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RESUMEN DEL PROYECTO

El objetivo de este proyecto es analizar y comparar tres métodos de estandarizacion de
trayectorias (B-splines con Andlisis de Componentes Principales (ACP), analisis postural
para el desplazamiento maximo y reparametrizacion por longitud de arco con registro de
sefales) para caracterizar la variabilidad del movimiento de los ocupantes durante
deceleraciones frontales a baja velocidad. Los resultados demuestran que estas técnicas
pueden identificar eficazmente algunas diferencias cinematicas entre voluntarios jovenes y
mayores, aunque el tamafio limitado de la muestra restringe la robustez estadistica. La
aplicacién combinada de estos enfoques ofrece un marco de desarrollo para futuros estudios
biomecanicos.

Palabras clave: biomecénica, ensayos con voluntarios, deceleracion frontal, andlisis de
trayectorias, modelado estadistico, variabilidad relacionada con la edad.

1. Introduccion

Cada dia, millones de personas viajan en automovil, confiando en que los cinturones de
seguridad y los airbags los protegerdn en caso de accidente. Detrds de estos sistemas de
seguridad hay décadas de investigacion sobre como se mueve el cuerpo humano durante los
accidentes. Tradicionalmente, los maniquies de pruebas de choque y los modelos
computacionales han ayudado a los ingenieros a disefiar vehiculos mds seguros. Sin
embargo, estos no son capaces de capturar completamente como se mueven las personas
reales, con diferentes edades y formas corporales. Esto es especialmente relevante para los
ancianos, que son mas vulnerables a las lesiones y cuyos cuerpos responden de manera
diferente en los accidentes.

Para mejorar la seguridad en vehiculos, especialmente con una poblacion cada vez mas
envejecida, se necesitan mejores formas de analizar y comprender como se mueve el cuerpo
humano en situaciones que se acerquen a accidentes reales. Este trabajo aborda dicho desafio
aplicando y comparando tres métodos analiticos que estudian datos de movimiento de
voluntarios sometidos a simulaciones suaves de choques a baja velocidad.

Latesis se centra en desarrollar y probar un conjunto de métodos de analisis para comprender
mejor como se mueven las personas durante estos ensayos. Se basa en datos de movimiento
recogidos de trece voluntarios varones (nueve adultos jovenes y cuatro adultos mayores).
Durante cada prueba, marcadores reflectantes rastrearon el movimiento de puntos clave en
la mitad superior del cuerpo, capturando informacion detallada sobre cémo respondian la
cabeza, el cuello y el torso. El objetivo fue aplicar tres enfoques analiticos diferentes a estos
datos, cada uno disefiado para simplificar el movimiento complejo identificando los patrones
mas significativos. Estos métodos se utilizaron para explorar como varia el movimiento entre
individuos y para evaluar si caracteristicas como la edad, la altura o la masa corporal influyen
en la forma en que alguien se mueve durante un evento de choque. Comparando las fortalezas



y limitaciones de cada método, el proyecto espera contribuir al desarrollo de sistemas de
retencion vehicular mas seguros e inclusivos.

2. Metodologia

El analisis se centr6 en tres métodos complementarios disefiados para interpretar el
movimiento registrado de los voluntarios durante la deceleracion.

Método 1: Aproximacion con B-Splines y Analisis de Componentes Principales de
trayectorias individuales

El primer método consistié en aproximar cada trayectoria de movimiento utilizando
curvas denominadas B-splines, un enfoque similar al presentado por Samuels et al. en
2015. Esto ayudo a reducir el ruido y simplificar los datos. Posteriormente, se utiliz6 el
ACP para identificar las principales formas en que estas trayectorias variaban entre los
sujetos. Finalmente, se aplicaron modelos de regresion para analizar qué cantidad de
esta variacion podia asociarse a factores como la edad, la altura o la masa corporal.

Método 2: Analisis de la posicion relativa de los marcadores en el instante de
desplazamiento maximo

El segundo método se centrd en un unico momento de la deceleracion: el fotograma en
que la cabeza alcanz6 su posicion mas adelantada. En ese instante clave, se analizaron
las posiciones relativas de los puntos anatomicos mediante ACP, junto con calculos de
angulos articulares y distancias entre puntos corporales. Esto permiti6 identificar como
diferian la postura y la alineacion corporal entre individuos y grupos de edad.

Método 3: Reparametrizacion por Longitud de Arco y Registro de Sefales para
generacion de trayectorias promedio y corredores de confianza

El ultimo método analiz6 la trayectoria completa de movimiento de cada marcador, pero
en lugar de hacerlo fotograma a fotograma, alineo las trayectorias segtn la longitud de
arco, una forma de describir la forma del recorrido independientemente del tiempo.
Utilizando esta técnica, se generaron trayectorias promedio y corredores de
variabilidad, proporcionando una vision mas clara de las tendencias generales y
diferencias entre grupos de edad. Esto se implement6 usando la herramienta de codigo
ARCGen desarrollada por Hartlen y Cronin en 2022.

En conjunto, los tres métodos ofrecen perspectivas complementarias sobre el movimiento
de los ocupantes, alcanzando una comprension mas completa de como se desplazan las
personas durante impactos frontales a baja velocidad.

La Figura 1.1-1. muestra un diagrama esquematico que resume el flujo de trabajo seguido.
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Figura 1.1-1. Esquema del flujo metodologico

3. Resultados

Los resultados obtenidos con los tres métodos analiticos revelan perspectivas
complementarias sobre como se mueven los individuos durante deceleraciones frontales a
baja velocidad, con énfasis en las diferencias entre voluntarios jovenes y mayores.

Método 1

Este método capturé como se movian los marcadores anatdmicos individualmente
durante la deceleraciéon, comprimiendo sus trayectorias mediante B-splines y
analizandolas con ACP. Mientras que los principales patrones de movimiento (PC1)
no reflejaron fuerte vinculacion a las caracteristicas de los sujetos, el segundo
componente del ACP (PC2) reveld diferencias sutiles pero consistentes entre
participantes jovenes y mayores. En particular, los marcadores toracicos como T1 y
T4 mostraron valores de PC2 significativamente mayores en el grupo de mayores, lo
que sugiere respuestas posturales distintas. El tamafo limitado de la muestra y el
modelado univariante limitaron en cierta medida la solidez estadistica de los
resultados.

Método 2

Analizando la configuracién corporal en el momento de maximo desplazamiento de
la cabeza, este método reveld diferencias posturales relacionadas con la edad.
Mientras que los componentes principales capturaron la variacion general de la
forma, pero sin vinculos claros con la edad o la antropometria, el tercer componente
(PC3) se asoci6 significativamente al grupo de edad. Los participantes mayores
mostraron diferencias sistematicas en la alineacion espinal, evidenciadas también por
un angulo T4 reducido (indicativo de mayor flexion toracica) y una tendencia hacia
la extension cervical.



e Método 3

Este método alineo las trayectorias completas de cada marcador segun su forma y generd
curvas promedio de desplazamiento con corredores de variabilidad para cada grupo de edad.
Reveld que los sujetos mayores tendian a presentar un desplazamiento hacia adelante
consistentemente menor, especialmente en los marcadores toracicos como T1, T4 y T8, y
seguian trayectorias mds ascendentes en comparacion con los jovenes. Ademas, la
variabilidad en el movimiento de los mayores fue mayor, especialmente en las etapas finales
del movimiento, lo que sugiere menor consistencia en la resolucion de la deceleracion. Un
ejemplo de esta transformacion se muestra en la Figura 1.1-2, que presenta las trayectorias
brutas de todos los voluntarios para un marcador de ejemplo (T4) y la trayectoria media
resultante con el corredor de variabilidad tras el procesamiento basado en longitud de arco.

Trayectoria media y corredores para el marcador T4
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Figura 1.1-2. Ejemplo de procesamiento de trayectorias para el marcador T4. Trayectorias brutas de todos
los sujetos y trayectoria media y corredores de variabilidad obtenidos tras la reparametrizacion por longitud
de arco y registro de senales para ambos grupos de voluntarios.

En conjunto, cada método aportd una perspectiva diferente para analizar los datos: el primero
destaco tendencias continuas de las trayectorias y sus predictores fisicos, el segundo capturd
caracteristicas posturales estaticas en un instante critico, y el tercero resalto la variabilidad y
los patrones a nivel de grupo a lo largo de toda la longitud de movimiento.

4. Conclusiones

Los tres métodos analiticos desarrollados y aplicados en esta tesis (compresion B-spline con
ACP, analisis postural basado en el tiempo y registro de trayectorias por longitud de arco)
demostraron ser eficaces para simplificar e interpretar la compleja cinemadtica observada
durante deceleraciones frontales a baja velocidad. En conjunto, proporcionaron una vision
multifacética de como se mueven los individuos en tales escenarios, revelando tanto
tendencias generales como diferencias relacionadas con la edad en la postura y el
movimiento.



Mas importante aun, este trabajo ha demostrado el potencial de estas técnicas como
herramientas para el analisis biomecénico. A pesar de las limitaciones inherentes a un
tamano de muestra pequefio, que restringieron la solidez estadistica y la aplicabilidad general
de algunos hallazgos, los métodos produjeron resultados interpretables y anatdmicamente
fundamentados de manera consistente. Con acceso a conjuntos de datos mds grandes y
diversos, estos mismos enfoques podrian ofrecer conocimientos mas definitivos sobre el
comportamiento de los ocupantes, respaldar mejoras en el disefio de sistemas de seguridad
y aumentar la fidelidad de sustitutos humanos como los maniquies de pruebas y los modelos
virtuales.

Asi, esta tesis sienta las bases para el desarrollo de herramientas analiticas capaces de
capturar todo el espectro de variabilidad humana en la respuesta al movimiento. A medida
que evoluciona el disefio de la seguridad vehicular, tener en cuenta las diferencias de edad,
tamano corporal y postura es imprescindible. Los tres métodos exploran caminos
prometedores, ofreciendo enfoques estructurados y escalables para traducir datos complejos
de movimiento en conclusiones significativas que puedan respaldar la proxima generacion
de modelos biomecénicos y sistemas de seguridad.
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ABSTRACT

The aim of this project is to analyze and compare three trajectory standardization methods
(B-splines with PCA, peak displacement posture analysis, and arc-length reparameterization
and signal registration) to characterize occupant motion variability during low-speed frontal
decelerations. The results demonstrate that these techniques can effectively identify some
kinematic differences between young and elderly volunteers, although the limited sample
size constrains statistical robustness. The combined application of these approaches offers a
comprehensive framework for future biomechanical studies.

Keywords: biomechanics, volunteer testing, frontal deceleration, trajectory analysis,
statistical modeling, age-related variability.

1. Introduction

Every day, millions of people travel in cars, trusting that seatbelts and airbags will protect
them in the event of a crash. Behind these safety systems lies decades of research into how
the human body moves during collisions. Traditionally, crash test dummies and computer
models have helped engineers design safer vehicles, but they can’t fully capture how real
people, with different ages and body types, actually move. This is especially important for
older adults, who are more vulnerable to injury and whose bodies respond differently in
crashes.

To improve vehicle safety for everyone, especially an aging population, we need better ways
to analyze and understand how human bodies move in realistic crash-like situations. This
thesis explores that challenge by applying and comparing three advanced analytical methods
to study motion data from volunteers subjected to gentle, low-speed crash simulations.

The thesis focuses on developing and testing a set of analysis methods to better understand
how people move during said low-speed frontal car crashes. The study is based on motion
data collected from thirteen male volunteers (nine young adults and four older adults).
During each test, reflective markers tracked the movement of key points on the upper body,
capturing detailed information about how the head, neck, and torso responded. The aim was
to apply three different analytical approaches to this data, each designed to simplify the
complex motion while preserving meaningful patterns. These methods were then used to
explore how movement varies across individuals and to assess whether characteristics like
age, height, or body mass influence how someone moves during a crash-like event. By
comparing the strengths and limitations of each method, the project hopes to support the
development of safer, more inclusive vehicle restraint systems.

2. Methodology

The analysis focused on three complementary methods designed to interpret the recorded
motion of the volunteers during deceleration.

11



e Method 1: B-Spline approximation and Principal Component Analysis of
individual landmark trajectories

The first method involved approximating each motion trajectory using smooth curves
called B-splines, an approach similar to the one presented in Samuels et al. in 2015.
This helped reduce noise and simplify the data. PCA was then used to identify the main
ways in which these trajectories varied between subjects. Finally, regression models
were applied to see how much of this variation could be linked to factors like age,
height, or body mass.

e Method 2: Landmark relative positioning analysis at peak displacement

The second method focused on a single moment during the deceleration: the frame in
which the head reached its furthest forward position. At this key instant, the relative
positions of anatomical landmarks were analyzed using PCA, along with calculations
of joint angles and distances between body points. This helped identify how posture and
body alignment differed across individuals and age groups.

e Method 3: Arc-Length Re-Parameterization and Signal Registration for
generation of average trajectories and confidence corridors

The last method looked at the full trajectory of motion for each landmark, but instead
of analyzing it frame by frame, it aligned the trajectories based on arc length, a way of
describing the shape of the path regardless of timing. Using this technique, average
trajectories and variability corridors were generated, offering a clearer view of general
trends and differences between age groups. This was implemented using the open-
source ARCGen toolbox developed by Hartlen and Cronin in 2022.

Together, these three methods provide different but complementary perspectives on
occupant motion, allowing for a more complete understanding of how people move during
low-speed frontal impacts.

Figure 1.1-3 displays a schematic summary diagram of the workflow followed.

Raw Motion Capture Data
* (x,z) trajectories of 6 anatomical landmarks
* 13 subjects

? )

Method 1 Method 2 Method 3
* B-spline approximation * MHD instant extraction *  Arc-Length Re-
* Principal Component * Principal Component Parametrization
Analysis Analysis * Signal Registration
* Regression modeling * Inter-landmark distance » Statistical corridor
and joint angle calculation generation

\J /

Interpretation of results
* Identification of age-related kinematic differences
* Comparative evaluation

Figure 1.1-3. Schematic of the methodological framework
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3. Results

The results obtained from the three analytical methods reveal complementary insights about
how individuals move during low-speed frontal decelerations, with particular emphasis on
differences between younger and older volunteers.

Method 1

This method captured how individual body landmarks moved during deceleration by
compressing their trajectories using B-splines and analyzing them with PCA. While
the main motion patterns (PC1) were not strongly linked to subject characteristics,
the second PCA component (PC2) revealed subtle but consistent differences between
young and elderly participants. Notably, thoracic landmarks like T1 and T4 showed
significantly higher PC2 values in the elderly group, suggesting distinct postural
responses. The limited sample size and univariate modeling somewhat constrained
the statistical strength of the results.

Method 2

By analyzing the body configuration at the moment of maximum head displacement,
this method revealed age-related differences in static posture. While the main PCA
components captured general shape variation without clear links to age or
anthropometry, the third component (PC3) was significantly associated with age
group. Elderly participants showed systematic differences in spinal alignment,
supported by a reduced T4 angle (indicative of greater thoracic flexion) and a trend
toward cervical extension.

Method 3

This method aligned the full motion trajectories of each landmark based on their
shape and generated average displacement curves with variability corridors for each
age group. The results showed that elderly subjects had consistently reduced forward
motion, particularly at thoracic landmarks like T1, T4, and T8, and followed more
upward-curving paths compared to younger individuals. Additionally, the variability
in elderly motion was greater, especially during the later stages of the movement,
suggesting less consistency in how deceleration was resolved. An example of this
transformation is presented in Figure 1.1-4, which displays the raw motion paths of
all volunteers for an example landmark (T4) and the resulting mean trajectory with
variability envelope after arc-length-based processing.

13



Average and Corridors for Landmark T4

40 -

€
E
<
()
€
[0)
Q
©
(o1
£
()]
N
101 Char. Avg. Young
B Corridors Young
Char. Avg. Elderly
Corridors Elderly
_20 1 | Il 1 1 ]
-20 0 20 40 60 80 100

X Displacement (mm)

Figure 1.1-4 Example of trajectory processing for the T4 landmark. Raw motion paths from all subjects and
mean trajectory and variability corridors obtained after arc-length re-parameterization and signal registration
for both groups of volunteers.

Overall, each method contributed a different lens through which to view the data: the first
emphasized continuous trajectory trends and physical predictors, the second captured static
postural features at a critical instant, and the third highlighted variability and group-level
patterns across the full motion length.

4. Conclusions

The three analytical methods developed and applied in this thesis (B-spline compression
with PCA, time-based posture analysis, and arc-length trajectory registration) each proved
effective in simplifying and interpreting the complex kinematics observed during low-speed
frontal decelerations. Together, they provided a multifaceted view of how individuals move
in such scenarios, revealing both general trends and age-related distinctions in posture and
motion.

More importantly, this work demonstrated the potential of these techniques as tools for
biomechanical analysis. Despite the inherent limitations of a small sample size, which
constrained the statistical strength and broader applicability of some findings, the methods
consistently produced interpretable and anatomically grounded outputs. With access to
larger and more diverse datasets, these same approaches could offer more definitive insights
into occupant behavior, support improvements in safety system design, and enhance the
fidelity of human surrogates such as crash test dummies and virtual models.

Thus this thesis lays the groundwork to developing analytical tools capable of capturing the
full spectrum of human variability in motion response. As vehicle safety design evolves,
accounting for differences in age, body size, and posture is necessary. The methods explored
here demonstrate a promising path forward, offering structured, scalable approaches for
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translating complex motion data into meaningful insights that can support the next
generation of biomechanical models and safety systems.

5. References

[SAMU15] Samuels, M.A., Seacrist, T., Huang, S., Balasubramanian, S., Lopez-Valdes,
F.J., Kent, R.W., Arbogast, K.B., “Modeling spatial trajectories in dynamics
testing using basis splines: application to tracking human volunteers in low-
speed frontal impacts”, Computer Methods in Biomechanics and Biomedical
Engineering, 18:12, pp. 1323-1332, 2015.

[HART22] Hartlen D.C., Cronin D.S., "Arc-Length Re-Parametrization and Signal
Registration to Determine a Characteristic Average and Statistical Response
Corridors of Biomechanical Data", Frontiers in Bioengineering and
Biotechnology, vol. 10, 2022.

15



16



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

CONTENTS
1. THIPOAUCHON o.nnnnnnannnennnennennnennreeennennnsaensessnessnsssessssssssssesssessesssessssssssssessassaass
1.1. Context & Problem Statement
1.2. Motivation
1.3.  Objectives
1.3.1. ODJECHIVE L.ttt ettt ettt et ettt s be et be et esenene
1.3.2. ODJECHIVE 2. ..ttt ettt sttt sttt ettt e et et ebe e bt bt sbe et s bese et entennens
1.3.3. ODJECHIVE 3.ttt ettt sttt ettt et et ettt e b e bt bt sae et nbe e et entennens
1.3.4. ODJECHIVE 4. ..ottt ettt ettt ettt et ebe e bt bt sa et s b st et entennens
2. EXPErimMeENtAl AAl...eneeennnneeenneensnnnrnnsnvrissnrosserossnrossssiossssiosssssssssssssssssssssssssasses
2.1. Background on Volunteer Testing
2.1.1. Rationale for VOIUNteer TESING ........cccveeierireierieeieriieieeieeie ettt nnees
2.1.2. Anthropomorphic Test Devices (ATDs): Utility and Limitations........c..cccceceverervencnnennee
2.1.3. Comparison with Other Test Subjects (PMHS, children, etc.).........ccceveveneneninincncnnns
2.1.4. Ethical Framework.......c.ccoouiiiiiiiiiiiiiinnccreeeectet et
2.1.5. Evolution of Volunteer Test P1atforms...........ccccoeveniiiininininiiinnnececee
2.2.  Volunteer Testing Protocol
2.2.1. TEST SEIUD ettt ettt ettt ettt ettt ettt ebe e bt bt sa et bese et esennens
2.2.2. Safety and ELHICS .......coiviriririiiiieieee ettt
2.23. Instrumentation and Data ACQUISILION .....c..ceeruiriirierieriinieiecteteteceeee e
2.2.4. Volunteer Sample and Preparation ...........cocoeeererenienienienieieieeeceenesiesesesie e
3. METROAOIOZY.cueueeonnaevonerinsnrnosarissnrissssrssssrsssssssssssisssssiosssssssssssssssssssssssssssssssssses

3.1. Software Environment

3.2. Method 1: B-Spline approximation and Principal Component Analysis of

individual landmark trajectories
3.2.1. MEthOA OVEIVIEW ....cuiniiniiiieiieiieiieieeieet ettt ettt ettt ettt sttt b e b se e nae e nees
3.2.2. Literature back@round...........c.ccceviriiiriniiniiineneeeeetete et
3.2.3. Purpose and JUSHHTICAtION. ......c.cectririririirinie ettt
3.24. Mathematical background...........ccceceviririniiinininecccc e
3.2.5. IMPIEMENLALION ...ttt ettt ettt st be st eene

3.3. Method 2: Landmark relative positioning analysis at peak displacement............
33.1. MEthOA OVETVIEW .....euiiniiiiieiieiceieeierieet ettt ettt ettt sttt st
3.3.2. Literature back@round...........ccccceviriririniniiineneeeeetee ettt
3.3.3. Purpose and JUSHHTICAtION. ......c.cectiiriririiriniereete ettt



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

3.34. Mathematical background.............eceveririniiinininecece e 63
3.3.5. IMPIEMENLALION ...ttt ettt ettt st be s sa et 65
3.4. Method 3: Arc-Length Re-Parameterization and Signal Registration for
generation of average trajectories and deviation corridors 68
34.1. MEthOA OVEIVIEW ....cuiniiiieiieiieiteiieieei ettt ettt ettt et ettt st se b ae e eneen 68
3.4.2. Literature back@round...........c.cceiriririniniiinieneee ettt 69
3.43. Purpose and JUSHHTICAtION. ......c.ceciiiririririnie ettt 70
3.4.4. Mathematical background............ccoocieririeriiieiee e 70
3.4.5. IMPIEMENLALION ...ttt ettt ettt st be s se et aene 73
4. RESUILS cnnnnnnnnennenrenrennennnennennenrentnenesnessesssesssessnsssessasssssssesssessessssssssssssssessassaass 77
4.1. Method 1: B-Spline approximation and Principal Component Analysis of
individual landmark trajectories 77
4.1.1. Spline fitting and dimensionality redUCtiON........c..coeverererienienieieirerreser e 77
4.1.2. Principal Component Analysis OULCOMES ........c.coueruerierienienieieieeeeeienenieeeere et 80
4.1.3. Regression MOdeling reSULLS .....coeeeriririririnieeeeeeeeee e 85
4.2. Method 2: Landmark relative positioning analysis at peak displacement............ 87
4.2.1. Frame selection and posture vector eXtraCtion ...........cccoveveeeeieerenenereneneneneesieneeneenees 87
4.2.2. PCA OULCOMES ...ttt 89
4.2.3. Regression Modeling RESUILS .......cccoeviriririnininiiniicctcectecececsescsee e 90
424, Posture Metrics: Inter-Landmark Distances and Joint Angles ..........coccovvrevervecveneeniennen. 91
4.3. Method 3: Arc-Length Re-Parameterization and Signal Registration for
generation of average trajectories and deviation corridors 95
4.3.1. Group-Specific ARCGEN OULPULS ......c.eeueruirieriiriinienienieieieeetetet ettt seeseeneens 95
4.3.2. Landmark 1: Head .......cooiiiiiiiiii ettt 96
4.3.3. Landmark 2: CA ...ttt 97
4.3.4. Landmark 31 T ..ottt st 98
4.3.5. Landmark 4: T4 ..ottt 99
4.3.6. Landmark 5: T8 ...ttt et 100
4.3.7. Landmark 6: H POINE....c..ccoooiiiiiiiiiiirinceeceectetete et 101
4.3.8. Summary of 0bSErved PALLEINS ......c.ccvevieriieieiieie et 102
5. DUSCUSSION «uonnenneeenvennnenennennnnsnnesessnessesssessssssssssesssessssssessasssssssesssssssssssssssssssssesss 103
5.1. Method 1: B-Spline approximation and Principal Component Analysis of
individual landmark trajectories 103
5.1.1. Key Findings and interpretation ............coccoeverererenienienienieieieeeceieeeeeicevesie e ssesieneens 103
5.1.2. Limitations and Potential IMprovements..............coevevuerierienieoiirieeninencnenene e 103
5.2. Method 2: Landmark relative positioning analysis at peak displacement.......... 105

18



6.

7.

UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

5.2.1. Key Findings and INterpretation ...........coceveverinenenineneneicieeeeeieeeeeeeiese e

52.2. Limitations and Potential IMprovements..............cocevererenenenieneneieineeeneneneeeenes

5.3. Method 3: Arc-Length Re-Parameterization and Signal Registration for
generation of average trajectories and deviation corridors

108

53.1. Key Findings and INterpretation ...........ceceveverineneninienenienicieeeeeeeteeeeeeese e

53.2. Limitations and Potential ImMprovements..............cocevererenenenieneneieieeeeeeneneeeene

5.4. Method comparison

... 108
... 108

109

54.1. Dimensional focus and granularify ...........cecceceeerererenenenenenieeeeeeeeeeeese e
5.4.2. Sensitivity to inter-subject Variation ...........c.cecceerererererenenenieneereieeeeeeee e
54.3. Interpretability and Biomechanical Meaning ............cocceeeerenienienienienieienencncneneneens
5.44. Robustness and Limitations ..........ccccceeeereeirieineineiieeseeseeeeeeeeereseee e
54.5. Summary of Strengths and Limitations .........c.ceccecererererinenenenenieieeeeeeeeseeenaee

5.5. Real-World Applications

CONCIUSTION auveeeeeeeeeeneneeeeereerreeeenesessssessessssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

6.1. Degree of Objective Fulfillment

6.2. Future Work

) ] [ T TN

19

... 109
... 110
... 110
... 110
. 111

113

116
117



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

20



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

LIST OF FIGURES

Figura 1.1-1. Esquema del flujo metodolOgiCo..........oovvieviieiieniiiiieieeiee e 7

Figura 1.1-2. Ejemplo de procesamiento de trayectorias para el marcador T4. Trayectorias
brutas de todos los sujetos y trayectoria media y corredores de variabilidad obtenidos tras
la reparametrizacion por longitud de arco y registro de sefiales para ambos grupos de
VOIUNEATIOS 1.ttt st ae e 8

Figure 1.1-3. Schematic of the methodological framework............ccccoceviiniiiinnnenen. 12

Figure 1.1-4 Example of trajectory processing for the T4 landmark. Raw motion paths
from all subjects and mean trajectory and variability corridors obtained after arc-length
re-parameterization and signal registration for both groups of volunteers. .................... 14

Figure 2.2-1, Sled Test Configuration, showing the rigid seat, flexible backrest, footrest,
and three-point seatbelt system. (LOPE17) .....cccooiiiiiiiiiiiieceeeeee e 35

Figure 2.2-2. Sled Deceleration Pulse — Sled deceleration pulse corridors in the young
(blue) and elderly (green) groups. Solid lines are the average deceleration within the
group. Shaded area corresponds to the one standard deviation corridor. (VIVE21) ......35

Figure 2.2-3. Head Mount - Detail of the 6 degree-of-freedom head cube and of the
position of the sensors on the head of one of the volunteers. (VIVE21) .........c..c.......... 36

Figure 2.2-4. Instrumentation Layout - Example of the experimental setup showing the
placement of load cells, accelerometers, and reflective markers on the sled platform and
volunteer. (LOPELT) c...oooiiiieeeeeee e et s 38

Figure 2.2-5. Lateral Video Comparison - Representative still frames comparing the
motion of a young and an elderly volunteer during frontal deceleration. (LOPE17).....41

Figure 3.2-1. Raw x—z trajectories of a selected anatomical landmark (T1) across all test
trials. The trajectories are high-resolution and exhibit significant inter-subject variability,
motivating the need for a compact, standardized representation such as B-spline
APPTOXIIMATION. ..evvtentieitertieteeiteette st et st e bt e bt ettesbe e besate e bt e bt eatesbeebeeaeesbeebeessesneenbeensesseens 53

Figure 3.2-2. Example of original trajectory (red line) and fitted B-spline curve (blue line)
for the T1 landmark during a representative trial. The fitted curve preserves the essential
shape of the motion with reduced data cOmMPIleXity........ccceeveerciienieeiienienieeie e 55

Figure 3.2-3. Projection of T1 landmark results onto the first two principal components.
Each point represents one test trial, color-coded by subject group (young vs. elderly).
While group tendencies begin to emerge, overlap remains high and interpretation is non-
QUANTIEATIVE. 1.eveeutieiieeiiieeiie et e site et estte et e et e ebeessteeateesteeenbeenseessbeeseessseenseesnseensaesnseenseennns 57



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

Figure 3.2-4. 3D scatter plot of PCA scores on components 1-3 for the T1 landmark. The
projection provides additional insight into the distribution of trajectory variation but does
not offer conclusive group separability..........ccceeveieiiiriiiiiieniieieee e 58

Figure 3.3-1. Example of landmark trajectories during a test, with the frame of maximum
head displacement (MHD) highlighted in black. Dark gray and light gray indicate frames
before and after MHD, 1€SPECtIVELY.....cccvieiiiiiiieiieiiicieee e 66

Figure 3.4-1. Three biomechanical response signals before arc-length re-parameterization
and registration. The signals display misaligned peaks and valleys, resulting in a less
TEPresentative AVETage TESPOISE. .....eeururerererrertertiereeteenrententensesessesseeseesteneennensensensessennes 72

Figure 3.4-2. The same signals after applying arc-length re-parameterization and
registration. Temporal alignment of key features is improved while preserving individual
ShaPE ChATACLEIISTICS. ..eeuiieiiieiiieetieciie ettt ettt ettt sttt e et e et e sabeebeesnseenseeenne 73

Figure 3.4-3.Example ARCGen outputs for the Head landmark. Average trajectories and
95% statistical corridors are shown for young (red) and elderly (blue) groups.............. 75

Figure 4.1-1. Raw X—Z trajectories of the five anatomical landmarks (Head, C4, T1, T4,
and T8) for each trial. Displacements have been zeroed relative to the initial Head
POSTEIONL. ..ttt eiie ettt ettt e bttt e et e bt e et e e steeesbeessteesbeessbeenseessaeenseasssesnseessseenseensseenseas 77

Figure 4.1-2. Original (x, z) motion trajectories of all six anatomical landmarks for a
representative trial. Each plot shows the full deceleration interval for a single landmark,
as recorded at 1,000 HzZ. ........ooovvumriiiiiiiiiieeeeeeee ettt ettt et 78

Figure 4.1-3. Same trajectories, now overlaid with cubic B-spline fits. The splines
replicate the overall shape of each signal while filtering noise and enabling dimensionality
TEAUCTION. 1.ttt ettt et sa e ae e 79

Figures 4.1-4. Projections of subject trajectories onto the first two principal components
for all landmarks, Individually. ..........cccooviiiiiiiiiiii e 84

Figure 4.2-1. Landmark trajectories for Subject 1694 with the frame of maximum head
displacement (MHD) highlighted in black. Dark gray and light gray lines indicate frames
before and after MHD, respectively. Each frame connects anatomical landmarks in the
SAGILLAL PLANEC. .....eiiiiieiiee e sttt et st e enes 88

Figure 4.2-2 Posture configuration of Subject 1694 at the frame of maximum head
displacement, expressed relative to the T8 landmark. Coordinates represent sagittal-plane
displacement, with landmark labels indicating anatomical identity. ............ccccceeuvennennee. 89

Figure 4.2-3. Posture of all subjects at maximum head displacement, re-referenced to T8,
shown as a sequence of line segments connecting Head to TS8. Red: young group; blue:
ClACTLY GIOUP. weiiiiieeiieee ettt ettt et e sttt e et e e bt e sabeebeesnseenseeenne 92

22



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

Figure 4.3-1. ARCGen outputs for the Head landmark. Average trajectories and 95%
statistical corridors are shown for young (red) and elderly (blue) groups. Greater
variability is observed in the elderly group during the central portion of the arc-length

Figure 4.3-2. ARCGen outputs for the C4 landmark. Average trajectories and 95%
statistical corridors are shown for young (red) and elderly (blue) groups. The elderly
group displays increased dispersion during the central arc-length segment. .................. 97

Figure 4.3-3. ARCGen outputs for the T1 landmark. The elderly group (blue) shows
increased dispersion across the entire arc-length range compared to the young group (red),
whose trajectories remain more tightly clustered.............ccoeviieiiiniiiiiiiiniiceeee 98

Figure 4.3-4. ARCGen outputs for the T4 landmark. The elderly group (blue) exhibits
lower forward and vertical excursion but a broader statistical corridor compared to the
YOUNEZ GLOUP (TEA)..erieiieeiiieiieeiie ettt et te sttt et e et e st e e bee st e esbeessbeebeessbeenseessseeseesnseens 99

Figure 4.3-5. ARCGen outputs for the T8 landmark. The elderly group (blue) shows a
shorter forward excursion, accompanied by increased variability compared to the young
GEOUP (T@A).1eeneveeniieiie ettt ettt et ettt et et e st e e be e bt e s abeeteeenbeenseesnbeenseesnseenseessseenseas 100

Figure 4.3-6. ARCGen outputs for the H-Point landmark. Individual trajectories are
highly variable, especially in the young group. The elderly group shows a more vertically
oriented average path and broader dispersion overall.........c..ccccooeeriiviniininniniinennne. 101

Figure 5.5-1. Hypothetical seating configurations for fully automated vehicles (FAVs)
used in the survey by Koppel et al. to explore occupant preferences under various travel
SCeNarios (KOPPIO). ....oouiiiiiieceeeee ettt et e s 113

23



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

24



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

LIST OF TABLES

Table 2.2-1. Instrumentation Summary - Overview of the sensors used in the study,
including their type, mounting location, and measurement recorded. ...........cccoeeueneen. 37

Table 2.2-2. Volunteer Anthropometric Data - Summary of the anthropometric
characteristics of all participating VOIUNLEETS. .......cc.erueriirieriienieienicreeieceeeeeeee e 39

Table 3.2-1. Example of individual and cumulative explained variance for the T1
landmark. The first two or three components account for the majority of the total variance,
making the rest largely redundant for modeling purposes. .........cccceeevvereevenieneenennene 56

Table 4.1-1.RMSE Summary Table - Mean RMSE between original trajectories and B-
spline approximations, averaged over all trials. Evaluation performed on 10-point
uniform resampling of €ach trajeCtory. .......cceeviieiiiiiiieiieie e 80

Table 4.1-2. Cumulative variance explained (%) by the first three principal components
for each anatomical landmark. ...........ccccooiiiiiiiiiiiii 81

Table 4.1-3. Best one-variable regression models for each landmark and principal
component. Grey shading indicates p < 0.05. ......cccceeviiriieniieiiieeeeeee e 85

Table 4.2-1. Variance explained by the first 3 principal components extracted from
posture vectors at MHD. .........coiiiiii e 90

Table 4.2-2. Summary of best single-variable regression models for PC1, PC2, and PC3
derived from posture vectors at MHD. Grey shading indicates p < 0.05..........cccocn....e. 91

Table 4.2-3. Inter-landmark distances (mm) at MHD. Values represent mean =+ standard
deviation per group. P-values from two-sample t-tests included to assess group
differences. Grey shading indicates p < 0.05. ......cocveriiriieniieniieeeee e 93

Table 4.2-4. Internal joint angles (°) at MHD. Values represent mean + standard deviation.
P-values are based on Welch’s t-test (no assumption of equal variance). Grey shading
INAICALES P < 0.05. 1ottt sttt et eb e et eneeenne 93

Table 5.4-1. Comparative summary table of the three analytical methods................... 112

25



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

26



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

1. INTRODUCTION
1.1. Context & Problem Statement

In the field of impact biomechanics, understanding the mechanical response of the human
body during vehicle collisions is a fundamental concern. Experimental volunteer tests,
post-mortem human surrogate (PMHS) studies, and computational models have all
contributed to major advancements in restraint systems and vehicle design. Yet,
accurately capturing and analyzing human motion during impact events remains a
challenge. Unlike anthropomorphic test devices (ATDs), human occupants exhibit
substantial inter-subject variability: differences in age, morphology, flexibility, and
neuromuscular response all influence how a person moves during an accident. This
variability complicates both the development of generalizable restraint systems and the
validation of human body models intended to simulate real-world occupants.

One of the main difficulties lies in how to meaningfully represent and compare the
kinematic responses of different individuals subjected to the same loading conditions.
Raw motion trajectories are often complex and noisy, and patterns of variation may be
obscured by differences in timing, magnitude, or posture. As a result, there is a critical
need for data processing techniques that can reduce variability while preserving
biomechanically relevant information. Such techniques can allow researchers to extract
consistent trends, highlight inter-individual differences, and support the formulation of
generalized insights from inherently variable experimental data.

This need for robust methods for standardizing data from human responses is becoming
increasingly relevant as populations age. Worldwide, life expectancy has risen due to
advancements in medical technology, nutrition, and living conditions, leading to an
increasing proportion of older individuals within the population. By 2050, the world’s
population of individuals aged 60 years and older will double, reaching 2.1 billion
(WHO?25). This demographic shift, combined with the fact that people are driving later
into life (BABU19), highlights the importance of protecting older occupants in
automotive crashes. Age-related changes such as decreased spinal flexibility, altered
muscle tone, and delayed reaction times can affect occupant motion during frontal
impacts. Moreover, injury tolerance tends to decline with age, making older adults more
vulnerable to the same crash conditions that younger individuals might withstand. These
factors underscore the importance of developing analysis methods capable of
characterizing motion variability in a way that is sensitive to age-related differences.

To address this problem, this thesis explores and compares multiple methodological
approaches for analyzing human kinematic data from low-speed frontal deceleration tests.
Using a dataset involving both young and elderly volunteers subjected to controlled
loading conditions, the aim is not only to manage variability but to understand it,
identifying how different techniques capture inter-subject differences, and assessing their
suitability for extracting meaningful biomechanical insights from heterogeneous data.
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1.2. Motivation

Improving the safety and effectiveness of automotive restraint systems begins with
addressing the significant variability in biomechanical responses among individuals. This
variability, as previously outlined, poses a considerable challenge in the field of impact
biomechanics. Traditional methods for standardizing responses fall short of accurately
capturing the differences between volunteers. Ensuring that safety systems account for a
wide range of individual responses is both a scientific and ethical imperative.

This research gains particular relevance in the context of the aging global population. The
demographic trends highlighted earlier indicate a growing number of older individuals
who are not only more vulnerable to injuries during crashes but also present unique
biomechanical characteristics. Existing safety measures have been predominantly
developed based on data from crash test dummies that represented younger or mid-aged
adults, leaving a critical gap in understanding and accommodating the specific needs of
elderly occupants. Addressing this gap is crucial for ensuring equitable safety standards
and aligns with broader societal goals of inclusivity and fairness.

Beyond the demographic perspective, the project is primarily motivated by the inherent
challenges of combining data from diverse human subjects into coherent and meaningful
insights. Biomechanical experiments, especially those involving human volunteers, are
often limited by ethical, practical, and technical constraints. The variability in response
trajectories, whether due to physical differences, experimental noise, or both, can obscure
meaningful patterns and hinder the development of predictive models. This makes it
essential to explore and refine advanced statistical methods capable of synthesizing this
variability into reliable insights.

Additionally, techniques like Principal Component Analysis (PCA), B-splines, and arc-
length re-parameterization represent powerful tools for handling large datasets with
inherent variability. However, each method has its limitations, and the ability to assess
their relative strengths and weaknesses in a practical context is important for advancing
the field. By evaluating and comparing these techniques, this thesis aims not only to
contribute to the development of better biomechanical models but also to provide a
framework for future research in areas where variability and individual characteristics
play a central role.

In summary, this work is motivated by the dual need to enhance vehicle safety for all
occupants, especially older individuals, and to address the methodological challenges of
creating accurate and representative trajectory standardization methods. By exploring
innovative approaches, this thesis aims to contribute to both the understanding of impact
biomechanics and the practical application of this knowledge. The outcomes of this
research may have the potential to guide the design of future restraint systems as well as
broader efforts to bridge the gap between experimental data and real-world applications.
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1.3. Objectives

The primary goal is to explore and compare three advanced methods for data
standardization, aiming to find reliable insights regarding the forward displacement of
selected anatomical landmarks of car occupants during a frontal impact. The methods
under analysis are Principal Component Analysis (PCA) combined with B-splines for
each anatomical landmark, Time Analysis of Landmark Relative Positions with PCA, and
Arc-Length Re-Parameterization with Signal Registration. These techniques will be
applied to a dataset that includes both young (mean age: 23 years old) and elderly (mean
age: 72 years old) volunteers in low-speed frontal deceleration tests. The specific
objectives of the thesis are as follows:

1.3.1. Objective 1.

B-Spline approximation and Principal Component Analysis of individual
landmark trajectories

The first objective is to implement a method that combines PCA with cubic B-splines to
analyze the spatial trajectories of anatomical landmarks during frontal impacts. By
applying PCA to the B-splines of key landmarks, this method aims to identify the
principal directions of variance across subjects with varying body sizes and ages.
Additionally, regression modeling using subject characteristics as predictors will be
employed to understand how these characteristics influence the kinematic trajectories.

1.3.2. Objective 2.

Landmark relative positioning analysis at peak displacement

The second objective involves implementing a method based on time analysis of the
relative positions of anatomical landmarks, followed by PCA to identify the principal
components of motion. Unlike the previous method, which treated each landmark
independently over time, this approach captures the overall shape formed by the
alignment of the head and spinal vertebrae at a specific instant. By doing so, it reflects
the deformed posture of the upper body at the peak of motion. By applying PCA, major
directions of variance will try to be identified in the movement of different anatomical
regions. Regression models will later be developed using subject characteristics to try and
find relationships with specific trajectories. Finally, this method is also expected to offer
a more subtle understanding of how the body segments interact during a crash and how
these interactions contribute to overall occupant displacement. For that, inter-landmark
distances and joint angles will be studied. This will provide an alternative approach to
standardization by focusing on the relative placement of different landmarks rather than
the absolute positions.

1.3.3. Objective 3.

Arc-Length Re-Parameterization and Signal Registration for generation of average
trajectories and confidence corridors
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The third objective is to apply arc-length re-parameterization and signal registration
method to the biomechanical data. This technique aims to improve the alignment of
signals by adjusting for differences in signal shapes, particularly in complex oscillatory
data. By re-parameterizing the signals based on arc-length and using signal registration
to align key features such as peaks and valleys, this method seeks to reduce distortion and
improve the accuracy of characteristic averages and response corridors. The goal is to
assess how well this approach can handle the complex trajectories that are present in the
dataset.

1.3.4. Objective 4.

Comparison and evaluation of each method

The fourth objective is to compare the three implemented methods in terms of their ability
to standardize and analyze biomechanical data. This comparison will assess the
effectiveness, strengths, and weaknesses of each method in identifying key motion
patterns. The evaluation will focus on how well each approach handles variability across
subjects with differing characteristics and how they contribute to an improved
understanding of occupant displacement during a frontal impact.
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2. EXPERIMENTAL DATA

2.1. Background on Volunteer Testing

2.1.1. Rationale for Volunteer Testing

Research into the biomechanics of human occupants during automotive impacts has
traditionally relied on anthropomorphic test devices (ATDs) and post-mortem human
subjects (PMHS). While these tools have provided invaluable data for injury threshold
development and restraint system evaluation, they remain limited in their ability to
capture the full spectrum of human kinematic responses. In particular, PMHS testing is
inherently restricted to deceased individuals and does not allow for the study of active
muscle responses, variability across repeated trials, or non-injurious motion patterns.
ATDs, while repeatable and scalable, are simplified mechanical surrogates that fail to
capture important individual-specific anatomical and physiological differences,
especially those related to age, morphology, and tissue properties (SUN16).

In contrast, human volunteer testing offers a unique opportunity to study the dynamic
behavior of live subjects in safe, controlled low-speed impacts. These tests allow for
direct observation and measurement of head, neck, and torso motion, as well as real-time
interaction with restraint systems. Volunteer studies are especially valuable in contexts
where live human variability, such as that introduced by aging, body posture, or
neuromuscular activation, is expected to play a significant role in occupant response. By
focusing on low-severity deceleration pulses that pose no risk of injury, these studies can
provide ethically sound and scientifically robust data for validating human body models
and improving safety systems (VIVE21).

In addition to their ability to capture active responses, volunteer studies offer the
advantage of tightly controlled experimental conditions while still reflecting real-world
occupant behavior). Laboratory-based volunteer testing allows for precise manipulation
of variables such as posture, awareness, and muscle activation, factors that are difficult
to isolate in cadaveric or retrospective crash analyses. Although volunteer tests must
remain below injury thresholds, they have proven essential for evaluating dynamic
kinematic responses and for validating computational human models that simulate
physiological responses under controlled loads (CRAN10).

2.1.2. Anthropomorphic Test Devices (ATDs): Utility and Limitations

Despite their widespread use in occupant safety testing, ATDs are limited in their ability
to replicate the complex and age-dependent biomechanical behavior of real humans.
These devices, typically based on the 50th percentile adult male, are constructed with
rigid components and simplified anatomical structures that do not reflect the variability
seen in human anatomy, particularly in elderly individuals. One of the main criticisms of
current ATDs is their inability to simulate physiological changes such as thoracic
stiffening, reduced spinal flexibility, and variations in soft tissue response that occur with
aging (VIVE21).
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Moreover, many biofidelity standards used in ATD development originate from a narrow
set of PMHS experiments. For instance, the force—displacement corridors that shaped the
thoracic behavior of the adult male ATD were derived from a limited group of older
PMHS subjects, with insufficient representation of younger adults (BIOM24). As
highlighted in recent literature, a single ATD cannot realistically replicate both young and
elderly adults due to fundamental differences in their biomechanical properties. This gap
has prompted calls for the development of new surrogates, such as multiple ATDs for
different age groups or designs with adjustable thoracic stiffness to accommodate age-
related variability (SUN16).

2.1.3. Comparison with Other Test Subjects (PMHS, children, etc.)

While ATDs remain the dominant tools for repeatable crash testing, and PMHS data serve
as a basis for injury threshold development, neither approach alone is sufficient for
understanding human kinematics during low-severity impacts. Ethical and legal
constraints prevent the use of living subjects in high-speed scenarios, and PMHS studies
cannot capture real-time human behavior such as muscle bracing or postural variability
(SUN16). These limitations are particularly problematic when studying underrepresented
populations such as children or elderly adults, where anatomical and physiological
variability plays a central role in impact response. Pediatric ATDs, for example, are often
based on geometrically scaled-down adult models rather than child-specific
biomechanics, leading to questioned biofidelity (BIOM24). Similarly, adult ATDs do not
adequately reflect the age-related changes in spine mobility and thoracic compliance seen
in elderly individuals. Volunteer testing, especially at low speeds, has therefore emerged
as the most viable method for ethically capturing real-world kinematics in these
vulnerable populations (ARBO09).

The real-world applicability of volunteer studies has also been supported by recent
evidence comparing volunteer-based rear-impact data with national crash databases. In
2018, over 1,200 volunteer exposures from 51 studies were compiled. They found
symptom reporting rates, including neck pain, nearly identical to those observed in real-
world rear-end collisions of comparable severity. Statistical analysis using operating
characteristic curves demonstrated that the likelihood of injury beyond transient
symptoms is extremely low in controlled volunteer exposures, even under impact
severities similar to those encountered in everyday crashes (CORM18). This alignment
between laboratory and real-world outcomes reinforces the external validity of volunteer
testing as a method for studying occupant kinematics and low-level trauma without
inducing harm.

2.1.4. Ethical Framework

The use of human volunteers in biomechanical testing introduces specific ethical
requirements that go beyond those encountered in most clinical research. Because the
participants are typically healthy individuals with no direct medical benefit from the
study, risk mitigation, informed consent, and regulatory compliance become central to
the study design. To ensure participant safety, low-speed deceleration pulses are selected
based on prior studies known to be safe and non-injurious. For example, test pulses are
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often derived from scaled-down versions of amusement park ride dynamics (ARBO09),
with added precautions such as acoustic warnings and post-test monitoring. Additionally,
compensation for participation is carefully calibrated to avoid coercion, typically
covering time and discomfort but not offering undue inducement. These measures reflect
current standards for ethical volunteer testing and are essential for maintaining public
trust and participant autonomy in biomechanical research.

2.1.5. Evolution of Volunteer Test Platforms

Volunteer testing platforms have also evolved significantly to balance scientific rigor
with participant safety and comfort. Early systems often used rigid sled setups in
laboratory environments with limited adjustment to individual anthropometry. In
contrast, more recent platforms incorporate adaptable seat configurations, precise
restraint positioning, and adjustable pulse characteristics to replicate real-world vehicle
postures more accurately (VIVE21). These improvements have enabled a more reliable
and reproducible capture of kinematic data across different subject groups.

These advancements have been paralleled by creative approaches to platform design in
both pediatric and adult testing contexts. Notably, the Children’s Hospital of Philadelphia
(CHOP) developed a pioneering low-speed sled system inspired by amusement park
bumper cars. This setup enabled testing of pediatric volunteers in frontal, near-side, and
rear impact conditions while maintaining accelerations within safe tolerances. The system
has since informed adult volunteer studies as well, demonstrating the value of cross-
population testing frameworks (BIOM24). More recently, researchers have begun to
explore real-world platforms, such as autonomous public transport vehicles, to assess
occupant kinematics during unexpected braking scenarios under naturalistic conditions.
These studies, while still limited in number, illustrate a growing trend toward more
realistic testing environments in biomechanics, aiming to complement laboratory-based
methods without compromising safety or ethical standards.
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2.2. Volunteer Testing Protocol

The experimental data used in this study were obtained from a series of low-speed frontal
deceleration tests performed on human volunteers as part of the SENIORS project, funded
by the European Commission. The tests were conducted at the Impact Laboratory (I3A)
of the University of Zaragoza and adhered to strict ethical standards approved by the
Clinical Research Ethics Committee of Aragén (CEICA). All participants provided
written informed consent prior to testing. The following information regarding the data
obtention method was retrieved from Lopez-Valdes et al., 2017 (LOPE17) and Vives-
Torres et al., 2021 (VIVE21).

2.2.1. Test Setup

The test configuration consisted of a rigid seat, a rigid footrest, and a backrest constructed
using flexible metallic wire segments. This assembly was designed to replicate the seating
posture and pelvic displacement typically experienced in a passenger vehicle during a
frontal crash. Both the footrest and seatbelt anchorage points were adjustable to match
the anthropometry of each volunteer, ensuring realistic and repeatable posture.

The restraint system employed a non-retractor, non-force-limited three-point seatbelt.
Initial pretensioning was manually applied using a spring scale, targeting approximately
50 N of force. This value was reduced if the volunteer reported discomfort during
preparation.

The sled was programmed to deliver a triangular deceleration pulse with a peak of
approximately 3.5 g and a duration of around 100 milliseconds. The target velocity at
impact was 9 km/h. These parameters were chosen to ensure a safe and non-injurious
response, in line with previous studies using similar pulse characteristics derived from
scaled-down amusement park rides (ARBOQ09). The sled configuration, including the
seating and restraint system, is shown in Figure 2.2-1 (LOPE17), and the deceleration
pulse shape recorded during testing is displayed in Figure 2.2-2 (VIVE21).
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Figure 2.2-1, Sled Test Configuration, showing the rigid seat, flexible backrest, footrest, and three-point
seatbelt system. (LOPE17)
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Figure 2.2-2. Sled Deceleration Pulse — Sled deceleration pulse corridors in the young (blue) and elderly
(green) groups. Solid lines are the average deceleration within the group. Shaded area corresponds to the
one standard deviation corridor. (VIVE21)
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2.2.2. Safety and Ethics

All procedures were designed to prioritize volunteer safety. Participants were prescreened
to confirm the absence of any medical conditions that could increase their risk of injury.
Prior to testing, volunteers were briefed on the experimental procedure, instructed to
remain relaxed throughout the event, and alerted with an acoustic signal shortly before
the onset of deceleration. Each individual underwent multiple test trials, but only one
(typically the third) was selected for analysis, unless sensor or marker issues necessitated
using another.

Post-test monitoring ensured that no injuries or discomfort occurred, and no adverse
events were reported. The study complied with applicable ethical guidelines, and data
collection was structured to ensure anonymization and secure handling.

2.2.3. Instrumentation and Data Acquisition

A comprehensive instrumentation system was implemented to capture both kinematic and
kinetic responses. The sled platform included:

- Two accelerometers for recording sled deceleration

A six-degree-of-freedom (6-DOF) load cell under the seat

Two 6-DOF load cells under the footrest

- Four load cells integrated into the shoulder and lap portions of the seatbelt

The configuration of the load cells can be seen in Figure 2.2-4.

To capture head kinematics, a triaxial accelerometer and angular rate sensor were
mounted on a lightweight elastic headband worn by the volunteer, as can be seen in Figure
2.2-3. All sensor signals were acquired at a sampling frequency of 10,000 Hz using an
external data acquisition system (PCI-6254, National Instruments, Austin, TX). Filtering
was performed using low-pass filters, with cutoff frequencies individually selected
according to the characteristics of each signal, ensuring that relevant signal content was
preserved.

References:
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Figure 2.2-3. Head Mount - Detail of the 6 degree-of-freedom head cube and of the position of the
sensors on the head of one of the volunteers. (VIVE21)

An overview of all sensor types, locations, and measurements is provided in
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Table 2.2-1. Some sensor malfunctions occurred during select trials (e.g., tests 1680,

1691, and 1780), which were excluded from the analysis.

(6-DOF, 2 units)

Sensor Type Location Measurement

Accelerometers Base of sled platform Used to record sled deceleration
(2 units)

Load cell Under seat base Measures vertical and shear forces
(6-DOF) at seat base

Load cells Under footrest (left and right) | Measures foot—rest interaction

forces

Seatbelt load cell
(shoulder)

Between shoulder and D-ring

Measures belt tension at upper
torso

Seatbelt load cell
(lower shoulder)

Arbitrary position on shoulder
belt

Complementary shoulder load
measurement

Seatbelt load cells
(lap, 2 units)

Left and right lap belt
segments

Measures lap belt forces
bilaterally

Triaxial accelerometer

Headband mount near CG
(Endevco 7264C)

Measures linear head acceleration

Angular rate sensor

Same headband mount

Measures rotational head motion

(DTS ARS-PRO 18K)

Table 2.2-1. Instrumentation Summary - Overview of the sensors used in the study, including their type,
mounting location, and measurement recorded.

Kinematic trajectories were obtained using a 10-camera optoelectronic motion capture
system (Vicon TS series) operating at 1,000 Hz. Reflective markers were placed on
specific anatomical landmarks of each volunteer to enable accurate tracking of body
motion. These landmarks included the external auditory meatus (bilateral), nasion,
opisthocranion, cervical spine (C4), thoracic spine (T1, T4, T8), acromion (bilateral),
greater trochanter, and anterior superior iliac spine (ASIS). Additionally, a triad of
markers was mounted on the head sensor plate to allow transformation of the sensor data
from its physical location on the headband to the estimated head center of gravity, defined
as the midpoint between the bilateral external auditory meatus markers.

Based on these markers, a local head coordinate system was defined using the Frankfurt
anatomical plane, with its origin at the estimated head center of gravity. All kinematic
data were then transformed into the global laboratory coordinate system, in which the x-

37



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

axis pointed forward and the z-axis upward. For compatibility with force measurements,
head displacements and trajectories were expressed relative to the occipital condyle joint.

The motion capture system operated by detecting retro-reflective spherical markers
placed on the volunteers within a calibrated three-dimensional volume. The configuration
of said markers is illustrated also in Figure 2.2-4. Prior to testing, a calibration procedure
was performed to determine the optical characteristics, position, and orientation of each
of the ten cameras relative to a fixed global coordinate system (GCS) anchored to the
laboratory. In addition, a local coordinate system (LCS) was defined relative to the test
buck, with its origin located at the front-right corner of the seat. The local x-axis pointed
forward at a 30-degree angle clockwise from the subject’s frontal anatomical axis, the z-
axis pointed vertically upward, and the y-axis was defined to form a right-handed
coordinate system. Unless otherwise noted, all displacement data are expressed relative
to this LCS. Marker positions were reconstructed in three dimensions using a
photogrammetric algorithm implemented in the Vicon Nexus software package (Nexus
1.8.5, Vicon, Oxford, UK), which triangulated each target’s position at every time step
based on synchronized images from the multiple camera views.

Belt tension (4)

Cervical and
thoracic
kinematics

3 acc+ 3 ARS

N 6 dofLC

Figure 2.2-4. Instrumentation Layout - Example of the experimental setup showing the placement of load
cells, accelerometers, and reflective markers on the sled platform and volunteer. (LOPE17)

38



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

2.2.4. Volunteer Sample and Preparation

A total of 13 male volunteers participated in the tests: 9 younger adults aged 18-30 and
4 elderly adults over 65. The cohort was selected to approximate the anthropometric
dimensions of a 50th percentile male (target height: 175 cm, target mass: 78 kg).
Anthropometric measurements such as height, weight, head girth, and neck
circumference were recorded before testing. These measurements are summarized in

Table 2.2-2.

Test | Group | Subject | Age | Stature | Weight | Head | Neck | Seated
ID ID (years) (cm) (kg) girth | girth | height
(cm) (cm) (cm)

1679 | Young | Vol 01 18 171.0 75.5 59.5 38.0 62.4

1684 | Young | Vol 02 18 176.5 1.7 57.0 36.5 66.4

1689 | Young | Vol 03 21 179.5 73.0 59.0 37.0 64.1

1694 | Young | Vol 04 21 179.0 79.4 58.0 37.0 65.5

1767 | Young | Vol 05 22 167.0 75.3 55.0 38.5 63.3

1858 | Young | Vol 06 28 172.0 68.4 56.0 37.5 57.1

1865 | Young | Vol 07 36 174.0 73.0 59.5 38.0 62.5

1869 | Young | Vol 08 26 174.0 64.6 57.0 37.0 60.7

1873 | Young | Vol 09 18 173.0 86.7 61.0 43.0 63.1

1771 | Elderly | Vol 10 71 164.0 81.0 59.0 46.5 60.6

1774 | Elderly | Vol 11 71 176.5 99.1 60.0 46.0 64.6

1778 | Elderly | Vol 12 85 165.3 78.2 57.0 41.5 63.2

1780 | Elderly | Vol 13 67 169.0 88.2 59.5 44.5 65.7

1862 | Elderly | Vol 14 66 172.5 89.6 58.5 41.0 62.3

Table 2.2-2. Volunteer Anthropometric Data - Summary of the anthropometric characteristics of all
participating volunteers.
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Volunteers were seated with their pelvis aligned to the seat centerline, and adjustments
were made to achieve a torso inclination of approximately 60°, a thigh angle near 12°,
and a tibial inclination of about 45°. The seatbelt's D-ring was positioned in vertical
alignment with the external auditory meatus and laterally offset by roughly 100 mm from
the acromion. This setup was repeated across all trials to maintain consistency in initial
posture and restraint configuration.

Figure 2.2-5 presents representative frames from lateral video footage, illustrating the
motion comparison between a young and an elderly volunteer at matched time points
during deceleration (LOPE17).
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Figure 2.2-5. Lateral Video Comparison - Representative still frames comparing the motion of a young
and an elderly volunteer during frontal deceleration. (LOPE17)
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3. METHODOLOGY

3.1. Software Environment

All analyses and data processing were performed in MATLAB R2023a, which provided
the main environment for numerical computation and visualization. Raw motion capture
data were stored in Microsoft Excel files, each containing the full set of landmark
trajectories per test trial. MATLAB was used to import, structure, and process these
datasets across all methods. Graphs and other figures were also generated in MATLAB.
Statistical modeling of principal component scores against anthropometric variables was
conducted in GRETL.

Methods 1 and 2 (B-spline and PCA of trajectories, and the analysis of posture at
maximum head displacement) leveraged MATLAB’s built-in functions for curve
approximation of landmark motion, construction of fixed-length feature vectors,
computation of principal components, re-referring of landmarks and any other needed
operations. All regression models were subsequently estimated in GRETL.

Method 3 (Arc-length re-parameterization, signal registration, and statistical corridor
generation) was implemented using the open-source ARCGen Toolbox developed by
Hartlen and Cronin (HART22), which can be found in the Annex section, ARCGen.
ARCGen was integrated into MATLAB and applied to perform arc-length normalization,
signal registration, and computation of characteristic average trajectories and variability
envelopes.

This integrated software environment allowed consistent application of all analytical
steps, while accommodating the methodological differences between approaches.
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3.2. Method 1: B-Spline approximation and Principal Component Analysis of
individual landmark trajectories

3.2.1. Method Overview

The analysis presented in this section is designed to analyze differences in upper-body
motion between test subjects during low-speed frontal decelerations. It follows a
structured pipeline that transforms raw positional data into a form suitable for statistical
regression. The process integrates three main stages: curve fitting using B-splines,
dimensionality reduction via Principal Component Analysis, and regression modeling to
explore the relationship between motion characteristics and subject-specific
anthropometric features.

The starting point of the analysis consists of high-frequency optoelectronic motion
capture data recorded for 6 different anatomical landmarks (head, C4, T1, T4, T8, and H-
point) per each of the 14 volunteer in the study. Each of these trajectories consists of
hundreds of time-sampled (x, z) coordinates. While this level of temporal resolution is
valuable for capturing dynamic motion, it also presents a challenge: it is high-
dimensional, noisy, and contains more information than is meaningful to analyze directly
for statistical comparisons between subjects. The high number of time points per trial is
also impractical to incorporate into a regression model due to overfitting and
multicollinearity.

To address this and reduce the dimensionality while preserving the essential structure of
the trajectories, the first step is to fit each landmark's motion with a B-spline curve. A B-
spline is a parametric curve defined by a small number of control points, which
approximate the shape of the original signal without forcing the curve to interpolate each
individual time point. In this thesis, spline order and point spacing are selected such that
the fitted curve retains key movement features while discarding high-frequency noise and
redundant data.

After the B-spline fitting process, each trajectory has been converted into a fixed number
of control points. These control points are then arranged into a feature vector for each
test, capturing the position of each landmark along its path in a compressed and
standardized form. Since the trajectories are defined in 2D space, each control point
contributes two values (x and z), and the final vector contains 2n values per trajectory,
where n is the number of control points used. However, even after this compression, the
number of variables remains large (16 values per landmark), and these coordinates are
often highly correlated across subjects.

To further reduce complexity and facilitate statistical modeling, the dataset of control
point vectors is processed with Principal Component Analysis (PCA). PCA is a linear
dimensionality reduction technique that identifies the directions in which the data varies
most. It transforms the original coordinates into a new set of orthogonal variables, known
as principal components (PCs), ranked by the amount of variance they explain. In this
context, each PC represents a characteristic mode of variation in the trajectory shape (e.g.,
forward translation, vertical deflection, curvature) and each subject receives a score for
each component, indicating how their motion differs along that mode from the average.
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Importantly, the components are uncorrelated by construction, which is crucial for the
next step.

The final stage is regression modeling. The principal component scores obtained for each
trajectory are used as dependent variables in linear regression models. The predictors are
the anthropometric and demographic characteristics of each subject (e.g., seated height,
body mass, age group). The purpose of these models is to identify statistically significant
relationships between the shape of a subject’s trajectory and their physical attributes.

In summary, the method is designed to transform complex trajectory data into a
standardized, low-dimensional form suitable for regression analysis. The ultimate goal is
to quantify how much of the variation in landmark motion can be explained by subject
characteristics, enabling biomechanical interpretation of the observed differences
between young and elderly volunteers.

3.2.2. Literature background

The methodological framework combining B-spline fitting, PCA, and regression
modeling draws on a well-established foundation in the biomechanics literature. Each
component of this pipeline has been applied in related contexts to reduce data
dimensionality, extract interpretable features from motion trajectories, and investigate
relationships between movement patterns and subject-specific parameters. This section
reviews key sources that support the use of each step, with a focus on studies involving
human kinematic analysis in crash testing, gait, and injury prediction contexts.

B-spline modeling of human motion

As mentioned, B-spline curves are a type of polynomial functions that offer local control,
smoothness, and computational efficiency, making them ideal for approximating complex
and noisy biomechanical trajectories. Their flexibility in shaping curves without
overfitting to individual time points is particularly valuable in crash testing contexts,
where raw motion capture data are often dense and noisy.

A particularly relevant reference for the present methodology is the study by Samuels et
al. (2015), which closely mirrors the structure and intent of the approach used here. In
their work, the authors modeled the sagittal-plane trajectories of multiple anatomical
landmarks (head top, nasion, EAM, C4, T1, and pelvis) during low-speed frontal impact
tests involving pediatric and adult volunteers. To compress and regularize the data, they
fitted cubic B-splines to the recorded landmark trajectories, using eight control points per
curve. This configuration was chosen to ensure a root mean square error (RMSE) below
1% of the mean head excursion, balancing fidelity and dimensionality (SAMU15).

Similar uses of B-spline-based trajectory compression have been reported in
rehabilitation studies using inertial sensors (e.g., stroke recovery monitoring), and in
robotic control systems for trajectory planning. In these applications, B-splines are valued
for their ability to efficiently represent smooth motions with relatively few parameters
while respecting biomechanical constraints (HWAN23; WANGSS).
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Principal Component analysis in biomechanics

Principal Component Analysis (PCA) is a common tool in biomechanics for reducing the
dimensionality of multivariate datasets while retaining dominant patterns of variation.

In the previously mentioned study by Samuels et al. (2015), after B-spline fitting, they
constructed a matrix of control point coordinates and performed PCA to identify
dominant modes of variation. The first two principal components captured the majority
of variability across subjects and were found to correlate strongly with erect seated height,
especially in the head and spinal landmarks (SAMU15).

PCA has also been used to decompose full-body motion data in gait and posture studies.
For instance, Federolf et al. (2013) applied PCA to 117-dimensional marker trajectories
and interpreted the resulting components as "principal movements," such as forward sway
or arm-leg coordination (FEDE13). These studies illustrate PCA’s strength as a non-
reductionist method: it does not presuppose which features are important but instead
allows dominant biomechanical trends to emerge from the data.

In crash biomechanics, PCA has also been applied in injry risk modeling. Brumbelow,
M.L. (2023), for example, used PCA to reduce multiple lower-extremity injury metrics
into orthogonal components that could then be analyzed using logistic regression to
identify key predictors of injury (BRUM23).

Regression of PCA-derived features to anthropometric variables

The final step in the pipeline involves regressing PCA-derived features (i.e., scores)
against anthropometric variables to quantify how motion patterns vary across the
population. This type of analysis has proven effective in identifying biomechanically
meaningful relationships, such as the influence of age or seated height on specific
principal movement components.

Continuing with the study by Samuels et al. (2015), the obtained principal component
scores were regressed against anthropometric variables to create a statistical model
capable of predicting trajectory shapes for anthropomorphic test devices (ATDs) of
varying size. The model was validated by reconstructing trajectories for known ATD
dimensions (e.g., 6-year-old and 10-year-old dummies), showing that body size
influences not just the extent but also the shape and curvature of movement paths
(SAMU15).

In addition, Sun et al. (2016) developed a regression-based method to generate
biomechanical response corridors from pelvis impact data. They applied PCA to aligned
force signals, regressed the resulting PC scores to anthropometric variables such as waist
breadth and vertex-to-symphysis distance, and used Monte Carlo simulation to generate
individualized corridor bounds. Their method outperformed traditional normalization
approaches by preserving anthropometric influences rather than scaling them out
(SUN16).

Similarly, Donnelly and Moorhouse (2012) advocated for regression modeling of aligned
response curves to preserve timing and magnitude features specific to individual subjects,
rather than relying on averaged or normalized signals (DONN12). Their later work on
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deformation energy approaches (DONN14) further reinforced the need to model inter-
subject variability directly instead of treating it as noise.

3.2.3. Purpose and justification

This method was selected to address a specific analytical challenge: how to extract and
compare the underlying structure of individual motion trajectories without
oversimplifying them. The goal is not to summarize raw movement but to isolate which
aspects of trajectory shape vary meaningfully across subjects and whether those
variations relate to physical attributes.

B-splines were chosen over direct time-series analysis because they offer a compact yet
geometrically meaningful representation. Unlike simple downsampling or filtering, B-
splines retain localized curvature and motion tendencies while reducing noise and
dimensionality. This is particularly useful when comparing subjects with different
morphologies, where minor fluctuations can obscure broader motion patterns.

PCA was then applied to the B-spline control points not only for compression, but to
expose dominant modes of variation that are uncorrelated and interpretable. These
components allow comparisons across individuals in terms of specific, decoupled
movement patterns, something that would be difficult to achieve using raw coordinates.

The final regression step is justified by the need to move from description to explanation.
Rather than simply observing differences in motion, the method aims to quantify how
much of those differences are associated with subject-level variables. This enables
statistically grounded inferences about how body size or age affect trajectory shape, and
offers a framework for predicting motion trends beyond the observed sample.

Each element in this sequence was selected to maximize interpretability and
comparability, while keeping the analysis as robust as possible against small sample size
and high-dimensional input. The full process, spline fitting, PCA, and regression, aims to
preserve key structure, filter irrelevant noise, and isolate variation that may be
biomechanically meaningful.

3.2.4. Mathematical background

B-Spline curve representation

A B-spline curve is a piecewise-defined parametric function commonly used to
approximate smooth trajectories with compact representation and local control. In this
work, B-splines are used to model the two-dimensional motion trajectories of anatomical
landmarks recorded over time during frontal deceleration tests. The goal is to replace
high-dimensional raw time-series data with a fixed-length, smooth representation that
preserves biomechanically relevant features and enables further statistical analysis.

General formulation

Letd € N be the degree of the spline (i.e., the polynomial degree of each segment), and
letk = d + 1 be the corresponding spline order. A B-spline curve of order k defined
over adomaint € [a,b] c Ris expressed as:
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S@) = Z PyN; (t)

where:

- S(t) € R? is the point on the curve at parameter t,
- P; € R?is the i-th control point (to be determined),
- Ny «(t) is the i-th B-spline basis function of order k,
- n + 1 is the number of control points.

The basis functions Nj,,(t) are piecewise polynomials constructed recursively and
determine the weight of each control point at a given parameter value t. Their construction
depends on a knot vector T = {t°t,...,t, }, which partitions the domain and defines
where each basis function becomes active.

Recursive definition of Basis functions

The B-spline basis functions are defined using the Cox—de Boor recursion:
Fork = 1:

1 t, <t <t
N t) = ) I = ) i+1
i1(6) {O, otherwise
Fork > 1:
t—1; Livk — L
Nix(8) = ﬁNi,k—l(t) + ﬁNHl,k—l(t)
i+k-1 — ti i+k — Lit1

Any term with a denominator equal to zero is conventionally taken as zero. The result is
aset of m — k overlapping functions, each basis function N; , (t) being nonzero only over
a sequence of at most kconsecutive knot spans. This local support is what grants B-splines
their flexibility and computational efficiency.

Knot Vector and its role

The knot vector T = { ty, ty, ..., t,,} is a non-decreasing sequence of real values that
determines how the domain is partitioned into segments, and how the basis functions
blend across these segments.

Given:

- Spline degree d,
- Number of control points n + 1,
- Orderk =d + 1,

the knot vector musthave m + 1 = n + k + 1 entries.
In this work, a uniform clamped knot vector is used. This means:

- The internal knots are uniformly spaced over [0,1],
- The first and last knots are each repeated k times (i.e.,ty = t; = ... = t_1 =
O,and ty,_ k41 = . =ty = 1),
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which ensures that the curve interpolates the first and last control points:
SO =k, SM=~r

This is desirable when the start and end of the trajectory correspond to physical time
endpoints that must be preserved (e.g., onset and end of deceleration).

Curve Evaluation and Dimensionality

To evaluate a B-spline curve numerically, the basis functions N; ; (t) are computed at a
discrete set of parameter values t € [0,1], and the curve values are obtained as:

n
S(t) = ZPiNi,k(t); forj=1,..,T
i=0

This can be written in matrix form as:
S=B-P
where:

- § € R™2contains the curve points at T parameter values,
- B € RT™(*D s the basis matrix with entries B;; = N;;(t),

- P € RO™+DX2 s the matrix of control point coordinates.

In other words, for each evaluation point ¢; the vector S; is computed, such that each row
of matrix B is the set of basis function values at t; and multiplying yields all spline points.

This way, the control points P; become the parameters to estimate in the curve fitting
process.

Use in trajectory compression

Each motion trajectory is defined by a sequence of measured positions {sy, ..., sp} € R?,
Instead of storing all T points (typically on the order of hundreds), we represent the
trajectory using a small, fixed number of control points P;. These points fully define the
fitted curve and are sufficient to reconstruct an approximation of the original trajectory.

For use in later stages of analysis (Principal Component Analysis), the control point
coordinates are flattened into a row vector of length 2(n + 1). This fixed-length vector
serves as a compressed, standardized representation of the trajectory.

So, if each control point P; has two coordinates (x;, z;), then for each trajectory, all
control points are collected into a 1D vector such as

[xo, ZO, xl, Zl' ...,xn, Zn]

with 2(n + 1) features.

Principal Component Analysis

PCA is a linear transformation technique used to extract the dominant modes of variation
from multivariate data. In the present study, PCA is applied to the control point vectors
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obtained from B-spline trajectory approximations. The objective is to represent each
trajectory using a set of uncorrelated variables (principal components) that summarize the
major patterns of shape variability across subjects.

Data representation and centering

Let X € RV*P denote the data matrix, where:

- N is the number of trajectories (i.e., trials/subjects for a given landmark),
- D = 2(n+1) is the number of features per trajectory, corresponding to the
flattened x and z coordinates of n + 1 B-spline control points.

Each row x; € RP of X represents one trajectory in feature space.

The first step in PCA 1is to center the data by subtracting the empirical mean vector X €
RP .
X=Xx-1%x"

where 1 € RM*! is a column vector of ones, and X is the mean-centered data matrix.

Covariance matrix and eigenvalue decomposition

The next step is to compute the sample covariance matrix:
1
C=——X"Xe RP*P
N-1

The principal components are obtained as the eigenvectors of C. That is, we solve:

CcV =VA
where:

-V =[vq,..,vp] € RP*Pcontains the eigenvectors (principal axes),
1 D g p p

- A = diag(A, ..., Ap) is a diagonal matrix of eigenvalues ordered such that A* >
2> .= =0.

Each eigenvalue 4; quantifies the variance explained by the corresponding principal

component v;.

Alternatively, PCA can be computed via Singular Value Decomposition (SVD) of X:
X=Uuzv"
where:
- U € RN*P contains the left singular vectors (subject-wise scores),
-V € RP*Pcontains the principal directions,
- ¥ € RP*Pis diagonal with singular values g; = /4 (N — 1).

Principal Component scores and projection

The principal component scores are obtained by projecting the centered data onto the
eigenvectors:

Z=2Xv
where Z € RN*P contains the scores for each subject along each principal component.
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In practice, only the first K < D components are retained. These scores z;; then
represent each trajectory in a low-dimensional, orthogonal space:

— T T
Zij = X; v]', fOT'] = 1,...,K

Reconstruction and interpretation

Each input trajectory x; can be approximately reconstructed using the mean vector and
the first K principal components:

Each component v; represents a mode of trajectory variation, and the score z;; measures

how strongly that mode is expressed in subject i. Because the components are orthogonal,
they can be used independently in downstream statistical modeling.

Linear regression of Principal Component scores

Following the application of PCA, each trajectory is represented as a low-dimensional
vector of principal component scores. The goal of this final analytical step is to determine
whether these scores, capturing shape variability in landmark trajectories, can be
explained by subject-specific parameters. This is accomplished using linear regression, a
classical statistical method for modeling relationships between a scalar response and
multiple explanatory variables.

Model structure

Let z; € R denote the score of the i-th subject along a particular principal component
(e.g., PCI or PC2). Let x; = (xil, X2y ey xip)T € RP be the vector of predictor
variables (e.g., age, seated height, mass) for that subject.

The regression model is defined as:

p
zi = o+ Zﬁjxij + &
j=1

or in matrix-vector notation for all N observations:

z =Xp + ¢
where:

-z € RY is the response vector of PC scores,

- X € RVX®*D g the design matrix, with a column of ones for the intercept and
remaining columns for the predictors,

- B € RP*! is the vector of regression coefficients,

- & € RY is the residual vector, assumed to follow & ~ N (0, 02), independent
and identically distributed.
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Each regression is performed separately for each retained principal component. This is
valid due to the orthogonality of the components; the scores across different PCs are
uncorrelated by construction, allowing independent modeling.

Parameter estimation

The vector of coefficients [ is estimated using ordinary least squares (OLS), which
minimizes the residual sum of squares:

— i 2
B = argmﬁm ||z — Xﬁ||2
The closed-form solution is:
B=(X"X)"'X"z

provided that X”X is invertible, which holds if the predictor variables are linearly
independent.

Statistical interpretation

Each coefficient f3; represents the expected change in the PC score associated with a one-
unit increase in predictor x;, holding all other predictors constant. The statistical
significance of each predictor can be evaluated using t-tests, the overall model fit via
adjusted R?, and residual analysis to verify assumptions such as homoscedasticity and
normality of errors.

Because the regressions are applied to orthogonal PCs, the influence of subject-specific
variables can be analyzed component by component, each reflecting a different mode of
shape variation in the trajectory.

In this study, the set of predictor variables used in each regression model was kept small
and interpretable, consisting of anthropometric and demographic features such as age
group, seated height, and body mass. As each regression was performed separately per
principal component and per landmark, the approach ensured clarity in interpreting how
specific physical characteristics relate to distinct modes of trajectory variation.

3.2.5. Implementation

Overview of workflow

The implementation of this method followed a structured, modular workflow executed
independently for each of the six anatomical landmarks (head, C4, T1, T4, T8, and H-
point). The pipeline comprised four main stages:

1. Approximation of each landmark trajectory using B-spline curves,

2. Vectorization of the resulting control points into standardized feature vectors,

3. Dimensionality reduction via Principal Component Analysis, and

4. Statistical modeling of selected principal component scores through linear
regression.
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At each stage, decisions regarding parameters, data formatting, and processing logic were
made with a focus on reproducibility, consistency across landmarks, and biomechanical
interpretability. No cross-linking between landmarks was introduced at any point; all data
transformations and analyses were performed separately to preserve anatomical
independence in the resulting components.

The methodology was implemented using custom MATLAB routines, structured around
a sequence of well-defined data transformations and standardized inputs and outputs. The
overall workflow ensured traceability from raw motion trajectories to regression-ready
features, with intermediate results archived for each processing step.

B-Spline fitting

The initial stage of the processing pipeline consisted of fitting B-spline curves to raw
motion trajectories recorded for each anatomical landmark. Before this approximation
was applied, the raw trajectories exhibited high temporal resolution and substantial
variability across subjects and repetitions. While this level of detail is essential for
capturing motion precisely, it also results in high-dimensional signals that are difficult to
compare directly and impractical to model statistically in their raw form.

An example of these raw trajectories are shown in Figure 3.2-1. It displays the x-z motion
of a single anatomical landmark (T1) across all 14 volunteers. The variability and density
of the curves underscore the necessity of introducing a compact, standardized
representation capable of preserving biomechanical meaning while reducing
dimensionality.

Raw X-Z Trajectories of T1 Across All Trials
T T

T T T T

Z Displacement (mm)

-20 - -

1 1 1 1 1 1 1 1
-20 0 20 40 60 80 100 120
X Displacement (mm)

Figure 3.2-1. Raw x—z trajectories of a selected anatomical landmark (T1) across all test trials. The
trajectories are high-resolution and exhibit significant inter-subject variability, motivating the need for a
compact, standardized representation such as B-spline approximation.
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The raw trajectory input data were stored in a collection of Excel (.xIsx) files, with one
file per test trial and volunteer. Each file contained the full set of landmark trajectories
recorded during that trial, structured as time-series of two-dimensional (x, z) coordinates
sampled at uniform intervals. This structure allowed synchronized access to all landmarks
for a given test but required that each landmark be processed individually across files.

The spline fitting process was implemented in MATLAB using the custom routine
Spline _analysis_all tests together.m which can be found in section 3.1.1 of the Annex.
Upon execution, the script iterated through the directory of Excel files, extracted the
trajectory data for each landmark of interest, and normalized the time domain to ¢t € [0,1].
No interpolation or filtering was required at this stage, as all recordings were acquired at
a consistent sampling frequency and time span.

Cubic B-splines (order k = 4, degree d = 3) were used for all fits, with a uniform
clamped knot vector, ensuring that each spline curve interpolated the first and last
trajectory points while maintaining C? continuity throughout. The control
points {Py, P, ..., B,} € R? were estimated by solving a least-squares problem over the
full sequence of recorded positions for each trajectory. Based on methodological
precedent from Samuels et al. (2015) and to ensure consistency across trials, the number
of control points was fixed to 8 for all landmarks (SAMUI1Y5).

To validate the adequacy of the spline approximation, the root mean square error (RMSE)
was computed between the fitted curve and the original trajectory, using a uniform
resampling of 10 points along the time domain. This allowed a standardized assessment
of approximation quality across trials. The resulting RMSE values were used to confirm
that the selected number of control points preserved key trajectory features while
achieving substantial data compression.

An example of spline fitting performance is shown in Figure 3.2-2., where the fitted
trajectory is overlaid with the original data for a representative trial and landmark T1. The
fitted curve preserves the general shape and curvature of the motion while substantially
reducing the dimensionality of the signal. The fitted trajectories for all landmarks can be
found in the Spline fitting and dimensionality reduction Results section.

The final output of this step consisted of the estimated control point
coordinates {P,,...,P,} , flattened into a 1 X 2(n+1) row vector ordered
as (xg, 29, X1, Z1, -, Xn, Zn). These vectors served as standardized inputs to the next stage
of the pipeline.
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Figure 3.2-2. Example of original trajectory (red line) and fitted B-spline curve (blue line) for the T1
landmark during a representative trial. The fitted curve preserves the essential shape of the motion with
reduced data complexity.

Construction of PCA input matrix

Once each trajectory had been converted into a fixed-length vector of B-spline control
point coordinates, these vectors were assembled into input matrices for PCA. One matrix
was created for each anatomical landmark to ensure that the modes of variation extracted
in subsequent steps would reflect landmark-specific motion patterns without cross-
contamination between body regions.

This step was executed using the MATLAB script A/l coordinates_any n.m, found in
section 3.1.2. of the Annex. Upon execution, the user is prompted to specify the landmark
of interest. The script then iterates through all processed test trials, retrieves the
corresponding 1 X 2(n + 1) control point vectors for that landmark, and assembles them
into a matrix X € RNM*P where:

- N is the number of trials for the selected landmark (1 per volunteer),
- D =2(n+1)is the feature dimension, representing the x and z coordinates of
each control point, interleaved in consistent order.

The control point vectors are stacked row-wise to form the full PCA input matrix. Because
the number and ordering of control points were identical across all trajectories, the
resulting matrix was structurally homogeneous and ready for direct analysis.
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No additional transformations were applied at this stage; the values in X remained in
physical units (millimeters). Mean-centering was performed internally during the PCA
step. The completed input matrices were saved in MATLAB's native .mat format and
passed to the next stage for dimensionality reduction.

Principal Component Analysis

PCA was applied separately to each landmark’s input matrix to reduce dimensionality
and isolate dominant patterns of trajectory variation. All PCA computations were carried
out using the MATLAB script PCA_Analysis (found in section 3.1.3 of the Annex),
which took as input the control point matrix produced in the previous stage.

For each landmark, the script returned a full set of principal component scores and the
corresponding percentage of variance explained by each component. The output was
analyzed to determine how many components should be retained for further modeling.
Rather than using a fixed cutoff, this decision was guided by inspecting the distribution
of variance across components and identifying the point at which adding further
components yielded marginal returns.

Table 3.2-1. provides an example of this evaluation for the T1 landmark. In this case, the
first three components together captured over 90% of the total variance, suggesting that
a small number of components was sufficient to represent most of the variability in the
trajectories. The results for all landmarks can be found in the Spline fitting and
dimensionality reduction Results section.

PC Index | Variance explained (%) Cumulative variance explained (%)
1 57.2 57.2
2 28.9 86.1
3 6.1 92.2
4 2.5 94.7
5 1.6 96.3

Table 3.2-1. Example of individual and cumulative explained variance for the T1 landmark. The first two
or three components account for the majority of the total variance, making the rest largely redundant for
modeling purposes.

To qualitatively examine the structure of the reduced space, the script also generates
visual projections of the data in the PCA coordinate system. Figure 3.2-3. shows an
example scatter plot of results for Landmark T1 projected onto the first two principal
components. While some group-wise trends (e.g., young vs. elderly) begin to emerge, the
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overlap between classes is still substantial. Similarly, Figure 3.2-4. illustrates the first
three components in a 3D projection, offering a fuller view of variation but still lacking
clear separation. The 2D graphs for all landmarks can be found in the Principal
Component Analysis outcomes section. The analysis of 3D graphs was discontinued due
to the complex analysis required and the lack of potential for valuable insights compared
to the 2D graphs.

PCA Projection: 1st and 2nd PC - T1
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Figure 3.2-3. Projection of Tl landmark results onto the first two principal components. Each point
represents one test trial, color-coded by subject group (young vs. elderly). While group tendencies begin to
emerge, overlap remains high and interpretation is non-quantitative.
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Figure 3.2-4. 3D scatter plot of PCA scores on components 1-3 for the Tl landmark. The projection
provides additional insight into the distribution of trajectory variation but does not offer conclusive group
separability.

These plots provide an initial indication that age-related differences may be reflected in
the trajectory structure, but they do not establish statistical significance or quantify the
strength of the relationship. For that reason, further modeling via regression is required
to assess whether specific principal components can be explained by anthropometric or
demographic variables.

Regression modeling

The final stage of the pipeline involved constructing linear regression models to assess
whether variations in trajectory shape, as captured by principal component scores, could
be explained by subject-specific characteristics. This was done independently for each
landmark and for each of the retained components (typically PC1 and PC2).
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Data preparation

Principal component scores were exported from MATLAB into a structured Excel file,
where each row corresponded to a single test trial. Alongside the scores, the following
subject characteristics were included:

- Kind (categorical: young or elderly)
- Age (years)

- Stature (cm)

- Weight (kg)

- Seated height (cm)

- Head girth (cm)

- Neck girth (cm)

The structure of the spreadsheet grouped data by landmark and aligned all variables in a
format suitable for direct import into GRETL.

Modeling procedure

Linear regression models were constructed using GRETL. For each landmark and each
principal component, the PC score was treated as the dependent variable, and the set of
subject characteristics was tested as potential predictors.

Initially, multiple-variable models were tested using combinations of the predictors listed
above. However, these models consistently demonstrated poor fit, unstable coefficients,
or strong multicollinearity. As a result, the final approach focused on single-variable
models, which consistently outperformed the multivariate alternatives in terms of
parsimony, statistical significance, and interpretability.

Each model then followed the form:

z; = Po + Prxi + &
where z; is the score for a given principal component and trial 7, and x; is a single subject
characteristic. Separate models were estimated for each landmark and each retained PC.

Output handling and model selection

The regression outputs included coefficient estimates, p-values, residual diagnostics, and
goodness-of-fit metrics. From all models evaluated, those with statistically significant
predictors and stable fit were flagged for reporting in the Regression modeling results
section.

Attempts were also made to reconstruct trajectories by projecting predicted PC scores
back into the spline control point space, but the prediction errors were found to be
prohibitively high. As such, these reconstruction experiments were not retained for final
analysis.
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3.3. Method 2: Landmark relative positioning analysis at peak displacement

3.3.1. Method overview

The methodology presented in this section was developed to complement the trajectory-
based B-spline analysis by offering a different perspective on postural variation during
frontal deceleration. Instead of analyzing landmark motion across entire time series, this
approach focuses on spatial configurations at selected time frames. Its goal is to
characterize the relative positions of torso landmarks during a key instant in the
deceleration event, enabling both visualization and statistical exploration of group-level
morphological differences.

The analysis begins by examining the planar (x,z) trajectories of five anatomical
landmarks (Head, C4, T1, T4, T8), recorded during 14 test trials involving young and
elderly volunteers. For each trial, these trajectories are expressed relative to the initial
position of the head to emphasize relative rather than absolute motion. This normalization
step is intended to isolate torso configuration independently of initial positioning within
the global reference frame. The H-point landmark was excluded from this analysis due to
its inconsistent trajectories and excessive spatial separation from the other landmarks,
which could distort subsequent comparisons.

To identify suitable instants for posture analysis, each trajectory set is sampled at a fixed
number of uniformly spaced time frames. These snapshots represent the evolution of the
landmark configuration from the onset of motion to the point of maximum forward
displacement. Among these, a single frame corresponding to the maximum anterior
displacement of the head is selected for further analysis. This time point is treated as a
proxy for the moment of peak torso excursion, where individual morphological and
postural differences are expected to be most pronounced. Although this frame selection
was guided empirically by observing head displacement patterns, it can be
biomechanically justified on the basis that the head tends to lead upper-body motion in
frontal impacts, and its maximum excursion often coincides with the culmination of torso
flexion. This choice ensures that the posture being analyzed is representative of the peak
response phase.

At this selected time frame, the (x, z) coordinates of the five landmarks are extracted and
compiled into a feature vector representing the instantaneous torso configuration. To
eliminate differences caused by overall body displacement, all coordinates are shifted so
that the T8 landmark is at the origin. This allows the analysis to focus on the relative
positions of the other landmarks.

Principal Component Analysis (PCA) is then applied to the set of re-referenced
configuration vectors. This transformation identifies dominant modes of shape variation
across subjects, enabling a compact representation of postural differences. The first three
principal components are retained for further analysis, as they account for the majority of
inter-subject variability. Each trial is thus characterized by a set of three uncorrelated
scores, which quantify how its torso posture differs along key geometric axes.

To explore potential associations between posture and subject characteristics, linear
regression models are constructed using each principal component score as a response
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variable. Independent variables include age, anthropometric dimensions, and categorical
group membership. These models are used to test whether the observed modes of
variation in posture are systematically related to individual features. As in previous
analyses, multivariable models were avoided due to the limited sample size and risk of
overfitting. Instead, single-variable regressions were prioritized to enhance statistical
robustness.

Finally, a complementary analysis was performed to examine spatial configurations of
the torso at the moment of maximum head displacement (MHD). After having translated
each trial’s data so that the T8 landmark coincided across subjects, two types of metrics
were extracted. First, Euclidean distances between adjacent landmarks were computed to
evaluate segment-wise spacing across age groups. Second, internal joint angles were
calculated at key spinal junctions to capture localized curvature and postural differences.
Statistical comparisons were carried out using two-sample t-tests. This dual-metric
procedure was motivated by the hypothesis that aging may influence not only global
motion trajectories, but also the geometric organization and flexion patterns of the upper
torso at peak loading.

Overall, this method offers a complementary lens for analyzing subject-specific
differences in seated posture during dynamic loading. By isolating and analyzing the torso
configuration at maximum displacement, it enables biomechanical interpretation of
posture patterns and supports statistical modeling of group differences in geometric
configuration.

3.3.2. Literature background

Several strands of existing research support the methodological choices made in this
analysis, including the use of peak displacement timing for frame selection, the
application of PCA to posture data, the incorporation of anthropometric variables for
group comparisons, and the practice of re-referencing landmark coordinates to isolate
shape differences. This section reviews the main contributions from the literature that
justify and contextualize each of these components.

Use of maximum head displacement for time selection

The selection of a single time frame based on the instant of maximum head displacement
(MHD) draws from established practices in impact biomechanics. Studies examining
cervical spine motion during frontal deceleration have consistently shown that maximum
head excursion occurs at a predictable interval after impact and corresponds closely to
peak torso flexion, providing a reliable temporal marker for postural comparison
(FREJ23).

This approach is particularly valuable in volunteer testing, where the severity of impacts
is constrained by ethical considerations. In such contexts, MHD has been validated as a
meaningful reference point for assessing postural deviation without requiring full
trajectory analysis (HIGU19). These findings support the use of head displacement as a
biomechanical proxy for maximum whole-body excursion during frontal loading.
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PCA applied to spatial configurations of landmarks

PCA has been widely adopted to analyze human posture, particularly in reducing the
complexity of spatial marker data into interpretable modes of variation. Federolf et al.
(2016) introduced the concept of “principal movements” by applying PCA to kinematic
data from balance tasks, showing that a small number of components could capture nearly
all postural variance (FEDEI16).

Similar applications have been used in impact biomechanics, where PCA has identified
dominant posture configurations, referred to as “principal positions”, that effectively
discriminate between subject groups and loading conditions (SUN16).

These studies demonstrate that PCA can be successfully applied not only to trajectories
but also to static spatial configurations extracted at key time points, enabling
dimensionality reduction without loss of biomechanical relevance.

3.3.3. Purpose and justification

The motivation behind this method is to identify systematic differences in torso posture
between young and elderly subjects during low-speed frontal decelerations. Rather than
analyzing full motion trajectories, this approach focuses on a single, carefully selected
time frame that captures the peak of the event, making it particularly suited for
summarizing posture under dynamic conditions without requiring time-normalized data.
By isolating and analyzing the configuration of the upper torso at the moment of MHD,
the method aims to uncover variations in spinal alignment or segment relationships that
may reflect age-related differences in posture control or mechanical response.

The decision to rely on spatial landmark data at a specific time point (rather than using
time series or curve-based representations) was guided by both practical and analytical
considerations. In practical terms, working with single-frame data reduces the
dimensionality of the dataset, avoids the need for time alignment or warping, and provides
direct interpretability in terms of posture. Analytically, it enables the use of PCA to
identify compact, orthogonal modes of variation that summarize the configuration of the
torso in a data-driven way. This supports the development of regression models that can
assess whether observed variations correlate with age or anthropometric features.

Although the use of the MHD frame was not determined through biomechanical
modeling, it is justified based on empirical and physiological reasoning. The head is
typically the most mobile and forward-reaching segment in frontal impacts, and its peak
displacement tends to coincide with maximum torso flexion. Selecting this instant as a
common reference frame therefore captures the posture at or near the mechanical limit of
excursion, where differences in control, flexibility, or morphology are most likely to
appear.

Re-referencing to a stable landmark such as T8 is justified as a way to remove global
translation effects and allow for comparison of shape and configuration independently of
whole-body motion. This is particularly relevant in seated frontal deceleration tests,
where volunteers may exhibit variable forward excursions due to differences in muscle
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activation or restraint interaction, but the relative shape of the spine remains a more stable
indicator of biomechanical behavior.

Additionally, the analysis includes a secondary examination of inter-landmark distances
and angles, re-referenced to a common anatomical point. This was introduced to evaluate
whether specific spinal segments exhibit consistent spatial/angular divergence between
groups.

Overall, the method was designed to be complementary to the B-spline-based trajectory
analysis presented earlier, offering a posture-centric view of group differences. It supports
a more intuitive understanding of how spinal alignment varies at peak excursion and
enables interpretable statistical modeling of the effects of aging and morphology on torso
configuration.

3.3.4. Mathematical background

This analysis operates on posture vectors constructed from anatomical landmark positions
at a single time frame per subject, the moment of MHD. Each vector captures the torso’s
spatial configuration in the sagittal plane and serves as input for dimensionality reduction
via PCA. Unlike the earlier spline-based trajectory analysis, this method is temporally
discrete and emphasizes shape rather than motion.

Construction of posture vectors

Let N = 14 denote the number of test trials and L = 5 the number of landmarks: Head,
C4, T1, T4, and T8. For each trial i, the two-dimensional coordinates of each landmark
at MHD are denoted:

(xi,,,zi,l) forl =1,..,Land fori=1,..,N

To eliminate global displacement effects, all positions are re-referenced relative to the T8
landmark:

Xip = Xig— Xirg»  Zig = Zig— Zirs
The resulting relative coordinates are flattened into a row vector:
— [% = s s 2L
pi= (%121, ... %, %] € R
These posture vectors form a data matrix:
P € RNV*2L withrows p;

This representation captures the torso's posture at MHD, relative to a common reference
point, and standardized across subjects.

Principal Component Analysis

The matrix P is mean-centered, and PCA is applied as described in Method 1°s Principal
Component Analysis section. Briefly, this involves computing the sample covariance
matrix of P, performing eigenvalue decomposition, and projecting each subject’s posture
vector onto the resulting eigenvectors. Let:
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Z =PV

where Z € RN*X is the matrix of PCA scores, and K = 3 the principal components that
are kept for further analysis.

Each score z; ; quantifies how much subject i’s posture deviates along the j-th principal
axis of shape variation. Because the PCA is performed on re-referenced data, these axes
reflect geometric configurations independent of absolute position.

Regression of Principal Component scores

To explore whether variation in postural configuration is related to subject characteristics,
the scores of the first three principal components are used as dependent variables in
simple linear regression models. The structure and estimation of these models follow the
same formulation described in Method 1’s Regression of PCA-derived features to
anthropometr section, and are not repeated here.

Each regression model includes a single predictor variable, such as age, head girth, or
categorical group (young vs. elderly), selected based on interpretability and fit quality.
Multivariable models were tested but consistently showed poor performance, and thus
only single-variable regressions are retained.

Pairwise landmark distance analysis

In a secondary analysis, both linear distances and joint angles between consecutive
landmarks at MHD are computed for each subject.

Inter-Landmark distances

Given re-referenced coordinates (fi,z; Zi,l), the Euclidean distance between landmarks [
and [ + 1is:

- - \2 . L N\2
di; = \/(xi,l+1 - xi,l) + (Zi,l+1 - Zi,l)
This yields four distance values (between 5 landmarks) per subject:

{di,lJ di,Zr di,3' di,4}

Distances are grouped by age category (young vs. elderly) and compared using a two-
sample t-test. Let D, and D, be the subsets of distances for young and elderly subjects,
respectively. For each pair of landmarks, the test evaluates:

Ho: piy = pe US. Hytpy # le
The corresponding p-values quantify whether observed differences in mean spacing are
statistically significant.

Joint angles

To assess curvature at key spinal junctions, angles were computed at three internal
landmarks using triplets of adjacent points. For three points A = (x4,2,), B = (xp, Zp)
and C = (x., z.), the internal angle at B is given by:
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o= eoss (=B

14— B -IC - B

where /T, B , C € R? denote 2D coordinate vectors in the sagittal plane. This yields three
angles per subject:

{9C4 ’ 9T1 ’ 9T4}

Statistical comparisons between age groups were again performed using two-sample t-
tests for each angle.

3.3.5. Implementation

Overview of workflow

This method was implemented through a four-stage process designed to extract torso
posture at the moment of maximum head displacement (MHD) and analyze inter-subject
variation using Principal Component Analysis and group-level statistical modeling. The
complete pipeline included the following steps:

1. Selection of the MHD frame and extraction of landmark positions,
2. Dimensionality reduction via PCA,

3. Regression modeling of the resulting scores, and

4. Group comparison of inter-landmark distances and joint angles.

Each step was performed using custom MATLAB routines and supporting software, and
applied individually across the 14 available test trials.

Posture vector construction

The MATLAB script Time based noHPoint.m (which can be found in section 3.2.1 of
the Annex) was used to process the raw trajectory Excel files for each subject. The script
loaded the raw (x, z) trajectories of five landmarks (Head, C4, T1, T4, T8) and allowed
the user to specify the number of time frames to extract per trial. A value of 10 evenly
spaced frames was selected to ensure adequate temporal resolution while minimizing data
redundancy.

For each test, the frame corresponding to maximum anterior head displacement was
identified automatically. An example of landmark trajectories and the identified MHD
frame is shown in Figure 3.3-1.
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Figure 3.3-1. Example of landmark trajectories during a test, with the frame of maximum head
displacement (MHD) highlighted in black. Dark gray and light gray indicate frames before and after MHD,
respectively.

The (x, z) coordinates of the five landmarks at this frame were extracted and re-referenced
relative to the T8 landmark to remove global translation. These ten values (5 landmarks
x 2 coordinates) were flattened into a row vector and stored for each trial.

This process yielded a posture matrix P € R**1? with each row representing the

configuration of the upper torso at MHD in a standardized reference frame.

Principal Component Analysis
The PCA was carried out using the MATLAB script

Pca_analysis_p2.m (found in section 3.2.2. of the Annex), which takes in the matrix P as
input. The data were mean-centered prior to decomposition, and the analysis was
restricted to the first three principal components, which collectively explained the
majority of variance in the sample.

The resulting score matrix Z € R**3 was saved for use in the regression stage. These

components were interpreted as specific modes of shape variation reflecting differences
in curvature, alignment, or elevation between landmarks, at MHD.
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Regression modeling

The PCA scores were exported to and Excel file where each row corresponded to a single
test trial and each column represented one of the three retained principal components. The
file also included subject-specific variables such as age, kind (young vs. elderly), head
girth, and other anthropometric measures.

As in Method 1’s Regression modeling implementation section, regression models were
implemented in GRETL. Each principal component was modeled separately using one
independent variable, selected based on empirical performance. Multivariable models
were tested but consistently produced unstable or uninterpretable results, and were
therefore discarded.

Inter-landmark distances and angles analysis

The final section of Time based noHPoint.m prompts the user to select a reference
landmark for alignment. This feature was used to visualize the torso configurations of all
subjects at MHD, re-centered around a common anatomical point (typically C4 or T1).
The goal was to enable qualitative inspection of group-level differences in posture.

The quantitative analysis was carried out wusing the MATLAB script
Relative positions analysis.m (available in section 3.2.3 of the Annex), which computed
the Euclidean distances between each pair of adjacent landmarks for every subject, as
well as joint angles for all triplets of consecutive landmarks. These distances and angles
were grouped by age category (young vs. elderly), and two-sample t-tests were performed
to assess statistical significance.
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3.4. Method 3: Arc-Length Re-Parameterization and Signal Registration for
generation of average trajectories and deviation corridors

3.4.1. Method Overview

This final method aims to characterize the central tendency and variability of landmark
trajectories by constructing a representative average path and corresponding confidence
corridors. Unlike the approaches presented in previous sections, the present technique
maintains the full curve geometry while providing statistical descriptors of its dispersion
across subjects. It does so by leveraging arc-length as a geometric parameter, rather than
time, to re-parameterize the trajectories. This allows for meaningful comparison and
averaging even when signal durations vary, or when timing is inconsistent across trials
due to inter-subject variability.

The technique follows the methodology described by Hartlen and Cronin (2022), and is
implemented via the ARCGen toolbox (HART22), available in section ARCGen of the
Annex. ARCGen is specifically designed to compute characteristic averages and
statistical corridors for sets of biomechanical curves that may be non-monotonic, multi-
dimensional, or irregularly sampled. Its three-stage process (arc-length re-
parameterization, signal registration, and statistical envelope construction) is well-suited
to the kinematic data in this study.

The first stage, arc-length re-parameterization, transforms each input trajectory into a
representation where position is a function of normalized arc length, rather than time.
This is particularly valuable for signals that vary in speed or duration across subjects, as
it ensures that key geometric features (e.g., peaks or inflection points) are aligned
according to their pathwise progression rather than absolute timing. Normalization of arc
length to the unit interval [0, 1] enables uniform sampling across signals with different
total lengths, facilitating subsequent averaging.

In the second stage, optional signal registration is performed. While arc-length
normalization already provides a degree of alignment, it does not guarantee that
corresponding features (such as the peak forward excursion of the head) occur at exactly
the same normalized arc-length across all signals. To address this, ARCGen applies a set
of signal-specific warping functions that subtly shift the resampling positions to improve
feature alignment. These warping functions are constrained to be strictly monotonic,
preserving the sequence of points along the trajectory. Their flexibility is controlled by
two key parameters: the number of interior control points and a penalty factor that limits
excessive distortion. Both parameters were manually set based on the shape complexity
of the trajectories and the expected number of salient inflection points.

Finally, once all signals are represented in a common arc-length domain and optionally
registered, ARCGen performs statistical analysis at each resampled arc-length location.
At every normalized arc-length value, it computes the mean and standard deviation of the
x and z coordinates across subjects, assuming a local bivariate normal distribution. These
statistics define an elliptical confidence region at each point along the mean trajectory.
The union of these ellipses forms an envelope, or “corridor,” that represents the inter-
subject variability of the signal set. Because there is no analytical expression for the
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envelope of such overlapping ellipses, a marching-squares algorithm is used to
numerically extract the outer boundary. The final output consists of the characteristic
average trajectory, and the inner and outer bounds of the statistical corridor.

In summary, the arc-length-based method introduced in this section offers a
complementary perspective to the previous analyses by operating directly on the full
geometry of each trajectory. It enables robust averaging of motion paths across subjects
by using shape-based alignment rather than time-based synchronization, and produces
both a representative curve and statistical corridors that describe inter-subject variability.
This approach is particularly suitable for analyzing signals with heterogeneous durations
and complex features, and is applied here to evaluate group-level trends in upper-body
motion during frontal deceleration.

3.4.2. Literature background

The arc-length-based approach implemented in this section builds upon a growing body
of work that addresses the limitations of traditional time-domain averaging techniques in
biomechanics. When analyzing human motion, signals recorded across subjects often
exhibit temporal misalignments, unequal durations, and variations in key feature
locations. These discrepancies can distort point-wise averages and undermine the validity
of statistical summaries. As a result, alternative frameworks have been developed to
enable consistent alignment and representation of such signals, with arc-length re-
parameterization and signal registration emerging as robust solutions.

A foundational contribution in this area is the previously mentioned study by Hartlen and
Cronin (2022), which introduced a unified methodology for computing characteristic
averages and statistical response corridors in biomechanical data. Their method combines
arc-length normalization with constrained signal registration to produce smooth, feature-
preserving mean curves and confidence regions that remain valid even for signals that are
non-monotonic or terminate at different points. The approach is demonstrated across a
range of applications, including oscillatory head kinematics and hysteretic thoracic force—
displacement responses, and is made accessible through the open-source ARCGen
software package, available in the Annex section ARCGen. Their work addresses both
geometric consistency and statistical rigor, offering an alternative to ad hoc signal
averaging or manual segmentation (HART22).

Several related studies have explored similar challenges in other domains. White et al.
(2023) applied arc-length methods to tissue compression and impact responses,
highlighting their utility in cases where signals do not share a common endpoint or exhibit
substantial shape variability (WHIT23).

Meanwhile, Chau et al. (2005) proposed a global registration criterion for biomechanical
curves that optimizes time-warping functions to align signal features while minimizing
cross-correlation errors (CHAUOS).

Dynamic time warping (DTW), as discussed by Lee (2019), represents a related but

distinct approach to curve alignment. Although DTW has proven effective in

synchronizing features in gait data, it does not offer a probabilistic framework for

representing variability, nor does it operate naturally in the geometric domain of signal
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shape (LEE19). In contrast, methods based on arc-length re-parameterization provide a
direct means of aligning curves along their physical trajectories, making them better
suited for biomechanical applications where spatial accuracy is critical.

Together, these studies support the adoption of arc-length and registration-based
approaches for analyzing inter-subject motion data. They provide a methodological
foundation for the technique applied in this thesis and reinforce its applicability to the
study of kinematic variability during low-speed frontal deceleration events.

3.4.3. Purpose and justification

The inclusion of an arc-length-based method in this thesis responds to the need for a
shape-focused approach capable of summarizing biomechanical trajectories with minimal
distortion, especially when signals vary in duration and structure. In the context of frontal
deceleration tests, volunteer trajectories often differ not only in timing but also in the
spatial evolution of motion. These differences challenge traditional time-based averaging,
which assumes consistent temporal alignment and can obscure key motion features when
this assumption fails.

Rather than compressing trajectories into low-dimensional control point sets or isolating
a representative frame, this method retains the full geometric path of each signal and
compares trajectories on the basis of normalized arc-length. This shift from time to shape
as the organizing principle enables meaningful alignment of features such as turning
points, inflection changes, and reversals, even when they occur at different times across
trials. As a result, the average trajectory produced better reflects the underlying motion
pattern and avoids the artificial smoothing that can result from time-domain averaging.

This method is particularly valuable in the present context because it allows for direct
comparison of complex landmark trajectories without requiring artificial signal trimming
or manual adjustment. It also accommodates non-monotonic motion and inter-subject
variation without enforcing uniform test durations or synchronized peak locations. In
doing so, it generates interpretable outputs that preserve biomechanical meaning and
allow group-level variability to be visualized and compared under consistent spatial
conditions.

Ultimately, this approach adds a complementary layer of analysis to those already
presented in Methods 1 and 2. It provides a statistical framework that reflects the full
curve geometry of upper-body motion during deceleration and supports the investigation
of inter-group differences with minimal preprocessing or abstraction.

3.4.4. Mathematical background

The method applied in this section is based on arc-length re-parameterization and signal
registration to compute a characteristic average and statistical response corridor from a
set of trajectories. Let yi(t) = (xi(t),zi(t)) represent the planar trajectory of a given
landmark during test i, with t € [0, T;] denoting time and T; the duration of the signal.
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Arc-length reparameterization

Since the recorded trajectories may differ in length and progression due to inter-subject
variability, to better produce meaningful comparisons, each trajectory is reparametrized
with respect to its arc length.

The arc-length function s;(t) of signal y;(t) is computed as:

si() = f 1)l |d

This function measures the cumulative distance traveled along the trajectory up to time t.
To standardize across signals, the arc length is normalized by the total length L; = s;(T5),
yielding the normalized arc-length parameter:
S (t
L;

5i(t) =

This maps each trajectory to a common domain [0,1], where § = 0 corresponds to the
start of the motion and § = 1 to the endpoint. The reparametrized trajectory is then
expressed as:

7i(s) = Vi(fi(s))
where £;(s) is the inverse of the normalized arc-length function. In practice, all signals
are resampled at M equally spaced arc-length values s, = ﬁ j=201...,.M—1.
This ensures that each trajectory is represented by the same number of points, aligned by
geometric progression rather than time.

Signal Registration

To further improve feature alignment across signals, a non-linear registration step is
applied via warping functions. Each reparametrized signal y;i(s) is transformed into a
registered version y;(s) using a strictly monotonic warping function ¢;(s):

7i(s) = ]71(<Pi(5))
These warping functions are optimized numerically to improve alignment of local
features across subjects while penalizing excessive deformation. They are defined by a

small number of control points and a penalty parameter, which are manually specified in
the ARCGen execution script.

Once all signals are expressed in the same arc-length domain and optionally registered,
the average trajectory is computed pointwise:

1 N
7(s) = NZ 7i(s)
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Statistical Corridor Development

To quantify variability around the average, a bivariate normal distribution is fitted at each
arc-length location s;, using the sample covariance matrix X; of the set {yi(s;)} for i =
1 to N. The corresponding 95% confidence region is described by the ellipse:

§={x R — 7N I (x — ¥(s)) < k*}

with k* = 5.991, the 95% confidence threshold for the chi-squared distribution with two
degrees of freedom.

The full corridor is formed by the union of these ellipses across all arc-length points.
Since the envelope cannot be computed analytically, a marching-squares algorithm is
used to numerically extract its outer boundary. ARCGen outputs three primary elements:
the characteristic average trajectory, and the inner and outer boundaries of the statistical
corridor, all of which are used to visualize shape consistency and variation across trials.
For a more illustrative explanation of this method’s output, see Figure 3.4-1. and Figure
3.4-2.

5Bﬁefore Arc-Length Re-parameterization and Signal Registration
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Figure 3.4-1. Three biomechanical response signals before arc-length re-parameterization and
registration. The signals display misaligned peaks and valleys, resulting in a less representative average
response.
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15 After Arc-Length Re-parameterization and Signal Registration
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Figure 3.4-2. The same signals after applying arc-length re-parameterization and registration. Temporal
alignment of key features is improved while preserving individual shape characteristics.

3.4.5. Implementation

The implementation of the arc-length re-parameterization and corridor analysis was
carried out using the ARCGen toolbox provided by Hartlen and Cronin (2022), along
with a set of support scripts developed for preprocessing and structuring the raw
experimental data (HART22). The full procedure was executed in MATLAB and follows

two main stages:

1. Data formatting and signal preparation
2. Batch execution of ARCGen.

Data formatting for ARCGen input and signal preprocessing

The ARCGen toolbox requires that each input trajectory be provided as a separate .csv
file, structured as a column vector of 2D coordinates (x, z). Since the original dataset
consisted of multi-landmark Excel files (one per test), a preparatory MATLAB script was
developed to extract and reshape the data. The script generate csvs_from excels.m
(available in section 3.3.1 of the Annex) reads the raw Excel files containing all landmark
trajectories for each test and automatically generates individual .csv files, one per
landmark per test.

Once all .csv files were generated, the next step was to compile them into a single
MATLAB structure compatible with ARCGen. This was performed using the
PreProcessinputSignals.m script, which is included with the original ARCGen
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distribution, available in section 2.1.2. of the Annex. When executed, the script
concatenates all relevant .csv files, and stores them in a .mat file. This file serves as the
main input for the following ARCGen execution step.

If the same set of input signals is to be reused across multiple runs, the preprocessing step
can be skipped by directly loading the .mat file into the MATLAB workspace. This avoids
redundant processing and preserves naming consistency across runs.

Execution and output generation

The computation of the average trajectories and corresponding corridors was carried out
using ARCGen’s routine, Arcgen_executer _comparison.m (section 3.3.2 of the Annex)
which was adapted from the open-source file Arcgen executer.m, (section 2.1.3 of the
Annex), to be able to processes the tests separately by age group (young vs elderly).

During execution, the default ARCGen parameters used in Hartlen and Connin’s (2022)
study were retained, with the exception of the number of control points used in the
warping function, which was set to two. This value allowed for moderate feature
alignment without overfitting the warping curves. The algorithm automatically registered
the input signals, computed the mean curve across samples, and generated the associated
confidence corridors.

Outputs from ARCGen consisted of a characteristic average trajectory and two statistical
corridors representing the distribution of observed responses. These curves allowed the
comparison of motion consistency across groups and provided an interpretable geometric
summary of landmark behavior under frontal deceleration. Figure 3.4-3. displays an
example output graph for landmark Head. The complete set of graph is contained in the
Group-Specific ARCGen Outputs section.
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Figure 3.4-3.Example ARCGen outputs for the Head landmark. Average trajectories and 95% statistical
corridors are shown for young (red) and elderly (blue) groups.

75



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

76



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

4. RESULTS

4.1. Method 1: B-Spline approximation and Principal Component Analysis of
individual landmark trajectories

4.1.1. Spline fitting and dimensionality reduction

This section presents the outputs of the B-spline fitting process applied to the anatomical
landmark trajectories. The goal was to reduce signal dimensionality while preserving key
movement patterns relevant for inter-subject comparison and statistical modeling.

For initial reference, Figure 4.1-1. displays the initial trajectories, for landmarks Head
through T8, for an example test. This is provided as context of the relative positioning of
landmarks against each other, and of real geometric shape of the trajectories. For the
shake of mathematical analysis and visualization, the proportions of axes in following
graphs may be distorted, which is why this reference graph is provided.

X-Z Trajectories for Test 1694
T T T T
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Figure 4.1-1. Raw X—Z trajectories of the five anatomical landmarks (Head, C4, T1, T4, and TS) for each
trial. Displacements have been zeroed relative to the initial Head position.

For the coming analysis, individual landmark trajectories are studied separately. Figure
4.1-2. shows the (x, z) trajectories of all six landmarks (Head, C4, T1, T4, T8, H-point)
individually for a single test trial. The signals vary substantially in curvature and extent,
with some landmarks (e.g., Head) showing larger excursions than others.
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Original Displacement Trajectories — Volunteer Test 1694
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Figure 4.1-2. Original (x, z) motion trajectories of all six anatomical landmarks for a representative trial.
Each plot shows the full deceleration interval for a single landmark, as recorded at 1,000 Hz.

Following B-spline fitting, each trajectory was approximated using 8 control points per
landmark. Figure 4.1-3. displays the same six trajectories overlaid with their respective
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spline approximations. The fitted curves track the main movement paths while smoothing
out high-frequency variability.
Original vs. B-spline Displacement — Volunteer Test 1694
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Figure 4.1-3. Same trajectories, now overlaid with cubic B-spline fits. The splines replicate the overall
shape of each signal while filtering noise and enabling dimensionality reduction.
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To evaluate fit quality, the root mean square error (RMSE) was computed between each
original trajectory and its spline approximation, after resampling both signals at 10
uniformly spaced points along the time axis. Table 4.1-1. reports the mean RMSE values
across all subjects for each landmark. Error values remained low across the board,
confirming that the approximation was consistent and reliable.

Landmark Mean RMSE (mm) Standard Deviation (mm)
Head 7.953 3.3235
C4 3.2135 1.7682
Tl 3.4282 1.5185
T4 3.4649 1.3725
T8 3.3414 1.276
H-point 1.8192 0.69731

Table 4.1-1.RMSE Summary Table - Mean RMSE between original trajectories and B-spline
approximations, averaged over all trials. Evaluation performed on 10-point uniform resampling of each
trajectory.

Each fitted trajectory was encoded as a 16-dimensional feature vector, formed by
flattening the eight control points into (Xo, Zo, X1, Z1, ..., X7, Z7). These vectors served as
standardized inputs to the next analytical stage: Principal Component Analysis.

4.1.2. Principal Component Analysis outcomes

Principal Component Analysis (PCA) was performed independently for each anatomical
landmark using the 16-dimensional vectors obtained from the spline control points. The
goal was to identify the dominant modes of inter-subject variation and assess the
effectiveness of dimensionality reduction.

Table 4.1-2. reports the cumulative variance explained by the first three principal
components for each landmark. In all cases, PC1 alone captured over 40% of the variance,
and the combination of the first three components consistently accounted for more than
80%, confirming that the spline-transformed data contained compact and structured
variability.
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Landmark PC1 (%) PC1 + PC2 (%) PC1 + PC2 + PC3 (%)
Head 60.45 82.80 89.74
C4 56.15 77.06 86.28
T1 50.27 71.87 84.91
T4 47.55 73.95 84.84
T8 49.13 79.05 89.60
H-point 42.51 66.07 84.27

Table 4.1-2. Cumulative variance explained (%) by the first three principal components for each
anatomical landmark.

To explore the distribution of subject trajectories in the reduced space, 2D scatter plots
were generated for all six landmarks, projecting each trial onto the first two principal
components. These plots are shown in Figures 4.1-4, with points color-coded by group
(young vs. elderly). In general, the distributions exhibit substantial overlap between
groups. Some elderly subjects appear as outliers in certain landmarks (e.g., Subject 14 in
T4 and T8), but no consistent visual pattern emerges across landmarks. This suggests that
while PCA captured meaningful modes of variation, group-level differentiation based on
visual inspection alone is not conclusive.
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Figures 4.1-4. Projections of subject trajectories onto the first two principal components for all landmarks,
individually.
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These projections provided a geometric summary of inter-subject differences in motion
shape, but they did not support direct interpretation regarding demographic effects. The
relationship between principal component scores and subject characteristics was therefore
examined through regression analysis in the following section.

4.1.3. Regression modeling results

Following PCA, regression modeling was performed to investigate whether the principal
component scores, representing dominant trajectory shape modes, could be explained by
subject characteristics. Each retained component (PC1 and PC2) for each landmark was
modeled independently using one predictor at a time, as outlined in the Implementation
section of Regression modeling. The candidate predictors included age group (“kind”),
seated height, and other anthropometric measures. This section presents the models that
yielded statistically meaningful associations (p < 0.05), as well as critical commentary
on models with borderline or inconclusive results. Table 4.1-3. reports the best-fitting
model for each landmark and principal component.

Landmark | PC Index Predictor | Coefficient | p-value | Adjusted R®
Head 1 Seated height -0.558 0.0948 0.15
C4 1 Seated height 0.495 0.128 0.114
T1 1 Seated height 0.461 0.1351 0.108
T4 1 Seated height 0.484 0.1037 0.139
T8 1 Seated height 0.274 0.3845 -0.014
H-point 1 Seated height 0.346 0.2305 0.044
Head 2 Kind 1.897 0.0496 0.225
C4 2 Kind 1.696 0.0733 0.18
Tl 2 Kind 2.203 0.0158 0.346
T4 2 Kind 2.658 0.0066 0.429
T8 2 Seated height 0.452 0.0494 0.225
H-point 2 Seated height -0.379 0.0654 0.193

Table 4.1-3. Best one-variable regression models for each landmark and principal component. Grey
shading indicates p < 0.05.
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These results indicate that PC2, not PC1, was more responsive to subject characteristics.
Specifically, PC2 of the T1 and T4 landmarks showed strong associations with group
category (young vs. elderly), both in terms of effect size and explained variance (adj. R?
> 34%). The positive coefficients imply that elderly subjects consistently scored higher
on these components, suggesting systematic shape differences in mid- and lower-spine
trajectories. For T8, seated height was significantly correlated with PC2 scores, though
the explained variance remained modest (adj. R? = 22.5%).

The regression model for PC2 of the Head also reached statistical significance (p =
0.0496), but its adjusted R? was also low (22.5%), suggesting that group differences exist
but account for only a more modest share of the variability.

In contrast, none of the PC1 regressions achieved significance at p < 0.05, despite visible
trends in scatter plots. Several models, such as PC1 of the Head (p = 0.0948), C4 (p =
0.128), T1 (p = 0.1351), and T4 (p = 0.1037), showed weak-to-moderate associations
with seated height, but their low explanatory power (adjusted R? < 15%) and borderline
significance do not warrant inclusion. These may suggest biomechanical trends worth
exploring with larger samples, but cannot support strong claims.

No models involving other predictors (e.g., age in years, neck girth, body mass) yielded
statistically significant results, and no multivariable models were retained due to
multicollinearity or unstable coefficients. Attempts to predict full trajectories by
reconstructing spline control points from PCA regression outputs were also explored, but
the resulting errors were prohibitively large and have not been included in the final
analysis.
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4.2. Method 2: Landmark relative positioning analysis at peak displacement

4.2.1. Frame selection and posture vector extraction

This subsection reports the initial outputs of Method 2, focused on isolating subject
posture at the frame of maximum forward excursion. For each trial, a single time frame
was selected corresponding to the maximum anterior displacement of the Head landmark
in the x-direction. The goal was to extract a posture snapshot that best captured inter-
subject variability in spinal alignment during peak deceleration.

The analysis excluded the H-point landmark due to its irregular trajectory and spatial
distance from the rest of the torso markers, which risked distorting posture comparisons.
This decision was based on visual inspection of trajectory data and confirmed during
preprocessing, where H-point motion appeared inconsistent across trials and decoupled
from upper-body dynamics.

The frame selection process started by loading the (x, z) trajectories for the five remaining
landmarks (Head, C4, T1, T4, and T8) from each test. For each trial, ten evenly spaced
time frames were identified along the deceleration event. The instant at which the head
reached its furthest forward displacement was also detected and used to extract posture.

Figure 4.2-1. shows the output for a representative trial (Subject 1694). The five landmark
trajectories are visualized as sagittal segments across the deceleration event, with the
MHD frame shown in black, and preceding/following frames in dark and light gray,
respectively. This visualization provides insight into the progression of torso motion and
allows verification that the selected frame indeed captures the moment of peak head
displacement.
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Figure 4.2-1. Landmark trajectories for Subject 1694 with the frame of maximum head displacement
(MHD) highlighted in black. Dark gray and light gray lines indicate frames before and after MHD,
respectively. Each frame connects anatomical landmarks in the sagittal plane.

At the selected frame, the (x, z) coordinates of the five landmarks were extracted and then
re-referenced by subtracting the position of the T8 landmark. This translation removed
global body displacement, allowing comparisons of postural configuration across subjects
on a common frame of reference. The resulting posture vector comprised 10 values (five
landmarks x two coordinates) and was flattened into a row vector.

Figure 4.2-2. displays the posture configuration of Subject 1694 at MHD after re-
referencing. All landmarks are expressed relative to T8, now located at the origin. This
spatial arrangement reveals the internal posture of the upper torso at peak excursion,
offering a geometric description of spinal alignment independent of the subject’s global
movement.
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Figure 4.2-2 Posture configuration of Subject 1694 at the frame of maximum head displacement, expressed
relative to the TS landmark. Coordinates represent sagittal-plane displacement, with landmark labels
indicating anatomical identity.

This process was repeated for all 14 valid test trials, yielding a 14 % 10 matrix of
standardized posture vectors. These vectors formed the input to the dimensionality
subsequent reduction stage.

4.2.2. PCA Outcomes

After posture vector extraction, PCA was applied to reduce dimensionality and identify
dominant modes of variation in upper torso configuration at the moment of MHD. Each
trial was represented by a 10-dimensional vector composed of (x, z) coordinates for five
anatomical landmarks re-referenced to T8. PCA was performed on the resulting 14 % 10
matrix.
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Table 4.2-1. reports the variance explained by the first three principal components, which
were retained for subsequent modeling. PC1 accounted for nearly half of the total
variance, while the cumulative variance explained by the first three components exceeded
85%, indicating that a compact representation of inter-subject posture differences was
achieved. The retained PCA scores for each subject served as dependent variables in the
regression analysis that follows.

PC Index | Variance explained (%) Cumulative variance explained (%)
1 46.5 46.5
2 284 74.9
3 13.7 88.6

Table 4.2-1. Variance explained by the first 3 principal components extracted from posture vectors at MHD.

4.2.3. Regression Modeling Results

To evaluate whether the principal components derived from posture vectors at MHD
could be systematically explained by subject characteristics, simple linear regressions
were performed for each retained component. For each of the three retained principal
components (PC1, PC2, and PC3), a separate linear regression was constructed using a
single predictor variable. The candidate predictors included subject characteristics such
as group (young vs. elderly), head girth, and age. Models were evaluated individually,
and the one with the lowest p-value and clearest biomechanical interpretability was
retained for each component. This one-variable strategy was adopted because
multivariable models showed poor performance in preliminary testing. All regressions
were performed using ordinary least squares in GRETL, and residual diagnostics showed
no major violations of linear model assumptions.

Table 3.5 summarizes the best-fitting model for each component. The table reports the
predictor used, estimated regression coefficient, p-value, and adjusted R>.

PC Index Predictor Coefficient p-value Adjusted R*
1 Kind —1.498 0.193 0.065
2 Head girth —0.313 0.296 0.015
3 Age (years) 0.0146 0.037 0.259
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Table 4.2-2. Summary of best single-variable regression models for PC1, PC2, and PC3 derived from
posture vectors at MHD. Grey shading indicates p < 0.05.

Of the three principal components, only the regression model for PC3 reached statistical
significance at the 5% level. In this case, age emerged as a significant predictor, with a
p-value of 0.037 and an adjusted R? of 0.259. The positive coefficient (0.0146) indicates
that PC3 scores increase slightly with age. While this model does not explain the majority
of the variance, it accounts for a non-trivial portion and suggests that PC3 captures a
postural variation that correlates meaningfully with aging. The direction and significance
of the effect indicates that PC3 captures a difference in torso posture that increases with
age.

In contrast, the models for PC1 and PC2 show weak and statistically inconclusive results.
The best regression of PCI1, on group membership (young vs. elderly), yielded a non-
significant p-value (0.193) and an adjusted R* of just 6.5%. Although the negative
coefficient (—1.498) suggests that elderly subjects tend to score lower on PC1, the lack of
significance combined with the small effect size does not support this as a reliable
relationship. Similarly, PC2 was regressed against head girth, producing an even less
promising model: the p-value was 0.296, and the adjusted R? dropped to just 1.5%. These
figures indicate no meaningful explanatory power, and the small sample size further limits
the ability to detect subtle effects.

Taken together, these results imply that only one of the three dominant shape modes
(PC3) shows a statistically credible association with subject characteristics, and even that
model explains only about 26% of the observed variability. The other components appear
to reflect postural variations that are either not well captured by the recorded
anthropometric variables or are driven by more complex, multivariate interactions not
modeled here.

4.2.4. Posture Metrics: Inter-Landmark Distances and Joint Angles

To further assess group-level differences in torso configuration at the moment of
maximum head displacement (MHD), two complementary analyses were conducted: (1)
an evaluation of distances between consecutive anatomical landmarks, and (2) an analysis
of internal joint angles formed by triplets of adjacent landmarks. Both approaches aimed
to capture biomechanically meaningful distinctions between young and elderly postures
under frontal loading.

Before conducting these analyses, Figure 4.2-3. provides a qualitative overview of subject
postures at the MHD frame. Each configuration has been re-referenced to the T8
landmark, removing translational effects and enabling direct comparison of internal
alignment. The plotted segments connect the Head, C4, T1, T4, and T8 landmarks for
each subject, with red lines representing young volunteers and blue lines, elderly. The
graph seems to reveal that elderly subjects tend to show more upright, extended upper
torso postures, while younger subjects display a broader range of configurations,
including more forward-flexed profiles. This pattern is especially noticeable in the Head
and C4 segments, suggesting age-related variation in cervical posture under frontal
loading. However, no quantitative results can be obtained from just observation here.
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Figure 4.2-3. Posture of all subjects at maximum head displacement, re-referenced to T8, shown as a
sequence of line segments connecting Head to TS. Red: young group; blue: elderly group.

Inter-Landmark Distance Analysis

The first analysis calculates the Euclidean distances between adjacent landmarks: Head—
C4, C4-T1, T1-T4, and T4-T8. The group means and statistical comparisons are shown

in Table 4.2-3.

Segment Young (n =9) Elderly (n =5) p-value

Head-C4 139.17 £ 17.90 mm 149.98 + 6.72 mm 0.224
C4-T1 71.16 £25.10 mm 42.22 + 15.42 mm 0.039
T1-T4 92.17 £ 12.63 mm 105.81 +21.07 mm 0.151
T4-T8 123.31 £ 19.97 mm 147.00 + 32.81 mm 0.115
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Table 4.2-3. Inter-landmark distances (mm) at MHD. Values represent mean + standard deviation per
group. P-values from two-sample t-tests included to assess group differences. Grey shading indicates p <
0.05.

The only segment showing a statistically significant group difference was C4-T1, which
was markedly shorter in elderly subjects (p = 0.039). However, it is important to note
that this analysis involved four independent comparisons, each using the same dataset.
To control for the increased risk of Type I error (false positive) in this context, a
Bonferroni correction would adjust the significance threshold from @ = 0.05 to o =
0.0125. Under this stricter criterion, none of the inter-landmark distance differences
would reach statistical significance, including C4-T1. Given the small sample size and
correlated nature of these measurements, such corrections may be overly conservative,
but they underscore the need to interpret the distance-based findings with caution. The
high variance observed across most segments further complicates interpretation, limiting
the strength of conclusions drawn from mean comparisons alone.

Joint Angle Analysis

To obtain a more anatomically grounded view of postural variation, joint angles were
calculated at three internal nodes of the torso using the Head—C4-T1, C4-T1-T4, and
T1-T4-T8 triplets. These angles represent flexion or extension at key cervical and
thoracic junctions and are invariant to global translation or segment length. Group
averages and statistical results are summarized in Table 2.2-1.

Joint Angle Definition Young (n=9) Elderly (n=5) p-value
C4 Head—C4-T1 132.81 +£2.36° 137.61 +£4.94° 0.055
T1 C4-T1-T4 169.81 + 5.59° 173.18 £ 6.56° 0.599
T4 T1-T4-T8 160.15 + 8.33° 152.99 +4.11° 0.027

Table 4.2-4. Internal joint angles (°) at MHD. Values represent mean + standard deviation. P-values are
based on Welch’s t-test (no assumption of equal variance). Grey shading indicates p < 0.05.

Of the three angles analyzed, the T4 angle (T1-T4-T8) exhibited a statistically significant
difference (p = 0.027), with elderly subjects showing a more flexed posture (smaller
angle) in the lower thoracic region. The C4 angle also showed a trend toward significance
(p = 0.055), suggesting a more extended cervical posture in the elderly group, though
this result falls just above the conventional @ = 0.05 threshold. The T1 angle showed no
group difference.

Compared to the distance-based metrics, these angle results provide clearer and more
interpretable biomechanical insight, reflecting postural curvature rather than absolute
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displacement. However, statistical power remains limited by the small sample size (n =
14) and unbalanced group sizes.
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4.3. Method 3: Arc-Length Re-Parameterization and Signal Registration for
generation of average trajectories and deviation corridors

4.3.1. Group-Specific ARCGen Outputs

This subsection presents the outputs of Method 3, which characterizes landmark
trajectories using arc-length-based averaging and corridor generation. The analysis
focuses on the geometric dispersion of torso movement patterns and how these vary by
age group.

The ARCGen software, as released, was originally configured to generate a single
characteristic average trajectory and associated statistical corridor from a pooled dataset.
For the purposes of this study, the ARCGen execution scripts were adapted to operate
separately on the young and elderly subgroups, allowing for age-specific analysis of
postural variation. This adjustment preserved the method’s core features (arc-length re-
parameterization, signal registration, and two-dimensional statistical corridor
construction) while enabling groupwise geometric comparisons.

Only the results from the age-separated runs are presented below, as they provide clearer
insights into group-level differences. For each landmark, the figures display the average
trajectory and 95% confidence corridor for both age groups, plotted along normalized arc-
length. In the background, in lighter hues, the individual trajectories can also be observed.
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4.3.2. Landmark 1: Head

Figure 4.3-1. shows the ARCGen outputs for the Head landmark, comparing the
characteristic average trajectories and statistical corridors of the young and elderly
groups. Both curves follow a similar overall shape: an initial upright position followed
by forward displacement and a gradual return.

The average trajectory of the elderly group shows a smaller horizontal excursion than that
of the young group, particularly near the midpoint of the arc-length path. In contrast, the
young group exhibits a more pronounced forward curvature, indicating greater forward
displacement during peak motion.

Corridor width and average position differs most noticeably around the region of
maximum excursion. The elderly group displays a visibly broader corridor in this mid-
trajectory segment, indicating higher inter-subject variability in forward displacement.
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Figure 4.3-1. ARCGen outputs for the Head landmark. Average trajectories and 95% statistical corridors
are shown for young (red) and elderly (blue) groups. Greater variability is observed in the elderly group
during the central portion of the arc-length path.
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4.3.3. Landmark 2: C4

Figure 4.3-2presents the ARCGen outputs for the C4 landmark. Both groups follow a
trajectory consistent with anterior flexion and subsequent partial recovery. The young
group's average curve exhibits greater forward progression, while the elderly group’s path
turns upright after maximum displacement.

Corridor width remains moderate for both groups at the initial and final segments but
diverges in the central region. As observed with the Head, the elderly group displays a
broader confidence corridor around the midpoint of the trajectory. This indicates higher
variability in the magnitude and path of forward displacement during that segment. The
young group shows a more compact envelope, suggesting greater consistency in motion
patterns.
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Figure 4.3-2. ARCGen outputs for the C4 landmark. Average trajectories and 95% statistical corridors are
shown for young (red) and elderly (blue) groups. The elderly group displays increased dispersion during
the central arc-length segment.
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4.3.4. Landmark 3: T1

Figure 4.3-3. shows the ARCGen-derived average trajectories and confidence corridors
for the T1 landmark. It is noticeable that the young group reaches farther in the anterior
direction, with the average trajectory extending, well beyond that of the elderly group.

This difference in forward excursion is most visible around the midpoint of the arc-length
path, where the young trajectory continues progressing along the x-axis, while the elderly
trajectory begins to decelerate and curve upward.The average trajectory of the young
group extends farther in the anterior direction, indicating a longer forward excursion
along the x-axis. The elderly group follows a more compact trajectory, with reduced
horizontal reach.

In addition, variability in the elderly group is more pronounced throughout the entire
trajectory. The corridor remains visibly wider across nearly all arc-length segments, not
just near peak displacement. In contrast, the young group maintains a more compact
envelope, especially at the start of the path.

This consistent widening of the corridor for the elderly group suggests increased
dispersion in both the magnitude and timing of forward torso movement at the T1 level.
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Figure 4.3-3. ARCGen outputs for the T1 landmark. The elderly group (blue) shows increased dispersion
across the entire arc-length range compared to the young group (red), whose trajectories remain more
tightly clustered.
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4.3.5. Landmark 4: T4

Figure 4.3-4. displays the ARCGen outputs for the T4 landmark. The average trajectory
of the young group extends farther forward compared to the elderly group, resulting in a
visibly longer and more curved displacement path in the xz-plane. The elderly group
follows a more compact trajectory, with reduced forward reach but a still pronounced
vertical component.

Corridor width is markedly greater for the elderly group throughout most of the arc-length
path. This indicates increased inter-subject variability in the elderly group, both in the
extent and direction of motion. The young group maintains a narrower envelope, with
dispersion concentrated primarily around the middle arc-length segment.
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Figure 4.3-4. ARCGen outputs for the T4 landmark. The elderly group (blue) exhibits lower forward and
vertical excursion but a broader statistical corridor compared to the young group (red).
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4.3.6. Landmark 5: T8

Figure 4.3-5. displays the ARCGen outputs for the T8 landmark. The average trajectories
for young and elderly subjects follow distinct paths. The young group shows a forward-
arching trajectory, extending prominently along the x-axis. In contrast, the elderly group
displays a more posteriorly displaced curve.

The difference in forward excursion is substantial: the young group's trajectory extends
nearly to x = 80 mm, while the elderly group's curve reaches only around x =~ 40 mm,
then loops upward and backward. This reflects a shorter anterior displacement and a
steeper vertical component in the elderly group’s motion pattern.

Corridor width also differs between groups. The elderly group shows greater dispersion
throughout the trajectory, with a visibly broader confidence envelope, especially in the
upper and final arc-length segments. The young group maintains a more compact
envelope overall, with moderate widening near peak forward displacement.
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Figure 4.3-5. ARCGen outputs for the T8 landmark. The elderly group (blue) shows a shorter forward
excursion, accompanied by increased variability compared to the young group (red).
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4.3.7. Landmark 6: H Point

Figure 4.3-6. displays the ARCGen outputs for the H-Point landmark. Compared to
previous landmarks, the individual trajectories show substantially more scatter, especially
within the young group. Displacement patterns vary widely in direction and amplitude,
with several trajectories deviating markedly from the group’s average.

Despite this variability, the average trajectories remain reasonably well-formed for both
age groups. The young group’s mean path extends farther forward, while the elderly
group shows a more upward-oriented displacement. However, this distinction is
significantly less consistent than at all other landmarks.

The statistical corridors are broad and irregular. The envelopes span a wide region in both
horizontal and vertical directions, reflecting high inter-subject variability. This pattern
suggests that motion at the H-Point is less constrained or less consistently expressed
across individuals.
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Figure 4.3-6. ARCGen outputs for the H-Point landmark. Individual trajectories are highly variable,
especially in the young group. The elderly group shows a more vertically oriented average path and
broader dispersion overall.
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4.3.8. Summary of observed patterns

Across all landmarks, the ARCGen outputs reveal consistent geometric differences
between age groups, particularly in the extent of forward excursion and the magnitude of
inter-subject variability.

The young group systematically displays longer anterior displacement across all
landmarks, as evidenced by average trajectories extending farther along the x-axis. In
contrast, elderly trajectories are typically more compact, with reduced forward reach and
a tendency toward greater upward (downward for the Head) curvature, especially at C4
and T8.

Statistical corridors are generally broader in the elderly group, indicating higher
dispersion in posture, specially throughout the latter half of the trajectory. The H-Point
stands out as qualitatively different: both groups exhibit irregular and noisy trajectories,
with less coherent patterns and broader, more amorphous confidence envelopes. This
suggests lower consistency of motion at this anatomical reference point compared to the
others.

Overall, the method successfully captures some age-related differences in both
displacement magnitude and inter-individual variability along the arc-length-normalized
movement paths. However, the relatively small sample size, particularly after subgroup
separation, limits the generalizability of these patterns and may amplify the influence of
outliers on both average trajectories and corridor width.
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5. DISCUSSION

5.1. Method 1: B-Spline approximation and Principal Component Analysis of
individual landmark trajectories

5.1.1. Key Findings and interpretation

The results obtained through spline-based dimensionality reduction and landmark-
specific PCA revealed several interpretable trends in posture variation during low-speed
frontal decelerations. Although primary shape modes (PCl) were not significantly
associated with subject characteristics, secondary modes (PC2) consistently captured
inter-group differences, particularly between young and elderly volunteers.

For thoracic landmarks (notably T1 and T4), PC2 scores were significantly higher in
elderly subjects. This component typically reflected asymmetry or trajectory curvature
beyond the primary forward excursion encoded by PCIl. The consistent positive
coefficients associated with the elderly group suggest that these volunteers exhibited
distinct postural behaviors, possibly involving increased forward curvature or altered
torso control patterns in response to deceleration. These differences may reflect age-
related changes in spinal flexibility, muscle tone, or neuromotor control.

The Head and T8 landmarks also showed significant or borderline associations, though
with lower explained variance. In the case of the Head, PC2 scores correlated with group
membership (p = 0.0496), potentially capturing variations in upper spinal compensation
or head control strategies. At the H-point and C4, no strong statistical effects were
detected, suggesting that pelvic anchoring and lower cervical posture may be less
influenced by aging under these loading conditions.

Overall, Method 1 demonstrated that even low-dimensional summaries of movement
patterns, derived from compressed control-point representations, can reveal
biomechanically relevant trends. While PC1 captured the majority of motion amplitude,
PC2 emerged as a more sensitive discriminator of posture shape differences tied to subject
characteristics, especially age group.

5.1.2. Limitations and Potential Improvements

While Method 1 successfully captured some dominant shape patterns and revealed age-
related differences in postural behavior, several limitations constrain the generalizability
and interpretive depth of the findings.

A primary limitation concerns sample size. With only fourteen trials available, and an
uneven distribution between young and elderly subjects, statistical power was inherently
limited. This is especially relevant for regression modeling, where the low number of
degrees of freedom limited the robustness of model fits and discarded multivariate
analysis. Several models involving PCI1 scores (e.g., with seated height as predictor)
showed modest trends that did not reach statistical significance. Given their consistent
direction and borderline p-values, it is plausible that these effects reflect genuine
biomechanical variation that the current sample was underpowered to detect.
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Another limitation relates to the dimensionality reduction process. The use of B-splines
with eight control points per trajectory provided a compact and interpretable
representation of movement, and the RMSE analysis confirmed that this configuration
preserved most key features. However, the fixed number of control points, while
methodologically consistent and supported by literature, may have introduced constraints
in capturing localized features in highly dynamic trajectories. Although the
approximation proved robust across landmarks, future studies could explore adaptive
schemes that tailor the number of control points to the complexity of each trajectory,
potentially enhancing the resolution of subtle shape differences.

The use of landmark-specific PCA introduced interpretability benefits but also
methodological fragmentation: since each PCA was performed independently, cross-
landmark correlations in motion (e.g., coordinated movement of T1 and T4) were not
captured. A joint PCA or multivariate approach could potentially reveal coupled
behaviors that single-landmark decompositions may have overlooked.

In the regression stage, only univariable linear models were considered, due to the small
sample size. While this choice was methodologically necessary, it limited the capacity to
explore interaction effects or combined predictors (e.g., age group x seated height).
Additionally, some regressions (e.g., T8 PC1) returned negative adjusted R* values,
highlighting both poor predictive capacity and the sensitivity of PCA scores to small
numerical variation.

Future improvements could involve increasing the dataset size, applying adaptive or
hierarchical spline fitting, using joint-PCA frameworks to capture inter-landmark
coordination, and exploring non-linear or regularized regression models to enhance
prediction stability. These steps would strengthen both the statistical validity and
biomechanical interpretability of the analysis.
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5.2. Method 2: Landmark relative positioning analysis at peak displacement

5.2.1. Key Findings and Interpretation

The second method focused on static posture configuration at the moment of maximum
head displacement (MHD), using a fixed-frame analysis of relative landmark positions.
This approach provided a complementary perspective to the trajectory-based spline
method by isolating geometric differences in body posture independent of temporal
progression or amplitude.

The principal component analysis performed on re-referenced landmark coordinates
revealed that the dominant modes of variation (PC1 and PC2) captured global geometric
changes in torso configuration, but did not significantly correlate with subject
characteristics. This suggests that while these components effectively describe posture
diversity within the sample, their variability does not align strongly with age or
anthropometric factors.

The third principal component (PC3), by contrast, showed a statistically significant
association with age group, emerging as the sole interpretable link between posture at
MHD and subject-level variation. Although PC3 accounted for a smaller proportion of
total variance, its effect was consistent and meaningful: elderly subjects displayed
systematically different scores, suggesting the presence of age-related postural
adaptations that are not captured by the primary shape axes. Given the standardized PCA
framework and the direction of the effect, it is reasonable to interpret PC3 as encoding a
localized morphological shift, possibly linked to shifts in spinal alignment between
cervical and thoracic regions.

These observations were complemented by a distance-based analysis of adjacent
landmarks. While most segment-wise comparisons did not reach statistical significance,
a notable exception was the C4-T1 segment, which appeared shorter in elderly subjects.
However, this difference did not survive correction for multiple comparisons and was
accompanied by high variability, particularly within the younger group. The absence of
consistent trends across other segments, and the limited statistical robustness of the
findings, suggest that inter-landmark distances may be less reliable indicators of age-
related postural differences in this context. Their sensitivity to initial alignment,
anthropometric variability, and small-sample noise likely contributed to the weak and
inconsistent group effects observed.

The joint angle analysis was performed right after, and quantified internal angles formed
by spinal landmark triplets. Elderly subjects exhibited a statistically significant reduction
in the T4 angle (T1-T4-T8), indicative of increased flexion in the lower thoracic spine.
A borderline significant difference at the C4 angle (Head—C4-T1) also suggested a trend
toward more extended cervical posture in elderly individuals.

Altogether, Method 2 demonstrated that postural variation at a single key time frame can

reflect meaningful biomechanical differences between age groups. The combination of

PCA-derived shape descriptors and joint angle measurements identified age-related

differences in both thoracic curvature and cervical alignment. While the primary PCA

components were not strongly associated with subject variables, the consistent group
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effect observed in PC3 and the significant reduction in the T4 angle among elderly
subjects support the interpretation that aging influences torso configuration under
deceleration. These findings complement the dynamic trajectory analysis presented in
Method 1 by highlighting static postural signatures that emerge at the moment of
maximum excursion.

5.2.2. Limitations and Potential Improvements

Although Method 2 provided a useful alternative to trajectory-based analyses by focusing
on posture at a single critical time frame, several limitations constrain the interpretive
strength and generalizability of its findings.

A core limitation lies in the sample size and statistical power, already noted in the
Discussion of Method 1, Limitations and Potential Improvements. With only 14 trials and
an uneven distribution between young and elderly groups, the detection of subtle posture
differences is inherently limited. However, this issue is arguably more pronounced in
Method 2, where posture is assessed using a single frame per subject. This static snapshot
increases susceptibility to trial-specific noise, measurement artifacts, or individual
variability that might otherwise be averaged out across time. Furthermore, the exclusion
of the H-point due to poor signal quality reduced anatomical coverage and may have
masked relevant differences in pelvic or lumbar posture.

In terms of data reduction, the principal component analysis applied to posture vectors
condensed inter-subject variation into a low-dimensional form. However, the lack of
strong associations between PC1 or PC2 and subject characteristics raises concerns about
their interpretive value. These components captured global shape variation but did not
align meaningfully with age or anthropometry.

This highlights a limitation in the explanatory strength of single-variable models in this
context. While the PCA efficiently condensed posture variation into a compact set of
scores, the available regressors (age, subject group, and anthropometrics) were not
capable of fully explaining that variation. The significant result for PC3 stands as the only
interpretable link between posture at MHD and subject-level differences, specifically
aging.

The inter-landmark distance analysis was similarly limited. Only one segment (C4-T1)
showed a statistically significant difference between groups, and that result could not
survive correction for multiple comparisons. In contrast, the joint angle analysis produced
more anatomically grounded results, identifying a significant group effect at T4 and a
trend at C4. However, the angles used were still coarse descriptors of complex spinal
geometry, and their interpretation is constrained by the small sample and lack of
multivariable modeling.

Overall, Method 2 offered useful insights into static posture differences between groups,

but its explanatory power was limited by both the structure of the dataset and the nature

of the variables considered. Future improvements could involve expanding the sample,

incorporating richer geometric descriptors (e.g., curvature or 3D features), and applying

multivariate or regularized modeling approaches to better characterize the interplay

between posture and individual factors. Combining static and dynamic analyses may also
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help to distinguish whether observed differences at MHD reflect meaningful
biomechanical adaptations or transient positions shaped by external constraints.
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5.3. Method 3: Arc-Length Re-Parameterization and Signal Registration for
generation of average trajectories and deviation corridors

5.3.1. Key Findings and Interpretation

The outputs obtained through arc-length re-parameterization and statistical corridor
generation revealed several age-related trends in postural behavior during frontal
deceleration. Across nearly all landmarks, the average trajectories of the elderly group
exhibited reduced forward excursion compared to the young group. This was most
pronounced at T1, T4, and T8, where the young subjects showed a clear anterior
displacement, whereas elderly trajectories curved upward sooner and remained more
compact.

In addition to trajectory shape differences, corridor width analysis consistently indicated
greater variability in the elderly group. This increased dispersion was most apparent
during the mid-to-late segments of the arc-length path, coinciding with peak excursion
and recovery phases. At T4 and T8, the elderly group’s variability extended throughout
the latter half of the movement, suggesting greater inconsistency in how forward motion
was resolved.

C4 and T1 also revealed differences in vertical displacement. The elderly group often
followed a more upward-oriented path, possibly reflecting different spine or head
positioning under deceleration. In contrast, the young group maintained flatter or more
forward-directed trajectories.

The H-Point landmark presented a notable exception. Individual trajectories were highly
scattered, especially among young subjects, and the resulting confidence corridors were
broad and irregular. While average trajectories could still be computed, the high
variability and lack of directional consistency suggest that motion at this anatomical
reference point may be less biomechanically constrained or more affected by external
factors, such as seat interaction or measurement noise.

Overall, the method effectively exposed geometric differences between age groups,
capturing both the average displacement patterns and the range of variation in a manner
that complements the findings of prior methods.

5.3.2. Limitations and Potential Improvements

While Method 3 provides a valuable geometric characterization of postural behavior,
several limitations restrict the depth and generalizability of its findings.

Foremost among these is, again, the limited sample size. Once split by age group, the
dataset contained only a small number of trials per condition, reducing statistical
robustness. This constraint may have inflated the influence of outliers on both average
trajectory shape and corridor width. The pronounced variability observed at certain
landmarks (particularly the H-Point) may partially reflect this limited sampling, and
broader conclusions should be drawn with caution.

Another limitation concerns the assumption of geometric comparability inherent to arc-
length-based methods. ARCGen assumes that the underlying signal shapes are
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sufficiently similar to justify normalization and registration in a common space. When
this assumption is violated, as at the H-Point, the method may produce misleadingly broad
or amorphous corridors that obscure true biomechanical structure. Further filtering or
trajectory quality checks may be necessary before applying the method at loosely
constrained anatomical regions.

The method also discards temporal dynamics in favor of shape-based alignment. While
this is appropriate for the current study’s emphasis on geometry, it prevents analysis of
timing-related effects such as response delays or speed of motion, factors that may also
vary with age.

Finally, all ARCGen parameters, including the number of warping control points and the
warping penalty, were held constant across landmarks. While this maintained
consistency, it may not represent the optimal configuration for each anatomical region.
Future studies could explore adaptive tuning strategies to balance flexibility and stability
in the warping process.

Increasing the dataset size and incorporating anthropometric normalization could help
improve result reliability. Additionally, pairing ARCGen outputs with timing- or force-
based data may offer a more comprehensive view of age-related postural control
strategies during low-speed impacts.

5.4. Method comparison

The three analytical methods developed and applied in this thesis

1. B-spline-based trajectory compression with PCA,
2. Time-based posture extraction with PCA and metric analysis, and
3. Arc-length-based trajectory averaging with statistical corridor generation,

offer complementary perspectives on kinematic variability in frontal deceleration tests.
Each method emphasizes different aspects of the motion and encodes the data using
distinct mathematical frameworks, which results in varying sensitivity to inter-subject
differences and age-related effects.

5.4.1. Dimensional focus and granularity

Method 1 analyzes entire motion trajectories by encoding their temporal evolution
through B-spline control points. This approach preserves curve shape while reducing
dimensionality, enabling fine-grained analysis of trajectory shape through PCA. In
contrast, Method 2 collapses the motion to a single instant, the frame of maximum head
displacement (MHD), and focuses on spatial configuration rather than temporal
progression. Method 3 retains full trajectory geometry but discards temporal alignment,
instead using arc-length as the basis for comparison. Consequently, each method operates
at a different resolution of temporal information: Method 1 emphasizes compressed time-
series trends, Method 2 captures instantaneous posture, and Method 3 abstracts time
altogether in favor of geometric similarity.
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5.4.2. Sensitivity to inter-subject variation

In terms of capturing inter-subject differences, Method 1 demonstrated that secondary
principal components (especially PC2) were more responsive to age-related variation than
primary motion trends (PC1), which tended to reflect global amplitude. T1 and T4
landmarks in particular showed significant group effects, suggesting that mid-thoracic
posture during deceleration varies systematically with age.

Method 2, despite its lower-dimensional nature, identified a statistically significant
relationship between PC3 and age, and additionally detected age-related differences in
spinal flexion via inter-landmark distance and joint angle analyses. These findings
suggest that while posture at MHD may not strongly reflect gross anthropometric
variation, it still captures specific localized differences in spinal alignment that correlate
with aging.

Method 3 revealed the most consistent group-level geometric differences, particularly in
the extent of forward displacement and the breadth of inter-subject variability. Elderly
participants exhibited shorter anterior excursions and broader confidence corridors across
nearly all landmarks. These effects were spatially consistent and visually interpretable,
confirming that Method 3 is especially effective for identifying population-level trends
and variability in motion geometry.

5.4.3. Interpretability and Biomechanical Meaning

Method 1 excels in identifying low-dimensional modes of variation and associating them
with anatomical motion trends, but its outputs (PCA scores) require interpretation through
statistical modeling. Method 2 offers direct anatomical interpretability through posture
vectors and angles but is limited by its focus on a single time frame and low explanatory
power of primary components. Method 3 provides intuitive, spatially explicit
visualizations of average motion and inter-subject variability, making it particularly
suitable for communicating its findings.

5.4.4. Robustness and Limitations

All three methods are constrained by the small sample size, limiting their power to detect
subtle or multivariate effects.

Method 1, in particular, depends on the fidelity of spline fitting and consistency in control
point configuration; while cubic B-splines with fixed parameters ensure comparability,
they may limit sensitivity to localized shape differences or abrupt curvature changes.
Additionally, conducting PCA independently per landmark prevents the detection of
inter-regional coordination, constraining biomechanical interpretation to isolated regions.

Method 2 is inherently limited by its reliance on a single frame, which captures spatial
configuration but discards temporal information and dynamic features such as velocity or
timing of inflection. Its explanatory power is further reduced by the dimensional
simplicity of the posture vectors and the exclusion of the H-point, which limits anatomical
coverage.
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Method 3 enhances robustness by eliminating temporal alignment requirements through
arc-length normalization, but this approach assumes that trajectory shapes are sufficiently
consistent for registration to be meaningful, an assumption that fails in regions with
irregular or poorly constrained motion, such as the H-point. Moreover, the method does
not quantify relationships between trajectory shape and subject characteristics, restricting
its analytical scope to descriptive comparisons.

5.4.5. Summary of Strengths and Limitations

Table 5.4 provides a structured comparison of the three analytical methods in terms of
their temporal scope, usability, and methodological strengths and limitations.

Criterion Method 1: B-Spline Method 2: MHD Method 3: Arc-Length
PCA Posture Averaging

Temporal | Full landmark Single time frame Full trajectory preserved

Coverage | trajectories encoded selected at maximum in spatial terms; time axis
via B-spline control head displacement; all removed and replaced
points; captures the dynamic information with normalized arc
entire motion profile outside this frame is length to enable shape-
over time but in discarded based alignment
compressed form

Key Enables landmark- Provides direct Generates average

Strength specific statistical anatomical interpretation | trajectories and
modelling of trajectory | of posture at a critical dispersion corridors that
shape using PCA and moment; posture vectors, | capture both central
regression; identifies joint angles, and inter- tendency and variability
distinct modes of landmark distances offer | of motion patterns;
motion variability tied | biomechanically highly visual and robust
to anthropometric meaningful comparisons | to inter-subject timing
variables differences

Best For Detecting motion Characterizing postural | Comparing global
trends that correlate alignment differences motion tendencies and
with subject between young and variability across groups
characteristics such as | elderly subjects at the without assumptions
seated height or group; | moment of peak forward | about time
useful for identifying excursion; complements | synchronization; ideal for
subtle shape trajectory-based analyses | illustrating age-related
differences across the | with spatial metrics dispersion or consistent
entire trajectory geometric trends

Main Regression models Single-frame focus Group comparisons are

Limitation | have limited misses dynamic changes | qualitative; results can be
explanatory power due | and relies on accurate distorted in landmarks
to small sample size; frame selection; PCA with high noise or
interpretation of results showed weak
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abstract PCs may be association with subject | inconsistent motion
ambiguous traits beyond PC3; patterns (e.g., H-point)
constrained statistical
power

Table 5.4-1. Comparative summary table of the three analytical methods

Together, these methods provide a multi-angle analysis of volunteer motion under frontal
deceleration. Their combination enables robust cross-validation of findings and supports
a more detailed understanding of age-related variation in occupant kinematics than any
single method could achieve on its own.

It is worth noting that a related analysis of this same experimental dataset was presented
by Lopez-Valdés et al. at an international conference of the Association for the
Advancement of Automotive Medicine. Their work focused on describing the overall
kinematic and dynamic responses of young and elderly volunteers, including comparisons
of head and thoracic displacements, belt forces, and angular velocities. While the present
thesis adopts a different perspective centered on dimensionality reduction and shape-
based standardization techniques, several of the observed trends, such as reduced forward
excursion and increased variability in the elderly group, are consistent with the findings
reported in their presentation.
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5.5. Real-World Applications

Although the research conducted in this thesis is fundamentally exploratory and situated
at a low Technology Readiness Level (TRL 1-2), it contributes methods and analytical
frameworks that may become increasingly relevant in the evolving landscape of vehicle
safety.

Over the past few decades, occupant protection systems and vehicle interior layouts have
converged toward a high degree of standardization. Safety technologies such as frontal
airbags, pre-tensioners, and load limiters are now widely implemented, and most
developments have centered on fine-tuning these existing systems rather than introducing
disruptive changes. Although the emergence of electric vehicles has required adaptations
to account for different mass distributions and structural layouts, such as underfloor
battery packs that lower the center of gravity, these changes have largely preserved the
traditional occupant seating orientation and restraint strategies (HILS21).

However, the rise of fully automated vehicles (FAVs) is expected to introduce a
significant shift in occupant safety paradigms. As Koppel et al. (2019) demonstrated in
an international survey, many users anticipate adopting non-traditional seating positions
(including reclined, rotated, or rearward-facing configurations) during travel in
autonomous vehicles. Such configurations challenge the assumptions underpinning
conventional restraint design, which has historically relied on occupants being forward-
facing and seated upright. To illustrate said variety of possible interior layouts considered,
Figure 5.5-1. presents the five hypothetical seating configurations evaluated in the study
(KOPP19).

Figure 5.5-1. Hypothetical seating configurations for fully automated vehicles (FAVs) used in the survey
by Koppel et al. to explore occupant preferences under various travel scenarios (KOPP19).

This context underscores a critical need for new biomechanical analysis methods capable
of characterizing kinematic variability in more diverse and less constrained occupant
postures. The methodologies developed in this thesis could provide foundational tools to
support future research and validation in this area. For example, the capacity to
statistically describe deviations from nominal trajectories and postures may be applied to
the development of next-generation anthropomorphic test devices or computational
human models adapted to the interior layouts of FAVs.
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In this sense, while the present work is not directly translatable to applied safety system
design, it occupies an essential place early in the innovation chain. Advancing from TRL
1-2 toward higher readiness levels will require further experimental validation,
integration with advanced simulation environments, and collaboration with industrial
partners focused on vehicle interior and restraint system design. Nonetheless, as the
automotive industry accelerates the deployment of autonomous driving technologies, the
analytical approaches proposed here may contribute to improving occupant protection in
novel seating configurations.
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6. CONCLUSION

The analyses presented in this thesis collectively demonstrate that different
dimensionality reduction and averaging techniques can effectively capture the kinematic
variability of seated human volunteers subjected to low-speed frontal decelerations.

The B-spline and PCA method successfully compressed trajectory data into principal
components, showing that seated height and body mass were significant predictors of
forward displacement patterns during deceleration.

The time-based analysis of landmark configurations at maximum head displacement
offered a complementary perspective, identifying posture-related differences between
young and elderly subjects, particularly in thoracic curvature and inter-landmark
distances.

Finally, the arc-length re-parameterization and signal registration approach generated
representative mean trajectories and variability corridors, illustrating consistent group-
level trends in motion paths while accommodating temporal and geometric heterogeneity
across trials.

Together, these results confirm that combining trajectory-based and posture-centric
methods yields a more complete understanding of occupant response variability and
underscores the influence of age-related factors on kinematic behavior during controlled
decelerations.
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6.1. Degree of Objective Fulfillment

The objectives defined at the start of this work have been followed and completed in a
consistent manner.

The first objective was to implement Principal Component Analysis on B-spline
representations of landmark trajectories. When applied, the method allowed the complex
motion of the head and torso to be reduced to a set of principal components that captured
the main patterns of movement. Regression models showed that these components were
linked to anthropometric factors like seated height and body mass, demonstrating that the
approach could detect some associations between trajectory shapes and individual
characteristics.

The second objective focused on analyzing the relative positions of landmarks at the
moment of maximum head displacement. This method was also fully developed and
applied. By isolating posture at a single key instant, it became possible to highlight
geometric differences between age groups that might not be visible in time-based data. In
particular, the analysis showed that elderly subjects had distinct patterns in thoracic
curvature and cervical alignment.

The third objective was to use arc-length re-parameterization and signal registration to
generate average motion trajectories and variability corridors. This technique worked as
intended. It provided a reliable way to align and summarize trajectories without relying
on time normalization, and it produced representative mean paths that illustrated the
consistency of group-level trends despite variability in timing and amplitude.

Finally, the comparative evaluation of all three methods confirmed their
complementarity. The B-spline approach was most effective for connecting motion
patterns to anthropometry, the time-based posture analysis was better at detecting static
postural differences, and the arc-length method offered a clear visualization of mean
motion and dispersion. Together, they formed a coherent set of tools that addressed the
complexity of occupant kinematics more completely than any single technique could do
on 1ts own.
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6.2. Future Work

Several directions could be explored to build on the findings of this thesis and address its
limitations.

First, expanding the sample size would improve the statistical power of the analyses. A
larger and more balanced cohort, especially with an even number of volunteers in both
groups, could help confirm the observed trends in postural variation and strengthen the
associations between principal components and anthropometric factors.

Second, further development of the arc-length re-parameterization method could include
testing different registration parameters or exploring alternative warping constraints to
improve alignment of key motion features. This may lead to even more precise average
trajectories and variability corridors.

Third, future studies could incorporate additional variables beyond planar (x, z)
trajectories, such as three-dimensional motion data, rotational displacements, dynamic
load measurements, or muscle activation signals. Including these dimensions would
provide a more comprehensive view of occupant response, allow finer characterization of
motion patterns, and help link kinematic variability to mechanical loads and
neuromuscular control strategies, thereby supporting deeper biomechanical interpretation
and improving the relevance of the findings for safety applications.

Finally and most importantly, while the methods developed and applied in this thesis
proved effective in extracting, summarizing, and interpreting kinematic variability, their
outcomes were inevitably limited by the small data sample. This constrained the statistical
strength and generalizability of some findings. Nevertheless, the analytical approaches,
B-spline compression, posture-focused PCA, and arc-length signal registration,
demonstrated strong potential as versatile tools for biomechanical analysis. Applied to
larger and more consistent datasets, these methods are well positioned to deliver robust
insights into occupant motion and to support the development of improved safety models
and human ATDs.

As a final remark, it is planned to prepare a scientific article derived from this work. The
purpose of this publication will be to present the main findings and methodological
approach in a concise format appropriate for a peer-reviewed journal. This article is
expected to serve as a way to share the results with the wider biomechanics research
community. The aim is to have the manuscript completed and submitted before the end
of 2025.

117



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

118



UNIVERSIDAD PONTIFICIA COMILLAS

COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)

UNIVERSIDAD PONTIFICIA

GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

7. REFERENCES

[SAMU15]

[HART22]

[WHO25]
[BABU19]

[UNIT15]

[SUN16]

[VIVE21]

[CRAN10]

[LOPE17]

[BIOM24]

[ARBO09]

[CORMIS]

[HWAN23]

Samuels, M.A., Seacrist, T., Huang, S., Balasubramanian, S., Lopez-Valdes,
F.J., Kent, R W., Arbogast, K.B., “Modeling spatial trajectories in dynamics
testing using basis splines: application to tracking human volunteers in low-
speed frontal impacts”, Computer Methods in Biomechanics and Biomedical
Engineering, 18:12, pp. 1323—-1332, 2015.

Hartlen D.C., Cronin D.S., "Arc-Length Re-Parametrization and Signal
Registration to Determine a Characteristic Average and Statistical Response

Corridors of Biomechanical Data", Frontiers in Bioengineering and
Biotechnology, 10:843148. doi: 10.3389/fbioe.2022.843148, 2022.

World Health Organization. “Ageing and health”, 2025

Babulal, G. M., Vivoda, J., Harmon, A., Carr, D. B., Roe, C. M., & Zikmund-
Fisher, B. “Older Adults’ Expectations about Mortality, Driving Life and Years
Left without Driving”. Journal of Gerontological Social Work, 62(8), 912-929,
2019

United Nations, “Transforming our world: the 2030 Agenda for Sustainable
Development”, Department of Economic and Social Affairs, 2015

Sun, W., Kent, R., Brolin, K., “A method for developing biomechanical response
corridors based on principal component analysis”, Journal of Biomechanics,
49(3), pp. 410417, 2016.

Vives-Torres, C.M., Galgano, A., Forman, JL. Lopez-Valdés, F.J.,
“Comparison of Upper Neck Loading in Young Adult and Elderly Volunteers
During Low Speed Frontal Impacts”, Frontiers in Bioengineering and
Biotechnology, 9:684003, 2021.

Crandall, J.R., Bose, D., Forman, J., Untaroiu, C.D., Arregui-Dalmasses, C.,
Shaw, C.G., Kerrigan, J.R., “Human Surrogates for Injury Biomechanics
Research”, Clinical Anatomy, Vol. 24, pp. 362-371, 2010.

Lopez-Valdes F.J., Juste-Lorente O., Lorente A., Piqueras-Lorente A.,
Danauskiené A., Muehlbauer J., Shick S., Symeonidis, Maza-Frechin M.,
Peldschus S., “Kinematics and dynamic responses of young and elderly
occupants in low-speed frontal tests”, Traffic Injury Prevention, 2017.

Frontiers Research Team, “Biomechanical Analysis of Low-Speed Frontal
Deceleration Tests: Methods, Ethics, and Data Processing”, Frontiers in
Bioengineering and Biotechnology, 2024.

Arbogast, K.B., Balasubramanian, S., Seacrist, T., et al., “Comparison of
kinematic responses of the head and spine for children and adults in low-speed
frontal sled tests”, Stapp Car Crash Journal, Vol. 53, pp. 329-372, 20009.

Cormier, J., Gwin, L., Reinhart, L., Wood, R., Bain, C., “A Comprehensive
Review of Low-Speed Rear Impact Volunteer Studies and a Comparison to
Real-World Outcomes”, Spine, Vol. 43, No. 18, pp. 1250-1258, 2018.

Hwang Y.T., Y.Q. Tung, C.S. Chen, B.S. Lin, "B-Spline Modeling of Inertial
Measurements for Evaluating Stroke Rehabilitation Effectiveness", IEEE

119




UNIVERSIDAD PONTIFICIA COMILLAS

COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)

[WANGSS]

[FEDEI13]

[BRUM23]

[DONNI2]

[DONN14]

[FREJ23]

[HIGU19]

[FEDEI16]

[WHIT23]

[CHAUOS]

[LEE19]

[HILS21]

[KOPP19]

UNIVERSIDAD PONTIFICIA

GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp.
4008-4016, 2023.

Wang K., "B-splines joint trajectory planning", Computers in Industry, vol. 10,
no. 2, pp. 113-122, 1988.

Federolf, P., Rohmeyer, L., Zander, V., Rein, R., Baumann, C., Peham, C.,
"Principal component analysis of biomechanical movement data: a method for
analyzing variability in gait and posture", Journal of Biomechanics,
46(14):2542-2547, 2013.

Brumbelow, M.L., "Female Driver Lower Extremity Injury: Contributing
Factors and Crash Test Relevance", Proceedings of the International Research
Council on the Biomechanics of Injury (IRCOBI), IRC-23-32, 2023.

Donnelly, B.R., Moorhouse, K., "Optimized phasing of PMHS response curves
for biofidelity targets", IRCOBI Conference Proceedings, 2012.

Donnelly, B.R., Moorhouse, K.M., Rhule, H.H., Stammen, J.A., "A deformation
energy approach to normalizing PMHS response data and developing biofidelity
targets for dummy design", Proceedings of the 2014 IRCOBI Conference, 2014,

Frej, D. “Analysis of Head Displacement during a Frontal Collision at a Speed
of 20 km/h—Experimental Studies.” Sustainability, 15, 16015, 2023.

Higuchi, K., Yoshida, S., Ono, K., Yamazaki, K., Nakahara, H., "Behaviour of
ATD, PMHS and Human Volunteer in Frontal Crash Test", International
Journal of Automotive Engineering, Vol. 10, No. 4, 2019.

Federolf, P.A., "A novel approach to study human posture control: 'Principal
movements' obtained from a principal component analysis of kinematic marker
data", Journal of Biomechanics, Vol. 49, No. 3, pp. 364-370, 2016.

White J., Cheng J., Mahmood A., "A General Method for Computing an Average
Curve and Statistical Corridors Using Arc-Length Re-Parameterization",
Proceedings of the IRCOBI Conference 2023, pp. 215-226.

Chau T., Young S., Redekop S., "Managing Variability in the Summary and
Comparison of Gait Data", Journal of NeuroEngineering and Rehabilitation,
vol. 2, article 22, 2005.

Lee M., "Application of Dynamic Time Warping Algorithm for Pattern
Similarity of Gait", Journal of Biomedical Engineering Research, vol. 40, no. 3,
pp. 181-188, 2019.

Hilster D., L. Leestemaker, A. Hoen, "Safety and Electric Passenger Cars”, CE
Delft — Committed to the Environment, Informe 21.200180.047, 2021.

Koppel S., J. Jiménez Octavio, K. Bohman, D. Logan, W. Raphael, L. Quintana
Jimenez, F. Lopez-Valdes, "Seating configuration and position preferences in
fully automated vehicles", Traffic Injury Prevention, DOI: 10.1080/15389588.
2019.1625336, june 27th, 2019

120



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

ANNEX

1. ALIGNMENT WITH SUSTAINABLE DEVELOPMENT GOALS

This thesis aligns with several Sustainable Development Goals (SDGs) (UNIT15) by
advancing knowledge and practices that enhance human health, safety, and innovation in
sustainable technologies. Specifically, it relates to the following SDGs:

1.1. Goal 3: Good Health and Well-being

Given that road traffic accidents are a leading cause of death worldwide, the focus of this
thesis on improving occupant safety during automotive crashes directly contributes to
better health and well-being. By developing more accurate methods for analyzing
occupant biomechanics during impacts, this research supports efforts to reduce injury
risks in automotive accidents, which is specifically remarked in Goal 3.6.

1.2. Goal 9: Industry, Innovation, and Infrastructure

The analysis of different averaging techniques for describing occupant kinematics also
aligns closely with Sustainable Development Goal 9, particularly in the areas of
innovation and sustainable industrialization. By developing and testing more accurate
methods to analyze and standardize biomechanical data, it aims to contribute to the
advancement of automotive safety technology, which is a crucial aspect of sustainable
transportation. These methods may allow for better-informed decisions in the design of
safety features in vehicles, making them more effective for a diverse population,
including older adults. This aligns with the goal's emphasis on building resilient
infrastructure and promoting inclusive industrialization.

1.3. Goal 10: Reduced Inequality

By focusing on creating more accurate methods that account for variability across
different age groups, particularly comparing young and elderly volunteers, this thesis
aims to contribute to the reduction of inequalities in vehicle safety. Older people are often
at higher risk for injury in automotive accidents due to changes in their physical condition,
including reduced flexibility and slower reaction times. By addressing these disparities,
this research may help design more inclusive safety systems, providing effective
protection for all occupants and reducing disparities among vulnerable populations.

1.4. Goal 12: Responsible Consumption and Production

By improving the accuracy and reliability of biomechanical data analysis methods, this
thesis can contribute to the more efficient use of resources in vehicle safety testing and
development. More precise analysis methods can lead to better-targeted improvements in
safety features, reducing the need for extensive, repeated crash tests that are resource-
intensive. This supports the goal of promoting sustainable consumption and production
patterns by enhancing the effectiveness of existing resources, which could reduce both
financial and material waste in the automotive industry.
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2. ARCGEN

In this section, the main ARCGen original code files are provided.

Adjustments were made to some of them to be able to generate differentiated graphs for
the young and elderly groups. These modified code files can be found in section 3.3 of
the Annex.

Further ARCGen resources including the original article as well as supporting files can
be found in the following site:

https://es.mathworks.com/matlabcentral/fileexchange/116975-arcgen-arc-length-based-
averaging-and-statistics?status=SUCCESS
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2.1. ARCGen Code Library

2.1.1. Arcgen.m
% ARCGen - Arc-length Response Corridor Generator

ARCGen, short for Arc-length Response Corridor Generation, provides
automated calculation of a characteristic average and response corridors
on input signals regardless of if said signals are non-monotonic or
hystertic. This is accomplished by re-parameterizing input signals based
on arc-length. Corridors are extracted using a marching squares
algorithm.

If you use ARCGen in your research, please use the following citation:
Hartlen D.C. and Cronin D.S. (2022), "Arc-Length Re-Parametrization
and Signal Registration to Determine a Characteristic Average and
Statistical Response Corridors of Biomechanical Data." Frontiers
in Bioengineering and Biotechnology* 10:843148.
doi: 10.3389/fbice.2022.843148

ARCGen is released under a GNU GPL v3 license. No warranty or support is
provided. The authors hold no responsibility for the validity, accuracy,
or applicability of any results obtained from this code.

This function has one mandatory input, four outputs, and many optional
inputs. Optional inputs are defined using name-value pair arguments.

Usage notes:

It is common to see errors when running this function if the number of
resampling points or corridor resolution is too sparse or signals

exhibit significant variablity not accounted for through signal
registration. This tends to manifest in either truncated corridors or the
code termininating in an error. Often increasing resampling points or
corridor resolution. Turning 'Diagnostics' to 'detailed' can help
identify these issues.

Computed corridors will often not extend all the way to the shared origin
of input signals. This is because small low st. dev. at this shared point
is too low to be captured during corridor extraction with the marching
squares algorithm. There are two solutions to this problem. First, one
could force a minimum corridors size using the 'MinCorridorWidth' option.
Second, one could manually extend corridors in post-processing.

MANDATORY INPUTS:
inputSignals: ARCGen can accomadate three types of input format
1) A [nSignal,2] structured array consisting of the following
entries. Entries are case-senstive
+ data: an [m,2] array containing ordered x-y data
+ specId: character array containing an identifier for each signal
2) A [nSignal,l] structured array consisting of only signal data, no
signal IDs. Entries are case-senstive
+ data: an [m,2] array containing ordered x-y data
3) A cell array of length nSignal containing [m,2] arrays of each input
signal.

OPTIONAL INPUTS:

nResamplePoints: integer defining the number of points used to
re-parameterize input signals. Default: 100.

CorridorRes: integeer defining the number of grid points used for the
marching squares algorithm. The sampling grid for the marching
squares algorithm extends 120% of extreme corridors. This parameter
defines the number of points along each side of the grid.
Default: 100. It is common to increase this significantly.

NormalizeSignals: character arry used to turn on signal normalization.
Options: 'on' (default), 'off'

EllipseKFact: float used to scale the major and minor axis of the
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ae

ellipses used for corridor generation. This value corrisponds to
the square root of the chi-squared CDF. Default: 1.0 (creates
corridors one standard deviation along the x and y axes)

Diagnostics: character array used to activate diagnostic plots. Useful
for debugging errors. Options: 'off' (default), 'on', 'detailed'.

MinCorridorWidth: Factor used to enforce a minimum corridor width. Any
st.dev. less than 'MinCorridorFactor'*max(st.dev.) is replaced with
'MinCorridorFactor'*max(st.dev.). x & y axes are handled
separately. A value of 0 (default) disables forcing minimum width.

nWarpCtrlPts: integer that sets the number of interior control points
used for signal registration. A value of 0 (default) disables
signal registration

WarpingPenalty: float specifying the penalty factor used during the
signal registration process. A value of 107-2 (default) to 1073 is
recommended, but the exact value will need to be tuned to a
specific problem.

UseParrallel: Character array used to enable parallel thread calculations
for signal registration and envelope extraction. Significantly
reduces runtime when signals have 100k+ points or 500+ resampling
points and corridor resolution. Requires the Parallel Computing
Toolbox Options: 'on', 'off' (default).

0 00 A0 A0 A° O O 0 A° A° O° d° OO IO A° A° O° I A° o° o

ae

MANDATORY OUTPUTS:

ae

ae

charAvg: an [nResamplePoints,2] array containing the computed
characteristic average.

innerCorr: an [nResamplePoints,2] array containing points defining the
inner corridor

outerCorr: an [nResamplePoints,2] array containing points defining the
outer corridor

0P o0 d° o° o° o

ae

OPTIONAL OUTPUTS:

ae

ae

processedSignalData: a structure array that outputs processed signals,
basic statistics, and warping control poitns

debugData: a structure that provides a wealth of debugging information,
including raw average and st. dev. data, correlation scores before
and after registration, and other.

0P o o0 o oo

oo

Copyright (c) 2022 Devon C. Hartlen

function [charAvg, innerCorr, outerCorr, varargout] =
arcgen (inputSignals, varargin)

%% Setup Name-Value Argument parser
nvArgObj = inputParser;
addParameter (nvArgObj, 'nResamplePoints', 100) ;

addParameter (nvArgObj, 'Diagnostics', 'off');
addParameter (nvArgObj, 'NormalizeSignals', 'on');
addParameter (nvArgObj, 'EllipseKFact', 1);
addParameter (nvArgObj, 'CorridorRes', 100) ;
addParameter (nvArgObj, 'MinCorridorWidth', 0);
addParameter (nvArgObj, 'nWarpCtrlPts', 0);
addParameter (nvArgObj, 'WarpingPenalty', le-2);
addParameter (nvArgObj, 'UseParallel', 'off');

nvArgObj.KeepUnmatched = true;
nvArgObj.CaseSensitive = false;

parse (nvArgObj, varargin{:});
nvArg = nvArgObj.Results; % Structure created for convenience

% check if parallel toobox is installed, then if parpool is running. Error
out if not installed, start pool if not already started.
v = ver;
hasParallel = any(strcmp(cellstr (char(v.Name)), 'Parallel Computing Toolbox'));
if strcmp (nvArg.UseParallel, 'on')
if ~hasParallel
error ('Parallel Computing Toolbox is not installed. Set option UseParallel to

oo

off'")

125



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

end
p = gcp('nocreate');
if isempty (p)
parpool () ;
end
end

%% Add third party functions to path

funcPath = mfilename ('fullpath');

funcPath = fileparts (funcPath);

addpath (fullfile (funcPath, 'ThirdPartyFunctions'));

oo

% Process input options
Check if structure with specID, struct w/o specID, cell array. Error out
otherwise. Places inputs into structure format.
if isstruct (inputSignals)
if ~isfield(inputSignals, 'specId')
for iSignal = 1l:length (inputSignals)
inputSignals (iSignal) .specId = .
['Signal ' num2str (iSignal, '$3d')];

oo

oo

end
end
elseif iscell (inputSignals)
inputSignals = cell2struct (inputSignals, 'data');
for iSignal = 1l:length(inputSignals)
inputSignals (iSignal) .specId = ['Signal ' num2str(iSignal, '%3d')]:;
end
end

oo

% Compute arclength based on input signal datapoints
Do not perform normalization
if strcmp (nvArg.NormalizeSignals, 'off"'")
for iSignal = 1l:length (inputSignals)
temp = inputSignals(iSignal).data; % Temporary for conveinence
% Compute arc-length between each data point
segments = sqrt( (temp(l:end-1,1)-temp(2:end,1l))."2
+ (temp(l:end-1,2)-temp(2:end,2))."2);

ae

alen = cumsum([0;segments]);
% Append cumulative arc length to data array
inputSignals (iSignal) .data = [inputSignals(iSignal) .data,alen];

[}

% Compute normalized arc-length

inputSignals (iSignal) .maxAlen = max(alen);

inputSignals (iSignal) .data = [inputSignals(iSignal) .data, ...
alen./inputSignals (iSignal) .maxAlen];

% Determine max [x,y] data

tempMax = max (temp, [],1);

inputSignals (iSignal) .xMax = tempMax (1) ;

inputSignals (iSignal) .yMax = tempMax (2);

% Remove spurious duplicates
[~,index,~] = unique (inputSignals(iSignal) .data(:,4));
inputSignals (iSignal) .data = inputSignals(iSignal) .data (index, :);

end

% Perform magnitude normalization based on bounding box

elseif strcmp(nvArg.NormalizeSignals, 'on')
% Determine bounding box of individual signals

for iSignal = l:length (inputSignals)
tempMin = min (inputSignals (iSignal) .data, [],1);
inputSignals (iSignal) .xMin = tempMin (1) ;
inputSignals (iSignal) .yMin = tempMin (2);
tempMax = max (inputSignals (iSignal) .data, [],1);
inputSignals (iSignal) .xMax = tempMax (1) ;
inputSignals (iSignal) .yMax = tempMax (2);

end
xBound = [mean ([inputSignals.xMin]), mean([inputSignals.xMax])];
yBound = [mean ([inputSignals.yMin]), mean ([inputSignals.yMax])];

[}

% Normalize the axis of each signal, then do arc-length calcs
for iSignal = l:length (inputSignals)
temp = inputSignals(iSignal).data; % Temporary for conveinence
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[}

% Normalize from bounding box to [-1,1]
temp = [temp(:,1)./(xBound(2)-xBound(1l)),...

temp (:,2) ./ (yBound(2)-yBound(1))];
% Compute arc-length between each data point
segments = sqrt( (temp(l:end-1,1)-temp(2:end,1l))."2
+ (temp(l:end-1,2)-temp(2:end,2))."2);

alen = cumsum([0;segments]);
% Append cumulative arc length to data array
inputSignals (iSignal) .data = [inputSignals(iSignal) .data,alen];

[}

% Compute normalized arc-length

inputSignals (iSignal) .maxAlen = max(alen);

inputSignals (iSignal) .data = [inputSignals(iSignal) .data,...
alen./inputSignals (iSignal) .maxAlen];

% Determine max [x,y] data

tempMax = max (abs (temp), [],1);

inputSignals (iSignal) .xNormMax = tempMax (1) ;

inputSignals (iSignal) .yNormMax = tempMax (2) ;

% Remove spurious duplicates
[~,index,~] = unique (inputSignals(iSignal) .data(:,4));
inputSignals (iSignal) .data = inputSignals(iSignal) .data (index, :);

end

% Error handling if NormalizeSignals argument is not defined correctly
else

error ('Normalization method not recognized')
end
% Compute mean and median arc-length deviation
meanAlen = mean ([inputSignals.maxAlen]);
for iSignal=1l:length(inputSignals)

inputSignals (iSignal) .meanDevs =

inputSignals (iSignal) .maxAlen-meanAlen;

end

medianAlen = median([inputSignals.maxAlen]) ;
for iSignal=1l:length (inputSignals)
inputSignals (iSignal) .medianDev = .
inputSignals (iSignal) .maxAlen-medianAlen;
end

%% Resample response signal based on normalized arc-length
or iSignal=1l:length (inputSignals)
% Linear-interpolation for x,y data against arc-length
normAlen = linspace (0,inputSignals (iSignal) .data(end,4), ...
nvArg.nResamplePoints) ';
resampX = interpl (inputSignals (iSignal) .data(:,4),...
inputSignals (iSignal) .data(:,1), normAlen);
resampY = interpl (inputSignals (iSignal) .data(:,4),...
inputSignals (iSignal) .data(:,2), normAlen);
% Resulting array is normalized arc-length, resampled x, resam. y
inputSignals (iSignal) .normalizedSignal = [normAlen, resampX, resampY];
end

h

do

% For each resampled point, determine average and standard deviation across signals
% Initialize arrays

charAvg = zeros (nvArg.nResamplePoints,2);

stdevData = zeros (nvArg.nResamplePoints,2);

for iPoints=1l:nvArg.nResamplePoints

clear temp; % probably cleaner way to do this.

% collect specific point from each signal
for iSignal=1l:length (inputSignals)

temp (iSignal, :) = inputSignals(iSignal) .normalizedSignal (iPoints,2:3);
end
charAvg (iPoints, :) = mean(temp,l);
stdevData (iPoints, :) = std(temp,1);

end
o

% Assign characteristic average and st. dev. data to a debug structure
debugOutput.charAvg = charAvg;
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debugOutput.stdevData = stdevData;

oo

% Align normalized arc-length signals based on minimized correlation.
% Enabled by option 'nWarpCtrlPts'. If 0, skip alignment.
if nvArg.nWarpCtrlPts > 0O

% Assemble signal matrices prior to correlation
signalX = zeros (nvArg.nResamplePoints, length(inputSignals));
signalY = zeros (nvArg.nResamplePoints, length (inputSignals));
for i=l:length(inputSignals)

signalX(:,1i) = inputSignals (i) .normalizedSignal(:,2);
signalY(:,1i) = inputSignals (i) .normalizedSignal(:,3);
end
[meanCorrScore, corrArray] = evalCorrScore (signalX,signalY);

[}

% Assign pre-optimized correlation scores to debug structure
debugOutput.preWarpCorrArray = corrArray;
debugOutput.preWarpMeanCorrScore = meanCorrScore;

% Optimize warp points for arbitrary n warping points. Build bounds,
% constraints, and x0s
nWarp = nvArg.nWarpCtrlPts;
nSignal = length (inputSignals);
if nWarp == 1 % nWarp == 1 is a special case as inequalites aren't needed
x0 = 0.50.*ones (nSignal*2,1);
1b = 0.15.*ones (nSignal*2,1);
ub = 0.85.*ones (nSignal*2,1);
A= [1];
b= [1;
elseif nWarp >= 15
error ('Specifying more than 10 interior warping points is not supported')
else
x0 = zeros (nWarp* (nSignal*2),1);
for i = l:nWarp
x0(((i-1)*nSignal)+(l:nSignal) + (i-1)*nSignal) =
i/ (nWarp+1) .*ones (nSignal, 1) ;
%0 (((i-1)*nSignal)+(l:nSignal)+i* (nSignal)) = i/ (nWarp+l) .*ones (nSignal,1l);
end
1b = 0.05.*ones (nWarp* (nSignal*2),1);
ub = 0.95.*ones (nWarp* (nSignal*2),1);
A = zeros ((nWarp-1)* (nSignal*2), nWarp* (nSignal*2));
b = -0.05.*ones ((nWarp-1) * (nSignal*2), 1); % Force some separation between
warped points
for iSignal = 1:(nSignal*2)
for iWarp = 1: (nWarp-1)
A(iSignal+ (iWarp-1) * (nSignal*2), iSignal+ (iWarp-1)* (nSignal*2)) = 1;
A(iSignal+ (iWarp-1) * (nSignal*2), iSignal+iWarp* (nSignal*2)) = -1;
end
end
end

% Setup optimization options ('UseParallel' option active here)
if strcmp (nvArg.UseParallel, 'on')
optOptions = optimoptions ('fmincon', ...
'MaxFunctionEvaluations',max (3000, (nWarp+1l).*1000),...
'Display', 'off', ...
'UseParallel', true);

else
optOptions = optimoptions ('fmincon', ...
'MaxFunctionEvaluations',max (3000, (nWarp+1l).*1000),...
'Display', 'off"', ...
'UseParallel', false);

end

[}

% Execute optimization and compute warped signals
optWarpArray = fmincon (@ (x)warpingObjective (x,nWarp, ...
inputSignals, nvArg), ...
x0, A, b, [1, []1, 1b, ub, [], optOptions);
optWarpArray = reshape (optWarpArray, [],nWarp) ;
[warpedSignals, signalX, signalY] =
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warpArcLength (optWarpArray, inputSignals, nvArg.nResamplePoints) ;

% Compute correlation score

[meanCorrScore, corrArray] = evalCorrScore (signalX,signalY);
% Assign warped correlation scores to debug structure
debugOutput.warpedCorrArray = corrArray;
debugOutput.warpedMeanCorrScore = meanCorrScore;

% Replace 'normalizedSignal' in 'responseSignal' and compute average and
% standard deviation.
for iSignal = 1l:length (inputSignals)
inputSignals (iSignal) .normalizedSignal = warpedSignals{iSignal};
inputSignals (iSignal) .warpControlPoints =
[[0,optWarpArray (iSignal+nSignal, :),1];...
[0, optWarpArray (iSignal, :),1]11;
end
for iPoints=1l:nvArg.nResamplePoints

[}

clear temp; % probably cleaner way to do this.
% collect specific point from each signal
for iSignal=1l:length(inputSignals)
temp (iSignal, :) = .
inputSignals (iSignal) .normalizedSignal (iPoints,2:3);

end
charAvg (iPoints, :) = mean(temp,l);
stdevData (iPoints, :) = std(temp,1);
end
end
%% Clamp minimum corridor width. Disabled if 'MinCorridorWidth' == 0

% Include influence of corridor scaling factor 'EllipseKFact'
if nvArg.MinCorridorWidth > 0
% Replace any stDevData below maximum st.dev. * 'MinCorridorWidth'
index = stdevData <...
(nvArg.MinCorridorWidth .* max(stdevData) .* nvArg.EllipseKFact);
stdevData (index(:,1),1) = (nvArg.MinCorridorWidth .* nvArg.EllipseKFact...
.* max (stdevData(:,1)));
stdevData (index (:,2),2) = (nvArg.MinCorridorWidth .* nvArg.EllipseKFact...
.* max (stdevData(:,2)));
end

%% Diagnostic: Plot normalized signals and St. Devs.
if strcmp (nvArg.Diagnostics,'on') || strcmpi (nvArg.Diagnostics, 'detailed')
figure ('Name', 'Diagnostic Signals');
cmap = lines (length (inputSignals)) ;
% Plot normalized x,y data
subplot (2,2,1); hold on;
for iSignal=1l:length (inputSignals)
pSignal (iSignal) = plot (inputSignals (iSignal) .normalizedSignal(:,2),...
inputSignals (iSignal) .normalizedSignal(:,3),"'.=-"',...
'color',cmap (iSignal, :), ...
'DisplayName', inputSignals (iSignal) .specId) ;
if (strcmp (nvArg.NormalizeSignals, 'off') ||
strcmp (nvArg.NormalizeSignals, 'on'))

continue
else
plot (inputSignals (iSignal) .data (inputSignals (iSignal) .alignInd, 1), ...
inputSignals (iSignal) .data (inputSignals (iSignal) .alignInd,2), ...
'kx', 'LineWidth',2.0)
end
end

xlabel ('x-data')

ylabel ('y-data')

legend (pSignal, 'location', 'Best')

title ('Arc-length Discretized Normalized Signals')
% Plot warpping functions
subplot (2,2,2); hold on
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'color',colours(iSignal, :), 'MarkerSize', 12, 'LineWidth',2.0)

end
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clea
if n

r pSignal
vArg.nWarpCtrlPts > 0O
colours = lines (nSignal);
for iSignal = 1l:nSignal

pSignal (iSignal) = plot (inputSignals (iSignal) .data(:,4),...

inputSignals (iSignal) .data(:,4)),...

'.-','DisplayName', inputSignals (iSignal) .specId, ...

'color',colours(iSignal,:), ...
'DisplayName', inputSignals (iSignal) .specId) ;

title ('Warping functions');
legend (pSignal, 'location', 'Best')

end
else

title ('No Warping Performed');
end
plot([0,11,10,11,"'--","'color',0.3.*[1,1,1])
xlabel ('Unwarped Normalized Arc-length')

ylab

$ Pl
subp

el ('Warped Normalized Arc-length')

ot normalized x data against arc-length with st. dev.
lot(2,2,3); hold on;

errorbar (inputSignals (1) .normalizedSignal (:,1),charAvg(:,1),...

stdevData(:,1), 'color',0.5.*%[1,1,1])

cmap = lines;
for iSignal=1l:length (inputSignals)
plot (inputSignals (iSignal) .normalizedSignal(:,1),...
inputSignals (iSignal) .normalizedSignal(:,2),"'.-"',...
'color',cmap (iSignal, :))
end
xlabel ('Normalized Arc-length')

ylab
titl

$ Pl
subp

el ('x-data')
e ('Average and St.Dev. of X-Data')

ot normalized y data against arc-length with st. dev.
lot(2,2,4); hold on;

errorbar (inputSignals (1) .normalizedSignal (:,1),charAvg(:,2),...

stdevData(:,2), 'color',0.5.*[1,1,1]

cmap = lines;
for iSignal=1:length(inputSignals)
plot (inputSignals (iSignal) .normalizedSignal(:,1), ...

inputSignals (iSignal) .normalizedSignal(:,3),"'.-"',...
'color',cmap (iSignal, :))

end

xlabel ('Normalized Arc-length')

ylabel ('y-data')

title ('Average and St.Dev. of Y-Data')

if strcmpi (nvArg.Diagnostics, 'detailed')

% Plot ellipses

figure('Name', 'Ellipses and Corridor Extraction Debug');
cmap = cbrewer2('set2',2);

colormap (cmap) ;

% plot ellipses based on standard deviation

for

iPoint=1:nvArg.nResamplePoints

ellipse (stdevData (iPoint, 1) .*nvArg.EllipseKFact, ...
stdevData (iPoint, 2) . *nvArg.EllipseKFact, 0, ...
charAvg (iPoint, 1), charAvg(iPoint,2),...
0.8.%[1,1,11);

end
cmap = lines (length (inputSignals)) ;
for iSignal=1l:length (inputSignals)

plot (inputSignals (iSignal) .data(:,1), ...
inputSignals (iSignal) .data(:,2),'-"', ...
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'DisplayName', inputSignals (iSignal) .specId, ...
'Color', cmap(iSignal, :))
end
plot (charAvg(:,1),charAvg(:,2),"'.-k', 'DisplayName', 'Char Avg', ...
'LineWidth', 2.0, '"MarkerSize',16)

oo

% Begin marching squares algorithm

Create grids based on upper and lower of characteristic average plus 120%

of maximum standard deviation

scaleFact = 1.2*nvArg.EllipseKFact;

[xx,yy] = meshgrid(...

linspace (min (charAvg(:,1)) - scaleFact*max(stdevData(:,1)),
max (charAvg(:,1)) + scaleFact*max(stdevData(:,1)),...
nvArg.CorridorRes), ...

linspace (min (charAvg(:,2)) - scaleFact*max(stdevData(:,2)),
max (charAvg(:,2)) + scaleFact*max(stdevData(:,2)),...
nvArg.CorridorRes)) ;

[}

zz = zeros(size (xx)); % initalize grid of ellipse values

ae

ae

[}

% For each grid point, find the max of each standard deviation ellipse
kFact = nvArg.EllipseKFact; % faster if no struct call in inner loop.
nRes = nvArg.CorridorRes; % again, for speed
% If 'UseParallel' is 'on', grid evaluation is performed using a parallel
% for loop.
if strcmp (nvArg.UseParallel, 'on')
parfor iPt = 1l:nRes

for jPt = l:nRes

z (iPt,jPt) = max (...
(((xx(iPt,jPt) - charAvg(:,1))."2 ./
(stdevData(:,1).*kFact) ."2
+ (yy(iPt,jPt) - charAvg(:,2))."2 ./
(stdevData(:,2) .*kFact) .”2).%=1));
end
end
% otherwise, use a standard forloop
else

for iPt = l:nRes
for jPt = l:nRes

z (iPt,jPt) = max (...
(((xx(iPt,jPt) - charAvg(:,1)).%2 ./
(stdevData(:,1).*kFact) ."2
+ (yy(iPt,jPt) - charAvg(:,2))."2 ./

(stdevData(:,2) .*kFact) .”2).%=1));
end
end
end

oo

The following segments is the marching squares algorith. The goal of this
algorithm is to find the zz=1 isoline, as this represents the outer
boundary of all elllipses.

o° o oo

oo

Described in brief, this algorithm goes through each point, looking at
its and its neighbours values. There are only 16 configurations of these
squares or cells. Based on the configuration, add the appropriate line
segments. This method uses linear interpolation to increase accuracy.
Initalize line segments for speed. This line may cause issues, as it
assumes maximum size. Bump up 10 if it does.

lineSegments = zeros (l0*max (nvArg.nResamplePoints,nvArg.CorridorRes), 4);

o° oo odo o

oo

iSeg = 0;
for iPt = 1l: (nvArg.CorridorRes-1) % Rows (y-axis)
for jPt = 1l:(nvArg.CorridorRes-1) % Columns (x-axis)

% Cell value definition
g 1 --2
G |
G |
s 8 —-- 4
% REMEMBER!!!!
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% array(i,j) = array(rows, columns,) = array(y,x)

By carefully defining cell values and definitions, we can use

% binary to simplify logic though a integer based switch case

oo

cellvalue =
1*(zz (iPt,jPt)>1) +
iPt+1,jPt)>1) +
iPt+1,jPt+1l)>1) +
iPt,jPt+1)>1) + 1

2* (zz
4% (zz
8* (zz ;
switch cellValue

case 1

[}

% No Vertices

case 2
% South-West
iSeg = iSeg+l;
lineSegments (iSeg, :)

[interpVal (xx (iPt, jPt), zz (iPt, jPt) ,xx (iPt, jPt+1l),zz (iPt,jPt+1l)),yy (iPt,jPt), ...
xx (1Pt, jPt),
interpval (yy (iPt,jPt),zz (iPt,jPt),yy (iPt+1l,3jPt),zz (iPt+1,JjPt))];
case 3
% West-North
iSeg = iSeg+l;
lineSegments (iSeg,:) = ...
[xx (1Pt+1,3jPt),interpval (yy (iPt,jPt),zz (iPt,jPt),
yy (1Pt+1,jPt),zz (iPt+1,3Pt)), ...
interpVval (xx (iPt+1,jPt),zz (iPt+1,jPt),
x (iPt+1,jPt+1l),zz (iPt+1,jPt+1l)),yy (iPt+1,jPt)];
case 4
% North-South
iSeg = iSeg+l;
lineSegments (iSeqg, :) =

[interpVal (xx (1iPt, jPt),zz (iPt, jPt) ,xx (iPt,jPt+1l),zz (iPt,jPt+1l)),yy (iPt, JPt)
interpval (xx (iPt+1,jPt),zz (iPt+1l,jPt),xx (iPt+1l,jPt+1),
z (1Pt+1,3Pt+1)),yy (iPt+1,jPt) ],
case 5
% North-East
iSeg = iSeg+l;
lineSegments (iSeg, :)

[interpVal (xx (1Pt+1,jPt),zz (iPt+1,jPt),xx (1iPt+1,jPt+1l),zz (iPt+1, jPt+1l)),yy (iPt+1l,jPt+1),

xx (1Pt+1,jPt+l),interpVval (yy (iPt+1, jPt+1),zz (1iPt+1,jPt+1l),

yy (iPt,jPt+1), zz (iPt,jPt+1))];
case 6 % Ambiguous

centerVal = mean([zz (iPt,jPt), z (iPt+1,3jPt), zz (iPt+1l,jPt+l), zz(iPt,

JPt+1)1);
if centerval >= 1

% West-North
iSeg = iSeg+l;
lineSegments (iSeg,:) = ...
[xx (1Pt+1, jPt),interpVal (yy (iPt, jPt),zz (iPt, jPt),
yy (1Pt+1,jPt),zz (iPt+1,3Pt)), ...
interpvVal (xx (iPt+1,jPt),zz (iPt+1,jPt),
x (iPt+1,jPt+1l),zz (iPt+1,jPt+1l)),yy (iPt+1,jPt)];
% South - East
iSeg = iSeg+l;
lineSegments (iSeqg, :) =

[interpVal (xx (iPt, jPt+1),zz (iPt, jPt+1),xx (iPt,jPt), zz (iPt, jPt)),yy (iPt, jPt+1), ..

(iPt, jPt+1l),interpVval (yy (iPt, jPt+1l),zz (iPt, jPt+1),yy (iPt+1l,jPt+1),zz (1iPt+1,jPt+1))];

else
% South-West
iSeg = iSeg+l;
lineSegments (iSeg, :)
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[interpVal (xx (iPt, jPt), zz (iPt, jPt) ,xx (iPt, jPt+1l),zz (iPt,jPt+1l)),yy (iPt,JjPt), ...
xx (1Pt, jPt),

) ,2zz (1Pt,jPt),yy (iPt+1,jPt),zz (1Pt+1,JjPt))1;

% North-East

iSeg = iSeg+l;

lineSegments (iSeqg, :) =

interpval (yy (iPt, jPt

[interpVal (xx (1Pt+1,jPt),zz (iPt+1,jPt),xx (1iPt+1,jPt+1l),zz (iPt+1, jPt+1l)),yy (iPt+1l, jPt+1),

xx (1Pt+1,jPt+1l),interpvVal (yy (iPt+1,jPt+1l),zz (iPt+1,jPt+1),
yy (iPt,jPt+1), zz (iPt,jPt+1))];
end
case 7
% West-East
iSeg = iSeg+l;
lineSegments (iSeg, :)

[xx (1Pt, jPt),interpVal (yy (iPt, jPt),zz (iPt,jPt),yy (iPt+1,jPt),zz (1iPt+1,JjPt)), ...

x (iPt, jPt+1), interpVal (yy (iPt, jPt+1l),zz (iPt, jPt+1l),yy (iPt+1,jPt+1l),zz (iPt+1,jPt+1))];
case 8
% South - East
iSeg = iSeg+l;
lineSegments (iSeqg, :) =

[interpVal (xx (iPt, jPt+1),zz (iPt, jPt+1) ,xx (iPt,jPt), zz (iPt,jPt)),yy (iPt, jPt+1l), ...

x (iPt, jPt+1), interpVal (yy (iPt, jPt+1l),zz (iPt, jPt+1l),yy (iPt+1,jPt+1l),zz (iPt+1,jPt+1))];
case 9
% South - East
iSeg = iSeg+l;
lineSegments (iSeqg, :) =

[interpVal (xx (iPt, jPt+1),zz (iPt, jPt+1) ,xx (iPt,jPt),zz (iPt,jPt)),yy (iPt, JPt+1l), ...

x (iPt, jPt+1), interpVal (yy (iPt, jPt+1l),zz (iPt, jPt+1l),yy (iPt+1,jPt+1l),zz (iPt+1,jPt+1))];
case 10
% West-East
iSeg = iSeg+l;
lineSegments (iSeg, :)

[xx (1Pt, jPt),interpVal (yy (iPt, jPt),zz (iPt, jPt),yy (iPt+1,jPt),zz (iPt+1,JjPt)), ...

x (iPt, jPt+1), interpVal (yy (iPt, jPt+1l),zz (iPt, jPt+1l),yy (iPt+1,jPt+1l),zz (iPt+1,jPt+1))];
case 11 % Ambiguous

centerVal = mean([zz(iPt,jPt), zz(iPt+l,jPt), =zz(iPt+l,jPt+l), zz (iPt,
JPt+1)1);

if centerval >= 1

% South-West
iSeg = iSeg+l;
lineSegments (iSeqg, :) =

[interpVal (xx (iPt, jPt), zz (iPt, jPt) ,xx (i1Pt, jPt+1l),zz (iPt, jPt+1l)),yy (iPt,JjPt), ...
xx (1Pt, jPt),

),2zz (1Pt,jPt),yy (iPt+1,jPt),zz (1Pt+1,JjPt))1;

% North-East

iSeg = iSeg+l;

lineSegments (iSeqg, :) =

interpval (yy (iPt, jPt

[interpVal (xx (1Pt+1,jPt),zz (iPt+1,jPt),xx (iPt+1,jPt+1l),zz (iPt+1, jPt+1)),yy (iPt+1l,jPt+1),

xx (1Pt+1,jPt+1l),interpvVal (yy (iPt+1l,jPt+1l),zz (iPt+1,jPt+1),
yy (iPt,jPt+1), zz (iPt,jPt+1))];
else
% West-North
iSeg = iSeg+l;
lineSegments (iSeg, :)
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[xx (1Pt+1, jPt),interpVal (yy (iPt, jPt),zz (iPt, jPt),
yy (1Pt+1,jPt),zz (iPt+1,3Pt)), ...
interpVal (xx (iPt+1,jPt),zz (iPt+1,jPt),
x (iPt+1,jPt+1l),zz (iPt+1,jPt+1l)),yy (iPt+1,3jPt)];
% South-East
iSeg = iSeg+l;
lineSegments (iSeqg, :) =

[interpVal (xx (iPt, jPt+1),zz (iPt, jPt+1) ,xx (iPt,jPt), zz (iPt,jPt)),yy (iPt, jPt+1l), ...

x (iPt, jPt+1), interpVal (yy (iPt, jPt+1l),zz (iPt, jPt+1l),yy (iPt+1,jPt+1l),zz (iPt+1,jPt+1))];
end
case 12
% North-East
iSeg = iSeg+l;
lineSegments (iSeqg, :) =

[interpVal (xx (1Pt+1,jPt),zz (iPt+1,jPt),xx (iPt+1,jPt+1l),zz (iPt+1, jPt+1l)),yy (iPt+1, jPt+1),

xx (1Pt+1,jPt+1l),interpval (yy (iPt+1l,jPt+1l),zz (iPt+1,jPt+1),
yy (iPt,jPt+1), zz (iPt,jPt+1))];
case 13
% North-South
iSeg = iSeg+l;
lineSegments (iSeqg, :) =

[interpVal (xx (1Pt, jPt),zz (iPt, jPt) ,xx (iPt,jPt+1l),zz (iPt,jPt+1l)),yy (iPt, jPt)
interpval (xx (iPt+1,jPt),zz (iPt+1l,jPt),xx (iPt+1l,jPt+1),
z (1Pt+1,3Pt+1)),yy (iPt+1,jPt) ],
case 14
% West-North
iSeg = iSeg+l;
lineSegments (iSeg,:) = ...
[xx (1Pt+1, jPt),interpVal (yy (iPt, jPt),zz (iPt, jPt),
yy (1Pt+1,jPt),zz (iPt+1,3Pt)), ...
interpVval (xx (iPt+1,jPt),zz (iPt+1,jPt),
x (iPt+1,jPt+1l),zz (iPt+1,jPt+1l)),yy (iPt+1,jPt)];
case 15
% South-West
iSeg = iSeg+l;
lineSegments (iSeg, :)

[interpVal (xx (1iPt, jPt), zz (iPt, jPt) ,xx (i1Pt, jPt+1l),zz (iPt,jPt+1l)),yy (iPt,JjPt), ...

xx (1Pt, jPt),
interpval (yy (iPt, jPt),zz (iPt, jPt),yy (iPt+1,jPt),zz (iPt+1,jPt))1;
case 16
% No vertices
end
end

end

lineSegments = lineSegments(l:iSeqg, :);
% Extract list of unique vertices from line segmens
vertices = [lineSegments(:,1:2);lineSegments(:,3:4)];
vertices = uniquetol (vertices, eps, 'ByRows', true);

% Create a vertex connectivity table. The le-12 value is here because

% floats don't round well and == will not work.

vertConn = zeros(size (lineSegments,1l),2);

for i = l:length(vertConn)
index = all (abs(lineSegments(:,1:2) - vertices(i,:)) < le-12,2);
vertConn (index, 1) = 1i;
index = all (abs(lineSegments(:,3:4) - vertices(i,:)) < le-12,2);
vertConn (index, 2) = 1i;

end

%% Start line segments sorting and envelope extraction
nEnvelopes = 1;
allEnvelopes(1,1) = 1; % First entry is always vertex 1
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for i = l:size(vertConn,1)-1
% save vertex to find
vertToFind = vertConn (i, 2);
j = i+l; % helper index
% Find connecting node
foundShiftedInd =...
find (any (vertConn(j:end, :) == vertToFind,2), 1, 'first');
% If we have found an index
if ~isempty (foundShiftedInd)
foundInd = foundShiftedInd + 1i;
% swap found vert conn row with j row
temp = vertConn (j,:);
% Now, decide whether to flip found row. We want vertex 2 of

% previous line to be node 1 of the new line.

if (vertConn (foundInd,l) == vertToFind)
vertConn (j,:) = vertConn (foundInd, [1,2]);
else
vertConn (j,:) = vertConn (foundInd, [2,1]);
end

[}

% Logic to prevent overwriting, if found row is next row.
if (foundInd ~= 3j)
vertConn (foundInd, :) = temp;
end
If we did not find an index, we either may have an open envelope or
% envelope may be convex and loops back on itself.
lse
% Check to see if we can find the first vertex in envelope
% appearing again (check for closure)
vertToFind = vertConn (allEnvelopes (nEnvelopes,l));
foundShiftedInd = ...
find (any (vertConn(j:end,:) == vertToFind,2), 1, 'first');
If we do not find an index, it means this envelope is complete
and manifold
if isempty (foundShiftedInd)
% Assign indices to finish current envelope, initialize next
allEnvelopes (nEnvelopes,2) = 1i;
nEnvelopes = nEnvelopes + 1;
allEnvelopes (nEnvelopes, 1) = j;
else

o

[0

oo

oo

oo

This error should only occur if envelopes extend beyond
sampling grid, which they should not.
error ('Literal Edge Case')

oo

end
end
end
allEnvelopes (nEnvelopes,2) = J;
% Find largest envelope
[~,envInds] = max(allEnvelopes(:,2)-allEnvelopes(:,1));

[}

% Convert indices in evelopes to array of (x,y)
envIinds = allEnvelopes (envInds, :);
envelope = vertices (vertConn (envInds(l) :envInds(2),1),:);

% For debugging, plot all envelopes
if strcmpi (nvArg.Diagnostics, 'detailed')
for iEnv = l:nEnvelopes
envIinds = allEnvelopes (iEnv, :);
plot (vertices (vertConn (envInds (1) :envInds(2),1),1),...
vertices (vertConn (envInds (1) :envInds(2),1),2),...
'.-b', 'LineWidth',1.0)
end
end

do

% Divide the envelope into corridors.

To break the largest envelop into inner and outer corridors, we need to
account for several edge cases. First, we test to see if there are any
intercepts of the characteristic average and the largest envelope.
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closedEnvelope = [envelope; envelope(l,:)];
[~,~,1indexIntercept] = polyxpoly(closedEnvelope(:,1),closedEnvelope(:,2),...
charAvg(:,1),charAvg(:,2));

% If we find two intercepts, then we have no problem
if size(indexIntercept,l) >=2

iIntStart = indexIntercept(l,1);

iIntEnd = indexIntercept (end,1l);

ae

If we find only one intercept, we need to determine if the intercept is a
the start or end of the envelope. Then we need to extend the opposite
side of the characteristic average to intercept the envelope.
elseif size (indexIntercept,l) == 1
% If the single found point is inside the envelope, the found intercept
is at the end. Therefore extend the start
if inpolygon (charAvg (indexIntercept(2),1),...
charAvg (indexIntercept (2),2), envelope(:,1),envelope(:,2))
iIntEnd = indexIntercept(l);
[iIntStart,~] = rayxpoly(charAvg(2,:)',...
(charAvg (1, :) -charAvg(2,:)) ', closedEnvelope);
iIntStart = iIntStart(l);

ae

ae

o

% If the single found point is outside the envelope, the found
intercept is the start

o

else
iIntStart = indexIntercept(l);
[iIntEnd, ~] = rayxpoly(charAvg(end-1,:)"',...
(charAvg(end, :) -charAvg(end-1,:))"', closedEnvelope);
iIntEnd = iIntEnd (1) ;
end

ae

If we find no intercepts, we need to extend both sides of characteristic
% average to intercept the envelop.

else
[iIntStart,~] = rayxpoly(charAvg(2,:)',...
(charAvg (1, :) -charAvg(2,:)) ', closedEnvelope);
iIntStart = iIntStart(l);
[iIntEnd, ~] = rayxpoly(charAvg(end-1,:)"',...
(charAvg(end, :) -charAvg(end-1,:)) "', closedEnvelope);
iIntEnd = iIntEnd(1);
end

oo

To divide inner or outer corridors, first determine if polygon is clockwise
or counter-clockwise. Then, based on which index is large, separate out
inner and outer corridor based on which intercept index is larger.

if ispolycw (envelope(:,1),envelope(:,2))

if iIntStart > iIntEnd

ae

oo

outerCorr = [envelope (iIntStart:end, :);envelope(l:iIntEnd,:)];
innerCorr = envelope (iIntEnd:iIntStart, :);
else
outerCorr = envelope (iIntStart:iIntEnd, :);
innerCorr = [envelope (iIntEnd:end, :);envelope (l:iIntStart,:)];
end
else
if iIntStart > iIntEnd
innerCorr = [envelope (iIntStart:end, :);envelope(l:iIntEnd, :)];
outerCorr = envelope (iIntEnd:iIntStart, :);
else
innerCorr = envelope (iIntStart:iIntEnd, :);
outerCorr = [envelope (iIntEnd:end, :);envelope (l:iIntStart,:)];
end

end

oo

Resample corridors. Use nResamplePoints. Because corridors are

non-monotonic, arc-length method discussed above is used.

Start with inner corridor. Magnitudes are being normalized.

segments = sqgrt(((innerCorr(l:end-1,1)-innerCorr(2:end, 1)) ./max (innerCorr(:,1)))."2
+ ((innerCorr (l:end-1,2)-innerCorr (2:end,2)) ./max (innerCorr(:,2)))."2);
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alen = cumsum([0;segments]);
alenResamp = linspace (0,max (alen),nvArg.nResamplePoints) ';
innerCorr = [interpl (alen,innerCorr(:,1l),alenResamp), ...
interpl (alen,innerCorr(:,2),alenResamp)];
% Outer Corridor
segments = sqrt(((outerCorr(l:end-1,1)-outerCorr(2:end, 1)) ./max (outerCorr(:,1)))."2
+ ((outerCorr (l:end-1,2)-outerCorr(2:end,2))./max (outerCorr(:,2)))."2);
alen = cumsum([0;segments]);
alenResamp = linspace (0,max (alen),nvArg.nResamplePoints) ';
outerCorr = [interpl (alen,outerCorr(:,1),alenResamp), ...
interpl (alen,outerCorr(:,2),alenResamp) ];

%% Add limits to detailed debug plot
if strcmpi (nvArg.Diagnostics, 'detailed')

xlim([min(xx(:)),max (xx(:))])
ylim([min(yy(:)),max(yy(:))])
end
varargout{l} = inputSignals;

varargout{2} = debugOutput;

[}

end % End main function
%% helper function to perform linear interpolation to an isovalue of 1 only
function val = interpval(xl, yl, x2, y2)
val = x1+(x2-x1)*(1-y1)/(y2-y1l);
end

%% Function used to evaluate correlation score between signals

function [meanCorrScore, corrScoreArray] = evalCorrScore (signalsX,signalsY)
% Correlation score taken from the work of Nusholtz et al. (2009)

% Compute cross-correlation matrix of all signals to each other

corrMatX = corrcoef (signalsX) ;

corrMatY = corrcoef (signalsY) ;

% Convert matrices to a single score

nSignal = size(corrMatX,?2);

corrScoreX = (1/(nSignal* (nSignal-1)))* (sum(sum(corrMatX))-nSignal);
corrScoreY = (1/(nSignal* (nSignal-1)))* (sum(sum(corrMatY))-nSignal);
% Compute a single metric for optimization purposes. Using simple mean
meanCorrScore = 0.5*% (corrScoreX+corrScoreY) ;

corrScoreArray = [corrScoreX, corrScoreY];

end

%% Function used to compute objective for optimization

function [optScore, penaltyScore] =

warpingObjective (optimWarp,nCtrlPts, inputSignals, nvArg)

Control points are equally spaced in arc-length.

optimwarp is a column vector with first warped control point in the

first nSignal indices, then 2nd control point in the next nSignal indices

o° oo

oo

[}

% warpArray = reshape (optimWarp, length (inputSignals),nCtrlPts) ;
nSignal = length (inputSignals);

warpArray = reshape (optimWarp, [],nCtrlPts);

% Compute a warping penalty

penaltyScore = warpingPenalty (warpArray,nvArg.WarpingPenalty,nvArg);

penaltyScore = mean (penaltyScore);

oo

Perform warping - non-mex version
[~, signalsX, signalsY] = warpArclLength (warpArray, inputSignals, ...
nvArg.nResamplePoints) ;

oo

oo

oo

IMPORTANT: This is a compiled mex verison of warpArcLength. The mex
function cannot be modified. If warpArcLength is updated later, you will
also need to recompile the mex function

signalCellArray = cell(nSignal,l);

for i=1:nSignal

signalCellArray{i} = inputSignals (i) .data;

end

[~, signalsX, signalsY] =

warpArcLength mex (warpArray,signalCellArray,nvArg.nResamplePoints);
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% Compute correlation score
[corrScore, ~] = evalCorrScore (signalsX,signalsY);
o

% corrScore 1is a maximization goal. Turn into a minimization goal
optScore = l-corrScoretpenaltyScore;

end

%% Function used to warp arc-length
function [warpedSignals, signalsX, signalsY]...

= warpArcLength (warpArray, inputSignals, nResamplePoints)
Warp array: each row is warping points for an input signal, each column
is warped point. Control points are interpolated on [0,1] assuming
equal spacing.
nSignals = length (inputSignals) ;

o° oo

oo

% lmCtrlPts = linspace(0,1,2+nCtrlPts);
IlmCtrlPts = [0,warpArray(end,:),1l];

oo

[}

% Initialize matrices

signalsX = zeros (nResamplePoints, nSignals);
signalsY = zeros (nResamplePoints, nSignals);
warpedSignals = cell (nSignals,1);

for iSignal = 1l:nSignals

% Assign responseSignal data array to matrix for brevity
signal = inputSignals(iSignal) .data;

ImCtrlPts = [0,warpArray(iSignal+nSignals,:),1];
% prepend 0 and append 1 to warp points for this signal to create valid

% control points.
warpedCtrlPts = [0,warpArray(iSignal,:),1];

o

Construct warping function using SLM. This warps lmAlen to shiftAlen.
Use warping fuction to map computed arc-lengths onto the shifted
system. use built-in pchip function. This is a peicewise monotonic
cubic spline. Signifincantly faster than SLM.

warpedNormAlen = pchip (lmCtrlPts,warpedCtrlPts,signal(:,4));

e oo

o

[}

% Now uniformly resample normalzied arc-length
resamNormwarpedAlen = linspace (0,1, nResamplePoints)';
resampX = interpl (warpedNormAlen, signal(:,1),
resamNormwarpedAlen, 'linear’', 'extrap');
resampY = interpl (warpedNormAlen, signal(:,2),
resamNormwarpedAlen, 'linear’', 'extrap');

% Assign to array for correlation calc
signalsX(:,iSignal) = resampX;
signalsY (:,iSignal) = resampY;

% Assemble a cell array containing arrays of resampled signals. Similar

to 'normalizedSignal' in 'inputSignals' structure
warpedSignals{iSignal} = [resamNormwarpedAlen,resampX,resampY];

end

o

end

%% Penalty function to prevent plateaus and extreme divergence in warping functions
function [penaltyScores] = warpingPenalty(warpArray,penaltyFactor,nvArg)

Compute an array of penalty scores based on MSE between linear, unwarped

% arc-length and warped arc-length. Aim is to help prevent plateauing.

oo

[nSignals, nCtrlPts] = size (warpArray);
nSignals = nSignals/2;
% lmCtrlPts = [0, warpArray(end,:), 1];

penaltyScores = zeros(nSignals,1);
unwarpedAlen = linspace(0,1,nvArg.nResamplePoints);

for iSignal=1:nSignals
penaltyScores (iSignal) = sum( (unwarpedAlen - ...
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pchip ([0, warpArray (iSignal+nSignals, :), 1], ...
[0,warpArray(iSignal, :),1l],unwarpedAlen)) ."2);
end

penaltyScores = penaltyScores.*penaltyFactor;
end

%% Function to find intercept of Ray and Polygon

function [indices, intercepts] = rayxpoly(basePt, dirVec, poly)

Finds the intersections of a ray and polygon by incrementally solving the
ray-line segment problem.

o° oo oo

ae

Algorithm: rootllama.wordpress.com/2014/06/20/ray-line-segment-intersection-test-in-
d/

a0 N

oo

basePt and dirVec are [2,1] vectors. Poly is a list of vertices in a
closed polygon

o° oo

oo

If multiple intercepts are found, they are sorted from closest to base
point to furthest.

oo

)

nVerts= size(poly,1l)-1; % Closed polygon so legnth+1l

indices = [];
intercepts = [];
% Cycle through line segments, and check if ray intercepts line segments
for iVert = 1l:nVerts

% a is first point, b is second point
= poly (iVert,:)"';
poly(ivert+1l, :)';

o W
Il

% Define three helper vectors
vl = basePt-a;

v2 = b-a;
v3 = [-dirVec(2), dirVec(l)]"';
% tl is parameter for ray

1
= (v2(1)*v1(2) = v1(1l)*v2(2))/dot(v2, v3);
% t2 is parameter for line segment

= dot (vl, v3)/dot(v2, v3);

% Ray intercepts segment iff tl is positive (forward ray projection)
% and 0<t2<=1

if ( (t1>0) && (t2>0) && (t2<=1) )
% record first index of line segment and coordinates of intercept
indices = [indices; iVert];
intercepts = [intercepts; (a+(b-a)*t2)'];

end

end

% If more than one intercept, sort them from closest to furthest
if size(indices,1) > 1

[~, sortInd] = sort(vecnorm(intercepts-basePt',2,2));
indices = indices (sortInd);
intercepts = intercepts(sortlInd, :);

end

end
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2.1.2. PreProcessInputSignals.m

do

% Pre-process Input Signals

oo

oo

This script pre-processes input signals which will be subsequently used
for to generate a characteristic average and response corridors.
Preprocessing amalgoamtes several curves, ensures the validity of said
curves, and saves the data into a single MATLAB data file for later use.

o° oo oo oo

oo

This script is provided as part of ARCGen, which is released under a GNU
GPL v3 license. No warranty or support is provided. The authors any
responsibility for the validity, accuracy, or applicability of any
results obtained from this code.

o° o o oo

ae

Input signals must be saved in individual CSV files, with data saved in
columns. The user can set which two column indices are used as the input
x and y data.

o° o oo

ae

Corridor generation is performed in a separate script

ae

ae

Corridor generation scripts requires that input data be organized using a
structure array. The structure array must have two entries per response
curve

+ data: [n,2] array of x-y data

+ specId: A character string used as a specimen identifier.

0P o° d° o oo

oo

This script has four options to specify "specId" in a programatic
fashion. This is defined using "flagAlterSpecID".

oo

% + "No": "specId" is taken directly from the file name of the .csv

% + "RemoveUnderscore": "specId" is the file name of the .csv with

% underscores replaced with spaces

% + "Squential": "specId" is defined sequential with "sequentialBase"

% used as a prefix

% + "Manual": "specId" is defined using the cell array "manualSpecIds".
% "manualSpecId" must be the same length as .csv file being

% processed.

oo

oo

Copyright (c) 2022 Devon C. Hartlen

%% Initialization
fclose all;

close all;

clear;

elep

addpath ('ThirdPartyFunctions') % Path to 3rd party functions

%% Select desired data files to be processed

% This is accomplished with a UI

inputFilenames = uipickfiles ('Output', 'struct');

% correct file names

for iFile = l:length(inputFilenames)
[~,name,ext] = fileparts (inputFilenames (iFile) .name) ;
inputFilenames (iFile) .specId = name;

end

do

% Alter specimen ID from file name (if desired)
% Cases: 'No', 'RemoveUnderscore', 'Sequential', 'Manual'

flagAlterSpecID = 'No';
sequentialBase = 'ID';
manualSpecIds = {...
VIDLY 2 00
'ID2'; ...

}i
switch flagAlterSpecID
case 'No'
disp('Skipping rename')
case 'RemoveUnderscore'
for iFile = l:length(inputFilenames)
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inputFilenames (iFile) .specId =

replace (inputFilenames (iFile) .specId,' (x)',"'");
inputFilenames (iFile) .specId =
replace (inputFilenames (iFile) .specId,' ',"' ');

end
case 'Sequential'
for iFile = l:length(inputFilenames)
inputFilenames (iFile) .specId =
[sequentialBase ' ' num2str(iFile, '%3d')];
end
case 'Manual'
if length (manualSpecIds) ~= length (inputFilenames)
error ('Not enough manual IDs specified')
else
for iFile = 1l:length(inputFilenames)
inputFilenames (iFile) .specId = manualSpecIds{iFile};
end
end
end

do

% Load response curves

% Specify x,y columns of datafile to be loaded

indicesCurves = [1,2];

inputSignals = struct([]); % initialization

for iFile = l:length(inputFilenames)
curveData = readmatrix (inputFilenames (iFile) .name); % R2020a required
inputSignals (iFile) .specId = inputFilenames (iFile) .specId;
inputSignals (iFile) .data = curveData(:,indicesCurves);

end

%% Save response curves to file
uisave ({'inputSignals'})
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2.1.3. Arcgen_executer.m

[charAvg, innerCorr, outerCorr, processedSignalData, debugData] = arcgen (inputSignals,
'nWarpCtrlPts', 2);
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3. MATLAB CODE LIBRARY

3.1. Method 1: B-Spline approximation and Principal Component Analysis of
individual landmark trajectories

3.1.1. Spline_analysis_all_tests_together.m

oo

First index: subject

Second index: trial

Third index: landmark (1- head, 2-C4, 3-T1, 4-T4, 5-T8, 6-Hpoint)
clear all;

oo

oo

[}

% List of test names

test names = {'1679', '1684', '1689', '1694', '1767', '1858', '1865', '1869', '1873',
"1771', '1774', '1778', '1780', '1862'};
Stest names = {'1679', '1684', '1689', '1694', '1767', '1771', '1774', '1778', '1780"',
'1858", '1862', '1865', '1869', '1873'};

num_ test = length (test names);

n = input ('How many control points? ', 's');
n = str2num(n);
order = 3;

if (n < order)
disp([' !!! Error: Choose n >= order=', num2str (order), ' !!!']);
return; z

end

for ctr_test = l:num test
test name = test names{ctr test};

file name = strcat('/Users/alicia/Desktop/mobios/Lopez-Valdes 2024- Comparison of

volunteers and PMHS/Data analysis w splines/data/', test name, '.xlsx');
% Head
if strcmp(test name, '1684")
data{ctr test,1}(:,1) = xlsread(file name, 3, 'B106:B311'); %only 300 ms:
approximate time when the reflex response may begin to influence
data{ctr test,1}(:,2) = xlsread(file name, 3, 'D106:D311'); %same
else
data{ctr test,1}(:,1) = xlsread(file name, 3, 'B106:B405'); %only 300 ms:
approximate time when the reflex response may begin to influence
data{ctr test,1}(:,2) = xlsread(file name, 3, 'D106:D405'); %same
end
$data{ctr test,1}(:,1) = xlsread(file name, 3, 'B106:B405'); %only 300 ms:
approximate time when the reflex response may begin to influence
$data{ctr test,1}(:,2) = xlsread(file name, 3, 'D106:D405'); %same
% C4
data{ctr test,2}(:,1) = xlsread(file name, 3, 'H106:H405'); %only 300 ms:
approximate time when the reflex response may begin to influence
data{ctr test,2}(:,2) = xlsread(file name, 3, 'J106:J405'); %same
$ T1
if strcmp(test name, '1865'")
data{ctr test,3}(:,1) = xlsread(file name, 3, 'K106:K260'");
data{ctr test,3}(:,2) = xlsread(file name, 3, 'M106:M260'");
else
data{ctr test,3}(:,1) = xlsread(file name, 3, 'K106:K405'");
data{ctr test,3}(:,2) = xlsread(file name, 3, 'M106:M405'");
end
$ T1
$data{ctr test,3}(:,1) = xlsread(file name, 3, 'K106:K405'); %only 300 ms:
approximate time when the reflex response may begin to influence
$data{ctr test,3}(:,2) = xlsread(file name, 3, 'M106:M405'); %same
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% T4
data{ctr test,4}(:,1) = xlsread(file name, 3, 'N106:N405'");
approximate time when the reflex response may begin to influence
data{ctr test,4}(:,2) = xlsread(file name, 3, 'P106:P405'); %same
% T8
data{ctr test,5}(:,1) = xlsread(file name, 3, 'Q106:Q405'");
approximate time when the reflex response may begin to influence
data{ctr test,5}(:,2) = xlsread(file name, 3, 'S106:5405'); %same
% H-point
data{ctr test,6}(:,1) = xlsread(file name, 3, 'E106:E405'");
approximate time when the reflex response may begin to influence
data{ctr test,6}(:,2) = xlsread(file name, 3, 'G106:G405'); %same
% Zeroing displacements
for ctr_var = 1:6
data{ctr test,ctr var}(:,1) = data{ctr test,ctr var}(:,1) -
data{ctr test,ctr var}(1,1);
data{ctr test,ctr var}(:,2) = data{ctr test,ctr var} (:,2) -
data{ctr test,ctr var}(1,2);
end
for ctr_var = 1:6
if strcmp(test name, '1865') && ctr var == 3
cut = 0;
elseif strcmp(test name, '1684') && ctr var == 1
cut = 6;
else
cut = 100;
end
interval = floor((length(data{ctr test,ctr var}) - cut) / (n));
% 100 is to stop at t=200 ms
$fprintf ('E1l valor de interval es: %d\n', interval);
$fig{ctr_var} = figure;
x (1) = data{ctr test,ctr var}(l,1);
x(n) = dataf{ctr_test,ctr var} (end-cut,1);
z(l) = data{ctr_test,ctr_var}(1,2);
z(n) = data{ctr test,ctr var} (end-cut,2);
for i = 2:n-1
x (i) = data{ctr test,ctr var} ((i-1) * interval, 1);
z (i) = data{ctr test,ctr var} ((i-1) * interval, 2);
end
for i = 1:n
pl{ctr test,ctr var}(i,:) = [x(i); z(i)];
end
% {
plot (p{ctr test,ctr var}(:,1), p{ctr test,ctr var}(:,2), 'k-',
hold on; box on;
plot (p{ctr test,ctr var}(:,1), p{ctr test,ctr var}(:,2), 'ro',
'MarkerFaceColor', 'r');

%)

% Method 1

T = linspace (0, 1, i - order
if strcmp(test name,

y = linspace (0,

'1865")
1, 156);

+ 2);

&& ctr_var==
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else
y = linspace (0, 1, 201);
end
p_spl{ctr test,ctr var} = DEBOOR(T, p{ctr_test,ctr var}, y, order);

% Method 2
y = linspace (0, 201,

oo

% {

plot (p_spl{ctr test,ctr var}(:,1), p_spl{ctr test,ctr var}(:,2), 'b-',
'LineWidth', 2);

hold off;

5}

% Assess of RMS error

% Evaluation of spline at all X positions

RMSE{ctr test,ctr var} = 0;

% Ensure lengths match for RMSE calculation

min length = min(length(p spl{ctr test,ctr var}(:,1)),
length (data{ctr test,ctr _var}(:,1)));

aux = zeros(l, min length);
% k{ctr test,ctr var} = 0;

$for ctr = l:length(p_spl{ctr test,ctr var}(:,1))
for ctr = 1l:min_length

% if floor(p_spl(ctr,1l) - data{ctr test,ctr var} (ctr+99,1)) < 1
aux (ctr) = (p_spl{ctr test,ctr var} (ctr,2)
data{ctr test,ctr var} (ctr,2))"2;

RMSE{ctr test,ctr var} = RMSE{ctr test,ctr var} + aux(ctr);
% k{ctr test,ctr var} = k{ctr test,ctr var} + 1;
% else
% aux = 0;

end

RMSE{ctr_ test,ctr var} = ((1 / length(aux(ctr))) * RMSE{ctr test,ctr var})”"0.5;

%% RMSE calculation with evenly spaced points
RMSE spaced{ctr test,ctr var} = 0;
% Number of points including first and last
n_points = 10;

% Ensure sample_ indices are within bounds
max_ idx = length(p_spl{ctr test,ctr var});
sample indices = round(linspace(l, max idx, n points));

aux_spaced = zeros(l, length(sample indices));
valid count = 0; % Counter to track valid indices

for ctr = l:length(sample indices)
idx = sample indices(ctr);
if idx > max idx

idx = max_idx;
end
aux_spaced(ctr) = (p_spl{ctr test,ctr var} (idx,2) -
data{ctr_ test,ctr var} (idx,2))"2;
RMSE spaced{ctr test,ctr var} = RMSE spaced{ctr test,ctr var} +
aux_spaced(ctr) ;
end
RMSE_spaced{ctr test,ctr var} = sqgrt(mean(aux spaced)) ;

end
%% Create a figure to display original data and spline curves

landmark names = {'head',6 'C4', 'Tl1', 'T4', 'T8', 'Hpoint'};
figure;

% Loop over each variable (landmark)
for ctr_var = 1:6

% Plot original data points
subplot (2, 3, ctr var);
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plot (data{ctr_ test, ctr var}(:, 1), data{ctr test, ctr var}(:, 2), 'ro',
'MarkerSize', 5, 'MarkerFaceColor', 'r');

hold on;

% Plot spline curve

plot (p_spl{ctr test, ctr var}(:, 1), p_spl{ctr test, ctr var}(:, 2), 'b-',
'LineWidth', 2);

% Plot chosen RMSE points
sample indices = round(linspace(l, length(p_spl{ctr test, ctr var}), n points));
scatter (p_spl{ctr test, ctr var} (sample indices, 1), p spl{ctr test,
ctr_var} (sample_indices, 2),
'c', 'filled');
scatter (data{ctr test, ctr var} (sample indices, 1), data{ctr test,
ctr_var} (sample_indices, 2),
'g', 'filled');

% Set plot title
title(sprintf ('Variable: %s', landmark names{ctr var}));
xlabel ('X-coordinate') ;
ylabel ('Y-coordinate') ;
legend('Original Data', 'Spline Curve');
grid on;
end
% Adjust figure layout
figure title = sprintf ('Test: %s. Comparison of Original Data and Spline Curves for
Each Landmark', test names{ctr test});
sgtitle(figure title);

end

%% Create p-eld

% Initialize p eld as an empty cell array
p_eld = cell (5, 6); % Assuming 5 tests for older people

% Move data from rows 10 to 14 of p to p _eld
eld = p(10:14, :);

o}

% Clear rows 10 to 14 of p
(10:14, :) = []1;

o}

%% Analyse RMSE

max RMSE = max(cellfun (@max, RMSE spaced));

fprintf ('Maximum RMSE Head for %d RMSE points: %.4f\n', n points, max RMSE (1)) ;
average RMSE = mean(cellfun (@mean, RMSE spaced));

fprintf ('Average RMSE Head for %d RMSE points: %.4f\n', n points, average RMSE (1)) ;

%% Calculate average and standard deviation of RMSE spaced for each landmark

average RMSE spaced = zeros(l, 6);
stdev_RMSE spaced = zeros(l, 6);

for ctr_var = 1:6
% Extract RMSE_spaced values for the current landmark
rmse_values = [];

for ctr_test = l:num test

rmse values = [rmse values, RMSE spaced{ctr test, ctr var}];
end
average RMSE_spaced(ctr_var) = mean(rmse_values) ;
stdev_RMSE_spaced(ctr_var) = std(rmse_values);
end

T = table(landmark names', average RMSE spaced', stdev RMSE spaced',
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'VariableNames', {'Landmark',6 'Average RMSE spaced',6 'Stdev RMSE spaced'});
disp (T);
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3.1.2. All_coordinates_any n.m
%% Chose landmark

disp ('Landmark IDs are as follows:');
% Landmarks array
landmarks = {'l- head', '2- C4', '3- Tl1', '4- T4', '5- T8', '6- Hpoint'};

% Display each landmark on a new line
for i = l:length(landmarks)

fprintf ('$s\n', landmarks{i});
end

1 = input ('Which landmark? ', 's');
1 = str2num(l);

%% Young
for i = 1:9
for j = 1l:n % Loop through the number of control points
X(i, (2*j)-1) = p{i, 1} (3, 1); % X-coordinate
X (i, 2*j) = p{i, 1}(j, 2); % Y-coordinate
end
end

%% Elderly
for i = 10:14

for j = 1l:n % Loop through the number of control points
X (i, (2*3)-1) = p_eld{i-9, 1}(j, 1); % X-coordinate
X(i, 2*j) = p eld{i-9, 1} (j, 2); % Y-coordinate

end
end
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3.1.3. PCA_Analysis

% Standardize the Data
X_standardized = zscore (X);

% Perform PCA
[coeff, score, latent, tsquared, explained] = pca(X standardized);

[}

% Define Group Labels

groups = [ones (9, 1); 2*ones(5, 1)]; % 1 = Young, 2 = Elderly
groupNames = {'Young volunteers', 'Elderly volunteers'};
colors = ['r', 'b']l; % red = young, blue = elderly

[}

% Fonts and sizes
fontName = 'Helvetica';
fontSizeAxis = 12;
fontSizelLabel = 10;
markerSize = 50;

%% 2D PCA Plot: PCl vs PC2
figure('Color', 'w', 'Units', 'centimeters', 'Position', [5, 5, 16, 12]);
t = tiledlayout(l,1, 'Padding', 'compact', 'TileSpacing', 'compact');
sgtitle ('PCA Projection: 1lst and 2nd PC - H-Point', ...

'FontSize', fontSizeAxis + 2, 'FontWeight', 'bold'):;
ax = nexttile;

hold on;
for i = l:max(groups)
idx = groups == i;
scatter (score(idx, 1), score(idx,2), markerSize, colors(i), 'filled', 'DisplayName',
groupNames{i}) ;
for j = find(idx)'
text (score(j,l), score(j,2), sprintf('sd', j),
'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'right’,
'FontName', fontName, 'FontSize', fontSizelabel);
end
end
xlabel ('First Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis);
ylabel ('Second Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis);
set (gca, 'FontName', fontName, 'FontSize', fontSizeAxis);
legend('Location', 'bestoutside', 'FontName', fontName, 'FontSize', fontSizeAxis);
grid on;
hold off;

%% 3D PCA Plot: PCl vs PC2 vs PC3
figure('Color', 'w', 'Units', 'centimeters', 'Position', [5, 5, 16, 12]);
t = tiledlayout(l,1, 'Padding', 'compact', 'TileSpacing', 'compact');
sgtitle ('PCA Projection: 1lst, 2nd and 3rd PC - T1',
'FontName', 'Helvetica', 'FontSize', fontSizeAxis + 2, 'FontWeight', 'bold');

ax3 = nexttile;
hold on;

for i = l:max(groups)
idx = groups == i;
scatter3 (score(idx,1l), score(idx,2), score(idx,3), markerSize, colors(i), 'filled',
'DisplayName', groupNames{i});
for j = find(idx)'
text (score(j,l), score(j,2), score(j,3), sprintf('sd', 3J),
'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'right',
'FontName', 'Helvetica', 'FontSize', fontSizelLabel);
end
end
xlabel ('First Principal Component', 'FontName', 'Helvetica', 'FontSize', fontSizeAxis);
ylabel ('Second Principal Component', 'FontName', 'Helvetica', 'FontSize', fontSizeAxis);
zlabel ('Third Principal Component', 'FontName', 'Helvetica', 'FontSize', fontSizeAxis);

set (gca, 'FontName', 'Helvetica', 'FontSize', fontSizeAxis);
legend('Location', 'bestoutside', 'FontName', 'Helvetica', 'FontSize', fontSizeAxis);
grid on;
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view (3);
hold off;

%% Display explained variance
ExplainedVariance = table( ...

(1:3) ',

explained(1l:3),

'VariableNames', {'PrincipalComponent', 'VarianceExplained Percent'});
disp (ExplainedVariance) ;
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UNIVERSIDAD PONTIFICIA

3.2. Method 2: Landmark relative positioning analysis at peak displacement

3.2.1. Time_based_noHPoint.m
clear all;

oo
o

UPLOAD DATA
% List of test names

test names = {'1679', '1684', '1689', '1694', '1767', '1858', '1865', '1869', '1873',
'1771', '1774', '1778', '1780', '1862'};

num_ test = length(test names);

variable names = {'Head', 'C4', 'T1', 'T4', 'T8'}; % Removed H-point

[}

% Prompt the user to enter the number of evenly spaced points
num_points = input ('Enter the number of evenly spaced points: ');

% Calculate indices for evenly spaced points
indices_longest = round(linspace(l, 200, num points));

for ctr test =
test_name =

l:num test
test_names{ctr_test};

file name = strcat('/Users/alicia/Desktop/mobios/Lopez-Valdes 2024- Comparison of

volunteers and PMHS/Data analysis w splines/data/', test name, '.xlsx');
% Head
data{ctr test,1}(:,1) = xlsread(file name, 3, 'B106:B305'");
data{ctr test,1}(:,2) = xlsread(file name, 3, 'D106:D305'");
% C4
data{ctr test,2}(:,1) = xlsread(file name, 3, 'H106:H305'");
data{ctr test,2}(:,2) = xlsread(file name, 3, 'J106:J305'");
$ T1
if strcmp(test name, '1865'")
data{ctr test,3}(:,1) = xlsread(file name, 3, 'K106:K260'");
data{ctr test,3}(:,2) = xlsread(file name, 3, 'M106:M260'");
else
data{ctr test,3}(:,1) = xlsread(file name, 3, 'K106:K305'");
data{ctr test,3}(:,2) = xlsread(file name, 3, 'M106:M305'");
end
% T4
data{ctr test,4}(:,1) = xlsread(file name, 3, 'N106:N305'");
data{ctr test,4}(:,2) = xlsread(file name, 3, 'P106:P305');
% T8
data{ctr test,5}(:,1) = xlsread(file name, 3, 'Q106:Q305'");
data{ctr test,5}(:,2) = xlsread(file name, 3, 'S106:5305'");

[}

% Zeroing displacements and select evenly spaced data points
head initial coords = data{ctr test,l1} (1, :); %
for ctr var = 1:5 % Adjust loop to exclude H-point

data{ctr test, ctr var} = data{ctr test, ctr var} - head initial coords; %

Zeroing relative to the head's initial position

num data points = size(data{ctr test,ctr var}, 1);

valid indices = indices longest (indices longest <=

selected data{ctr test, ctr var} = data{ctr test,

num_data points);

ctr_var} (valid_indices, :);
end

end

%% STORE SELECTED VALUES IN selected values all tests MATRIX

[}

% Number of variables
num _vars = 5; %

(body parts)
Adjusted to exclude H-point
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% Initialize cell array to store selected values for each test
selected values all tests = cell(num test, 1);

for ctr_test = l:num test
% Initialize a matrix to store the selected values for the current test

num_selected points = size(selected data{ctr test, 1}, 1);

selected values = NaN(num selected points, num vars * 2); % 2 columns for each

variable (x and y)

% Iterate over each variable
for ctr var = l:num vars
o

% Extract the selected points for the current variable
selected points = selected data{ctr test, ctr var};

% Store the selected points in the matrix
if ~isempty(selected points)
num _points = size(selected points, 1);
selected_values(l:num_points, (ctr_var - 1) * 2 + l:ctr _var * 2) =
selected points;
end
end

% Store the selected values for the current test
selected values all tests{ctr test} = selected values;
end

%% PLOT ALL TRAJECTORIES FOR ALL TESTS
% Prompt the user to enter the test number for plotting
test selection = input('Enter the test number to plot (1 to 14) or "all": ', 's');

if strcmpi(test selection, 'all')
num_plots = num_test;
else
num plots = 1;
ctr test = str2double(test selection);
end

% Setup figure for multiple subplots if needed
if num plots > 1

figure;

hold on;
end

for i = 1l:num plots
if num plots > 1
ctr_test = i;
subplot (ceil (sqrt (num plots)), ceil (sqrt (num plots)), 1i);
end

test data = selected values all tests{ctr test};

[}

[~, max idx] = max(test data(:, 1));

% Plotting

if num _plots == 1
figure;

end

hold on;

[}

colors = lines(5); % Generate distinct colors for each variable

[}

% Initialize plot handles
plot handles = gobjects(l, 5);

)

for ctr var = 1:5 % Adjust loop to exclude H-point
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% Plot the entire dataset
plot handles(ctr var) = plot(dataf{ctr_test, ctr var}(:, 1), dataf{ctr_ test,
(:

ctr var}(:, 2), 'Color', colors(ctr var, :));

[}

% Highlight the selected points
plot (selected data{ctr test, ctr var}(:, 1), selected data{ctr test, ctr var}(:,

2), 'o', 'Color', colors(ctr var, :), 'MarkerFaceColor',6K colors(ctr var, :));
end
for frame idx = l:num_points

[}

% Plot segments for current time frame
Initialize arrays to store x and z coordinates
x_coords = zeros(l, num vars);

z_coords = zeros(l, num vars);

oo

[}

% Extract x and z coordinates for current time frame

for ctr _var = l:num vars

x_coords (ctr_var) = test_data(frame_idx, 2*ctr_var - 1); % x coordinate
z_coords (ctr_var) = test_data(frame_idx, 2*ctr_var); z coordinate

o°

end

[}

% Plot segments connecting consecutive variable points

for ctr _var = l:num vars - 1
x_segment = [xX coords(ctr var), x coords(ctr var + 1)];
z_segment = [z coords(ctr var), z coords(ctr var + 1)];

% Determine the color based on the segment position
if frame_ idx < max_idx

color = [0.5, 0.5, 0.5]; % Grey
linewidth = 1.5;
elseif frame_ idx == max_idx
color = [0, 0O, 0]; % Black
linewidth = 2;
else
color = [0.8, 0.8, 0.8]; % Light grey
linewidth = 1;
end
plot (x_segment, z segment, '-o', 'Color', color, 'LineWidth', linewidth);

end
end
% Customize the plot
title(['Data and Selected Points for Test ' test names{ctr test}]);
xlabel ('X Displacement') ;
ylabel ('Z Displacement');
grid on;

% Only display legend for the last plot

if num plots == 1 || i == num plots
legend (plot _handles, variable names); % Corrected legend
end
if num _plots == 1
hold off;
end

end

if num plots > 1
hold off;
end

%% PLOT LONGEST TRAJECTORIES CHOSEN ALIGNMENT
% Prompt user to choose variable to align
disp ('Landmark IDs:');
landmarks = {'l- head', '2- C4', '3- Tl1', '4- T4', '5- T8'};
for i = l:length(landmarks)

fprintf ('$s\n', landmarks{i});
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end

align_var_index = input ('Enter the index of the variable to align: ');
% Create a figure for plotting all trajectories
figure;

hold on;

plot handles = gobjects(l, 14);
% Loop over each test
for ctr test = 1:14

test data = selected values all tests{ctr test};

% Find the index of the point with the highest x-coordinate
[~, max idx] = max(test data(:, 1));

% Initialize arrays to store x and z coordinates
x_coords = zeros(l, num vars);
z_coords = zeros(l, num vars);
% Extract x and z coordinates for the point with the highest x-coordinate
for ctr var = l:num vars
x_coords (ctr_var) = test_data(max idx, 2 * ctr _var - 1); % x coordinate
z_coords (ctr_var) = test_data(max_idx, 2 * ctr_var); z coordinate

o°

end
% Calculate initial coordinates based on user input
align_initial x = x_coords(align_var_index);
align_initial z = z_coords(align_var_index);
% Adjust all variables relative to the chosen variable
for ctr var = l:num vars
x_coords (ctr var) = x coords(ctr var) - align initial x;
z _coords (ctr var) = z coords(ctr var) - align initial z;
end

[}

% Plot segments connecting consecutive variable points

for ctr var = l:num vars - 1
x_segment = [xX coords(ctr var), x coords(ctr var + 1)];
z_segment = [z coords(ctr var), z coords(ctr var + 1)];

% Determine the color based on the test number
if ctr_test < 10

color = [1, 0, 0]; % red for test 1 to 9
else

color = [0, 0, 1]; % blue for test 10 to 14
end

[}

% Plot the segment and store the plot handle
plot handles(ctr test) = plot(x segment, z segment, '-o', 'Color', color,
'LineWidth', 1.5);
end
end
% Customize the plot
landmark _name = variable names{align_var_index};
title (sprintf ('Largest Head Displacement Trajectories, aligned at %s', landmark name));
xlabel ('X Axis');
ylabel ('Z Axis');
grid on;

[}

% Create legend for plot handles

legend entries = {'Young Volunteers',K 'Elderly Volunteers'};
legend colors = [plot(nan, nan, '-o', 'Color', [1, 0, 0], 'LineWidth', 2), ...
plot (nan, nan, '-o', 'Color', [0, 0, 1], 'LineWidth', 2)1];

legend(legend colors, legend entries);

[}

% Release the hold on the current figure
hold off;
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3.2.2. Pca_analysis_p2.m
%% STORE AND ZERO VALUES OF COORDINATES AT MAXIMUM HEAD DISPLACEMENT

% Initialize cell array to store max displacement values for each test
max_displacement values all tests = cell (num test, 1);

for ctr_test = l:num test
test data = selected values all tests{ctr test};

% Find the index of the point with the highest x-coordinate for the head (variable

1)
[~, max idx] = max(test data(:, 1));
% Initialize matrix to store the coordinates at maximum head displacement
max_displacement values = NaN(l, num_vars * 2); % 2 columns for each variable (x and
v)
% Extract x and z coordinates for the point with the highest x-coordinate
for ctr var = l:num vars
max_displacement values(l, (ctr_var - 1) * 2 + 1) = test_data(max_idx, (ctr_var
- 1) * 2 + 1); % x coordinate
max_displacement values(l, (ctr_var - 1) * 2 + 2) = test_data(max_idx, (ctr_var
- 1) * 2 + 2); % z coordinate
end
% Get the coordinates of the last variable (T8) at maximum displacement
t8 x = max displacement values(l, (num vars - 1) * 2 + 1);
t8 z = max displacement values(l, (num vars - 1) * 2 + 2);
% Zero the coordinates relative to T8
for ctr var = l:num vars
max displacement values(l, (ctr var - 1) * 2 + 1) = max displacement values (1,
(ctr var - 1) * 2 + 1) - t8 x; % zeroed x coordinate
max_displacement values(l, (ctr var - 1) * 2 + 2) = max displacement values (1,
(ctr var - 1) * 2 + 2) - t8 z; % zeroed z coordinate
end
% Store the zeroed max displacement values for the current test
max_displacement values all tests{ctr test} = max displacement values;
end

[}

%% Convert cell array to matrix
num_tests = length (max displacement values all tests);
num_features = num vars * 2; % Each variable has x and z coordinates

% Initialize matrix
X = NaN(num tests, num features);

for ctr_test = l:num tests
X(ctr test, :) = max displacement values all tests{ctr test};
end

% Standardize the Data
X_standardized = zscore (X);

% Perform PCA
[coeff, score, latent, tsquared, explained] = pca(X standardized);

% Define Group Labels
groups = [ones (9, 1); 2*ones (5, 1)]; % 1 for Young volunteers, 2 for Elderly volunteers

% Set font and size

fontName = 'Times New Roman';
fontSizeAxis = 16;
fontSizelabel = 14;

% 2D Plot for the first two principal components

155



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)
GRADO EN INGENIERIA EN TECNOLOGIAS INDUSTRIALES

figure;

hold on;

colors = ['r', 'b']l; % Red for Young volunteers, Blue for Elderly volunteers
groupNames = {'Young volunteers', 'Elderly volunteers'};

[}

% Plot each group with a loop
for i = l:max(groups)
idx = groups == i;
scatter (score(idx,1), score(idx,2), colors (i), 'filled');
% Label each point
individuals = find(idx);
for j = individuals'
text (score(j,1l), score(j,2), sprintf('%d', j), 'VerticalAlignment', 'bottom',
'HorizontalAlignment', 'right', 'FontName', fontName, 'FontSize', fontSizelLabel);
end
end

% Customizing the 2D plot
set (gca, 'FontName', fontName, 'FontSize', fontSizeAxis);
xlabel ('First Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis);
ylabel ('Second Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis);
legend (groupNames, 'FontName', fontName, 'FontSize', fontSizeAxis);
hold off;
% 3D Plot for the first three principal components
figure;
hold on;
% Plot each group in 3D
for i = l:max(groups)

idx = groups == i;

scatter3 (score(idx,1), score(idx,2), score(idx,3), colors (i), 'filled');

% Label each point

individuals = find(idx);

for j = individuals'

text (score(j,l), score(j,2), score(j,3), sprintf('sd', 3j),

'VerticalAlignment', 'bottom', 'HorizontalAlignment','right', 'FontName', fontName,
'FontSize', fontSizelLabel);

end
end

% Customizing the 3D plot

set (gca, 'FontName', fontName, 'FontSize', fontSizeAxis);

xlabel ('First Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis);
ylabel ('Second Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis);
zlabel ('Third Principal Component', 'FontName', fontName, 'FontSize', fontSizeAxis);
legend (groupNames, 'FontName', fontName, 'FontSize', fontSizeAxis);

grid on; % Ensure the grid is on for the 3D plot

view(3); % Ensure the view is in 3D

hold off;

% Displaying the variance explained by the first three components
fprintf ('Variance explained by the first principal component: %.2f%%\n', explained(l));

fprintf ('Variance explained by the second principal component: %.2f%%\n', explained(2));
f n'

fprintf ('Variance explained by the third principal component: %.2 , explained(3));
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3.2.3. Relative_positions_analysis.m
% Initialize Variables for Storing Data
variable distances = cell(l, num vars - 1);
p_values = NaN(l, num vars - 1);

oo

Initialize cell array to store distances
Initialize array to store p-values

oo

[}

% Calculate Distances for each pair of variables
for pair_idx = l:num vars - 1

distances = NaN(num test, 1); % Initialize array to store distances for current
pair

for ctr test = l:num test
test data = selected values all tests{ctr test};
% Find the index of the point with the highest x-coordinate for the head
(variable 1)
[~, max idx] = max(test data(:, 1));
% Extract x and z coordinates for the current pair of variables at the frame of
maximum head x-coordinate
varl x = test data(max idx, 2 * pair idx - 1);
varl_z = test_data(max_idx, 2 * pair_idx);

o

x-coordinate of variable 1
z-coordinate of variable 1

o°

o°

x-coordinate of variable 2
z-coordinate of variable 2

var2 x = test data(max idx, 2 * pair idx + 1);
var2 z test data(max idx, 2 * pair idx + 2);

o°

[}

% Calculate Euclidean distance between variable 1 and variable 2 at the
identified frame

distance_varl var2 = sqrt((varl_x - var2_x)"2 + (varl_z - var2_z)"2);

% Store the distance

distances (ctr_test) = distance_varl var2;

end
% Store distances for the current pair
variable_distances{pair_idx} = distances;
% Perform t-test to compare means for the current pair
distances young = distances (1:9);
distances elderly = distances(10:end);
[~, P, ~, ~] = ttest2(distances young, distances elderly);

% Store p-value for the current pair
p_values (pair idx) = p;
end

%% Compare Distances
% Display distances for each pair of variables

fprintf ('Distances between consecutive variables at frame of maximum head
displacement:\n') ;

fprintf ('%$-20s %-30s %-30s %-20s\n', 'Variable Pair', 'Mean * Std Dev (Young)', 'Mean %
Std Dev (Elderly)', 'p-value');
for pair_idx = l:num vars - 1

[}

% Separate distances for young and elderly volunteers for the current pair
distances young = variable distances{pair idx} (1:9);

distances elderly = variable distances{pair idx} (10:end);

% Calculate statistics for the current pair
mean distance y = mean (distances_ young) ;

std dev distance y = std(distances young);
mean distance e = mean (distances elderly);
std dev distance e = std(distances elderly);

% Display results in table format

fprintf ('%$-20s %-30s %-30s %.4f\n', ...
sprintf ('%$s & %s', variable names{pair idx}, variable names{pair idx + 1}),
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sprintf ('%.2f
sprintf ('%.2f
p_values (pair idx)

', mean distance y, std dev distance y),
', mean distance e, std dev distance e),

end

%% Initialize storage for angles at C4, Tl, and T4
angles all tests = NaN(num test, 3); % Columns: [C4, T1l, T4]

for ctr_test = l:num test
test data = selected values all tests{ctr test};

% Find MHD frame (max head x-displacement)
[~, max idx] = max(test data(:, 1));

% Extract (x, z) coordinates of landmarks at MHD

coords = zeros(num vars, 2); % Rows = landmarks, Cols = [x z]
for i = l:num vars

coords (i, :) = test data(max idx, (2*i-1):(2*1i));
end

% Compute internal angles

angle C4 = compute angle(coords(l,:), coords(2,:), coords(3,:)); % Head-C4-T1
angle Tl = compute angle (coords(2,:), coords(3,:), coords(4,:)); % C4-T1-T4
angle T4 = compute angle (coords(3,:), coords(4,:), coords(5,:)); % T1-T4-T8

[}

% Store results
angles all tests(ctr test, :) = [angle C4, angle T1l, angle T4];
end

function ang = compute angle(A, B, C)
% Returns angle in degrees at point B

BA = A - B;
BC = C - B;
ang = acosd(dot (BA, BC) / (norm(BA) * norm(BC)));

end
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generation of average trajectories and deviation corridors

3.3.1. generate_csvs_from_excels.m

3
S

Clear all variables
clear all;

3
S

List of test names

test names = {'1679', '1684', '1689', 'l1694', '1767', '1858', '1865', '1869', '1873',
'1771', '1774', '1778', '1780', '1862'};
num_ test = length (test names);

3
S

Initialize data cell array
data cell (num_test, 6);

3
S

for ctr test
test_name

l:num test

file name

volunteers and PMHS/Data analysis w splines/data/',

Populate data cell array from Excel files
test_names{ctr_test};

strcat ('/Users/alicia/Desktop/mobios/Lopez-Valdes 2024- Comparison of

test name, '.xlsx');

% Head
if strcmp(test name, '1684")
data{ctr test,1}(:,1) = xlsread(file name, 3, 'B106:B311'); %only 300 ms:
approximate time when the reflex response may begin to influence
data{ctr test,1}(:,2) = xlsread(file name, 3, 'D106:D311'); %same
else
data{ctr test,1}(:,1) = xlsread(file name, 3, 'B106:B405'); %only 300 ms:

approximate time when the reflex response may begin to influence

data{ctr test,1}(:,2) = xlsread(file name, 3, 'D106:D405'); %same
end
% C4
data{ctr test,2}(:,1) = xlsread(file name, 3, 'H106:H405'); %only 300 ms:
approximate time when the reflex response may begin to influence
data{ctr test,2}(:,2) = xlsread(file name, 3, 'J106:J405'); %same
$ T1
if strcmp(test name, '1865'")
data{ctr test,3}(:,1) = xlsread(file name, 3, 'K106:K260'");
data{ctr test,3}(:,2) = xlsread(file name, 3, 'M106:M260'");
else
data{ctr test,3}(:,1) = xlsread(file name, 3, 'K106:K405'");
data{ctr test,3}(:,2) = xlsread(file name, 3, 'M106:M405'");
end
% T4
data{ctr test,4}(:,1) = xlsread(file name, 3, 'N106:N405'); %only 300 ms:

approximate time when the reflex response may begin to influence

data{ctr test,4}(:,2) = xlsread(file name, 3, 'P106:P405'); %same
% T8
data{ctr test,5}(:,1) = xlsread(file name, 3, 'Q106:Q405"'); %only 300 ms:

approximate time when the reflex response may begin to influence

data{ctr test,5}(:,2) = xlsread(file name, 3, 'S106:5405'); %same
% H-point
data{ctr test,6}(:,1) = xlsread(file name, 3, 'E106:E405'); %only 300 ms:

approximate time when the reflex response may begin to influence

data{ctr test,6}(:
end

l2)

3
S

xlsread(file name,

3, 'Gl06:G405'); %same

Directory to save the CSV files
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outputDir = '/Users/alicia/Desktop/mobios/Lopez-Valdes 2024- Comparison of volunteers
and PMHS/ARCGen/csv_data';
if ~exist (outputDir, 'dir')
mkdir (outputDir) ;
end
% Variable names corresponding to each column
variableNames = {'Head', 'C4', 'Tl', 'T4', 'T8', 'H point'};
% Loop through each test and variable to save data as CSV
for ctr test = l:size(data, 1)
for variable = 1l:size(data, 2)
% Extract data for current test and variable
currentData = data{ctr test, variable};
% Create a file name
fileName = fullfile (outputDir, sprintf('test%s %s.csv', test names{ctr test},
variableNames{variable}));

% Write data to CSV file
writematrix (currentData, fileName) ;
% Display a message
fprintf ('Data from test %s (%s) written to %$s\n', test names{ctr test},
variableNames{variable}, fileName) ;
end
end
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3.3.2. Arcgen_executer_comparison.m

[}

% Request user input for the landmark

landmarkNames = {'Head', 'c4', 'Tl1', 'T4', 'T8', 'H Point'};
prompt = 'Enter the landmark number (1 - Head, 2 - C4, 3 - Tl1, 4 - T4, 5 - T8, 6 - H
Point): ';

landmarkIndex = input (prompt) ;
% Validate the input
if landmarkIndex < 1 || landmarkIndex > 6

error ('Invalid input. Please enter a number between 1 and 6.');
end
landmarkName = landmarkNames{landmarkIndex};
%% Zero displacements
% Define the number of rows to keep (200 ms)
numRowsToKeep = 180;
% Split the inputSignals into young and elderly groups
inputSignalsYoung = inputSignals (1:9);
inputSignalsElderly = inputSignals(10:14);
% Create temporary variables to store modified signals for both groups
tempSignalsYoung = inputSignalsYoung;
tempSignalsElderly = inputSignalsElderly;
% Process the "young" group of input signals
for i = l:length(tempSignalsYoung)

% Get the current signal data
currentData = tempSignalsYoung (i) .data;

% Zero the displacements to the first value
zeroedData = currentData - currentData(l, :);
% Keep only the first 200 rows

choppedData = zeroedData (1:numRowsToKeep, :);

% Update the data field in tempSignalsYoung with the zeroed and chopped data
tempSignalsYoung (i) .data = choppedData;
end
% Process the "elderly" group of input signals
for i = l:length(tempSignalsElderly)

% Get the current signal data
currentData = tempSignalsElderly (i) .data;

% Zero the displacements to the first value
zeroedData = currentData - currentData(l, :);
% Keep only the first 200 rows

choppedData = zeroedData (1l:numRowsToKeep, :);

% Update the data field in tempSignalsElderly with the zeroed and chopped data
tempSignalsElderly (i) .data = choppedData;
end
%% Execute arcgen for both groups
[charAvgNormYoung, innCorrNormYoung, outCorrNormYoung, proCurveDataNormYoung] =
arcgen (tempSignalsYoung, ...
'Diagnostics', 'off', ...
'nWarpCtrlPts', 2,...
'warpingPenalty', le-2);
[charAvgNormElderly, innCorrNormElderly, outCorrNormElderly, proCurveDataNormElderly] =

arcgen (tempSignalsElderly, ...
'Diagnostics', 'off', ...
'nWarpCtrlPts', 2,...
'warpingPenalty', le-2);
%% Plot input signals with ARCGen corridors for both groups
figure ('Name', 'Normalization', 'Color',6 'w', 'Units', 'centimeters',
'Position', [5,5,16,12]) ;hold on;
title (['Average and Corridors for Landmark ', landmarkName],
'FontName', 'Helvetica', 'FontSize',10, 'FontWeight', 'bold'):;
xlabel ('X Displacement (mm)', 'FontName', 'Helvetica', 'FontSize',12);
ylabel ('Z Displacement (mm)', 'FontName', 'Helvetica', 'FontSize',12);

[}

% Colors for different groups
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colorYoungSignal = [1, 0.75, 0.8]; % Light pink
colorYoungAvg = [1, 0, 0]; % Red

colorYoungCorr = [1, 0.75, 0.8]; % Light pink
colorElderlySignal = [0.5, 0.5, 1]; % Light blue
colorElderlyAvg = [0, 0, 0.5]; % Dark blue
colorElderlyCorr = [0.5, 0.5, 1]; % Light blue

[}

% Plot signals for the "young" group
for iPlot = l:length(tempSignalsYoung)
plot (tempSignalsYoung (iPlot) .data(:,1), ...
tempSignalsYoung (iPlot) .data(:,2), ...
'Color',colorYoungSignal, ...
'LineWidth',0.5);
end
% Plot ARCGen average and corridors for the "young" group
% Plot ARCGen average and corridors for the "young" group
hAvgYoung = plot (charAvgNormYoung(:,1l), charAvgNormYoung(:,2), '.-',...
'DisplayName', 'Char. Avg. Young', 'MarkerSize',5,...
'LineWidth', 2.5, 'Color',colorYoungAvg) ;
hCorrInnerYoung = plot (innCorrNormYoung(:,1l), innCorrNormYoung(:,2), '.-
', '"MarkerSize',10, ...
'DisplayName', 'Corridors Young', ...
'LineWidth', 1.5, 'Color',colorYoungCorr) ;
hCorrOuterYoung = plot (outCorrNormYoung(:,1l), outCorrNormYoung(:,2), '.-
', '"MarkerSize',10, ...
'DisplayName', 'Outer Young', ...
'LineWidth', 1.5, 'Color',colorYoungCorr) ;
% Plot signals for the "elderly" group
for iPlot = l:length(tempSignalsElderly)
plot (tempSignalsElderly (iPlot) .data(:,1), ...
tempSignalsElderly (iPlot) .data(:,2), ...
'Color',colorElderlySignal, ...
'LineWidth',0.5);
end
% Plot ARCGen average and corridors for the "elderly" group
% Plot ARCGen average and corridors for the "elderly" group
hAvgElderly = plot (charAvgNormElderly(:,1), charAvgNormElderly(:,2), '.-',...
'DisplayName', 'Char. Avg. Elderly', 'MarkerSize',5,...
'LineWidth', 2.5, 'Color',colorElderlyAvg) ;
hCorrInnerElderly = plot (innCorrNormElderly(:,1), innCorrNormElderly(:,2), '.-
', '"MarkerSize',10, ...
'DisplayName', 'Corridors Elderly', ...
'LineWidth', 1.5, 'Color',colorElderlyCorr) ;
hCorrOuterElderly = plot (outCorrNormElderly(:,1), outCorrNormElderly(:,2), '.-
', '"MarkerSize',10, ...
'DisplayName', 'Outer Elderly', ...
'LineWidth', 1.5, 'Color',colorElderlyCorr) ;
% Display the legend with only the averages and corridors
legend ([hAvgYoung, hCorrInnerYoung, hAvgElderly, hCorrInnerElderly],

{'Char. Avg. Young', 'Corridors Young', 'Char. Avg. Elderly', 'Corridors Elderly'},
'Location', 'best');

grid on;

hold off;
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