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Chapter 1.  INTRODUCTION 

Road traffic crashes are a major global public health challenge, causing approximately 1.19 million 

deaths annually, along with millions of severe injuries, long-term disabilities, and substantial 

economic costs (World Health Organization, 2024). Accurate assessment of crash severity is 

therefore critical for improving vehicle safety, guiding regulations, and advancing crash 

reconstruction science. 

This thesis addresses this challenge by refining crash severity evaluations through improved 

estimation of Energy Equivalent Speed (EES), a key parameter that quantifies the energy 

dissipated during a collision. Traditional EES estimation methods are often limited by 

simplifications or incomplete data. To overcome these limitations, this work leverages detailed 

real-world data from the German In-Depth Accident Study (GIDAS), enabling the development 

of methodologies that yield EES values more accurately reflecting collision dynamics. 

A central focus of the research is partner protection, the principle that vehicles should protect not 

only their occupants but also minimize injury risk to occupants of other vehicles. By using precise 

EES codings, this thesis highlights disparities in energy dissipation among different vehicle types 

and sizes, emphasizing the importance of design strategies that balance protection across all traffic 

participants. 

The outcomes align with international safety initiatives, including Euro NCAP and the U.S. 

NHTSA, supporting more reliable safety assessments and crash test protocols. In addition to 

improving vehicle design, the refined methodologies have broader applications in forensic crash 

reconstruction, policy-making, and the harmonization of global safety standards.  
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Chapter 2.  DEFINITION OF THE PROJECT 

This project aims to improve the accuracy of crash severity assessments by developing a structured 

database that recalibrates Energy Equivalent Speed (EES) values using real-world crash data from 

the German In-Depth Accident Study (GIDAS) (Otte, 2003). EES quantifies the kinetic energy 

absorbed during a collision, serving as a crucial indicator of crash severity. Existing methods for 

determining EES, however, often rely on subjective coding, which can introduce inconsistencies, 

particularly when based on limited or non-standardized visual evidence. 

To address these challenges, the project introduces a tool capable of estimating EES 

retrospectively by combining scene photographs with vehicle-specific parameters such as 

geometry, structural characteristics, and deformation patterns. This data-driven approach reduces 

reliance on subjective visual assessments and produces more consistent and reproducible EES 

values across different crash scenarios. By grounding estimations in objective information, the tool 

enhances the reliability of crash severity evaluations and supports broader applications in accident 

reconstruction and vehicle safety research. 

Another goal of the project is to identify factors contributing to coding errors, including 

inconsistencies in visual interpretation, variations in crash configuration, and differences in vehicle 

mass and structure. By quantifying these sources of error, the project strengthens crash analysis 

methodologies and provides clearer guidance for improving data quality. The refined EES values 

also allow deeper examination of partner protection—ensuring vehicle design safeguards all 

collision participants—and the mass ratio effect, which can increase injury risk for smaller vehicles 

in collisions with larger ones. 

Overall, this initiative advances both scientific understanding and practical traffic safety outcomes. 

It enables more reliable crash reconstructions, informs safer vehicle design, and supports evidence-

based regulatory decisions. By aligning with international safety programs such as Euro NCAP 

and NHTSA, the project contributes to global efforts to improve road safety and harmonize vehicle 

safety standards.  
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Chapter 3.  DESCRIPTION OF THE TOOLS 

3.1 EES ANALYZER 

As part of this research, a new tool called EES Analyzer was developed with the primary purpose 

of providing a comprehensive framework for analyzing the GIDAS database. The tool enables 

systematic comparison of accident cases, the identification of crashes with similar configurations, 

and the exploration of relationships among variables associated with crash severity. One of its 

most significant features is its ability to predict EES values based on selected parameters, which 

makes it possible to detect inconsistencies in coding and thereby improve the overall reliability of 

the dataset. 

The graphical user interface was implemented in R Shiny, ensuring an interactive and adaptable 

environment for researchers. This interface allows cases to be filtered by crash configuration, 

vehicle model, category, and EES ranges, providing a high degree of flexibility in case selection. 

In addition, VDI filters (VDI1, VDI2, and VDI3) were incorporated to classify accidents lacking 

Brumbelow coding, thus expanding the number of cases that can be included in the analysis. The 

system also offers options to exclude motorcycles, trucks, and multiple collisions, with a focus on 

simple frontal car-to-car crashes, which ensures greater consistency and comparability across 

cases. 
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Figure 1: Output Table of EES Analyzer 

The EES Analyzer integrates both exploratory and predictive functions. Linear regressions are 

used to investigate correlations between EES and other crash variables, while machine learning 

models, specifically Random Forest, generate predicted EES values that can be contrasted with the 

coded ones in GIDAS. This approach allows the identification of potential outliers and possible 

miscoded cases. Results are displayed through a set of diagnostic visualizations, including 

correlation matrices, scatter plots, heatmaps, and box plots of prediction errors, which facilitate 

both interpretation and validation of findings. 

In the process of developing the tool, several new variables were derived to enrich the analysis. 

These included the total deformation area, calculated from zones F1–F4, although it showed only 

limited correlation with EES (R² = 0.12). A second derived parameter was the post-impact 

velocity, computed from Delta-V, impulse angle, and angular change, which served as an 

intermediate variable for energy-based calculations. The most relevant contribution, however, was 

the definition of an equivalent velocity (U), obtained from dissipated kinetic energy and the mass 

ratio between vehicles. This new variable demonstrated a strong correlation with EES (R² = 0.76), 

becoming the most consistent and robust predictor across configurations. 

Based on these inputs, a Random Forest model was trained to estimate EES values more 

accurately. The model incorporated relative velocity, vehicle year, total deformation, and 

equivalent velocity (U) as the main predictors. Among them, U consistently emerged as the most 
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influential variable, while vehicle year showed comparatively lower relevance. The model was 

trained on all available cases with valid EES values, allowing not only prediction but also the 

detection of outliers that could be iteratively corrected to improve database coherence. 

Performance was evaluated using confusion matrices, cross-validation with ten folds, and 

graphical error analysis, confirming the robustness of the proposed approach. 

Ultimately, the EES Analyzer aims to detect and correct errors in EES coding for frontal car-to-

car crashes, thereby generating cleaner and more reliable datasets. Beyond its immediate 

application, the tool holds the potential to be scaled to the analysis of all crash types in the GIDAS 

database. This scalability underscores its relevance for both research and applied safety studies, as 

it provides a structured, automated, and scientifically grounded framework for improving crash 

severity assessments. 

3.2 EES ESTIMATOR 

Once potential miscoded cases are identified, the EES Estimator tool is used to generate an 

estimated EES value for each case. These estimated values are subsequently compared with both 

the coded EES values in the GIDAS database and the predicted values obtained from the EES 

Analyzer tool. This comparative analysis allows researchers to evaluate the accuracy of coding, 

detect inconsistencies, and draw informed conclusions about the reliability of the data. 

The EES Estimator was developed as part of this thesis and integrates the EES-CNN functionality 

of PC-Crash with Microsoft Copilot for automated image recognition. The primary goal of this 

tool is to automate the repetitive process of uploading case images to PC-Crash, retrieving the EES 

estimations, and saving the results without requiring continuous user intervention. Conceptually, 

the tool operates by controlling the mouse and keyboard through R, executing a predefined 

sequence of actions that adapts dynamically based on program inputs. 
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Figure 2: PC-Crash Visual Estimation Output 

The process begins with the preparation of the environment, where Microsoft Copilot is opened 

while all other programs, except RStudio, are closed. The program then opens Copilot and retrieves 

two selected images for each crash case, identified as the most relevant for damage assessment. 

Copilot validates the images automatically to ensure they can be used in the analysis. Following 

this, PC-Crash is launched, the EES-CNN tool is accessed, and the first image is loaded into the 

system. Upon completing the EES estimation, PC-Crash generates a graph indicating the likely 

EES range along with a confidence level. Because PC-Crash does not export numerical outputs, 

the tool automatically takes a screenshot of the graph for further processing. 

The screenshots are then analyzed using Microsoft Copilot, which extracts the data from the image. 

The program repeats this process for the second image, representing a different perspective of the 

most damaged area. Copilot compares the results from both images, calculates the average for each 

bar in the graphs, and returns the estimated EES range and confidence level in a structured format. 

These values are subsequently stored in the input dataset as variables labeled “min_eescnn,” 

“max_eescnn,” and “conf_eescnn.” 

The validation of uploaded images is critical, as mislabeling or misplacement of photos can occur. 

Some images may depict irrelevant scenes, incorrect angles, or even missing content, which could 

reduce the confidence of the resulting estimates. The EES Estimator addresses these issues through 

automated checks and the use of multiple images per case to improve reliability. 
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This process can be repeated for any number of cases specified by the user. After completing the 

estimation for each case, the program updates an Excel table, allowing for direct comparison of 

coded EES values in GIDAS, predicted values from the EES Analyzer, and calculated values from 

the EES Estimator. While the EES Estimator operates as a separate program from the EES 

Analyzer, the Analyzer includes an export feature that allows up to 1,000 rows of data to be 

processed, prioritizing cases with the largest discrepancies between coded and predicted EES. This 

limit was chosen to balance computational time and study objectives, as each estimation takes 

approximately two minutes, making the processing of 1,000 cases feasible within roughly 34 

hours. 
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Chapter 4.  RESULTS 

This study evaluated the extent to which crash configuration influences the accuracy of EES 

prediction by applying a Random Forest model to a dataset of 2,288 frontal crashes, which 

represent a subset of the 20,000 cases included in the global study. By disaggregating the analysis 

according to crash configuration, the study was able to uncover important differences in both 

variable importance and model performance. A newly derived parameter, equivalent velocity—

obtained from kinetic energy calculations—emerged as the most consistent and robust predictor 

across all configurations, underscoring its value as a core input for EES modeling. 

The results revealed that model accuracy and stability varied significantly depending on the crash 

configuration. For instance, oblique center impacts tended to present a higher proportion of 

potential outliers and larger prediction errors, suggesting greater complexity in capturing their 

dynamics. Similarly, small and moderate overlap crashes exhibited greater dispersion at higher 

EES values, indicating that the prediction model struggles to capture non-linear behaviors in these 

crash types. These findings demonstrate that a “one-size-fits-all” approach to EES prediction may 

overlook critical nuances in crash geometry and energy distribution. 

 

Figure 3: Comparison between GIDAS coded EES and EES Analyzer Predicted EES 
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The comparison highlights divergences between coded values and model predictions, with 

noticeable clusters of miscoded or misestimated cases. 

To strengthen the reliability of EES predictions, a multi-stage correction process was implemented. 

This included advanced filtering techniques, systematic outlier detection, and validation using PC-

Crash simulations. By triangulating results between GIDAS-coded EES values, EES Analyzer 

predictions, and PC-Crash estimations, the study generated a clearer picture of the alignment and 

deviations among different methods. The integration of scatter plots and heatmaps provided a 

detailed visual representation of these relationships, offering insights into both systematic biases 

and random errors. 

The overall findings emphasize the critical role of crash configuration in refining EES assessment 

methodologies. By identifying where prediction models perform well and where they encounter 

limitations, the study provides a foundation for developing more configuration-sensitive models. 

Such improvements not only enhance the scientific rigor of crash reconstruction but also contribute 

to vehicle safety analysis, particularly in areas such as partner protection design, occupant injury 

mitigation, and the calibration of safety testing protocols. 

 

Figure 4: Comparison of EES between GIDAS, EES Analyzer Prediction and EES Estimator 
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Chapter 5.  CONCLUSIONS  

This study investigated inaccuracies in EES coding within the GIDAS database, focusing on the 

interplay between crash characteristics, vehicle type, and prediction performance. The analysis 

revealed that crash configuration had only a limited influence on prediction errors, suggesting that 

other factors play a more dominant role in misestimations. In particular, higher EES values and 

larger vehicle categories, such as SUVs, were more prone to inaccurate codings. These results 

point to potential biases in the coding process, where extreme values and structurally different 

vehicle types introduce greater uncertainty. 

A notable finding was the strong correlation between EES and Delta-V, which raises important 

concerns regarding the independence of the two metrics. Since Delta-V is already a widely used 

measure of crash severity, excessive reliance on it in EES codings could undermine the 

distinctiveness and added value of EES as an independent indicator. This observation highlights 

the need for more rigorous methodologies to ensure that EES retains its intended role as a 

complementary, physics-based measure of crash severity. 

When comparing modeling approaches, generic prediction models occasionally outperformed 

configuration-specific ones, indicating that broader models may be more resilient to data 

variability and less sensitive to inconsistencies in crash categorization. At the same time, the use 

of visual diagnostic tools—such as scatter plots and heatmaps—proved effective in detecting 

potential outliers by contrasting observed values against model predictions. 

The combined application of the Random Forest model with the EES Estimator demonstrated 

strong potential for identifying and correcting errors within the database. This hybrid approach 

provides a systematic way of improving the reliability of EES codings by integrating machine 

learning prediction, reference estimation, and validation procedures. 

  



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
                       MASTERS IN MOTORSPORT, MOBILITY AND SAFETY 

 

 

INTERNAL 

Chapter 6.  RELATION WITH M2S 

The coursework undertaken in this thesis provided a solid foundation for understanding vehicle 

safety, crash reconstruction, and mobility systems. The Crashworthiness course introduced global 

initiatives such as Euro NCAP, emphasizing the relevance of Energy Equivalent Speed (EES) in 

vehicle design and occupant protection, and offered conceptual grounding through MADYMO 

simulations for interpreting vehicle kinematics. 

Data Analysis and Visualization with Python equipped the research with skills for managing large 

datasets, structuring crash data, and creating clear visualizations, directly supporting the EES 

Analyzer database and the interpretation of coded, predicted, and simulated EES values. Global 

Transportation offered insight into political and regulatory frameworks, facilitating the use of 

authoritative crash data sources such as GIDAS and situating the thesis within international road 

safety objectives. Integrated Safety and Restraint Systems strengthened understanding of vehicle 

kinematics and energy dissipation, linking crash severity analysis to occupant protection. 

The Telemetry and Data Acquisition course provided a framework to understand the reliability 

and limitations of vehicle data, indirectly supporting critical engagement with EES coding. Injury 

Biomechanics explained how Delta-V and EES relate to human injury tolerance, highlighting the 

importance of accurate estimations for predicting occupant outcomes. Sustainable Mobility 

introduced systemic approaches to safety, aligning with partner protection by considering all road 

users, while Vehicle Dynamics offered technical grounding to interpret crash kinematics and 

informed statistical model design. Composites and Lightweight provided context on vehicle 

structural deformation and energy absorption, enriching the interpretation of real-world crash 

outcomes. 

Collectively, these courses bridged theoretical knowledge, technical methodology, and societal 

perspectives, equipping the thesis with the tools necessary to advance crash severity assessment 

and contribute meaningfully to vehicle safety research.  
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RESUMEN DEL PROYECTO 

Esta investigación desarrolla una herramienta basada en datos para mejorar la precisión en 

la evaluación de la gravedad de las colisiones, centrándose en la refinación de la Velocidad 

Equivalente de Energía (EES) utilizando datos reales. Destaca las limitaciones de las 

prácticas actuales de codificación, el impacto de las configuraciones de choque y el valor de 

los modelos predictivos para identificar y corregir casos mal codificados.  

Keywords: EES, GIDAS, Colisiones de Trafico, Protección del Compañero de Choque, 

Base de datos.  

1. Introducción 

Las colisiones de tráfico causan aproximadamente 1,19 millones de muertes anualmente 

en todo el mundo. (World Health Organization, 2024). Esta tesis aborda el problema 

mediante la mejora de las evaluaciones de la gravedad del choque, lo cual permite el 

desarrollo de sistemas de seguridad mas preciso, refinando la estimación de la Velocidad 

Equivalente de Energía (EES) con datos reales extraídos de la base GIDAS. También 

promueve el concepto de protección del vehículo contrario en el diseño automotriz, 

resaltando disparidades en la disipacion de energia mediante valores de EES precisos, y 

se alinea con iniciativas globales de seguridad como Euro NCAP y NHTSA, 

contribuyendo a una reconstrucción de choques más fiable y a una movilidad más segura. 

(European New Car Assessment Programe (Euro NCAP), 2017).  

2. Definition of the Project 

Este proyecto busca mejorar la precisión en la evaluación de la gravedad de los choques 

mediante el desarrollo de una base de datos estructurada y completa que recalibra los 

valores de Velocidad Equivalente de Energía (EES) utilizando datos reales de colisiones 

extraídos de GIDAS (Otte, 2003). Introduce una herramienta capaz de estimar 

retrospectivamente la Velocidad Equivalente de Energía (EES) a partir de fotografías de 

la escena y parámetros específicos del vehículo, abordando las limitaciones de las 

prácticas actuales de codificación que dependen en gran medida de evaluaciones visuales 

subjetivas. La iniciativa también busca identificar los factores que contribuyen a errores 

de codificación y mejorar el análisis de la protección del vehículo contrario y los efectos 

de la relación de masas, apoyando reconstrucciones de choques más fiables y decisiones 

más seguras en diseño vehicular y regulación. 

3. Descripción de las Herramientas 



 

 

La herramienta EES Analyzer permite una comparación y análisis eficiente de los casos 

de choque en la base de datos GIDAS, incluyendo la predicción de valores EES basada 

en variables seleccionadas para ayudar a detectar inconsistencias. 

 

Ilustración 1: Tabla Generada por EES Analyzer 

Una vez identificados los posibles casos mal codificados, la herramienta EES Estimator 

genera un valor de referencia de EES, que luego se compara con el valor codificado en 

GIDAS y el valor predicho por EES Analyzer. Este proceso se automatiza mediante la 

integración de GIDAS, Microsoft Copilot y PC-Crash. 

 

Ilustración 2: Estimación de EES mediante inspección visual con PC-Crash 

4. Resultados 

Este estudio evaluó cómo la configuración del choque influye en la precisión de la 

predicción de EES utilizando un modelo Random Forest aplicado a 2.288 colisiones 

frontales de las 20.000 que se han empleado para el studio global. Al analizar cada 

configuración por separado, se observaron diferencias en la importancia de las variables 

y el comportamiento del modelo, siendo la velocidad equivalente el predictor más 

constante. Algunas configuraciones, como el choque oblicuo central, mostraron más 

valores atípicos y errores, mientras que los solapamientos pequeños y moderados 

presentaron mayor dispersión en valores altos de EES. 



 

 

 

Ilustración 3: Comparativa entre el EES definido en GIDAS y el predicho por EES Analyzer 

Para mejorar la fiabilidad, se aplicó un proceso de corrección que incluyó filtrado, 

detección de valores atípicos y validación con PC-Crash. La comparación entre el EES 

codificado en GIDAS, las predicciones de EES Analyzer y las estimaciones de PC-Crash 

mostró distintos niveles de coincidencia, visualizados mediante gráficos de dispersión y 

mapas de calor. Los resultados destacan el papel de la configuración del choque en la 

mejora de las evaluaciones de EES y el análisis de seguridad vehicular. 

 

Ilustración 4: Comparativa entre el EES definido en GIDAS, el predicho por EES Analyzer y el estimado con 

EES Estimator 

5. Conclusiones 

Este estudio analizó las inexactitudes en la codificación de EES dentro de la base de 

datos GIDAS. La configuración del choque mostró un impacto limitado en los errores 

de predicción, mientras que los valores altos de EES y los vehículos grandes como los 

SUV fueron más propensos a errores. Una fuerte correlación entre EES y Delta-V plantea 

dudas sobre la independencia de estas métricas, ya que la codificación de EES podría 

estar dependiendo más de esta variable de lo adecuado. 

Los modelos genéricos superaron en algunos casos a los específicos por configuración, 

y las herramientas visuales ayudaron a detectar valores atípicos. El modelo Random 



 

 

Forest combinado con EES Estimator resultó útil para corregir errores. El trabajo futuro 

se centrará en depurar los datos y automatizar las predicciones de EES dentro de EES 

Analyzer. 
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ABSTRACT  

This research develops a data-driven tool to improve the accuracy of crash severity 

assessments, focusing on refining Energy Equivalent Speed using real-world data. It 

highlights the limitations of current coding practices, the impact of crash configurations, and 

the value of predictive modeling for identifying and correcting miscoded cases.  

Keywords: EES, GIDAS, Traffic crash, Partner protection, Data base.  

1. Introduction 

Road traffic crashes cause approximately 1.19 million deaths annually worldwide 

(World Health Organization, 2024). This thesis addresses the issue by improving crash 

severity assessments, leading to more accurate safety systems development, through a 

refined estimation of Energy Equivalent Speed (EES), using real-world data from the 

GIDAS database. It also promotes the concept of partner protection in vehicle design, 

highlighting energy dissipation disparities through accurate EES codings, and aligns with 

global safety initiatives like Euro NCAP and NHTSA, contributing to safer roads and 

more reliable crash reconstruction practices (European New Car Assessment Programe 

(Euro NCAP), 2017).  

2. Definition of the Project 

This project seeks to enhance the precision of crash severity evaluations by developing 

a comprehensive, structured database that recalibrates Energy Equivalent Speed (EES) 

values using real-world crash data from GIDAS (Otte, 2003). It introduces a tool capable 

of estimating EES retrospectively from scene photographs and vehicle-specific 

parameters, addressing the limitations of current coding practices that rely heavily on 

subjective visual assessments. The initiative also aims to identify factors contributing to 

coding errors and improve the analysis of partner protection and mass ratio effects, 

ultimately supporting more reliable crash reconstructions and informing safer vehicle 

design and regulatory decisions. 

3. Description of the Tool 

The EES Analyzer tool allows efficient comparison and analysis of crash cases in the 

GIDAS database, including the prediction of EES values based on selected variables to 

help detect inconsistencies. 



 

 

 

Figure 1: Output Table of EES Analyzer 

Once potential miscoded cases are found, the EES Estimator generates a reference EES 

value, which is then compared with both the GIDAS-coded and predicted values. This 

process is automated through the integration of GIDAS, Microsoft Copilot, and PC-

Crash. 

 

Figure 2: PC-Crash Visual Estimation Output 

4. Results 

This study evaluated how crash configuration influences EES prediction accuracy using 

a Random Forest model applied to 2,288 frontal crashes, which belong to the 20.000 

cases of the global study. By analyzing each configuration separately, it revealed 

differences in variable importance and model behavior, with a new variable obtained 

from kinetic energy, defined as equivalent velocity, being the most consistent predictor. 

Certain configurations, like oblique center, showed more potential outliers and errors, 

while small and moderate overlaps had greater dispersion at higher EES values. 



 

 

 

Figure 3: Comparison between GIDAS coded EES and EES Analyzer Predicted EES 

To improve reliability, a correction process was applied using filtering, outlier detection, 

and PC-Crash validation. A comparison between GIDAS-coded EES, EES Analyzer 

predictions, and PC-Crash estimations showed varying degrees of alignment, visualized 

through scatter plots and heatmaps. The findings emphasize the role of crash 

configuration in refining EES assessments and improving vehicle safety analysis. 

 

Figure 4: Comparison of EES between GIDAS, EES Analyzer Prediction and EES Estimator 

5. Conclusions 

This study analyzed inaccuracies in EES coding within the GIDAS database. Crash 

configuration showed limited impact on prediction errors, while higher EES values and 

larger vehicles like SUVs were more prone to misestimation. A strong correlation 

between EES and Delta-V raised concerns about metric independence, meaning that EES 

codings could be relying more on that variable than they should. 

Generic models sometimes outperformed configuration-specific ones, and visual tools 

helped detect potential outliers against the prediction of the model. The Random Forest 

model combined with EES Estimator proved useful for correcting errors. Future work 

will focus on cleaning the data and automating EES predictions within the EES Analyzer. 
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Chapter 1.  INTRODUCTION 

Road traffic safety is a critical issue worldwide, with traffic crashes consistently ranking 

among the leading causes of death and severe injury. According to the World Health 

Organization, approximately 1.3 million people die each year as a result of road traffic 

crashes, and millions more suffer non-fatal injuries (World Health Organization, 2024). 

These figures highlight the urgent need for improved vehicle safety measures and more 

accurate tools for analyzing crash severity. 

This thesis addresses this challenge by developing a comprehensive crash severity database 

based on real-world accident data. The primary goal is to improve the accuracy of crash 

severity assessments, with a particular focus on the estimation of Energy Equivalent Speed 

(EES).  

EES is a derived metric used in accident reconstruction to estimate the severity of a vehicle’s 

structural deformation in a crash. In the context of real-world collisions, EES represents the 

speed at which a vehicle would need to impact an object to dissipate an equivalent amount 

of energy through deformation as observed in the actual crash. Unlike in controlled crash 

tests, where EES is often calculated using empirical stiffness coefficients, real-world EES 

estimation typically relies on alternative methodologies, such as expert judgment, pattern 

recognition, or data-driven reconstruction techniques, due to the variability and complexity 

of crash scenarios. 

While EES is not a direct measure of pre-impact speed, it is influenced by it, particularly in 

cases where the energy absorbed by the vehicle structure correlates with the kinetic energy 

involved in the collision. Therefore, EES serves as a proxy for crash severity, reflecting the 

energy dissipated through vehicle deformation, but it should not be interpreted as a substitute 

for actual impact velocity. 
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In addition to refining EES calculations, this project explores the concept of partner 

protection, which is the idea that vehicles should be designed not only to protect their own 

occupants but also to minimize the damage they inflict on other vehicles in a collision. This 

concept is particularly relevant in car-to-car crashes involving vehicles of different sizes or 

masses. Although not yet widely standardized, partner protection is increasingly recognized 

as a key aspect of vehicle compatibility and overall road safety. Recent initiatives, such as 

the U.S. Department of Transportation’s 2025 Progress Report on the National Roadway 

Safety Strategy, highlight the growing focus on protecting all road users through safer 

vehicle design and collaborative safety efforts (United States Department of Transportation, 

2025) 

Over the past decades, various methodologies have been developed to assess crash severity, 

incorporating factors such as vehicle deformation, impact speed, mass, and structural 

compatibility. However, many of these approaches lack consistency and fail to account for 

the complexity of real-world collisions. This project builds on previous work by creating a 

detailed and validated crash severity database, re-evaluating EES values using reference 

cases, and identifying sources of error in current EES coding practices. 

The analysis is based on data from the German In-Depth Accident Study (GIDAS), which 

provides high-resolution information on car-to-car crashes. These data enable the 

investigation of crash scenarios involving different mass ratios and structural behaviors. By 

improving the quality of EES coding, the project aims to enhance our understanding of crash 

severity and partner protection, ultimately contributing to safer vehicle designs and more 

effective safety regulations. 

By achieving these objectives, this project aims to contribute meaningfully to the reduction 

of traffic-related fatalities and injuries. The insights gained from analyzing real-world crash 

data can support the development of more robust vehicle compatibility assessments and 

inform regulatory bodies and manufacturers about structural mismatches that may 

compromise safety. These findings align with broader international efforts to enhance 

vehicle safety standards, such as the European New Car Assessment Programme (Euro 
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NCAP) and the U.S. National Highway Traffic Safety Administration (NHTSA), which 

increasingly emphasize not only occupant protection but also inter-vehicle crash 

compatibility (NHTSA Announces Model Year 2025 Vehicles for 5-Star Safety Ratings 

Testing, 2024). Ultimately, this research supports the long-term vision of a safer road 

transport system by providing evidence-based tools and methodologies that can guide both 

policy and design improvements. 

1.1 MOTIVATION OF THE PROJECT 

The motivation for this project stems from the critical need to enhance road traffic safety 

through analyses of field crashes, which profit from accurate assessment of the medical and 

technical crash severity. Traffic crashes remain one of the leading cause of fatalities and 

injuries worldwide (World Health Organization, 2024), making it imperative to develop 

more precise methods for evaluating crash severity. The concept of Energy Equivalent Speed 

(EES) has been central to this effort, providing a standardized measure of the energy 

dissipated through deformation by vehicles during collisions. 

Despite all advancements achieved with previous studies, challenges remain in achieving a 

universally reliable method for EES calculation. Existing methods often face issues with 

noise and irregularities in the data—such as incomplete deformation measurements, 

inconsistent vehicle documentation, or variability in crash reconstruction inputs—which can 

introduce significant uncertainty into the estimation process. These factors can distort the 

energy absorption profile of the vehicle, leading to inaccurate or non-reproducible EES 

values, particularly in complex or borderline cases. 

The ultimate goal of this project is to contribute to the reduction of traffic fatalities and 

enhance overall road safety. By improving the technical assessment of crash severity, this 

project aligns with the broader objective of developing safer vehicles and more effective 

safety regulations, benefiting all road users. 
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Chapter 2.  DESCRIPTION OF TECHNOLOGIES 

The successful implementation of this project requires a variety of tools and resources to 

ensure accurate data collection, analysis, and application. Below is an overview of the 

necessary resources, which will support the techniques and procedures outlined in the 

methodology. 

2.1 R PROGRAMMING LANGUAGE IN RSTUDIO 

R is a powerful tool for statistical computing and data analysis. It was used to extract and 

prepare data from the GIDAS database. Using the Shiny library, an intuitive HTML-based 

GUI has been developed to facilitate interaction with the data. While the same functionality 

could have been implemented without Shiny, the library significantly enhances usability and 

user experience. R will also be used for statistical analysis of the data, for example, to 

validate different hypotheses or to check correlations. The most relevant packages will be 

explained further in the following sections: 

2.1.1 SHINY 

Shiny is an R package that offers an easy option to create an interactive web application. 

This package has a simple structure, which is based on three different components: 

• The UI: First, the layout of the app is defined. Here, the programmer has to define 

the visible aspects of the application, defining the tools that the program must offer. 

• The server: In a Shiny application, once the user interface (UI) has been defined, the 

underlying functionality of the tool (including how inputs are processed, how outputs 

are generated, and how the application reacts to user interactions), needs to be 

developed in the server component. This part of the application contains the logic 

that connects the UI elements with the data and computations behind them. Without 

this server-side programming, the UI remains static and non-functional. 
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• Call ShinyApp Function: After defining both the server and the UI components, the 

Shiny application is launched by calling the shinyApp() function. This basic 

approach is sufficient for running simple applications. However, in more advanced 

scenarios, the app can be structured and launched using custom packages or 

modularized code, allowing for better scalability, maintainability, and integration 

into larger R projects. 

This package will allow the development of the EES Analyzer tool in a visually appealing 

and user-friendly way. 

2.1.2 RANDOMFOREST 

The RandomForest package is a machine learning algorithm, which allows the prediction of 

variables by generating decision trees. The algorithm generates different decision trees with 

random parts of the total data. Each tree in the random forest is unique, as it is trained on a 

different random subset of the data (rows) and considers a random subset of features 

(columns) at each split. This randomness ensures diversity among the trees, which 

contributes to the overall robustness and accuracy of the ensemble model. After generating 

all the trees and developing a prediction with each separate tree, the algorithm will combine 

the predictions generated to get a final prediction. 
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Figure 1: Working of RandomForest Algorithm (Random Forest Algorithm in Machine Learning, 2025) 

After generating the prediction, the program returns the estimated value of the target variable 

based on the input data, and the importance of each of the other variables in the data to 

further understand the data that the algorithm is working with and the reasoning behind the 

prediction. 

2.1.3 OTHER IMPORTANT PACKAGES 

The previously explained packages needed to be further explained as they are crucial to the 

development of the thesis. However, there are other packages which are key for smaller but 

yet important tasks: 

• GGPlot2, Plotly: GGPlot2 allows the generation of plots, which help visualizing and 

understanding better the data. Additionally, Plotly package will make those plots 

more interactive. 

• DPLYR, Utils, DT, data.table: These packages will enable more efficient data 

processing when working with the GIDAS database. DPLYR and Utils help working 
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with data frames and DT and data.table help turning those data frames into data tables 

to increase the capabilities of the program, for example, to show the output table in 

the GUI. 

• KeyboardSimulator, clipr: KeyboardSimulator package allows to automate processes 

by telling the computer to move the mouse, to click it or to press some key on the 

keyboard. That means that with the right commands, the computer can work on its 

own for several hours simulating a user. Clipr package allows users to save variables 

in the clipboard and, therefore, allowing the user to paste them outside the R 

environment, as well as saving the information in the clipboard in a variable, 

registering information which is external to the program. These mentioned functions 

are used for automating the results obtention from PC-Crash. 

2.2 GIDAS DATABASE 

The German In-Depth Accident Study (GIDAS) is the foundational data source for this 

thesis, providing a rich and detailed collection of real-world traffic crash data. Established 

as a collaborative effort between the Federal Highway Research Institute (BASt) and the 

German Association for Research in Automobile Technology (FAT), GIDAS is designed to 

support in-depth accident research and vehicle safety analysis (Otte, 2003). 

GIDAS employs a statistically representative sampling scheme to ensure that the data 

collected reflects the broader population of road traffic crashes in Germany. Data is gathered 

continuously from three urban regions (Dresden, Hanover, and Munich), based on a stratified 

random sampling method that considers variables such as time of day, weather conditions, 

and accident severity. This approach ensures that the dataset captures a wide range of crash 

scenarios, making it suitable for both descriptive and inferential analyses. 

The database itself is structured into multiple interrelated tables, each focusing on different 

aspects of a crash event. These include information on vehicles, road users, environmental 

conditions, injuries, and technical reconstructions. For this thesis, the most important table 
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is Reko (short for Rekonstruktion), which contains detailed reconstruction data for 

individual collision sequences. The Reko table includes variables such as: 

• Pre-crash speeds and trajectories 

• Impact angles and points of contact 

• Energy Equivalent Speed (EES) 

• Delta-v and relative velocity values 

This data is generated through a combination of on-site crash investigation, vehicle 

inspections, and post-crash reconstruction using simulation tools and expert analysis. The 

high level of detail in Reko allows for precise modeling of crash dynamics and is essential 

for evaluating crash severity and vehicle safety performance. 

In addition to Reko, other relevant tables will be referenced throughout the thesis as needed. 

These may include vehicle specifications and deformation measurements, amongst others, 

all of which contribute to a holistic understanding of each crash event.  

2.3 EES ANALYZER 

Using R, a user interface will be created by the name EES Analyzer. It will be used as a 

powerful tool for identifying and checking cases with uncommon values of EES and, overall, 

getting conclusions easier, thanks to easy access to the database. Those conclusions will 

contribute to analyze the compatibility between vehicles during a car crash. A more detailed 

explanation of this tool can be found later in this document, in Chapter 5: Developed System. 

2.4 PC-CRASH 

PC-Crash is a specialized software used for traffic accident reconstruction. It allows users to 

simulate and analyze vehicle collisions in 2D and 3D, helping experts determine factors like 

vehicle speeds, trajectories, impact forces, and crash dynamics. It is widely used by forensic 

engineers, police, and accident investigators to create technical reports and visual 
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reconstructions. However, for this thesis, the only relevant feature of this software will be 

the EES-CNN tool. 

The EES-CNN tool is a system that uses machine learning to see images and return an 

estimated EES value. The way this tool functions starts with an image recognition tool, 

which will analyze the uploaded image, and it will identify where the damage of the crash is 

and how severe it is. Then, it will compare the uploaded image with an internal repository 

with a high number of different cases and images and uses it to estimate a range of values 

for EES, also showing the confidence that the program has.  
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Chapter 3.  STATE OF THE ART 

This chapter reviews the current advancements and methodologies in estimating the energy 

equivalent speed (EES) and the technical assessment of crash severity. It examines the 

models and algorithms used to improve the accuracy of EES evaluations. Additionally, the 

challenges and limitations in re-evaluating EES values, including noise and irregularities in 

the data, are discussed. The review also addresses the importance of considering partner 

protection in crash assessment models, aiming to minimize damage to all parties involved in 

traffic incidents. Finally, recent studies that have utilized EES databases to identify factors 

contributing to inaccurate or irregular EES coding are explored, with the goal of enhancing 

road safety and reducing traffic fatalities. 

3.1 ORIGINS OF THE EES CONCEPT 

One of the foundational contributions to the quantification of vehicular collision severity is 

the work of Campbell (1974), who introduced an energy-based framework for evaluating 

crash impacts. In his seminal study (Campbell, 1974), Campbell proposed the concept 

of Equivalent Barrier Speed (EBS) as a standardized metric to represent the severity of real-

world automobile collisions. EBS is defined as the speed of the kinetic energy dissipated due 

to deformation. In other words, when you know the energy dissipated due to deformation of 

the car crash, and define it as kinetic energy, EBS is the velocity at which the vehicle would 

carry that exact energy. This approach enables a consistent comparison between controlled 

crash tests and field accidents.  

The methodology is grounded in the analysis of residual crush (the permanent deformation 

of the vehicle structure) as a proxy for the energy absorbed during impact. By leveraging 

data from full frontal barrier tests, Campbell developed a linear force-deflection model that 

relates crush depth to impact speed. This model assumes uniform structural stiffness across 
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the vehicle front and simplifies the estimation of absorbed energy through integration over 

the damaged area. 

 

Figure 2: EBS vs crush for '71-'72 full size GM vehicles having angle barrier damage patterns (Campbell, 

1974) 

To validate the model, Campbell compared EBS estimates with actual impact speeds from 

controlled angle and offset barrier tests. Figure 2 shows the result of this model for different 

crash angles. The results demonstrated high accuracy, with average errors within ±3–4 mph, 

indicating the model's robustness for a range of frontal impact configurations. Furthermore, 

a pictorial estimation technique was introduced, allowing practitioners to visually 

approximate EBS by segmenting the vehicle front and summing energy contributions from 

each section (Figure 3). 
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Figure 3: Pictorial approach to 30mph offset barrier impact (Campbell, 1974) 

While the model is limited to frontal impacts and assumes uniform vertical damage, its 

general framework is extensible to side and rear collisions. Importantly, Campbell 
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emphasized that EBS captures only one dimension of collision severity. Other factors, such 

as impact direction, object stiffness, and duration, also influence injury outcomes and must 

be considered when evaluating occupant protection systems. 

Campbell’s work laid the groundwork for subsequent research in crash severity analysis and 

remains a cornerstone in the development of objective, energy-based crash metrics. His 

approach provides a critical link between vehicle deformation and occupant injury potential, 

facilitating more accurate assessments of safety system performance in real-world 

conditions. 

3.2 DEVELOPMENT OF THE COMPATIBILITY CONCEPT 

The concept of compatibility in passenger vehicle safety represents a critical intersection of 

engineering, accident analysis, and public health. It refers to the ability of vehicles to interact 

in a crash in a way that minimizes injuries and fatalities for all parties involved. This includes 

both self-protection, which is how well a vehicle protects its own occupants, and partner 

protection, which is how much harm it causes to occupants of the other vehicle. Robert 

Zobel’s 1998 paper provides a comprehensive examination of this issue, emphasizing the 

need for a balanced approach that considers the structural behavior of vehicles in real-world 

collisions, not just in controlled crash tests (Zobel, 1998). 

Vehicle compatibility becomes particularly relevant in car-to-car collisions, where 

differences in mass, stiffness, and structural geometry can lead to disproportionate injury 

outcomes. Larger, stiffer vehicles often inflict greater damage on smaller, lighter ones, a 

phenomenon referred to as aggressiveness. Conversely, a vehicle’s ability to minimize harm 

to its collision partner is termed partner protection. The challenge lies in designing vehicles 

that achieve both high self-protection and high partner protection, a task complicated by the 

diversity of vehicle types on the road. Figure 4 shows the size of the opposing car in an 

accident when the driver of the first vehicle was injured, and it can be seen that bigger 

vehicles are more present in AIS3+ or AIS4+ than lighter vehicles, which means that lighter 

vehicles are better for partner protection than heavier vehicles. 
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Figure 4: Hazard of different size groups crashes between passenger cars (Zobel, 1998) 

Zobel highlights that while crash tests provide valuable insights into vehicle deformation 

patterns, they do not always correlate with real-world injury outcomes. For instance, a 

vehicle that deforms more in a crash test may not necessarily result in higher occupant 

injuries, and vice versa. Therefore, accident data analysis is essential to validate the 

relevance of crash test observations. This requires detailed databases that capture not only 

vehicle and occupant parameters but also structural deformation characteristics, which are 

often difficult and costly to obtain. 
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Figure 5: Deformation behavior of different size groups, based on a comparison of VDI 6 in car-to-car 

crashes (Zobel, 1998) 

The paper identifies several key characteristics that influence compatibility. Vehicle mass is 

the most dominant factor, as it directly affects the velocity change experienced by the struck 

vehicle, which in turn influences injury risk. Figure 5 shows how cars suffer against each 

group size. The figure states how the deformation suffered is lower than the opposing vehicle 

when the opposing vehicle is the same size or smaller and has a higher value for bigger 

opposing vehicles.  

Vehicle stiffness also plays a role, though its impact is less clear-cut. Other factors include 

the height and geometry of the vehicle’s front end, the orientation of the engine (longitudinal 

vs. transverse), and the distribution of structural forces during impact. For example, vehicles 

with higher front ends tend to offer less partner protection in side impacts, while a well-

balanced force distribution in the front structure may enhance compatibility (Zobel, 1998). 
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Another concept introduced in the paper is the "bulkhead concept." This approach proposes 

a structural design that limits the maximum force a vehicle can exert during a collision. By 

incorporating a bulkhead that caps force levels, vehicles can avoid excessive intrusion into 

the occupant compartment, even in high mass-ratio collisions. The theoretical foundation of 

this concept is based on energy conservation principles: if two vehicles are designed for a 

certain barrier impact speed, and their closing speed in a collision does not exceed twice that 

speed, then sufficient deformation capacity exists to prevent compartment collapse. This 

holds true regardless of the mass ratio between the vehicles, provided both are designed to 

deform appropriately. 

However, the bulkhead concept is not without limitations. Practical constraints such as 

vehicle length, acceptable deceleration levels for occupants, and the capabilities of restraint 

systems must be considered. For instance, a deceleration of 30 g is already at the upper limit 

of what restraint systems could manage without causing injury, particularly for older 

occupants (Zobel, 1998). Additionally, the available deformation stroke in a vehicle’s front 

structure is limited by design and packaging constraints. These factors restrict the 

applicability of the bulkhead concept to a certain range of mass ratios. In the German vehicle 

fleet, these ratios can go up to 1.6, which still covers approximately 90% of real-world frontal 

collisions. 

Zobel’s work represents a pivotal shift toward system-level thinking in vehicle safety, 

advocating for compatibility as a fleet-wide property rather than an attribute of individual 

vehicles. His findings have laid the groundwork for ongoing research and policy 

development in both Europe and North America, emphasizing the importance of integrated, 

data-driven approaches to enhance crash outcomes for all road users. 

3.3 CRASH CONFIGURATION TYPOLOGIES 

Accurate classification of crash configurations is essential for understanding injury 

mechanisms and evaluating vehicle safety performance. Brumbelow (2019) introduced a 

refined typology of frontal crash configurations based on photographic review of real-world 
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collisions (Brumbelow, 2019). These configurations are defined relative to the engagement 

of a vehicle’s primary longitudinal structures and the direction of force application. 

The study identified seven distinct configurations, which are the following: 

• Large Overlap 

• Moderate Overlap 

• Small Overlap 

• Center Impact 

• Perpendicular 

• Oblique Center 

• Oblique Corner 

A more detailed explanation is shown in ANEX I. Even though Table 7 shows eight 

configurations, override is not considered a crash configuration. It is used more as an 

exclusion criterion, as the longitudinal structures cannot be loaded properly, or to compare 

the damage between underride and non-underride car crashes.  

This classification enables a more precise correlation between crash geometry and injury 

risk. It also highlights the limitations of traditional delta-V estimates in non-standard impact 

scenarios, reinforcing the need for configuration-specific analysis in crashworthiness 

research. 

3.4 RECENT ADVANCES IN EES CALCULATION 

While previous studies have laid important groundwork, a more recent investigation, 

conducted by Pascal Breitlauch in 2023, proposed a novel method for calculating the EES 

in traffic crashes (Breitlauch, Junge, Erbsmehl, Sandner, & van Ratingen, 2023). Accurate 

and objective quantification of crash severity remains a central challenge in traffic safety 

research and accident reconstruction. Traditional methods often rely on subjective 

assessments or expert estimations, which can introduce significant bias and variability 

(Meghna Chakraborty, 2023). In response to this limitation, Breitlauch proposed a novel, 
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model-based approach for estimating crash severity by calculating the EES from the visual 

deformation of the vehicle. While EES itself is an established metric in crash analysis, his 

contribution lies in developing a data-driven methodology that links observable post-crash 

deformation patterns to EES values, enabling more consistent and automated severity 

assessments. 

The core of the methodology is a voxel-based model that maps post-crash deformation data 

onto a three-dimensional representation of the vehicle. Vehicles are categorized into six 

types (e.g., super-compact, sedan, SUV), and deformation data from real-world crash 

databases (GIDAS and NASS CDS) are used to construct intermediate EES models. These 

models are then stratified by Principle Direction of Force (PDOF) and Vehicle Type (VT) to 

create structure EES models, which are subsequently normalized using standardized crash 

test data from EuroNCAP and ADAC. 

 

Figure 6: Diagrammatic representation of the developed method (Breitlauch, Junge, Erbsmehl, Sandner, & 

van Ratingen, 2023)  
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A key innovation of this approach is the use of crash test normalization to eliminate 

subjective bias from real-world data. By comparing deformation energy from crash tests 

with known EES values, the model adjusts the structure EES outputs to reflect objective 

crash severity. The final EES models can then be applied retrospectively to crash databases, 

enabling consistent and unbiased severity estimation across large datasets. 

Validation of the model was performed using a controlled car-to-car crash test between an 

Audi Q7 and a Fiat 500. The EES values computed by the model closely matched those 

measured during the test, with deviations of only 2.5% and 6.5%, respectively. Additionally, 

application of the model to the GIDAS database revealed systematic biases in traditional 

EES estimates, particularly overestimation in frontal and rear-end collisions and 

underestimation in side impacts. 

 

Figure 7: Audi Q7 vs Fiat 500. 50% overlap car-to-car crash test (Breitlauch, Junge, Erbsmehl, Sandner, & 

van Ratingen, 2023) 

Breitlauch et al.'s work represents a significant advancement in the field of crash analysis by 

providing a scalable, objective, and reproducible method for estimating crash severity. The 

integration of voxel modeling, real-world crash data, and standardized testing creates a 
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robust framework that can enhance the reliability of crash databases and support more 

accurate evaluations of vehicle safety performance. 

All the previously mentioned studies, along with many other relevant research efforts, share 

the ultimate goal of achieving an objective and reliable way to calculate EES in any traffic 

crash. This objective aligns with the aim of this thesis, which seeks to enhance road traffic 

safety by developing a comprehensive database for evaluating crash severity using real-

world crash data. By improving the accuracy of technical crash severity ratings and reducing 

noise and irregularities in EES assessments, this thesis contributes to the ongoing efforts to 

reduce traffic fatalities and enhance overall road safety. 

3.5 VEHICLE COMPATIBILITY IN MODERN FLEETS 

The issue of vehicle incompatibility, where disparities in vehicle mass and design lead to 

unequal crash outcomes, has long been a central concern in traffic safety research. 

Historically, heavier vehicles such as SUVs and pickup trucks have been shown to offer 

superior protection to their own occupants while posing elevated risks to occupants of lighter 

vehicles in multi-vehicle collisions (Gabler & Hollowell, 1998; Eric R & Nolan, 2012). 

Recent empirical work by Monfort (2024) provides a comprehensive update on this 

phenomenon, analyzing crash data from 2011 to 2022 to assess trends in vehicle 

aggressiveness and self-protection across the U.S. passenger vehicle fleet. 

Monfort’s findings indicate a notable improvement in crash compatibility between cars and 

larger vehicles in the most recent period (2017–2022), particularly among the heaviest SUVs 

and pickups. For example, pickups that were previously 2.5 times more likely than cars to 

fatally injure a car driver in a crash were only 1.9 times more likely in the later period. 

Similarly, SUVs over 2.250kg reduced their relative aggressivity from 1.9 to 1.2 times that 

of cars. These improvements are attributed to structural design changes, such as the 

alignment of energy-absorbing structures, and the proliferation of advanced safety 

technologies like automatic emergency breaking and side-curtain airbags. The figure below 

shows the improvement in crash compatibility over time, especially for pickups and SUVs. 
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Figure 8: Aggressiveness by Vehicle Type and Weight (Monfort, 2025) 

However, Monfort also highlights a critical trade-off: while increased curb weight enhances 

self-protection for lighter vehicles (especially those under 2.000 kg), it offers diminishing 

returns for heavier vehicles and significantly increases the risk to crash partners. The figure 

below illustrates the self-protection benefit of curb weight, showing that protection plateaus 

around 2.000 kg, meaning that at some point there is no benefit in heavier vehicles.  

 

Figure 9: Self Protection by Vehicle Weight (Monfort, 2025) 

This asymmetry suggests that the societal benefit of additional vehicle mass is not linear and 

may, in fact, become negative beyond a certain threshold. Figure 10 shows how lighter 

vehicles benefit more from added mass, while heavier ones impose greater risk. 
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Figure 10: Weight Trade-Off: Protection vs Risk (Monfort, 2025) 

A similar conclusion had already been drawn and expanded upon in a 2024 investigative 

report by The Economist, which analyzed over 7.5 million two-vehicle crashes across 14 

U.S. states (The Economist, 2024). Their analysis found that the heaviest 1% of vehicles 

(around 3,000 kg) were responsible for an average of 37 partner-vehicle deaths per 10,000 

crashes, more than six times the rate for median-weight vehicles and over 14 times that of 

the lightest 1%. While these heavy vehicles experienced fewer fatalities among their own 

occupants, the net societal cost was stark: for every life saved inside a heavy SUV or truck, 

more than a dozen were lost in other vehicles. 
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Figure 11: Fatalities by Vehicle Weight (The Economist, 2024) 

Moreover, The Economist quantified the potential impact of downsizing the heaviest 

vehicles. If the top 10% of vehicles by weight (those over 2.250 kg) were reduced to the 

next-lower weight class (2.000 – 2.250 kg), the U.S. could see a 12% reduction in multi-

vehicle crash fatalities (equivalent to approximately 2,300 lives saved annually) without 

compromising the safety of the heavier vehicles’ occupants. 

Both Monfort and The Economist converge on a critical insight: the protective benefits of 

vehicle mass plateau at around 1.800 – 2.000 kg, while the externalized risks to other road 

users continue to rise (Monfort, 2025; The Economist, 2024). This creates a compelling case 

for policy interventions aimed at curbing the proliferation of excessively heavy vehicles. 

Yet, as The Economist notes, market trends are moving in the opposite direction. In 2023, 

vehicles over 2250 kg accounted for 31% of new U.S. vehicle sales, up from 22% just five 

years earlier. This growth is fueled not only by consumer preferences but also by regulatory 

incentives, such as lenient fuel-efficiency standards for light trucks and tax deductions for 

heavy-duty business vehicles. 
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In sum, the current body of evidence underscores a growing misalignment between 

individual safety gains and collective road safety outcomes. While technological 

advancements have mitigated some aspects of vehicle incompatibility, the unchecked 

increase in vehicle mass, particularly among SUVs and pickups, continues to impose a 

disproportionate burden on other road users. Future research and policy must address this 

imbalance, potentially through mass reduction strategies, revised crash testing protocols that 

account for inter-vehicle harm, and regulatory reforms that disincentivize excessive vehicle 

weight (Insurance Institute for Highway Safety (IIHS), 2021). 
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Chapter 4.  DEFINITION OF THE WORK 

In this chapter, it will be explained the reason this project is important. There will also be 

shown all the different objectives that this project aims to fulfill, and the methodology 

followed to reach those goals.  

4.1 JUSTIFICATION 

Despite decades of progress in vehicle safety engineering and crash testing protocols, road 

traffic crashes remain a leading cause of death and injury worldwide (World Health 

Organization, 2024).  

Current crashworthiness assessments, conducted by Euro NCAP or IIHS, have significantly 

improved vehicle design. These are based on the evaluation of how well vehicles protect 

their occupants in standardized crash scenarios. They focus primarily on injury risk to the 

vehicle’s own occupant, and they often rely on standardized test conditions (European New 

Car Assessment Programe (Euro NCAP), 2017; Insurance Institute for Highway Safety 

(IIHS), 2021).  

However, this disconnect becomes particularly relevant when estimating crash severity 

using metrics like Energy Equivalent Speed (EES), especially in retrospective crash 

databases such as GIDAS. In these cases, EES values are often reconstructed or inferred 

based on incomplete or idealized assumptions, which may not accurately reflect the actual 

crash dynamics. Factors such as multi-impact sequences, oblique angles, vehicle 

mismatches, and post-impact behavior introduce uncertainties that standardized models 

struggle to account for. Therefore, while discrepancies between crash tests and real-world 

conditions are a contributing factor, the issue of inaccurate EES codings in GIDAS also 

stems from methodological limitations in crash reconstruction and data interpretation. 
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The proposed project addresses this critical shortcoming by developing a comprehensive, 

data-driven crash severity database that re-evaluates and enhances the accuracy of EES 

coding using real-world crash data. Unlike traditional approaches that depend heavily on 

simplified assumptions or static deformation measurements, this project leverages validated 

crash configurations, vehicle-specific parameters, and high-fidelity datasets such as GIDAS 

to recalibrate EES values with greater objectivity and technical rigor. 

The primary objective of this project is to support crash research by developing a tool that 

enables the retrospective estimation of Energy Equivalent Speed (EES) based on scene 

photographs and vehicle-specific parameters. The motivation stems from the need to validate 

and, where appropriate, improve existing EES codings within the GIDAS database. These 

codings are often derived under conditions of limited information and may not fully capture 

the technical severity of a crash. By refining EES estimations, the tool aims to enhance the 

accuracy of crash severity assessments, which in turn can contribute to more robust analyses 

of partner protection and mass ratio effects in mixed-vehicle collisions. While the tool is 

primarily intended for internal research use, it may also offer methodological value to other 

users of in-depth crash data. 

In an era where data-driven safety solutions are increasingly prioritized, this project stands 

out as a timely and impactful contribution. It not only enhances the scientific understanding 

of crash dynamics but also provides a practical foundation for improving road safety 

outcomes through better-informed engineering and regulatory practices. 

4.2 OBJECTIVES 

The evaluation of crash severity is a cornerstone of modern road safety research and vehicle 

safety engineering. Accurate severity assessments are essential for understanding injury 

mechanisms, improving vehicle design, and informing regulatory standards. However, 

current methodologies often fall short in capturing the complexity of real-world crashes, 

particularly in the estimation of Energy Equivalent Speed (EES). This project addresses 

these limitations through a set of well-defined objectives aimed at developing a robust, data-
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driven framework for crash severity analysis. The following subsections outline the specific 

goals that will guide the project’s development and implementation. 

4.2.1 DEVELOP A COMPREHENSIVE CRASH SEVERITY DATABASE 

The first objective is to construct a high-resolution, multi-dimensional database that 

consolidates real-world crash data from GIDAS. While the raw values, such as vehicle types, 

crash configurations, deformation patterns, delta-V values, and injury outcomes, are already 

available within GIDAS, the novelty of this database lies in its structured and stratified 

design. By organizing the data in a way that enables direct comparisons between similar 

vehicle models involved in similar crash configurations, the database facilitates the 

identification of outliers and inconsistencies against the prediction of the model. This 

structure not only supports more meaningful analyses of crash severity but also helps 

improve data coding quality by highlighting anomalies. Additionally, the database is 

designed for scalability and interoperability, allowing for future integration with simulation 

tools and machine learning models. 

4.2.2 IMPROVE ACCURACY OF EES CODINGS 

The second objective focuses on enhancing the reliability of EES. Although it is a well-

established concept in traffic crash reconstruction, its practical application often suffers from 

significant limitations due to the way it is typically estimated in real-world crash analysis. 

In many cases, EES values are derived from visual inspections of post-crash vehicle 

deformation, a process that introduces a high degree of subjectivity and uncertainty. Analysts 

typically rely on photographs, sketches, or on-site assessments to estimate crush depth and 

distribution, which are then used to infer the energy absorbed during the collision. Crucially, 

the accuracy of these estimations depends heavily on the competence and experience of the 

individual analyst. Misinterpretation of deformation patterns overlooked internal structural 

damage, or failure to account for asymmetries in the crash configuration can all lead to 

significant deviations in the resulting EES values. This reliance on expert judgment, while 
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often necessary, underscores the need for tools that can support more consistent and 

objective assessments. 

These visual estimations are further complicated by the diversity of modern vehicle designs. 

Differences in materials, structural reinforcements, and energy absorption strategies mean 

that similar-looking deformations can correspond to vastly different crash severities. As a 

result, assigning an accurate EES value becomes particularly challenging when comparing 

vehicle models or crash types. 

To address these issues, this thesis proposes a systematic re-evaluation of EES values using 

validated crash reconstructions and a stratified database structure. By grouping similar 

vehicle models and crash configurations, the methodology enables the identification of 

potential outliers and inconsistencies in EES estimation. This comparative approach not only 

helps to refine the accuracy of severity ratings but also supports the improvement of data 

coding practices and the development of more objective, reproducible estimation techniques. 

4.2.3 IDENTIFY CONTRIBUTING FACTORS TO INACCURATE EES CODING  

A critical analytical goal is to investigate the root causes of discrepancies in EES coding. 

Using the developed database, the project will analyze how factors such as crash 

configuration, vehicle mass ratio, structural misalignment, and deformation location 

contribute to irregular or misleading EES values. This analysis will help identify patterns of 

error and inform the refinement of crash reconstruction methodologies. The findings will be 

particularly valuable for improving the accuracy of automated crash analysis tools and for 

guiding future updates to crash severity coding standards. 

4.2.4 CONTRIBUTE TO THE REDUCTION OF TRAFFIC FATALITIES  

The overarching objective of this project is to contribute to the broader effort of reducing 

road traffic injuries and fatalities by improving the accuracy and objectivity of crash severity 

assessments. More reliable estimations of EES can enhance the evaluation of vehicle safety 

performance and support evidence-based policy and design decisions. A key application of 

this work lies in the analysis of partner protection, where EES serves as a core metric for 
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identifying severity discrepancies between vehicles of different sizes and masses. By 

enabling more consistent assessments of crash severity, particularly in mixed-vehicle 

collisions, the project supports a deeper understanding of mass ratio effects and their 

implications for occupant safety. 

4.3 METHODOLOGY 

The methodology for this project is designed to systematically address the challenge of 

accurately evaluating crash severity using real-world data. It combines data engineering, 

statistical modeling, and user interface development to create a robust and accessible system 

for analyzing Energy Equivalent Speed (EES) and related crash metrics. The approach is 

divided into three main phases: data collection and preparation, data analysis and model 

development, and visual estimation automation. 

4.3.1 DATA COLLECTION AND PREPARATION 

4.3.1.1 Creating a New Database Using R: 

The first step involves extracting and structuring relevant data from the GIDAS database. 

Using the R programming language within the RStudio environment, a new, purpose-built 

database is created to store and manage crash data efficiently. This process includes: 

• Filtering for relevant crash types (e.g., car-to-car frontal impacts). 

• Selecting key variables such as vehicle type, crash configuration, deformation 

measurements, and injury outcomes. 

• Cleaning and transforming the data to ensure consistency and usability. 

• Structuring the data into a relational format that supports advanced querying and 

analysis. 

This curated dataset forms the foundation for all subsequent analyses and model 

development. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTERS IN INDUSTRIAL ENGINEERING 

 

DEFINITION OF THE WORK 

35 

4.3.1.2 Developing a Graphical User Interface (GUI): 

To facilitate user interaction with the database, a graphical user interface (GUI) is developed. 

The GUI allows users to: 

• Browse and visualize individual crash cases. 

• Apply filters based on crash configuration, vehicle type, or severity metrics. 

• Export selected data for further analysis. 

The GUI is implemented using Shiny for R, ensuring accessibility for both technical and 

non-technical users. This interface enhances the usability of the database and supports 

exploratory data analysis. 

4.3.2 DATA ANALYSIS AND MODEL DEVELOPMENT 

4.3.2.1 Re-evaluating Existing EES Values: 

A core component of the project is the re-evaluation of existing EES values to improve their 

accuracy. This involves: 

• Comparing cases with the same crash configuration (e.g., moderate overlap, small 

overlap, underride). 

• Using statistical techniques such as linear regression and residual analysis to quantify 

and reduce estimation errors. 

The goal is to align crush-based EES values with data-based EES values, thereby enhancing 

the objectivity and consistency of crash severity assessments. 

4.3.2.2 Identifying Contributing Factors to Inaccurate EES Coding: 

To further improve the reliability of EES as a crash severity metric, the project investigates 

the root causes of inaccurate or inconsistent EES coding. This analysis includes: 
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• Using regression models and pattern recognition to identify correlations between 

crash characteristics (e.g., impact angle, vehicle mass ratio) and EES discrepancies. 

• Categorizing errors by crash configuration, vehicle type, age of the cars, crash year, 

regions, velocities, etc., to understand where traditional methods fail. 

The insights gained from this analysis will provide recommendations for improving EES 

coding protocols and crash reconstruction methodologies. 

4.3.3 PREDICTION TOOL AND VISUAL ESTIMATION AUTOMATION 

In order to obtain a corrected value for EES in real world crashes, two different and 

complementary techniques will be applied. 

• A machine learning predictive model that predicts an EES value depending on other 

variables of the car crash, such as the relative velocity or the deformation.  

• An automated method to show images to an external software that uses machine 

learning to estimate the EES value of the car crash, comparing them to other images 

integrated in its database. 

These two methods will allow the identification and correction of inaccurate EES coding.  

4.4 SCHEDULE 

The project was divided into three main sections. First, the EES Analyzer tool is developed 

in depth, as it is the main tool of this project and the basis for the whole study. Once the tool 

works, and access to PC Crash is enabled, the EES Estimator tool is developed. Finally, both 

tools are used to obtain results and reach conclusions. The report is written parallel to the 

rest of the tasks to keep track of each advancement made. Figure 12 shows the timeline of 

the project, showing in blue the tasks related to EES Analyzer, in green the tasks related to 

EES Estimator and in orange the tasks needed to obtain results and author the report. 
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Figure 12: Timeline of the Project 
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Chapter 5.  DEVELOPED SYSTE  

For the analysis of the GIDAS database, a new tool has been created that enables easy 

comparison of the existing data, easy search of similar cases and analysis of the variables 

present in the database. In addition, this tool is also able to predict which value of EES each 

case should have in each case depending on other selected variables.  

5.1 DEVELOPMENT OF THE GUI 

Using the Shiny library in R, a GUI was generated that allows the user to search for the cases 

which have a particular crash configuration, a specific car model or a defined car category, 

which enables the user to search for similar cases and compare them to get conclusions. The 

user is also able to filter a range of ees values, in case it is intended to obtain only crashes 

within a range of severity. There is also a checkbox that allows the user to apply the VDI 

filters. As the crash configuration coding according to (Brumbelow, 2019) is not available 

for all the cases, there are a great amount of cases that are not classified in any crash 

configuration. VDI filters analyze the area of the vehicle where the damage has been taken 

and converts the uncoded value of Brumbelow into a list of possible Brumbelow values, so 

they are not removed when trying to reach a specific car configuration. 

The VDI filters are based on GIDAS codings for VDI1, VDI2 and VDI3. VDI1 defines the 

principal direction of the force that received the damage. This variable helps identifying 

whether the crash has a completely frontal impact, has an angle, or is a side or a rare impact. 

VDI2 defines the main deformed area of the vehicle. In most of the cases, this value is 

directly with VDI1, as it will also define whether the crash is frontal, side or rare. VDI3 

codes the specific horizontal location of the damage, and they depend on VDI2. This last 

variable helps differentiating distinct types of frontal crashes, as it shows the position of the 

damage and its width.  



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTERS IN INDUSTRIAL ENGINEERING 

 

DEVELOPED SYSTEM 

39 

 

Figure 13: Input Tab of EES Analyzer 

After clicking the “Search” button, the UI will offer a table that shows all the cases that fulfill 

the characteristics asked for by the user, which have an EES value coded. In case the EES 

value is marked as unknown, it will appear in the table below, where the unknown EES cases 

are shown. The EES range filter will also be showed in this new window, alongside new 

checkboxes that allow better filtering capabilities.  

One of these filters, “Show only car-to-car crashes,” excludes cases involving other vehicle 

types such as motorcycles or trucks. Another filter, “Show only singular collisions,” removes 

cases involving complex sequences of multiple impacts. This filter was implemented not to 

imply that multi-collision cases are inherently less severe, but because accurately 

distributing deformation across multiple impacts is extremely challenging. In many multi-

collision scenarios, it is unclear how much of the total deformation corresponds to each 

individual impact, especially when the sequence involves varying angles, speeds, and 

contact points. This ambiguity can significantly distort EES estimation and compromise the 

reliability of severity assessments. By focusing on singular collisions, where the deformation 

can be more confidently attributed to a single event, the analysis gains clarity and 
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consistency. However, it is important to note that this filter does not imply a judgment on 

the overall severity of multi-collision crashes but rather reflects a methodological choice to 

ensure data quality and interpretability. 

The information the user wants to see is displayed as a data table in the center of the screen. 

The user can select different rows from the table, and a preview of the corresponding vehicle 

appears on the right side of the screen. Additionally, the user has the option to click “Open 

Directory,” which opens the folder associated with each selected case, providing access to 

all the images that GIDAS has for that specific crash. 

 

Figure 14: Output Tab of EES Analyzer 

In order to find out which variables are relevant, a linear regression can be created between 

EES and whichever variable the user wants to compare it with. Clicking the “Show 

Correlation” button, a new window will open showing two selection cells to choose the 

variables to correlate. Once selected, the user can click on “Run Regression” to receive an 

output that shows the summary of the linear model, the four correlation plots and a plot that 

relates the two variables studied. 
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Figure 15: Correlation Analysis Window in EES Analyzer 

Once the relevant variables have been determined, the prediction model can be developed. 

The program has this model previously coded, so the user does not need to use the 

information from the correlations to generate any prediction. From the user perspective, he 

will only have to click on “Generate Prediction” and, in the window that appears on the 

screen, press predict. The program will start generating a model using RandomForest and 

then using that model to generate a prediction for each variable that appears on both output 

data tables, as long as the program is able to do so. These predicted variables will be shown 

in a plot compared to real EES values in the GIDAS, along with other relevant information 

about the prediction, such as the number of variables the program was able to predict or the 

precision of the model. 
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Figure 16: Prediction Generation Window in EES Analyzer 

The objective of this program, therefore, is to analyze all frontal car-to-car crashes without 

severe multiple collisions, with the possibility to do a clustered analysis separating each 

crash configuration or vehicle classification, use the correlation and prediction tools to 

identify possible miscoded cases and then compare them to similar car crashes to get 

conclusions. Moreover, the program has the potential to escalate and analyze all traffic 

crashes. 

The software also allows the user to export the filtered data in two separate ways. By clicking 

on the “Export DT” button, an Excel file is generated with all the cases shown in the table 

and the variables selected in the input tab. This tool is useful to generate databases that only 

contain the specific information that the user is searching for. The second way is the “Export 

Selection to EESEstimator”. This button’s main use is to generate a manual input for some 

cases to the EES Estimator tool, directly from the EES Analyzer. The EES Estimator tool is 

explained more in depth in: 6.1. EES Estimator.  
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5.2 OBTAINING NEW RELEVANT VARIABLES 

GIDAS is a platform that saves a lot of information about each car crash, however, there is 

additional information that can be obtained from its variables and yet is not a variable itself.  

5.2.1 DEFORMATION 

The first variable to be obtained is the estimate of the total area of deformation of the vehicle. 

GIDAS uses four areas of deformation to specify how the vehicle was deformed. However, 

there is no variable of general deformation, which is the variable that this project intends to 

study. That means that this variable needs to be calculated in order to perform the analysis 

intended. 

 

Figure 17: Deformation Zones (Federal Highway Research Institute (BASt) and Forschungsvereinigung 

Automobiltechnik e.V. (FAT), 2025) 

The values F1, F2, F3 and F4 give values of depth in deformation, which is a one-

dimensional value. That is why the first step will be to obtain the area of deformation on 

each deformation zone, estimating a continuous curve on each deformation zone, using these 

deformation zones and the total width of the car (W). 
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𝐹0𝐹1 = 𝐹1 ∗ 0.125 ∗ 𝑊 

𝐹1𝐹2 = (𝐹1 +
𝐹2 − 𝐹1

2
) ∗ 0.25 ∗ 𝑊 

𝐹2𝐹3 = (𝐹2 +
𝐹3 − 𝐹2

2
) ∗ 0.25 ∗ 𝑊 

𝐹3𝐹4 = (𝐹3 +
𝐹4 − 𝐹3

2
) ∗ 0.25 ∗ 𝑊 

𝐹4𝐹5 = 𝐹4 ∗ 0.125 ∗ 𝑊 

Once the five manually calculated areas are obtained, the sum of these will result in the total 

deformation of the vehicle. 

𝐷𝐸𝐹 = 𝐹0𝐹1 + 𝐹1𝐹2 + 𝐹2𝐹3 + 𝐹3𝐹4 + 𝐹4𝐹5 

This new variable does not offer satisfactory results for correlation, as an R-squared value 

of 0.12 shows a low correlation, which means that the hypothesis cannot be discarded. This 

result shows that some additional information is needed, and deformation by itself will not 

be enough to estimate the value for EES. However, the p-value, which is almost zero, shows 

that there is a real relation between both variables and, therefore, can be used in future 

calculations. 
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Figure 18: Deformation over EES graph. 

5.2.2 POST-CRASH VELOCITY 

The GIDAS database offers information about the vehicle speed in different moments of the 

crash, and also parameters related to the evolution of the velocity of the vehicle throughout 

the crash. However, the final velocity of the crash is not explicitly coded. Instead, the use of 

delta-v (one of the biggest correlating variables with ees in the database), the change of angle 

during collision (DWINK) and impulse angle (IMP) will be key for this final velocity, which 

is not expected to correlate, but can be used to obtain another crucial variable later on this 

thesis, which is the equivalent velocity of the change in kinetic energy. To obtain this value, 

it is important to understand which is the definition of the delta-V, and how it is calculated. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTERS IN INDUSTRIAL ENGINEERING 

 

DEVELOPED SYSTEM 

46 

 

Figure 19: Definition of delta-V (Federal Highway Research Institute (BASt) and Forschungsvereinigung 

Automobiltechnik e.V. (FAT), 2025) 

Once the values DV, DWINK and IMP are identified, final velocity can be obtained as 

shown in Equation 1. 

Equation 1: 𝑉𝐹 = √𝐷𝑉2 + 𝑉𝐾2 − 2 ∗ 𝐷𝑉 ∗ 𝑉𝐾 ∗ 𝑐𝑜𝑠⁡(180 − 𝐼𝑀𝑃) 

This variable returns the velocity of the car right after the collision. As expected, there is no 

correlation between this variable and EES, but it will be used for the next variable, which 

should be more relevant. 
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Figure 20: Final Velocity over EES Graph 

5.2.3 EQUIVALENT VELOCITY 

According to its definition, EES is the equivalent speed of kinetic energy in the deformation 

of the vehicle. This means that the value of EES should be possible to calculate as shown in 

Equation 2: 

Equation 2: 𝐾 =
1

2
∗ 𝑚 ∗ 𝐸𝐸𝑆² 

In a collision, the total amount of kinetic energy dissipated will be the total amount of the 

kinetic energy dissipated by each vehicle, which can be calculated as shown in Equation 3: 

Equation 3: 𝐾 =
1

2
∗ (𝑚1 ∗ (𝑣𝑘1

2 − 𝑣𝑓1
2) + 𝑚2 ∗ (𝑣𝑘2

2 − 𝑣𝑓2
2)) 

The total energy of deformation of each vehicle depends on the relation of masses between 

the vehicles involved in the collision, suffering a higher deformation if the opposing car is 

heavier than the first car. That is why the energy distribution in the collision will be as shown 

in Equation 4: 

Equation 4: 𝐾1 = 𝐾 ∗
𝑚2

𝑚1+𝑚2
 

Using Equation 2, Equation 3 and Equation 4, the result of the equivalent velocity is: 
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𝑈 = ⁡√
(𝑚2 ∗ (𝑚1 ∗ (𝑣𝑘1

2 − 𝑣𝑓1
2) + 𝑚2 ∗ (𝑣𝑘2

2 − 𝑣𝑓2
2)))

𝑚1 ∗ (𝑚1 +𝑚2)
 

This variable should, theoretically, be exactly the value of EES. However, there are other 

factors that influence the definition of the real EES variable, for example, the deformation 

of the car, which changes depending on the materials and the compatibility of the crash. 

Provided that the definition of EES is based on visual inspection, and most of the times, 

through photos of the crash, there is expected a variance between the calculation proposed 

and the real value. 

 

Figure 21: Equivalent Velocity over EES graph. 

The correlation between these variables is more interesting than it looks in the graph. There 

is an estimation of a 1:1 relation between both variables. The R-squared value of 0.76 shows 

an important correlation and a p-value of ~0 will not allow to discard the hypothesis.  

5.3 PREDICTIVE MODEL 

Once the most relevant variables have been decided, the RandomForest library will allow 

using the variables chosen to generate a prediction of the EES value. The variables selected 

were the relative velocity (vrel), the age of the vehicle (bj_beginn), the deformation of the 
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vehicle (sumspaces) and the equivalent velocity (U). Relative velocity was chosen because 

of its high correlation with EES, not being included in the calculation of the equivalent 

velocity (delta-v had a stronger correlation but that variable was included when calculating 

U). On the other hand the reason why the age of the vehicle was included is because, 

throughout the years, cars stiffness have been progressively changing, which supposes a 

different behavior when they suffer a car crash (Ellen L. Lee, 2014). 

The table below shows the importance that the model gives to each variable during the 

decision-making process. It highlights the strong importance of the U value previously 

calculated and finds less important the model year of the vehicle. 

 

Table 1: Importance of the Variables in the Predictive Model 

The model will use all the cases which have a coded EES, and all the necessary variables 

defined as training values, which will also act as test values. This will be done this way for 

two reasons. The first reason is that, although it is possible to define criteria for identifying 

exemplary cases to be used as training data, thereby excluding those that may introduce noise 

or inaccuracies, the number of such qualifying cases is too limited to effectively train the 

model. The second reason is that the goal of the project is that EES values are coherent with 

each other, so, using this technique, it should be possible to identify outliers against the 

prediction of the model, note them, correct them and put them back in the database to perfect 

the training data. 

This tool of the program enables the possibility of getting a prediction of all the cases, which 

is easier for the user, or each crash configuration/vehicle category separately, which delivers 

more precise and reliable results. In Figure 22, a really strong correlation can be seen 

between the EES and the predicted EES, which is close to the 1:1 line, marked in blue. 

However, a couple of outliers against the prediction of the model can be seen which allow 
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to find cases that might be miscoded. By identifying those outliers, and correcting the EES 

values, a new iteration can be done finding different outliers against the prediction of the 

model up until all values become reliable. 

 

Figure 22: EES over Predicted EES graph. 

The predicted values obtained in this prediction are not reliable yet because, as previously 

mentioned, the model is trained with both accurate and inaccurate data. That is why an 

additional tool must be developed to estimate the real EES value of the outliers against the 

prediction of the model found with this method. However, it is important to study the 

precision of the prediction, so it is possible to identify which parameters affect the model 

and how. 

 

Table 2: Confusion Matrix Overall 

For that reason, there are two tables that will be obtained. The first one is the overall of the 

prediction, where the most relevant statistical values are obtained to analyze the quality of 

the prediction and the process it followed. These values are obtained from the confusion 
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matrix developed from the result of the prediction. The second one is the summary table of 

the cross validation where, through a 10-fold validation, parameters showing the accuracy 

of the prediction are shown.  

 

Table 3: Cross Validation Study 

Finally, a box plot showing the error distribution will complement all the previous 

information with a visual and detailed analysis of the error of the prediction. 

 

Figure 23: Box Graph of Absolute Error in Prediction 
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Chapter 6.  CORRECTION OF THE DATA ASE 

Once miscoded cases have been identified, the EES Estimator tool is developed to create an 

estimation of the EES value this case should have. Then, these values are compared to the 

coded EES value in GIDAS and the predicted EES value obtained in the EES Analyzer tool. 

With that new comparison, conclusions can be obtained. 

6.1 EES ESTIMATOR 

EES Estimator is a function developed during this thesis that uses the EES-CNN tool of the 

program PC-Crash, with the help of Microsoft Copilot for the image recognition, in order to 

repeat the process of uploading the images of the cases to PC-Crash and retrieve the results 

several times without the need for a user who keeps doing this repetitive activity.  

The tool is based on the following conceptual framework. The R program will take control 

of the mouse and the keyboard and perform a sequence of actions that react depending on 

the input the program receives. The sequence of the actions for this process to achieve the 

intended goal is explained below: 

Preparation. Microsoft Copilot must be opened, and the rest of the programs closed, in 

exception of RStudio. 

1. Open the Copilot window and open two selected images of each case to study with a 

command from RStudio. This can be done thanks to a function that receives the case 

number, the participant, and the position of the crash and returns the path for the two 

most relevant photos, supposedly showing the major part of the damage suffered 

during the crash. Copilot will validate whether the images can be used by the program 

or not using automated screenshots of the relevant information of the current screen. 

2. Open PC-Crash with a command from RStudio, navigate through the menu to open 

EES-CNN tool and open the file explorer. In the file explorer the path previously 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTERS IN INDUSTRIAL ENGINEERING 

 

CORRECTION OF THE DATABASE 

53 

obtained will be introduced in the file bar to open the first image of those two, which 

is detected by the function as the most relevant. 

3. After EES-CNN is done with its EES estimation, it returns a graph with a range of 

values where the EES should be for this crash, together with the corresponding 

confidence PC-Crash has on this range. The EES Estimator will then automatically 

generate screenshots of the resulting diagram. The result from PC-Crash will not 

generate any output that can be exported or copied, which means that the only way 

to receive data from the EES-CNN tool is to see it. That is why a screenshot is 

generated, and the next step will be to use the image recognition tool in Copilot, to 

get data that can be exported. 

4. For the next step, the program closes PC-Crash, which leads back to Copilot, and 

pastes the screenshot with a prompt that tells the chatbot to learn the values shown 

in the screenshot. After that, it reopens PC-Crash and repeats the process getting the 

second most relevant image of the crash, which supposedly shows the most damaged 

area of the car but from a different perspective. 

5. EES Estimator goes back to Copilot, after closing PC-Crash again, to paste this 

second screenshot and insert a different prompt that asks the AI to analyze the second 

graph, compare it to the first one, get the average of each bar and return only the 

range of values and the confidence with the format “XX, XX, XX”, without any 

additional text. 

6. The function will then copy Copilot’s response and save it as a list of variables, which 

are saved as “min_eescnn”, “max_eescnn” and “conf_eescnn” respectively and save 

them in the input data frame.  

The reason why some validation is needed on the photos uploaded to PC-Crash is because 

in some cases the names of the images, which should define the case number, the participant 

and the angle of the photograph, are not defined correctly, showing some documentation, 

the road, the car from the inside or the car seen from the incorrect angle. There are other 

cases where the image will not exist by the name it should and other images which will pass 

the previous validation even though they do not show the most damaged part of the car, 

which will most likely lead to results with low confidence. 
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This process is repeated for as many cases as the user wants to estimate, and, each time the 

loop finishes a case, it updates an Excel table to save the calculated values in there, which 

allows the user to compare the values of coded EES in GIDAS, predicted EES in EES 

Analyzer and calculated EES in EES Estimator. 

EES Estimator works as a separate program from EES Analyzer. However, EES Analyzer 

has the option to export up to 1000 rows containing the data with the biggest difference 

between coded EES and predicted EES. These 1000 rows could be more, but this number of 

repetitions was chosen as a maximum because, taking the program approximately 2 minutes 

to complete one estimation, it is expected to complete 1000 estimations in less than 34 hours. 

More cases would be too much time, and it is not the main goal of this study. 
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Chapter 7.  RESULTS 

After developing both EES Analyzer and EES Estimator, now all the tools required for this 

project are available, therefore the analysis of the GIDAS database can be conducted. This 

analysis will include all the goals proposed in section 4.2.  

7.1 CONTRIBUTING FACTORS TO EES CODING ERRORS 

An analysis was conducted using approximately 20,000 cases from the GIDAS database, 

focusing exclusively on frontal collisions involving only two vehicles and excluding multi-

impact events. To estimate the error in EES codings, a Random Forest model (5.3. Predictive 

Model) was trained on the same dataset, with the error defined as the difference between the 

predicted and the coded EES values. 

The results reveal several important insights. First, the moderate linear correlation between 

the EES value and its associated prediction error (R² = 0.3) suggests that higher EES values 

are more prone to larger deviations. This finding raises concerns about the robustness of EES 

codings in high-velocity crashes. The increasing error with EES magnitude may reflect 

limitations in the model’s ability to capture complex crash dynamics, or inconsistencies in 

human coding practices under more severe conditions.  

There are two reasons why this might be happening. The first reason is that there is a 

relatively small number of high-speed crashes in GIDAS, which turns into a lack of 

information for the model to learn from those cases. That means that the model will learn 

from the lower speed crashes and, therefore, will not consider some variables which might 

behave differently when the speed is higher. The second reason is that when crash speed 

exceeds the typical crash test speed, the EES for this crash become more difficult to code. 

This happens because EES values are usually based on crash test results.  
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Second, the variation in residual errors across vehicle types, ranging from 2.395 in super 

compacts to 4.437 in compacts and 4.343 in SUVs, indicates that structural and design 

differences among vehicles may not be fully accounted for in the current coding approach. 

These discrepancies suggest that the vehicle category plays a significant role in the accuracy 

of EES predictions and should be considered in future model refinements. Moreover, they 

highlight the need for more clustered crash studies depending on the vehicle classification. 

In addition, an unusually strong correlation was found between EES and Delta-V. While a 

degree of correlation is expected due to the physical relationship between impact severity 

and vehicle velocity change, the strength of this linear relationship raises conceptual 

concerns. EES is intended to represent the energy dissipated in a crash, reflecting the 

physical damage of the vehicle, and it is not intended to rely on a single variable, as it looks 

in this case. The observed correlation suggests that, in practice, Delta-V may be influencing 

more than it should on the coding of EES. 

This finding aligns with critiques such as those found in the Breitlauch model (Breitlauch, 

Junge, Erbsmehl, Sandner, & van Ratingen, 2023), which emphasize the importance of 

maintaining the conceptual distinction between crash reconstruction variables and outcome-

based metrics like EES. The purpose of EES is not to replicate the crash dynamics but to 

quantify the consequences. Therefore, while predictive tools can assist in estimating EES 

values, they must be used with caution to avoid replacing expert judgment. 

Ultimately, this study underscores the importance of critically evaluating the tools and 

processes used in crash data analysis. As predictive modeling becomes increasingly 

integrated into safety research and operational workflows, maintaining the balance between 

efficiency and conceptual rigor will be essential to ensure that data-driven insights remain 

valid, reliable, and meaningful. 
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7.2 INFLUENCE OF CRASH CONFIGURATIONS ON ACCURACY OF 

EES PREDICTIONS. 

When generating a prediction of the EES value using a model generated with the 

RandomForest package, the crash configuration is not defined as a variable to be taken into 

account to generate the prediction. However, this parameter is key to understanding how the 

car is affected after a car crash. To check how relevant this factor is in the prediction model, 

a prediction was made using all the cars which have a coded crash configuration value 

according to the crash configurations specified by Brumbelow (Brumbelow, 2019). Then, a 

prediction was made for every single crash configuration separately, to check how the 

importance of the reference variables changes and how the error and accuracy of the model 

evolves.  

7.2.1 DATASET OVERVIEW AND MODEL PERFORMANCE 

The dataset analyzed in this study consists of a subset of the more than 20.000 cases used 

for the complete project, using only the cases with a valid Brumbelow-coding. Therefore, it 

will be used a dataset of 2288 two vehicle frontal crashes. The distribution of those cases is 

shown in Table 4: 

 

Table 4: Number of Cases per Configuration 

As explained in 5.3. Predictive Model, the variables used to generate this estimation are the 

relative velocity, the year when the car was made, the deformation area in the impact and 

the equivalent velocity of the kinetic energy calculated in 5.2.3. Equivalent Velocity.  
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The table below shows the importance that the predictive model gave each variable when 

generating the decision trees. This number will be higher the more data is included in the 

decision tree, so there is no direct conclusion with that information. However, the percentual 

distribution of the four variables will give a more meaningful understanding of how the 

model treats each variable for each crash configuration. 

 

Table 5: Importance of Predictors for each Crash Configuration 

To evaluate the predictive performance of the machine learning models, three regression 

metrics were studied: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and 

Coefficient of Determination (R-Squared). The table below shows how the predicted EES 

value and the one coded in GIDAS correlate with each other, according to these metrics. 

 

Table 6: Model Performance Metrics for each Crash Configuration 

MAE RMSE R-Squared

Generic Case 2.951053 4.721384 0.8743488

Large Overlap 2.470125 4.20695 0.9092729

Moderate Overlap 3.088576 5.327708 0.8873415

Small Overlap 3.434385 5.291476 0.8463373

Perpendicular 2.908069 3.871057 0.7929549

Oblique Center 3.559649 5.307713 0.7492057

Oblique Corner 3.195927 4.303282 0.8481095
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Figure 24: Bar Chart Comparing RMSE by Configuration 

This comparative analysis revealed that the generic case performed better than expected. The 

model generated with the generic case had an intermediate behavior when compared to the 

rest of the configurations. That could mean that some configurations have better behavior 

when predicted with the generic case but also could mean that there is a high presence of 

outliers against the prediction of the model in these configurations, meaning that it could be 

another contributing factor for EES coding error. 

It is also concerning the unexpectedly high value of moderate overlap models. As EES is 

typically based on crash test results, which are most of the time large and moderate overlap, 

these models are expected to have the best performance. However, even though the large 

overlap does behave as expected, moderate overlap has a value which is higher than it should 

be and, therefore, more studies will have to be conducted with cases with moderate overlap. 

7.2.2 PREDICTION ACCURACY AND ERROR VISUALIZATION 

To compliment the numerical performance metrics, scatter plots will show the relationship 

between predicted and actual EES values.  
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Figure 25: Comparison of Predicted EES vs. GIDAS - Generic Model 

With the scatter plot graphs, further conclusions can be made, such as whether the 

configurations that performed worse were because of the model or the presence of outliers, 

when compared to its respective model. Oblique center configuration showing clear outliers 

against the prediction of the model means that correcting the miscoded EES cases could 

improve the performance of the model. However, small and moderate overlap showing 

disperse clouds of points for higher EES values means that the reason for high error could 

be for both not effective model and presence of miscoded cases, as neither of those 

hypotheses could be discarded. This result is highly unexpected. The methodology of EES 

coding consists of comparing the crashed vehicle to comparable crash tests, which means 

that the models for large overlap and moderate overlap should be the most consistent models 

generated, because those are the configurations that are most present in crash tests, and the 

rest of them are expected to be worse than these two. However, moderate overlap showing 

a disperse cloud with a relatively high error is unexpected and will need further study in the 

future. 
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Even though Figure 24 showed that the generic model performed better than expected, as 

explained above, its scatter plot (Figure 25) shows a cloud of points which is wider than all 

of the other scatter plots for particular configurations. This proves that, in order to define the 

EES value of a car crash, it is necessary to compare the crash with crashes with the same 

crash configuration. The scatter plot for each of the crash configurations studied are shown 

in ANEX II. 

To further assess prediction consistency, the distribution of absolute prediction errors is 

examined using boxplots. These visualizations display the range, interquartile spread, and 

median error values for each configuration, as well as the generic case. 

 

Figure 26: Error Distribution - Generic Model 

These error plots show the interquartile range (IQR) of the absolute error between coded 

EES and predicted EES, which is shown as a box and includes 50% of the cases. The 

whiskers show the rest of the data which is not considered an outlier (following the rule of 

1.5 x IQR), and the rest of the points that appear in the graph are those considered outliers. 

This way, the amount of points and the value of the upper fence can give clues about the 

error in the model, where a high upper fence means a high error for valid cases, and the error 

in the coding, where several points over the upper fence should mean a high number of 

outliers. The box plots for each of the crash configurations studied are shown in ANEX III. 
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From these graphs, three different conclusions can be obtained:  

- The upper fence of small overlap is set as 3, which means that most of the 

deviations from the original coded values were outliers against the prediction 

of the model, with values higher than 1.5 x IQR (interquartile range), which 

can be seen in its box plot (Figure 42).  

- The higher fence for moderate overlap is set as 5, which shows a generic 

dispersion in the model, where most of the cases are included inside the box 

or in the whiskers, and only a few as outliers compared to the prediction of 

the model. That means that the model generated using this crash 

configuration will not be reliable yet and, therefore, a more in-depth study 

will be needed. 

- There is a higher number of outliers shown in the generic case box plot 

(Figure 26), which is expected, however the value of those outliers, when 

compared to their respective value, is noticeably higher than in the rest of the 

cases, with many values higher than 15, which is the maximum of all of the 

rest of the box plots and appears in Figure 50.  

Another relevant aspect to consider is that, with each prediction, certain values may remain 

unpredicted due to the program's limitations in making specific determinations. That is the 

reason there is a value in the generic case graph which has a coded EES of more than 150 

kph, which does not appear in any other graph. This means that when predicted for each 

configuration separately, less values are obtained, therefore the generic prediction will 

always be needed to be able to obtain more values.  

7.2.3 VARIABLE IMPORTANCE 

To understand the difference between all the crash configurations, it is necessary to 

understand how the model generates the prediction, in this case, by studying how important 

the program understands each variable is and, therefore, which value the program assigns to 

this variable in order to determine the predicted value. Graphs showing the distribution of 

the importance for each model can be seen below: 
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Figure 27: Importance Distribution - Generic Model 

When RandomForest generates a model, it assigns values to the importance that the model 

gives to each variable. These values depend on the amount of data that the model has for 

training. For that reason, the importance of the variables only gives interesting information 

about the model when seen as a percentage of the total. The pie charts for each of the crash 

configurations studied are shown in ANEX IV. 

When the deformation variable was first introduced into the model, it was expected to play 

a significant role, possibly even rivaling relative velocity as one of the most influential 

predictors of EES. However, the results show that its importance is lower than anticipated. 

While it does rank above vehicle age (which was expected to have minimal impact), it does 

not come close to the relevance of relative velocity or equivalent velocity (U). 

That said, deformation still adds meaningful value to the model. Unlike the other key 

variables, which focus on the dynamics of the crash, deformation brings in a structural 

perspective. It reflects how the vehicle physically responded to the impact, something that 

neither velocity nor age can capture directly. In fact, aside from vehicle mass, present in the 

calculation of equivalent velocity, the model lacks any other input that speaks to the vehicle’s 

structural characteristics. So even if deformation is not the top predictor, it helps round out 
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the model by offering a different kind of insight, one that enhances precision and supports a 

more complete understanding of crash severity. 

On the other hand, the equivalent velocity stands out as the most consistently important 

variable throughout the entire study. Its relative importance remains remarkably stable, 

ranging from 36% in oblique corner impacts to 40% in perpendicular collisions. In every 

scenario analyzed, it ranks as the most influential factor in the model. This consistency 

suggests that equivalent velocity plays a leading role in predicting EES values, regardless of 

crash configuration, and reinforces its reliability as a key input in the modeling process. 

7.3 CORRECTION OF MISCODED VALUES 

The process of correction of the database is based on three phases: filtering and prediction 

using EES Analyzer, detection of potential outliers and first visual inspection and running 

PC-Crash, manually or using EES Estimator. 

Section 7.2 showed that there are many outliers against the prediction of the model in oblique 

center configuration, so those outliers need a closer look. This objective is achieved through 

the EES Analyzer tool, which enables straightforward identification. After defining the 

filters, a prediction is executed: 
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Figure 28: Filters for EES Correction for Oblique Center 

 

Figure 29: Outlier Identification from EES Analyzer 
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Although the identification process can be applied to multiple cases individually, this study 

focuses on a single instance in which the predicted EES value is 30, whereas the 

corresponding coded value in the GIDAS database is 16. 

 

Figure 30: Potential Outlier Identified in the Database 

At this point, there are two ways to apply the EES-CNN function of PC-Crash to this case. 

The first one is to do it manually, clicking on Open Directory and sending manually the 

relevant images to PC-Crash. This way is more reliable than the second one, but drastically 

more time-consuming than the second option, which consists of clicking Export Selection to 

EES Estimator. This option is better when the study consists of more cases, as it will work 

automatically. As in this case, there is only one car that needs to be studied, the estimation 

will be done manually. 
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Figure 31: PC-Crash Visual Estimator Output 

Results show that the coded EES value for this case is 16 kph, but the prediction model has 

estimated a value of 30 kph. So, this case was defined as a potential outlier and sent it to PC-

Crash. This software estimated a value of 35-40 kph with a confidence value of 63.7%, and 

a value of 30-35 kph with a confidence value of 30.65%. These two percentages were 

calculated as an average of the estimation of each one of the two images, and the results it 

shows are a proof that this case might be a miscoded case, and its real value should be closer 

to 35 kph than to the 16 kph that were originally coded. 

7.4 COMPARISON BETWEEN GIDAS, EES ANALYZER PREDICTION 

AND EES ESTIMATOR RESULTS 

To evaluate the relative accuracy of three different approaches for estimating the Equivalent 

Energy Speed (EES), a comparative analysis was conducted involving: 

- GIDAS EES coded value 

- Predicted EES from EES Analyzer 

- Estimated Range from EES Estimator, defined by intervals of 5 km/h. 
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For the comparison, only estimated ranges with a confidence higher than 70% are 

considered. 

7.4.1 VISUAL COMPARISON 

The first visualization (Figure 32) presents a scatter plot where the X-axis represents the EES 

value (in km/h) and the Y-axis corresponds to the case index. Each case includes three 

elements: the GIDAS-coded EES, the predicted EES, and a horizontal bar indicating the 

range estimated by EES-CNN. This plot enables a direct visual comparison of the three 

values for each case, allowing a direct visual comparison between the values. When 

comparing only two EES variables, it is not possible to identify which one is more likely to 

be wrong. Therefore, a comparison between the GIDAS EES, the predicted variable using 

EES Analyzer and the estimated range using EES Estimator must be compared to each other 

in order to identify whether this project is increasing the accuracy of EES or not. 
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Figure 32: Dumbbell Plot: Real Values vs Estimated Range 

The graph shows how the value of predicted EES has a higher tendency to get closer to the 

estimated range than GIDAS EES, which means two things. First, predicted EES can be a 

strong tool to identify potential outliers, as the cases where the difference between both EES 

values is higher also tend to be those where GIDAS EES is further from the estimated range. 

Secondly, predicted EES and estimated range tending to similar values implies that the 

prediction tool is reliable in order to determine EES values. 
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7.4.2 DEVIATION ANALYSIS 

To quantify the deviation of each method from the estimated range, a heatmap was generated 

(Figure 33). Each cell in the heatmap represents the absolute difference between the center 

of the estimated range and either the coded or predicted EES, which is helpful to understand 

which EES value is closer to the center of the estimated range of PC-Crash. The heatmap is 

organized into two columns: one showing the deviation of the coded EES from the center of 

the range defined by PC-Crash, and the other showing the deviation of the predicted EES 

from that same center of the range. This allows for a systematic comparison of both methods 

in terms of their alignment with the estimated range. 

 

Figure 33: Heatmap of Deviations from Estimated Range Center 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTERS IN INDUSTRIAL ENGINEERING 

 

RESULTS 

71 

The plot shows really similar behavior in the deviation from the center of the range estimated 

by PC-Crash. However, the deviation from this center of the range is slightly lower, and 

therefore, slightly better, in the predicted values using RandomForest than in those coded in 

GIDAS. 

This study sets out to explore how predictive modeling could support and improve the coding 

of EES values in crash data, using a Random Forest model trained on a large subset of 

GIDAS cases. The results show a promising direction: in most cases, the predicted EES 

values and the estimated EES ranges are more consistent with each other than with the 

originally coded EES values. This pattern, visible in Figure 33, suggests that the model is 

not only capable of producing reasonable estimates but may also help identify when a coded 

value falls outside expected bounds. 

One of the key strengths of this approach lies in the use of the estimated range. Rather than 

relying solely on a single predicted value, the estimated range provides a context within 

which both the coded and predicted values can be evaluated. When the coded EES falls far 

outside this range, but the predicted value remains within it, it raises a flag: perhaps the 

prediction is closer to reality, and the coded value deserves a second look. This kind of 

insight could be especially useful in quality control or in cases where manual coding is 

uncertain or inconsistent. 

However, it is important to recognize the limits of automation. EES is not just a number 

derived from crash mechanics, but it is meant to reflect the physical consequences. As stated 

by Breitlauch et al., (2023), EES should remain conceptually distinct from variables like 

Delta-V, which describe the dynamics of the crash itself. If predictive tools begin to 

dominate the coding process without human oversight, there’s a risk of losing that 

distinction. 

So, while the Random Forest model and the estimated range offer valuable support, they 

should be seen as tools to assist, not replace, expert judgment. Their role is to guide coders, 

highlight inconsistencies, and improve efficiency. In fact, the integration of predictive 
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modeling and range-based validation could lead to a more consistent and transparent coding 

process, especially in large datasets where manual review is time-consuming. 

Looking ahead, these findings open the door to developing smarter tools within platforms 

like the EES Analyzer. With careful design, such tools could help coders make better 

decisions, reduce errors, and ensure that EES values remain meaningful and reliable. But 

any future implementation must respect the original purpose of EES and maintain the 

balance between technological support and human expertise. 
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Chapter 8.  CONCLUSIONS AND FUTURE PRO ECTS 

This chapter of the report serves as a summary of all the goals achieved and the conclusions 

taken from them, along with future steps to take in order to achieve the ultimate goal of 

improving the accuracy of EES coding in order to improve the reconstruction of car crashes. 

8.1 CONCLUSIONS 

One of the core components of this thesis was the development of a software application 

using Shiny (R), designed to facilitate interaction with the GIDAS (German In-Depth 

Accident Study) database. The motivation behind this development was to streamline the 

process of querying, visualizing, and analyzing traffic accident cases, which are often 

complex and data-rich. 

The tool provides an intuitive interface that allows users to filter accident cases based on 

specific characteristics, such as vehicle type, collision configuration, or injury severity. This 

filtering capability enables researchers and analysts to focus on subsets of data that are most 

relevant to their investigations, significantly reducing the time and effort required to 

manually sift through large datasets. 

In addition to filtering, the software includes a search function that allows users to locate 

specific cases directly. Upon selecting a case, the tool displays a preliminary image 

associated with the accident, offering immediate visual context. Furthermore, it provides 

direct access to the case directory, where users can explore additional images and 

documentation related to the incident. 

To support statistical analysis, the application incorporates a linear regression module, which 

can be applied to any two variables within the filtered dataset. This feature enables users to 

quickly identify potential correlations and trends without needing to export data to external 

tools. 
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A particularly innovative aspect of the software is its ability to predict Equivalent Energy 

Speed (EES) using a random forest model. This predictive functionality adds a layer of 

analytical depth, allowing users to estimate EES values based on other case parameters, 

which can be especially useful in scenarios where direct measurements are unavailable. 

Finally, the tool includes data export capabilities, allowing users to either export the entire 

filtered table or selected cases to Excel format. This functionality supports seamless 

integration with a second software tool developed during the thesis, named EES Estimator, 

ensuring a smooth workflow between data exploration and detailed analysis. 

The second major contribution of this thesis was the development of EES Estimator, a 

software tool designed to automate the interaction with the EES-CNN module of PC-Crash. 

This tool was created to address a significant bottleneck in the workflow: the manual 

processing of large volumes of accident cases to obtain Equivalent Energy Speed (EES) 

predictions. 

EES Estimator streamlines this process by sending a large batch of cases to the EES-CNN 

tool, validating the associated images, uploading them, and retrieving the predicted EES 

values. This automation was made possible through the use of R programming, and with the 

support of Microsoft’s large language model: Copilot, which facilitated the integration and 

handling of the various steps involved in the communication with the external tool. 

The manual execution of this process for hundreds of cases would be extremely time-

consuming and error-prone, making it impractical for large-scale studies. By automating the 

workflow, EES Estimator significantly reduces the time required to obtain results, while 

ensuring consistency and reproducibility across cases. 

This tool plays a crucial role in enabling high-throughput analysis of traffic crash scenarios, 

allowing researchers to focus on interpretation and modeling rather than data preparation 

and manual input. It complements the previously developed EES Analyzer, forming a robust 

pipeline for accident data exploration, prediction, and export. 
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To evaluate the accuracy of EES codings and detect the model’s limitations, an experiment 

using 20,000 frontal two-vehicle collisions from the GIDAS database revealed key 

limitations in EES codings. A Random Forest model showed that prediction errors increase 

with EES magnitude, suggesting reduced reliability in high-speed crashes. Differences in 

error across vehicle types indicate that structural variations are not fully captured, pointing 

to the need for vehicle-specific modeling. 

Additionally, a strong correlation between EES and Delta-V raises concerns about the 

conceptual integrity of EES, which should reflect crash consequences rather than be driven 

by a single dynamic variable. These findings support existing critiques and emphasize the 

importance of maintaining expert judgment and conceptual clarity when using predictive 

tools in crash analysis. 

Another part of the study explored how different crash configurations affect the accuracy of 

EES predictions using the EES Analyzer. Surprisingly, the generic model—trained on all 

configurations—performed better than expected, showing intermediate behavior compared 

to specific configurations. This suggests that some configurations may be better predicted 

using a generic model, or that certain configurations contain more outliers against the 

prediction of the model, contributing to EES coding errors. 

Scatter plots revealed that configurations like oblique center contain clear outliers against 

the prediction of the model, indicating that correcting miscoded cases could improve model 

performance. In contrast, small and moderate overlap configurations showed dispersed point 

clouds at higher EES values, suggesting that both model limitations and coding 

inconsistencies may be responsible for the errors. Notably, moderate overlap, expected to be 

among the most reliable due to crash test data, showed unexpected dispersion and will 

require further investigation. 

Boxplots of absolute prediction errors provided additional insights. Small overlap had most 

deviations classified as outliers, when compared to its respective predicted value, while 

moderate overlap showed a broader error distribution, indicating model unreliability. The 
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generic model had the highest number and magnitude of outliers from the prediction made 

using this model, reinforcing the need to match crash configuration when estimating EES. 

Another important observation was that some high EES values were only predicted in the 

generic model, due to limitations in configuration-specific models. This highlights the 

necessity of using the generic model to ensure broader coverage. 

Finally, analysis of variable importance showed that equivalent velocity was the most 

influential predictor across all configurations, with consistent relevance. Deformation, while 

less important than expected, still contributed valuable structural insight, complementing 

dynamic variables and enhancing the model’s interpretability. 

The next phase of the project consisted of the correction of potentially miscoded EES values 

was structured into three phases: filtering and prediction using EES Analyzer, identification 

of outliers against the prediction of the model through visual inspection, and validation using 

PC-Crash, either manually or via EES Estimator. One specific case was selected for closer 

examination, where the predicted EES was 30 kph, while the coded value in the GIDAS 

database was only 16 kph. 

To validate this discrepancy, the case was processed manually through PC-Crash. The 

software estimated an EES of 35–40 kph with a confidence of 63.7%, and 30–35 kph with 

30.65% confidence, based on two image inputs. These results strongly suggest that the 

original coding of 16 kph may be inaccurate, and that the true EES value is likely closer to 

35 kph. 

This example demonstrates the effectiveness of combining automated prediction tools with 

expert validation to identify and correct inconsistencies in crash data, ultimately improving 

the reliability of EES coding. 

Lastly, to assess the relative accuracy of different approaches for estimating Equivalent 

Energy Speed (EES), a comparative analysis was conducted using three sources: the coded 

EES values from the GIDAS database, the predicted values from EES Analyzer, and the 
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estimated ranges from EES Estimator (based on PC-Crash), considering only estimates with 

over 70% confidence. 

A visual comparison showed that, in many cases, the predicted EES values aligned more 

closely with the estimated ranges than the original coded values. This suggests that the 

Random Forest model may offer more reliable estimates and could help identify potentially 

miscoded cases. A heatmap analysis confirmed this trend, showing slightly lower deviations 

between predicted values and the center of the estimated range compared to the coded values. 

The use of estimated ranges adds valuable context, allowing both coded and predicted values 

to be evaluated against a confidence-based benchmark. When a coded value falls outside this 

range but the prediction remains within it, it signals a possible inconsistency worth 

reviewing. 

However, while predictive tools enhance efficiency and consistency, they must not replace 

expert judgment. EES is meant to reflect crash consequences, not just dynamics, and must 

remain conceptually distinct from variables like Delta-V. As such, predictive models should 

be seen as supportive tools that guide coders and improve data quality, not as substitutes for 

human expertise. 

These findings point toward the potential for smarter, more reliable coding workflows, 

especially in large datasets, while emphasizing the need to preserve the original intent and 

integrity of EES as a safety metric. 

8.2 FUTURE PROJECTS 

Throughout this thesis, tools have been developed, and analyses have been carried out which 

aimed at improving how we work with crash data, particularly in estimating and validating 

Equivalent Energy Speed (EES). While the results have been promising, they also open the 

door to several future developments that could make these tools even more useful and 

reliable. 
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One of the most immediate next steps is to refine the predictive models used in EES Analyzer 

and EES Estimator. As seen in the analysis, certain crash configurations, like moderate 

overlap, did not behave as expected. This suggests that the models could benefit from more 

detailed study of each classification of crash types, considering a broader set of input 

variables, especially those that reflect the structural characteristics of vehicles. 

In addition, varying the predictors revealed that, when removing the deformation from the 

predictors, the accuracy of the prediction was increased. Although that would support the 

point made in this thesis that there might be too much reliance in dynamics in the EES 

codings in GIDAS, no further study was made to support that supposition.  

Another area for improvement is the integration between automated tools and manual 

validation processes. While automation saves time, especially when working with large 

datasets, expert judgment remains essential. A hybrid approach, where predictive tools assist 

but do not replace human review, could strike the right balance between efficiency and 

accuracy. 

There is also potential to develop quality control features within EES Analyzer. These could 

automatically flag cases with unusually high prediction errors or inconsistencies between 

coded and predicted values, helping analysts focus their attention where it is most needed. 

The use of estimated ranges, rather than single predicted values, has proven to be a valuable 

addition. It provides context and helps identify when a coded value might fall outside 

expected bounds. Expanding this concept, perhaps by incorporating confidence intervals or 

probabilistic outputs, could make the predictions even more informative and trustworthy. 

Finally, and perhaps most importantly, future work must continue to respect the conceptual 

integrity of EES. As predictive modeling becomes more common, we must ensure that EES 

remains a measure of crash consequences, not just a reflection of crash dynamics. This means 

keeping a clear distinction between variables like Delta-V and outcome-based metrics and 

always using technology to support the expertise of crash analysts. 
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In short, the tools and methods developed here are just the beginning. With further 

refinement, they have the potential to make crash data analysis more consistent, transparent, 

and scalable. But in the future, it will be crucial to maintain a thoughtful balance between 

innovation and the human insight that gives meaning to the data. 
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ANEX I 

 

Table 7: Crash Configurations assigned during photographic review (Brumbelow, 2019) 
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ANEX II 

 

Figure 34: Comparison of Predicted EES vs. GIDAS - Large Overlap 

 

Figure 35: Comparison of Predicted EES vs. GIDAS - Moderate Overlap 
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Figure 36: Comparison of Predicted EES vs. GIDAS - Small Overlap 

 

Figure 37: Comparison of Predicted EES vs. GIDAS - Perpendicular 
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Figure 38: Comparison of Predicted EES vs. GIDAS - Oblique Center 

 

Figure 39: Comparison of Predicted EES vs. GIDAS - Oblique Corner 
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ANEX III 

 

Figure 40: Error Distribution - Large Overlap 

 

Figure 41: Error Distribution - Moderate Overlap 
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Figure 42: Error Distribution - Small Overlap 

 

Figure 43: Error Distribution - Perpendicular 
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Figure 44: Error Distribution - Oblique Center 

 

Figure 45: Error Distribution - Oblique Corner 
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ANEX IV 

 

Figure 46: Importance Distribution - Large Overlap 

 

Figure 47: Importance Distribution - Moderate Overlap 
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Figure 48: Importance Distribution - Small Overlap 

 

Figure 49: Importance Distribution - Perpendicular 
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Figure 50: Importance Distribution - Oblique Center 

 

Figure 51: Importance Distribution - Oblique Corner 

 


