 
 
 
%% Convert cell array to matrix 
num_tests = length(max_displacement_values_all_tests); 
num_features = num_vars * 2;  % Each variable has x and z coordinates 
 
% Initialize matrix 
X = NaN(num_tests, num_features); 
 
for ctr_test = 1:num_tests 
    X(ctr_test, :) = max_displacement_values_all_tests{ctr_test}; 
end 
 
% Standardize the Data 
X_standardized = zscore(X); 
 
% Perform PCA 
[coeff, score, latent, tsquared, explained] = pca(X_standardized); 
 
% Define Group Labels 
groups = [ones(9, 1); 2*ones(5, 1)]; % 1 for Young volunteers, 2 for Elderly volunteers 
 
% Set font and size 
fontName = 'Times New Roman'; 
fontSizeAxis = 16; 
fontSizeLabel = 14; 
 
% 2D Plot for the first two principal components 
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figure; 
hold on; 
colors = ['r', 'b']; % Red for Young volunteers, Blue for Elderly volunteers 
groupNames = {'Young volunteers', 'Elderly volunteers'}; 
 
% Plot each group with a loop 
for i = 1:max(groups) 
    idx = groups == i; 
    scatter(score(idx,1), score(idx,2), colors(i), 'filled'); 
     
    % Label each point 
    individuals = find(idx); 
    for j = individuals' 
        text(score(j,1), score(j,2), sprintf('%d', j), 'VerticalAlignment','bottom', 
'HorizontalAlignment','right', 'FontName', fontName, 'FontSize', fontSizeLabel); 
    end 
end 
 
% Customizing the 2D plot 
set(gca, 'FontName', fontName, 'FontSize', fontSizeAxis); 
xlabel('First Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis); 
ylabel('Second Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis); 
legend(groupNames, 'FontName', fontName, 'FontSize', fontSizeAxis); 
hold off; 
 
% 3D Plot for the first three principal components 
figure; 
hold on; 
% Plot each group in 3D 
for i = 1:max(groups) 
    idx = groups == i; 
    scatter3(score(idx,1), score(idx,2), score(idx,3), colors(i), 'filled'); 
     
    % Label each point 
    individuals = find(idx); 
    for j = individuals' 
        text(score(j,1), score(j,2), score(j,3), sprintf('%d', j), 
'VerticalAlignment','bottom', 'HorizontalAlignment','right', 'FontName', fontName, 
'FontSize', fontSizeLabel); 
    end 
end 
 
% Customizing the 3D plot 
set(gca, 'FontName', fontName, 'FontSize', fontSizeAxis); 
xlabel('First Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis); 
ylabel('Second Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis); 
zlabel('Third Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis); 
legend(groupNames, 'FontName', fontName, 'FontSize', fontSizeAxis); 
grid on; % Ensure the grid is on for the 3D plot 
view(3); % Ensure the view is in 3D 
hold off; 
 
% Displaying the variance explained by the first three components 
fprintf('Variance explained by the first principal component: %.2f%%\n', explained(1)); 
fprintf('Variance explained by the second principal component: %.2f%%\n', explained(2)); 
fprintf('Variance explained by the third principal component: %.2f%%\n', explained(3)); 
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3.2.3. Relative_positions_analysis.m 
% Initialize Variables for Storing Data 
variable_distances = cell(1, num_vars - 1);  % Initialize cell array to store distances 
p_values = NaN(1, num_vars - 1);             % Initialize array to store p-values 
 
% Calculate Distances for each pair of variables 
for pair_idx = 1:num_vars - 1 
    distances = NaN(num_test, 1);  % Initialize array to store distances for current 
pair 
     
    for ctr_test = 1:num_test 
        test_data = selected_values_all_tests{ctr_test}; 
 
        % Find the index of the point with the highest x-coordinate for the head 
(variable 1) 
        [~, max_idx] = max(test_data(:, 1)); 
 
        % Extract x and z coordinates for the current pair of variables at the frame of 
maximum head x-coordinate 
        var1_x = test_data(max_idx, 2 * pair_idx - 1);  % x-coordinate of variable 1 
        var1_z = test_data(max_idx, 2 * pair_idx);      % z-coordinate of variable 1 
         
        var2_x = test_data(max_idx, 2 * pair_idx + 1);  % x-coordinate of variable 2 
        var2_z = test_data(max_idx, 2 * pair_idx + 2);  % z-coordinate of variable 2 
 
        % Calculate Euclidean distance between variable 1 and variable 2 at the 
identified frame 
        distance_var1_var2 = sqrt((var1_x - var2_x)^2 + (var1_z - var2_z)^2); 
 
        % Store the distance 
        distances(ctr_test) = distance_var1_var2; 
    end 
     
    % Store distances for the current pair 
    variable_distances{pair_idx} = distances; 
 
    % Perform t-test to compare means for the current pair 
    distances_young = distances(1:9); 
    distances_elderly = distances(10:end); 
    [~, p, ~, ~] = ttest2(distances_young, distances_elderly); 
     
    % Store p-value for the current pair 
    p_values(pair_idx) = p; 
end 
 
%% Compare Distances 
 
% Display distances for each pair of variables 
fprintf('Distances between consecutive variables at frame of maximum head 
displacement:\n'); 
fprintf('%-20s %-30s %-30s %-20s\n', 'Variable Pair', 'Mean ± Std Dev (Young)', 'Mean ± 
Std Dev (Elderly)', 'p-value'); 
 
for pair_idx = 1:num_vars - 1 
    % Separate distances for young and elderly volunteers for the current pair 
    distances_young = variable_distances{pair_idx}(1:9); 
    distances_elderly = variable_distances{pair_idx}(10:end); 
 
    % Calculate statistics for the current pair 
    mean_distance_y = mean(distances_young); 
    std_dev_distance_y = std(distances_young); 
    mean_distance_e = mean(distances_elderly); 
    std_dev_distance_e = std(distances_elderly); 
 
    % Display results in table format 
    fprintf('%-20s %-30s %-30s %.4f\n', ... 
            sprintf('%s & %s', variable_names{pair_idx}, variable_names{pair_idx + 1}), 
... 
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            sprintf('%.2f ± %.2f', mean_distance_y, std_dev_distance_y), ... 
            sprintf('%.2f ± %.2f', mean_distance_e, std_dev_distance_e), ... 
            p_values(pair_idx)); 
end 
 
%% Initialize storage for angles at C4, T1, and T4 
angles_all_tests = NaN(num_test, 3);  % Columns: [C4, T1, T4] 
 
for ctr_test = 1:num_test 
    test_data = selected_values_all_tests{ctr_test}; 
 
    % Find MHD frame (max head x-displacement) 
    [~, max_idx] = max(test_data(:, 1)); 
 
    % Extract (x, z) coordinates of landmarks at MHD 
    coords = zeros(num_vars, 2);  % Rows = landmarks, Cols = [x z] 
    for i = 1:num_vars 
        coords(i, :) = test_data(max_idx, (2*i-1):(2*i)); 
    end 
 
    % Compute internal angles 
    angle_C4 = compute_angle(coords(1,:), coords(2,:), coords(3,:)); % Head–C4–T1 
    angle_T1 = compute_angle(coords(2,:), coords(3,:), coords(4,:)); % C4–T1–T4 
    angle_T4 = compute_angle(coords(3,:), coords(4,:), coords(5,:)); % T1–T4–T8 
 
    % Store results 
    angles_all_tests(ctr_test, :) = [angle_C4, angle_T1, angle_T4]; 
end 
 
function ang = compute_angle(A, B, C) 
    % Returns angle in degrees at point B 
    BA = A - B; 
    BC = C - B; 
    ang = acosd(dot(BA, BC) / (norm(BA) * norm(BC))); 
end 
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3.3. Method 3: Arc-Length Re-Parameterization and Signal Registration for 

generation of average trajectories and deviation corridors 

3.3.1. generate_csvs_from_excels.m 
% Clear all variables 
clear all; 
 
% List of test names 
test_names = {'1679', '1684', '1689', '1694', '1767', '1858', '1865', '1869', '1873', 
'1771', '1774', '1778', '1780', '1862'}; 
num_test = length(test_names); 
 
% Initialize data cell array 
data = cell(num_test, 6); 
 
% Populate data cell array from Excel files 
for ctr_test = 1:num_test 
    test_name = test_names{ctr_test}; 
 
    file_name = strcat('/Users/alicia/Desktop/mobios/Lopez-Valdes 2024- Comparison of 
volunteers and PMHS/Data analysis w splines/data/', test_name, '.xlsx'); 
     
    % Head 
    if strcmp(test_name, '1684') 
        data{ctr_test,1}(:,1) = xlsread(file_name, 3, 'B106:B311'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
        data{ctr_test,1}(:,2) = xlsread(file_name, 3, 'D106:D311'); %same 
    else 
        data{ctr_test,1}(:,1) = xlsread(file_name, 3, 'B106:B405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
        data{ctr_test,1}(:,2) = xlsread(file_name, 3, 'D106:D405'); %same 
    end 
     
    % C4 
    data{ctr_test,2}(:,1) = xlsread(file_name, 3, 'H106:H405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    data{ctr_test,2}(:,2) = xlsread(file_name, 3, 'J106:J405'); %same 
 
    % T1 
    if strcmp(test_name, '1865') 
        data{ctr_test,3}(:,1) = xlsread(file_name, 3, 'K106:K260'); 
        data{ctr_test,3}(:,2) = xlsread(file_name, 3, 'M106:M260'); 
    else 
        data{ctr_test,3}(:,1) = xlsread(file_name, 3, 'K106:K405'); 
        data{ctr_test,3}(:,2) = xlsread(file_name, 3, 'M106:M405'); 
    end 
 
    % T4 
    data{ctr_test,4}(:,1) = xlsread(file_name, 3, 'N106:N405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    data{ctr_test,4}(:,2) = xlsread(file_name, 3, 'P106:P405'); %same 
 
    % T8 
    data{ctr_test,5}(:,1) = xlsread(file_name, 3, 'Q106:Q405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    data{ctr_test,5}(:,2) = xlsread(file_name, 3, 'S106:S405'); %same 
 
    % H-point 
    data{ctr_test,6}(:,1) = xlsread(file_name, 3, 'E106:E405'); %only 300 ms: 
approximate time when the reflex response may begin to influence 
    data{ctr_test,6}(:,2) = xlsread(file_name, 3, 'G106:G405'); %same 
end 
 
% Directory to save the CSV files 
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outputDir = '/Users/alicia/Desktop/mobios/Lopez-Valdes 2024- Comparison of volunteers 
and PMHS/ARCGen/csv_data'; 
if ~exist(outputDir, 'dir') 
    mkdir(outputDir); 
end 
 
% Variable names corresponding to each column 
variableNames = {'Head', 'C4', 'T1', 'T4', 'T8', 'H_point'}; 
 
% Loop through each test and variable to save data as CSV 
for ctr_test = 1:size(data, 1) 
    for variable = 1:size(data, 2) 
        % Extract data for current test and variable 
        currentData = data{ctr_test, variable}; 
         
        % Create a file name 
        fileName = fullfile(outputDir, sprintf('test%s_%s.csv', test_names{ctr_test}, 
variableNames{variable})); 
         
        % Write data to CSV file 
        writematrix(currentData, fileName); 
         
        % Display a message 
        fprintf('Data from test %s (%s) written to %s\n', test_names{ctr_test}, 
variableNames{variable}, fileName); 
    end 
end 
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3.3.2. Arcgen_executer_comparison.m 
% Request user input for the landmark 
landmarkNames = {'Head', 'C4', 'T1', 'T4', 'T8', 'H Point'}; 
prompt = 'Enter the landmark number (1 - Head, 2 - C4, 3 - T1, 4 - T4, 5 - T8, 6 - H 
Point): '; 
landmarkIndex = input(prompt); 
% Validate the input 
if landmarkIndex < 1 || landmarkIndex > 6 
    error('Invalid input. Please enter a number between 1 and 6.'); 
end 
landmarkName = landmarkNames{landmarkIndex}; 
%% Zero displacements 
% Define the number of rows to keep (200 ms) 
numRowsToKeep = 180; 
% Split the inputSignals into young and elderly groups 
inputSignalsYoung = inputSignals(1:9); 
inputSignalsElderly = inputSignals(10:14); 
% Create temporary variables to store modified signals for both groups 
tempSignalsYoung = inputSignalsYoung; 
tempSignalsElderly = inputSignalsElderly; 
% Process the "young" group of input signals 
for i = 1:length(tempSignalsYoung) 
    % Get the current signal data 
    currentData = tempSignalsYoung(i).data; 
     
    % Zero the displacements to the first value 
    zeroedData = currentData - currentData(1, :); 
     
    % Keep only the first 200 rows 
    choppedData = zeroedData(1:numRowsToKeep, :); 
     
    % Update the data field in tempSignalsYoung with the zeroed and chopped data 
    tempSignalsYoung(i).data = choppedData; 
end 
% Process the "elderly" group of input signals 
for i = 1:length(tempSignalsElderly) 
    % Get the current signal data 
    currentData = tempSignalsElderly(i).data; 
     
    % Zero the displacements to the first value 
    zeroedData = currentData - currentData(1, :); 
     
    % Keep only the first 200 rows 
    choppedData = zeroedData(1:numRowsToKeep, :); 
     
    % Update the data field in tempSignalsElderly with the zeroed and chopped data 
    tempSignalsElderly(i).data = choppedData; 
end 
%% Execute arcgen for both groups 
[charAvgNormYoung, innCorrNormYoung, outCorrNormYoung, proCurveDataNormYoung] = ... 
    arcgen(tempSignalsYoung,... 
    'Diagnostics', 'off', ... 
    'nWarpCtrlPts', 2,... 
    'warpingPenalty', 1e-2); 
[charAvgNormElderly, innCorrNormElderly, outCorrNormElderly, proCurveDataNormElderly] = 
... 
    arcgen(tempSignalsElderly,... 
    'Diagnostics', 'off', ... 
    'nWarpCtrlPts', 2,... 
    'warpingPenalty', 1e-2); 
%% Plot input signals with ARCGen corridors for both groups 
figure('Name','Normalization', 'Color','w', 'Units','centimeters', 
'Position',[5,5,16,12]);hold on; 
title(['Average and Corridors for Landmark ', landmarkName], ... 
    'FontName','Helvetica', 'FontSize',10, 'FontWeight','bold'); 
xlabel('X Displacement (mm)', 'FontName','Helvetica', 'FontSize',12); 
ylabel('Z Displacement (mm)', 'FontName','Helvetica', 'FontSize',12); 
% Colors for different groups 
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colorYoungSignal = [1, 0.75, 0.8]; % Light pink 
colorYoungAvg = [1, 0, 0]; % Red 
colorYoungCorr = [1, 0.75, 0.8]; % Light pink 
colorElderlySignal = [0.5, 0.5, 1]; % Light blue 
colorElderlyAvg = [0, 0, 0.5]; % Dark blue 
colorElderlyCorr = [0.5, 0.5, 1]; % Light blue 
% Plot signals for the "young" group 
for iPlot = 1:length(tempSignalsYoung) 
    plot(tempSignalsYoung(iPlot).data(:,1),... 
        tempSignalsYoung(iPlot).data(:,2),... 
        'Color',colorYoungSignal,... 
        'LineWidth',0.5); 
end 
% Plot ARCGen average and corridors for the "young" group 
% Plot ARCGen average and corridors for the "young" group 
hAvgYoung = plot(charAvgNormYoung(:,1), charAvgNormYoung(:,2), '.-',... 
    'DisplayName','Char. Avg. Young','MarkerSize',5,... 
    'LineWidth',2.5,'Color',colorYoungAvg); 
hCorrInnerYoung = plot(innCorrNormYoung(:,1), innCorrNormYoung(:,2), '.-
','MarkerSize',10,... 
    'DisplayName','Corridors Young',... 
    'LineWidth',1.5,'Color',colorYoungCorr); 
hCorrOuterYoung = plot(outCorrNormYoung(:,1), outCorrNormYoung(:,2), '.-
','MarkerSize',10,... 
    'DisplayName','Outer Young',... 
    'LineWidth',1.5,'Color',colorYoungCorr); 
% Plot signals for the "elderly" group 
for iPlot = 1:length(tempSignalsElderly) 
    plot(tempSignalsElderly(iPlot).data(:,1),... 
        tempSignalsElderly(iPlot).data(:,2),... 
        'Color',colorElderlySignal,... 
        'LineWidth',0.5); 
end 
% Plot ARCGen average and corridors for the "elderly" group 
% Plot ARCGen average and corridors for the "elderly" group 
hAvgElderly = plot(charAvgNormElderly(:,1), charAvgNormElderly(:,2), '.-',... 
    'DisplayName','Char. Avg. Elderly','MarkerSize',5,... 
    'LineWidth',2.5,'Color',colorElderlyAvg); 
hCorrInnerElderly = plot(innCorrNormElderly(:,1), innCorrNormElderly(:,2), '.-
','MarkerSize',10,... 
    'DisplayName','Corridors Elderly',... 
    'LineWidth',1.5,'Color',colorElderlyCorr); 
hCorrOuterElderly = plot(outCorrNormElderly(:,1), outCorrNormElderly(:,2), '.-
','MarkerSize',10,... 
    'DisplayName','Outer Elderly',... 
    'LineWidth',1.5,'Color',colorElderlyCorr); 
% Display the legend with only the averages and corridors 
legend([hAvgYoung, hCorrInnerYoung, hAvgElderly, hCorrInnerElderly], ... 
    {'Char. Avg. Young', 'Corridors Young', 'Char. Avg. Elderly', 'Corridors Elderly'}, 
... 
    'Location', 'best'); 
grid on; 
hold off; 
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