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Resumen

Los deepfakes representan una grave amenaza para la integridad de los sistemas
financieros, los procesos políticos y la percepción de la realidad. En este trabajo,
realizo un estudio de los enfoques más comunes para la detección de deepfakes,
sus puntos fuertes y sus deficiencias. Posteriormente, propongo un nuevo marco
para la colaboración de varios modelos de detección de última generación como un
conjunto. Se presenta una visión general de la arquitectura, así como un análisis
más detallado de los modelos base seleccionados. El modelo ensemble se entrena
y valida sobre el popular benchmark FaceForensics++ y se prueba en los bench-
marks CelebDF–v1&v2 y DeepfakeDetection. Nuestros experimentos demuestran
que, aunque no superan a los modelos individuales con mayor puntuación, tanto
las estrategias de fusión de características como las de puntuación mejoran la gen-
eralización y la estabilidad en distintos dominios de conjuntos de datos.



Abstract

keywords - Deep-Learning, ensemble, Deepfake, Detection, forensic

Deepfakes present a serious threat to the integrity of financial systems, political
processes, and one’s sense of reality as a whole. In this work, I conduct a survey
of the most common approaches toward Deepfake detection, their strengths, and
shortcomings. Subsequently, I propose a novel framework for the collaboration of
several state-of-the-art detection models as an ensemble. A general overview of the
architecture is presented, as well as a more detailed analysis of the selected model
backbones. The ensemble model is trained and validated on the popular Deepfake
Detection benchmark FaceForensics++ and tested on CelebDF–v1&v2 and Deep-
fakeDetection benchmarks. Our experiments show that, while not surpassing the
highest scoring individual models, both feature and score-level fusion strategies
improve generalization and stability throughout distinct dataset domains.
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Chapter 1

Introduction

1.1 Background and Motivation

The rapid advancement of artificial intelligence has led to significant progress
across the domains of computer graphics and computational science. In particu-
lar, the availability of high-performance consumer-grade graphics processing units
(GPUs) has greatly facilitated the training and deployment of AI models. However,
the increasing accessibility and democratization of AI technology have introduced
substantial societal challenges. In an era characterized by the widespread dissem-
ination of misinformation and so-called "fake news," the risks associated with me-
dia manipulation have intensified. These include threats such as mass deception,
defamation, non-consensual explicit content [4], identity theft, electoral interfer-
ence [5], and the amplification of extremist narratives—factors that collectively
contribute to the erosion of public trust in digital media.

Given the growing sophistication of generative AI technologies, it is critical to
develop e!ective methods for detecting manipulated media. Consider, for instance,
a case where a big financial firm was scammed for 25 million US dollars with the use
of generative AI [6]. One can only speculate on the potential ramifications, be it a
fabricated press conference, to simulate an endorsement by a political figure [7], a
head of state giving out sensitive strategic military information [8], a social media
post inciting violence against a marginalized group or a bankruptcy announcement
from a big corporation. The implications of such scenarios highlight the urgency
of this research domain, as media manipulation now poses serious threats to the
credibility of individuals, institutions, and international relations.

Although some may argue that concerns about fabricated media are not new,
given the historical presence of computer-generated imagery (CGI), the current
landscape is markedly di!erent. The unprecedented speed, scale, and realism
with which deepfakes and other AI-generated content can now be produced come

1



to show the gravity of the problem. The widespread availability of open-source
frameworks for high-fidelity deepfake generation further exacerbates the situation
by facilitating access to powerful media counterfeiting tools to anyone with basic
to no technical knowledge.

While state-of-the-art deepfake detection models demonstrate impressive per-
formance on well established benchmarks, they often exhibit limited generalization
when confronted with previously unseen manipulation techniques. This is largely
due to the rapidly evolving nature of generative AI. In this work, we do not in-
troduce a new detection model per se. Instead, we propose a framework in which
multiple specialized detection models collaborate, leveraging their complementary
feature extraction mechanisms to achieve improved robustness and generalization
against diverse and novel forms of manipulated media.

1.2 Problem Statement
Some top-performing methods [9], [10] demonstrate strong performance on widely
used deepfake detection benchmarks. However, their accuracy often deteriorates
when applied to previously unseen manipulation techniques. Many of these de-
tection approaches rely on identifying visual artifacts introduced by generative
adversarial networks (GANs) or di!usion-based synthesis models. These artifacts,
commonly referred to as ’fingerprints’, can manifest in a variety of ways, including
inconsistencies at facial boundaries, unnatural distributions of pixel intensities,
irregularities in the motion of the eyes or mouth, and anomalous patterns in the
frequency domain. When such artifacts are systematically present in a given gen-
eration method, they can serve as e!ective cues for supervised classifiers. As a
result, models trained to detect these specific signatures tend to perform well on
the subset of manipulations from which they were derived. However, their gen-
eralizability across other types of manipulations is often limited, raising concerns
about robustness in real-world scenarios.

1.3 Research Objectives
The primary aim of this study is to investigate the potential of deep learning en-
semble architectures for enhancing generalizability in deepfake detection. Specif-
ically, we explore a framework in which multiple base models, each optimized to
detect distinct artifact types, are integrated to form a unified ensemble system.
While ensemble learning is well-established in traditional machine learning do-
mains, relatively little work has been conducted on its application to deepfake
detection using deep neural networks. In this research, we evaluate the perfor-

2



mance of several state-of-the-art detection models, both individually and as an
ensemble, with the goal of understanding how their complementary strengths may
contribute to more robust classification. The scope of this study is limited to
visual-based deepfake detection (i.e., image and video analysis). Nevertheless, ex-
tending ensemble-based approaches to anti-audio spoofing represents a promising
avenue for future research.

1.4 Key Contributions
In this work we make the following contributions:

• Provided a unified training and evaluation pipeline, available as open-source
code, that loads pretrained branch weights, instantiates ensemble models,
and produces per-dataset CSV prediction files for a more agile model evalu-
ation. This reproducible framework eases comparisons among future detec-
tors.

• Proposed and validated two complementary fusion paradigms, showing that
score-level MLP fusion excels in stability across splits, while attentive feature
fusion can yield even higher separation on highly heterogeneous data.
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Chapter 2

Related Work

2.1 Deepfake Generation

The origins of modern deepfake technology can be traced back to 2014, when
researchers introduced a groundbreaking machine learning framework known as
Generative Adversarial Networks (GANs) [11], which enabled the estimation of
complex generative models through adversarial training. This foundational de-
velopment laid the groundwork for the sophisticated generative techniques that
exist today. Since then, a wide range of methods have emerged to manipulate or
synthesize visual content, particularly faces, in images and videos.

These techniques are typically categorized based on the nature of the ma-
nipulation being performed as [12] well describe. Common categories include face
swapping, face reenactment, deep identity replacement (deepswap), facial attribute
modification, and generation from scratch using latent generative models. They
may also be di!erentiated by the type and amount of input data they require,
ranging from image-driven and audio-driven methods to text-driven or fully mul-
timodal systems.

Additionally, generative models are often classified by their data requirements
in terms of identity representation: multi-shot, few-shot, one-shot, and zero-shot.
This terminology reflects the amount of input data necessary for the model to
learn and reproduce a given subject’s identity. Notably, state-of-the-art generative
architectures are increasingly capable of synthesizing highly realistic facial content
from as little as a single reference image. When combined with zero-shot voice
cloning technologies, these capabilities raise serious ethical and security concerns,
including the potential for identity theft, fraud, and extortion.
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2.1.1 Approaches to Image Forgery
In this next section, we describe the most common deepfake manipulations and
some of their most representative algorithms.

Face Swapping

Face swapping refers to the process of replacing one individual’s face with that
of another in an image or video, such that the source’s identity and features are
transferred onto the target while maintaining the target’s expressions, pose, and
lighting conditions. Traditional approaches perform geometric alignment via fa-
cial landmarks, apply warping to match the source onto the target, and blend
boundaries using color correction techniques or Poisson image editing to minimize
visible seams. In contrast, contemporary methods leverage deep neural networks,
typically autoencoder-based architectures trained to disentangle identity from ap-
pearance, to achieve more robust and seamless face swaps across varying poses
and conditions.

One practical implementation is InSwapper128, an ONNX-exported face-swapping
model developed by [13] and popularized through the FaceFusion pipeline [14].
This model operates at a resolution of 128×128 and integrates face detection, 3D
landmark estimation, and identity transfer into a streamlined, real-time pipeline.
It utilizes a pretrained face recognition network, similar to ArcFace, to extract
identity embeddings, which are fused into the target image using adaptive normal-
ization within a convolutional generator. Post-processing steps, such as restoration
via [15], are applied to enhance realism and suppress artifacts. Due to its portabil-
ity and speed, InSwapper128 is widely adopted for automated video face swapping.

Another notable method is GHOST (Generative High-fidelity One-Shot Trans-
fer) [16], also referred to as GhostFace. It is a one-shot face-swapping pipeline
capable of operating on both images and videos without requiring identity-specific
fine-tuning. The method separates a source image into identity and appearance
features, and merges these with the target’s content using a cross-attention fu-
sion module. A pretrained masked autoencoder (MAE) facilitates the extraction
of high-quality facial representations, while a lightweight convolutional decoder
reconstructs the final output. GHOST is designed for high fidelity even under
complex head poses and lighting conditions, and is particularly e!ective in low-
data or real-time applications due to its one-shot nature.

Lip Syncing

Lip syncing in the context of deepfakes involves animating a still image or video
of a person such that their mouth movements align convincingly with a given
audio track or textual input. Earlier methods employed rule-based mappings from
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(a) Pristine (b) Manipulated

Figure 2.1: High resolution faceswapping with Deepswapper. [1]

phonemes to visemes (mouth shapes), typically relying on facial landmarks and
pre-defined motion templates. Recent advances, however, utilize deep learning
models, particularly recurrent and transformer-based sequence models, to learn
audio-to-lip motion mappings in an end-to-end manner.

Wav2Lip [17] represents a significant advancement in this domain. It is a
speaker-independent model that achieves precise lip synchronization by employing
a dual-stream encoder–decoder architecture: one stream processes video frames
centered on the face, while the other processes Mel-spectrogram representations
of the audio. A lip-sync discriminator evaluates the alignment between audio and
video, providing feedback that guides the generator toward producing natural and
temporally accurate lip movements. Unlike earlier approaches, Wav2Lip does not
require identity-specific training and generalizes well across languages, lighting
conditions, and speaker identities. Commercial systems [2] [18] have adopted sim-
ilar principles, o!ering high-quality lip-sync results across diverse languages and
voice profiles.

Face Reenactment

Face re-enactment involves transferring head pose, facial expressions, and move-
ments of a source actor (the “driving” subject) onto the face of a target individual
while preserving the target’s identity. This technique is distinct from face swap-
ping in that the identity remains fixed, and only dynamic facial characteristics
are modified. Traditional pipelines achieve this through 3D facial landmark track-
ing or by fitting morphable face models to both subjects, which are then used to
animate the target’s face based on the source’s motion parameters.

More recent methods incorporate deep neural networks to improve flexibility
and visual realism. For instance, [19] [20] use keypoint-based transfer mechanisms
or latent space transformations to map expressions from the source to the target.
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(a) Pristine (b) Manipulated

Figure 2.2: Lip sync AI avatar with HeyGen [2]

[21] extends this concept using a one-shot strategy based on StyleGAN2. [22] It
first inverts the source (identity) and driving (expression) frames into latent codes,
and then uses a lightweight hypernetwork to generate per-layer modulation weights
for the StyleGAN2 synthesis network. This enables high-fidelity reenactment from
a single image without fine-tuning and performs robustly even under challenging
conditions such as extreme head rotations or nonfrontal angles.

Deep Swapping

Deep swapping is a specialized form of face swapping that relies on deep gen-
erative models, typically GAN-based encoder–decoder networks, to disentangle
identity from expression and background. These systems are often trained on
large-scale datasets to develop a generalized facial representation space. At infer-
ence, the identity of the source is encoded and transferred onto a target sequence
while preserving the latter’s motion and environmental cues. Popular open-source
frameworks such as [23] and [24] embody this approach, often enhanced by per-
ceptual or attention-based losses to improve visual coherence.

[25] is a notable GAN-based method designed for identity-agnostic face swap-
ping at 256×256 resolution. Its key innovation, the Identity Injection Module
(IIM), injects a source identity embedding into the target’s feature representa-
tion, enabling a single model to generalize across many identities. Unlike explicit
landmark-based blending, it learns to implicitly retain fine details such as gaze di-
rection and micro-expressions via a weak feature-matching loss. During inference,
source and target faces are aligned and passed through an encoder-IIM-decoder
pipeline. The resulting output is blended into the original scene, supporting seam-
less, real-time identity swaps without requiring model retraining.
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Facial Attribute Modification

Facial attribute manipulation involves altering specific traits of a face, such as
age, gender, hair color, skin tone, or the presence of accessories, while preserving
the underlying identity and expression. A widely adopted approach employs con-
ditional GANs [26], where the generator is conditioned on both the input image
and the desired attribute label. Alternatively, latent space manipulation tech-
niques in pretrained models like [27] allow fine control over features by shifting the
latent vector along attribute-specific directions. Other architectures decouple con-
tent and attribute representations within encoder–decoder frameworks, enabling
attribute editing through modification of the attribute code and subsequent decod-
ing. These systems support multi-attribute editing and can maintain high fidelity
and semantic consistency.

Generation from Scratch

Deepfake generation from scratch refers to the synthesis of entirely artificial fa-
cial imagery or videos that are not derived from any real individual. Early ad-
vancements in this area were driven by StyleGAN and its successors ([28], [29]),
which learned high-resolution, high-fidelity generative models trained on large fa-
cial datasets such as Flickr-Faces HQ [27]. These models enable sampling from a
learned latent space, producing novel yet photo-realistic identities. Due to their
structured latent spaces, StyleGAN-based models allow intuitive editing of at-
tributes such as age, expression, or lighting by navigating specific directions in
latent space.

Recent advances in di!usion models have further elevated the fidelity and con-
trollability of face generation. Latent Di!usion Models (LDMs) operate by first
compressing images into a lower-dimensional latent space using an autoencoder,
and then learning to reverse a noise process using a denoising U-Net. Classifier- or
text-guided sampling (as implemented in models like [30]) enables image generation
from prompts. Video-specific di!usion extensions introduce temporal conditioning
to generate consistent frame-by-frame facial animations.

Both GAN- and di!usion-based systems support conditioning on external in-
puts such as landmarks, sketches, audio, or text. This multimodal flexibility
allows for the creation of entirely synthetic individuals who can speak, express
emotions, or appear to perform specific actions, despite not corresponding to any
real-world identity. While these systems eliminate the need for source data, their
realism raises new concerns around identity fabrication and synthetic misinforma-
tion. Contemporary systems such as [31], [32], [3] exemplify state-of-the-art perfor-
mance in high-resolution human face generation and demonstrate the power—and
risks—of generative models in modern media synthesis.

9



(a) Man with a serious expression (b) Smiling woman

Figure 2.3: High-fidelity portraits generated by SORA from OpenAI [3]

2.1.2 Autoencoders
The concept of autoencoder (AE) makes an appearance as early as 1986 when
[33] first proposes back-propagation and the bottleneck structure as a means for
a group of neurons to learn the internal representations of a specific task domain.
This e!ectively takes a data distribution and encodes it (hence the name) into a
lower-dimensional space. This encoded representation can later be decoded back
to its original form through a decoder network.

Later, AEs would be improved upon to perform denoising operations on cor-
rupted input data [34]. Variational Auto Encoders (VAE) would incorporate
probabilistic techniques to enable interpolation and sampling [35]. AEs would
be used in conjunction with GANs to reach higher levels of realism. [36] New ap-
proaches have also been developed to enable self-supervised training for advanced
ViT models.[37] To this date, VAE’s are implemented alongside di!usion-based
decoders (latent-difussion) for high fidelity and resolution image generation. [34]

AE based models have improved considerably over the last decades in terms
of scalability, convergence speed and resolution. In the context of Deepfakes,
autoencoders have been pivotal to obtain representations of people’s identities in
a smaller feature space and decode them into a di!erent image to perform identity
transfer. This is the most basic approach to face swapping.

2.1.3 Generative Adversarial Networks
The GAN architecture is cornerstone of earliest and some of the latest deep-fake
generation models. The most basic structure was first developed by [11] using
multilayer perceptrons, which showed promising results and fueled further research
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into this field.

Figure 2.4: Overview of a Generative Adversarial Network

A Generative Adversarial Network (GAN) is a framework for training genera-
tive models through a competitive process involving two neural networks: a gen-
erator and a discriminator. The generator is tasked with producing data samples
that resemble those from a target distribution, while the discriminator evaluates
input samples and determines whether they are drawn from the true data dis-
tribution or synthesized by the generator. This setup establishes an adversarial
dynamic in which the generator aims to produce increasingly realistic outputs to
deceive the discriminator, whereas the discriminator seeks to improve its ability
to distinguish between authentic and synthetic data.

Initially, the generator produces low-fidelity samples that are easily recognized
as fake, and the discriminator lacks the sophistication to make accurate classi-
fications. However, as training progresses, both networks iteratively refine their
strategies. The generator learns to produce samples that better mimic the char-
acteristics of real data, guided by the discriminator’s feedback. Concurrently, the
discriminator becomes more adept at detecting subtle discrepancies between real
and generated samples. This adversarial interplay continues until an equilibrium
is reached, where the generator’s outputs are su"ciently realistic that the discrim-
inator can no longer reliably di!erentiate between real and generated data.

Adversarial training, is powerful but inherently unstable and poses several sig-
nificant challenges. For e!ective training, both networks must improve at a compa-
rable pace. If the discriminator becomes too strong early on, it can easily identify
the generator’s outputs as fake, providing little useful gradient information for
the generator to learn from. Conversely, if the generator becomes too strong too
quickly, the discriminator may fail to distinguish real from fake samples, leading
to weak training signals and poor generalization.
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Subsequent GAN architectures have addressed limitations of the original for-
mulation. In 2015, Radford et al. [38] demonstrated that GANs could serve as
e!ective feature extractors, yielding representations competitive with state-of-the-
art convolutional neural networks for image classification. Two years later, Zhu et
al. [39] introduced cycle-consistent adversarial networks (CycleGANs) for unpaired
image-to-image translation; by enforcing a cycle consistency loss, they enabled
high-fidelity style transfer between domains without requiring paired examples.
More recently, the StyleGAN family has achieved state-of-the-art synthesis qual-
ity by disentangling latent-style embeddings: each embedding controls a specific
high-level attribute, allowing precise manipulation of individual visual character-
istics and producing high-resolution images with crisp detail.

Few-shot identity replacement methods, such as FSGAN [40], have further
advanced the field by integrating face swapping and reenactment within a single
network. By leveraging a compact number of reference images, these approaches
substantially lower the barrier to entry for realistic face synthesis, combining robust
identity transfer with temporal coherence in reenactment tasks.

2.1.4 Latent Di!usion Models
The concept of di!usion goes all the way back to 2015 when [41] proposed the use of
markov chains to make a model learn how to go from a noise distribution to a target
distribution in a finite number of steps (Di!usion probabilistic models). First,
noise is added little by little to an image following a known Gaussian distribution,
subsequently, the model is taught to revert the noisy image back to its original
state. This idea revolutionized the task of synthetic image generation. The gradual
denoising guaranteed stability during the learning process as opposed to adversarial
training.

More advanced di!usion models focused on optimizing denoising step predic-
tions for faster generation [42, 43], conditional generation with text and label
guidance (prompt steering) [44, 45], and the incorporation of VAE in the latent
space for higher-resolution thresholds and significant reduction of computational
requirements (latent di!usion) [46, 47]. This last advancement was crucial for
many open-source projects to exist.

2.2 Deepfake Detection Methods
The development of deepfake technology has consistently been met with parallel
research e!orts aimed at countering its misuse. However, as with many technologi-
cal advances, defensive measures often follow rather than anticipate new generative
capabilities.
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Because deepfakes can undermine personal identity security, erode trust in me-
dia, and threaten political and financial stability, research in this area has become
a global priority. Numerous teams have expanded and intensified their investiga-
tions to address these risks.

Detection approaches may be organized into categories based on the core tech-
niques employed to distinguish between authentic and manipulated content.

2.2.1 Naive Methods
Prior to the advent of deep learning, image authenticity was assessed using rule-
based and statistical techniques. Examples include metadata analysis, error level
analysis (ELA), detection of chromatic aberrations and color filter array (CFA)
patterns [48, 49, 50], as well as geometric heuristics such as perspective and light-
ning inconsistencies, noise variance, and blur-kernel mismatches [51, 48, 52, 53, 54].
These approaches required manual inspection and did not involve any form of
automated learning, hence the term “naïve”. Although these methods are now
largely superseded, they established the foundational principles for the modern,
data-driven forensic techniques of today.

2.2.2 Spatial Methods
Spatially aware models appeared along with the first convolutional neural networks
(CNN) like LeNet [55], AlexNet [56] and VGG [57]. The convolution operation
allows the extraction of features such as edges, curvature, color gradients, ori-
entation and geometry from multi- and single-channel images. Spatial deepfake
detection, as its name implies, relies on the presence of artifacts along the spatial
axis (within a single frame/image) such as face blend boundaries, abnormal face
proportions, color mismatch, etc.

Xception-Net was one of the first to really stand out [58]. Inspired by the
Inception module [59], it uses depthwise-separable convolution operations as a way
to decouple channel-wise and spatial operations and removes any non-linearities
between convolutional layers (ReLU); arguing that this leads to improvements in
convergence speed and overall performance. Since then, many detection models
rely on Xception-Net as a backbone.

Capsule-Forensics, based on VGG-19 [57] for feature extraction, proved that
capsule networks could be applied to the field of multimedia forensics by imple-
menting dynamic routing algorithms for agreement-based predictions, achieving
accurate detection of subtle statistical traces across a variety of manipulation
methods. Other work revolves around measuring pixel-level consistency between
patches [60] under the assumption that localized discrepancies tend to be present
in most multimedia forgeries.
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Other research has taken a slightly di!erent approach by focusing on learn-
ing the distribution of real faces or enhancing the latent-space representations
for highly granular artifact identification. Delmas and Seguier [61], Yan et al.
[62] make a strong case in favor of latent-space boundary enlargement for robust
generalization through calculated data augmentation, concretely, applying pertur-
bations to a generator’s latent code for more diverse training sampling and a more
widespread learning strategy. Another simple yet notable contribution comes from
Shiohara and Yamasaki [63] in the form of a novel training approach using “Self-
blended Images” (synthetic samples from a single source image) to help models
learn more generalizable artifacts and prevent overfitting to particular datasets.

2.2.3 Temporal Methods
Spatial cues alone are no longer su"cient to detect increasingly sophisticated deep-
fake forgeries. Advanced manipulation techniques often evade frame-level analysis
and become apparent only through inter-frame inconsistencies. Temporal detec-
tion methods therefore examine sequence-level artifacts, including subtle face jit-
ter, head-pose shifts, abnormal motion patterns, changes in lighting conditions,
and incongruent pixel values between adjacent frames.

An early e!ort in this domain combined a convolutional neural network (CNN)
with a recurrent neural network (RNN) to extract features from short frame se-
quences, based on the premise that most deepfake generators operate on individual
frames and thus introduce temporal discrepancies [64]. Subsequent work replaced
the RNN with a long short-term memory (LSTM) network to achieve more robust
temporal modeling [65].

In 2021, Shah et al. [66] departed from the conventional CNN + RNN archi-
tecture by proposing a unified spatial-temporal framework built on self-attention
blocks. This approach leverages attention mechanisms to capture both frame-level
details and cross-frame relationships.

Most recently, Vision Transformers (ViT) have been adapted to perform tem-
poral consistency learning (e.g., Video Swin Transformer), which has proven quite
e!ective at capturing long-term dependencies within sequences [67]. More ad-
vanced research has found ways to apply a dual-stream architecture to exploit
both frame-level and sequence-level artifacts [68]. The most advanced temporal
detectors incorporate multimodal strategies based on detecting mismatches be-
tween lip movements and speech prosody over time [69].

A problem with temporal detection models is the high cost of computation
required to train them. Some others overlook spatial artifacts by focusing on
information over long distances. TALL, proposed by Nguyen et al. [70], makes
clever use of thumbnail-like organized sequences of frames for simultaneous spatial
and temporal feature extraction. This approach reduces computational overhead
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Figure 2.5: DeepFake detection via “face jittering”

immensely without sacrificing accuracy.

Attention Mechanisms and Vision Transformers

ViT architectures were, in and of themselves, a substantial paradigm shift in the
field of computer vision. Their application treats images analogously to word
tokens by partitioning an image into patches and feeding them sequentially into a
transformer encoder [71]. Although ViT loses the inherent locality bias present in
CNN architectures, it compensates through improved scalability and enhanced self-
supervised training capabilities. A notable drawback of transformer-based vision
models, however, is their requirement for larger datasets to achieve comparable
performance.

Since the first application of ViTs in 2020, variants have emerged that excel
in video classification tasks. The TimeSformer model [72] employs a “divided-
attention” mechanism to capture spatial and temporal cues separately, demon-
strating higher accuracy and reduced inference time with fewer parameters com-
pared to CNN models such as SlowFast [73] and I3D [74].

2.2.4 Frequency-Domain Analysis
While early substitution-based deepfakes relying on post-process blending opera-
tions leave subtle fingerprints around the face boundary, more sophisticated forgery
networks perform identity swapping entirely within the latent space, producing a
more consistent preservation of attributes from both source and target identities.
Such deep-swapping methods do not leave discernible face boundary artifacts.
Moreover, recent GAN and latent-di!usion zero-shot architectures can generate
high-resolution, hyper-realistic faces from scratch.
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Figure 2.6: Diagram of basic Vision-Transformer Architecture

Research published around 2020 demonstrated that upsampling techniques
used by many GAN models produce abnormal image energy distributions, re-
sulting in distinct checkerboard patterns when visualized in the frequency domain
[75]. To make these artifacts detectable by classification models, methods like the
Discrete Cosine Transform (DCT) or Discrete Fourier Transform (DFT) are often
employed to generate heatmaps of DCT coe"cients, whose magnitudes correspond
to the contribution of specific spatial frequencies to the overall image [76].

Spatial cues alone are no longer su"cient to detect increasingly sophisticated
deepfake forgeries. This discovery led to the development of a new family of
detectors based on frequency feature extraction. Bayar and Stamm [77] use spatial
rich model (SRM) high-pass filters to extract noise residuals from feature maps
at various layers of the network. These features are then used in a two-stream
architecture for guided spatial attention classification.

F3-Net [78] also leverages frequency-domain artifacts in a dual-stream manner;
however, it exploits these features in two di!erent ways. One stream computes
local frequency patterns using a sliding-window discrete cosine transform (DCT)
over the image. Meaningful statistics are then derived from all patches to create
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Figure 2.7: Amplitude and Phase spectrograms averaged over 10,000 fake samples

(a) Original

(b) Manipulated

Figure 2.8: Samples from FF++ with their corresponding FFT plots

complementary patch-level statistical maps. The second stream applies DCT over
the entire image, segments the frequencies into bands using learnable filters, and
then reconstructs each band into the spatial domain using an inverse DCT (IDCT).
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2.2.5 Biometric Methods
A more niche group of deepfake detection methods relies on measuring natural
biological processes or behaviors exhibited by real human beings. Wu et al. [53]
developed an optical system able to amplify subtle changes in skin color due to
blood flow, e!ectively allowing measurement of heart rate—a property inherently
absent in conventional forgery methods. Other earlier methods focused on mod-
eling eye-blinking frequency; Li and Lyu [79] demonstrated that realistic blinking
patterns can be used to distinguish genuine videos from synthesized ones.

While di"cult to spoof, these biometric approaches have serious drawbacks that
restrict their use to a handful of cases. They typically require highly controlled
conditions such as consistent lighting, stable face distance, minimal movement,
and frontal orientation, and they su!er severely from compression and blur.

2.3 Ensemble Detection Methods
Ensemble model solutions have performed quite strongly in benchmarks such as
DFDC [80]. One key aspect of these models is the fusion strategy, which has
considerable impact on the overall performance. As Kuncheva [81] points out,
there are many ways that models can be merged as a unified classification system:
sensor-level, feature-level, score-level, or decision-level. Each has advantages and
disadvantages pertaining to performance, complexity, and explainability. Wang et
al. [?] propose a group of lightweight CNN classifiers with a simple score-average
output. What this approach lacks in complexity, it makes up for in inference time
and low hardware constraints. Zhang et al. [?] developed a di!erent approach
using CNN- and transformer-based models, which, when coupled with resampling
techniques, proved e!ective at forgery identification.

An additional aspect to consider is the complementarity of the base models.
Previous works on ensemble forgery detection focus on the usage of similar models
and introduction of variance through bootstrap sampling, patch-level training, and
data augmentation. Base learners tend to be trained on subsets of the training
data, in hopes that each comes to rely on di!erent features for image classification.
However, most of the ensemble methods proposed so far [82, 83, 84] fail to go
beyond the spatial detection approach by only integrating widely used CNN-based
models. While this approach exhibits more robust performance within a single
domain, the feature-extraction methods are not diverse enough to account for
novel forgery types.

Most basic ensembles work with decision-level fusion strategies where individ-
ual base scores are combined via weighted averages, or even more simply, majority
voting to determine the class. Kim and Kim [?] specify that for their solution,
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it was important to discard base models whose score was not confident enough
according to a specified threshold. This makes sense, since including ambiguous
scores could introduce noise into the final prediction. Voting ensembles rely on
low-bias, high-variance base learners to be e!ective. Other, more complex ensem-
bles incorporate a super- or meta-learner which is trained with base-model scores
as input data. The idea behind this strategy is for the classifier head to learn
which base model is more reliable at classifying a given sample. In the long run,
learners are e!ectively able to dynamically weigh the “opinions” given by the base
models.

Instead of relying on decision-level ensemble boosting for generalization, we
propose to fuse models with distinct feature-extraction strategies by gathering
intermediate representation feature maps from each “expert” and training a "meta-
learner" [85] on these multi-domain data to perform the classification.

2.4 Group of Experts

2.4.1 Uncovering Common Features (UCF)
UCF is a deepfake detection framework aimed explicitly at generalizability, it tries
to learn the essence of what makes an image fake, independent of which generative
method was used. UCF’s approach is grounded in feature disentanglement. The
research behind the model claims that any fake image contains three conceptually
separate types of information: (1) forgery-irrelevant features – basically the normal
content of the image that has nothing to do with the manipulation (e.g. the
identity’s facial structure, background, etc.), (2) method-specific forgery features –
artifacts or patterns tied to the particular technique (for instance, the unique color
dithering of a specific GAN, or warping errors characteristic of FaceSwap), and (3)
common forgery features – the underlying anomalies that tend to appear across
many types of fakes (such as inconsistencies in blending, unnatural skin textures,
or missing reflections). UCF’s novelty is in explicitly separating these components
during training so that the detector can focus on the “common” forgery signals at
test time. The architecture consists of an encoder network, which is split internally
into two parts: a content encoder Ec that should capture the forgery-irrelevant
content, and a fingerprint encoder Ef that captures the forgery-related cues. The
encoder is applied to input images in pairs: during training, UCF takes a fake
image x0 and a real image x1 together through the encoders. Using a pair helps
the model learn by comparison – the real image provides a reference for what
an unmanipulated face’s features look like, while the fake provides the anomalies.
The encoders produce three sets of latent features for each image: c (content
features), f

s (specific forgery features), and f
c (common forgery features). The
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idea is that for the real image, f
s
1 should be essentially empty (since there’s no

specific forgery method applied), and for both images, f
c
0 and f

c
1 could contain

any generic anomalies (ideally, f
c
1 also is negligible since a real image shouldn’t

have forgery artifacts). To enforce the disentanglement, UCF employs a multi-
task learning strategy. It has two classification “heads” on top of the encoders:
one head Hc looks at the common forgery feature f

c and is trained to output
a binary real/fake prediction. Another head Hs looks at the *specific* forgery
feature f

s and is trained to predict which forgery method was used (essentially a
multi-class classification among di!erent fake types, plus a “real” class for no fake).
By training Hs on method labels (e.g. DeepFakes vs FaceSwap vs NeuralTextures),
the model is encouraged to capture method-specific cues in f

s and remove them
from f

c. Conversely, by training Hc to detect real vs fake, the model will put any
method-agnostic fake cues into f

c (since that’s what Hc sees). In addition, UCF
introduces a conditional decoder network that takes the content features c and the
forgery features (f s or f

c) to reconstruct the input image. The decoder uses an
Adaptive Instance Normalization (AdaIN) mechanism to fuse content and forgery
features for image synthesis. Essentially, the decoder tries to recombine “content
+ fake style” to reproduce the fake image, and “content + real style” to reproduce
the real image. This reconstruction task (with a pixel-level loss) ensures that c

really captures the identity/pose/background (everything needed to reconstruct
the person minus the fake artifacts), and that f

s and f
c capture the remaining

needed style details. Finally, UCF uses a contrastive regularization loss to further
separate f

s and f
c: it encourages the common forgery features of di!erent fakes

to be similar to each other (since they represent the shared forgery attributes)
but distinct from the specific features.At inference time, only the common feature
f

c and the Hc head are used to decide real vs fake. UCF assumes availability of
multiple forgery methods during training (for the multi-class head); it’s designed
to leverage diversity in training data to learn what forgeries have in common. [86]

The strengths of UCF are evident in its excellent generalization performance
by explicitly removing content-specific and method-specific information. Another
strength is UCF’s resilience to *content variation*. Because it explicitly removes
identity/pose/background information into the c vector, it is less likely to be
thrown o! by an unfamiliar face or a new setting. Many detectors sometimes
latch onto cues like a particular person’s mannerisms or camera noise that are not
actually forgeries, causing false positives on novel data; UCF aims to avoid that
by focusing on truly forgery-derived features. Furthermore, the multitask nature
of UCF means that it can, in principle, identify which method was used (via Hs)
and just detect the fake.
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Figure 2.9: General Overview of UCF’s architecture

2.4.2 Unsupervised Inconsistency-Aware Vision Transformer
(UIA-ViT)

UIA-ViT (Unsupervised Inconsistency-Aware Vision Transformer) is a deepfake de-
tector built on a ViT-Base architecture to capture intra-frame inconsistencies with-
out requiring pixel-level forgery masks. It leverages the self-attention of transform-
ers to model the consistency relations among image patches, making it naturally
suited for detecting subtle artifacts. The model introduces two novel components:
Unsupervised Patch Consistency Learning (UPCL), which iteratively gen-
erates and refines pseudo-labels for patch-level forgery regions, and Progressive
Consistency Weighted Assemble (PCWA), which enhances the final classifi-
cation token with enriched patch embeddings from earlier layers. By training only
with video-level real/fake labels, UIA-ViT learns to highlight forgery traces (e.g.
mismatched facial textures or blending boundaries) in an unsupervised manner,
avoiding the need for expensive ground-truth masks. The backbone consists of a
12-layer ViT with 16×16 image patches, amounting to roughly 86 million param-
eters. For data preprocessing, the authors detect and crop faces using DLIB [87]
and resize them to 224×224 resolution. Each input frame is divided into patches
for the ViT, and training is done on video frames from FaceForensics++ with only
binary labels. Notably, no specially augmented data or paired real/fake image dif-
ferences are required, which simplifies the data pipeline compared to methods that
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rely on known source images or synthetic data. Despite the transformer’s complex-
ity, training is stabilized by a two-stage schedule (initializing with a cross-entropy
loss, then introducing the consistency losses), and inference remains frame-based,
an advantage for scaling to long videos, since individual frame predictions can be
averaged over a video.

Figure 2.10: General Overview of UIA-ViT’s architecture

UIA-ViT’s major strength is its generalization to unseen forgeries, thanks to
the inconsistency-focused learning. By not overfitting to any single manipulation’s
artifacts, it achieves top-tier cross-dataset results. In terms of model complexity,
the ViT backbone makes UIA-ViT quite heavy (tens of millions of parameters and
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significant computation per frame), so it demands a GPU for e"cient inference.
Yet this complexity is what allows the model to attend globally to a face’s patches
for subtle anomalies, which simpler CNNs might miss. [88]

2.4.3 Spatiotemporal Inconsistency Learning (STIL)
STIL (Spatiotemporal Inconsistency Learning) is a deepfake detection model that
treats the problem as simultaneously spatial and temporal inconsistency discov-
ery. Unlike pure frame-based classifiers, STIL explicitly models how a fake face’s
appearance changes over time, introducing a novel Temporal Inconsistency
Module (TIM) alongside a Spatial Inconsistency Module. The TIM operates
by slicing a video’s frame sequence along horizontal and vertical lines to form
height–time (h–t) and width–time (w–t) maps, e!ectively creating spatiotempo-
ral images that reveal temporal glitches. In a genuine video, if you take a fixed
row or column of pixels across successive frames, the resulting h–t or w–t pattern
should vary smoothly (faces move gradually, lighting changes continuously). But
in a forged video, STIL observes “discontinuous burrs” or jagged edges in these
maps where the fake generation fails to maintain temporal coherence. Concretely,
TIM computes the di!erence between adjacent frame features in both horizontal
and vertical directions, highlighting flickering artifacts or misaligned textures over
time. Meanwhile, the Spatial Inconsistency Module (SIM) focuses on anomalies
within each frame, such as blurred blend boundaries or anatomically implausi-
ble features. STIL integrates these via an Information Supplement Module
(ISM) that fuses the spatial and temporal feature streams, allowing the model to
form a comprehensive representation of the face’s “trace” through the video. This
STIL block, comprising SIM, TIM, and ISM, is designed to be a drop-in module
in a 2D CNN. In practice, the authors embed a STIL block into each residual
stage of a ResNet-50 backbone, replacing the standard 3×3 convolution with their
two-branch SIM+TIM structure. The result is a network that runs on a sequence
of frames but remains largely 2D-convolutional (as opposed to a full 3D ConvNet),
which keeps the parameter count and computation e"cient. Data-wise, STIL ex-
pects a sequence of face-cropped frames from a video: e.g. in training they sample
8 frames per video (ensuring chronological order for TIM’s di!erencing) and at test
time use 16 frames to form a prediction. Faces are first detected and aligned (us-
ing Dlib for FaceForensics++ and MTCNN for other datasets) and then resized to
224×224. Despite processing multiple frames, the model size is moderate, roughly
on the order of a ResNet-50 (25 million parameters) plus some overhead for the
STIL blocks. Importantly, STIL avoids the huge memory and computation of 3D
CNNs by its clever design; TIM’s temporal di!erencing is a lightweight operation
that adds minimal parameters (it even uses a channel compression factor ‘r=16‘
to reduce dimensionality in the temporal branch). This design choice means STIL
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achieves a strong temporal modeling capacity without a prohibitive increase in
complexity or loss of e"ciency.[89]

Figure 2.11: High-level diagram of STIL’s architecture

The strengths of STIL lie in its ability to catch subtle temporal artifacts that
static models miss, while still leveraging spatial cues. By explicitly encoding tem-
poral di!erence patterns, STIL can detect deepfake tells such as inconsistent eye
blinking, sudden jumps in head pose geometry, or temporally inconsistent re-
rendering of facial reflections. A minor weakness of STIL might be its reliance
on a sequence of frames: if a fake video is extremely short or if a detector can
only get one frame (e.g. in a single image deepfake scenario), STIL’s temporal
branch cannot contribute. In such cases, it falls back on the spatial module (SIM),
essentially behaving like a standard CNN. The authors ensured SIM is strong on
its own, but a pure spatial detector might do similarly in single-frame cases. An-
other consideration is alignment, STIL assumes the face is roughly aligned across
frames (since it slices at fixed horizontal/vertical positions). Large abrupt motions
or poor face tracking could potentially introduce false “temporal inconsistencies.”
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2.4.4 Spatial-Phase Shallow Learning (SPSL)

SPSL (Spatial-Phase Shallow Learning) approaches deepfake detection from a
frequency-domain perspective, introducing a unique combination of image phase
spectrum analysis with a deliberately shallow CNN architecture. The core obser-
vation behind SPSL is that most face forgery generation pipelines involve repeated
up-sampling operations (for example, up-scaling feature maps in GANs or autoen-
coders when constructing a high-res face), and these operations leave distinctive
clues in the frequency domain. In particular, the phase spectrum of an image
(which encodes the alignment of sinusoids composing the image) is extremely sen-
sitive to up-sampling. Natural real images have phase patterns that correspond to
coherent structures, whereas synthesized faces, especially those up-sampled multi-
ple times, exhibit anomalous patterns in the phase spectrum. The authors provide
a mathematical analysis showing that as the number of up-sampling steps in-
creases, the pixel-wise di!erences in the phase spectrum between an original and
generated image grow dramatically (much more so than di!erences in the ampli-
tude spectrum). To exploit this, SPSL feeds the model two forms of each input
frame: the spatial image (RGB pixels) and its phase spectrum representation. By
doing so, the CNN can learn features that latch onto the phase artifacts indica-
tive of up-sampling and blending. Another key innovation is making the network
shallow. SPSL posits that high-level semantic features (the kind deep CNNs nor-
mally extract) are actually detrimental for detecting fakes, because they introduce
forgery-irrelevant information and can cause overfitting to content. Instead, local
texture anomalies are the telltale signs of forgeries (e.g. unnatural skin texture or
high-frequency noise from GAN up-sampling). To emphasize these, SPSL “drops
many convolutional layers”, e!ectively using a much reduced CNN depth, to limit
the receptive field and force the model to focus on small regions and fine-grained
patterns. In practice, the authors use Xception as a baseline architecture but
truncate it significantly (the exact number of removed layers isn’t given, but an
ablation shows that fewer conv layers lead to better cross-dataset performance).
They also incorporate the phase information early in the network: one approach is
treating the phase spectrum image as additional input channels alongside RGB, or
as a parallel branch merged in early layers. This way, the network learns filters that
respond to phase cues (which might highlight checkerboard up-sampling artifacts
or frequency inconsistencies) in conjunction with spatial cues. The combination
of shallow architecture + phase spectrum led to the term “Spatial-Phase Shallow
Learning.” The authors argue that the CNN is still capable of learning “implicit
features” from the phase spectrum that humans might not easily spot, but these
features help generalize detection across di!erent forgery types.[90]

The primary advantage of SPSL is its remarkable cross-dataset generalization,
achieved by focusing on common frequency artifacts instead of idiosyncratic spa-
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Figure 2.12: Diagram of basic Vision-Transformer Architecture

tial details. Traditional deepfake detectors often overfit to the specific generator’s
quirks present in the training data (e.g. a particular GAN’s signature patterns),
which doesn’t transfer to a new forgery method. SPSL mitigates this by hon-
ing in on phase anomalies that are ubiquitous to the act of image synthesis and
up-sampling, regardless of the method. Having said this, one could argue that
SPSL’s reliance on frequency artifacts might be circumvented by future generative
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models that explicitly minimize such artifacts. If a deepfake generator produces
nearly perfect phase consistency (no spectral peaks or aliasing), the advantage
may lessen. However, up-sampling is so inherent to image synthesis that it’s hard
to avoid leaving any trace. Another consideration is that computing the phase
spectrum adds an extra step; if the phase is not computed with high numerical
precision, or if there’s significant noise, the model might pick up false signals.
SPSL also intentionally reduces high-level feature learning, which means it might
ignore some semantic inconsistencies (for example, context-level anomalies like a
face that doesn’t match the body). It zeroes in on textural details at the cost of
understanding the overall scene. But since most face forgeries fail in texture/ren-
dering fidelity, this trade-o! works in its favor for detection.
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Chapter 3

Proposed Method

3.1 Architecture Overview
Previous research on Deep Learning Ensemble architectures for Deepfake Detection
focused on using similar models trained on di!erent data to improve robustness
[80]. While this approach showed promising results, we propose to do exactly the
contrary. Instead of relying on variance introduced by bootstrapping, We will take
the previously listed architectures and fuse them to take advantage of their distinct
feature extraction strategies while training on similar data. Conversely, we will
be applying two di!erent ensemble approaches: fusion at score-level and fusion at
feature-level.

The premise behind this idea is the posibility to perform an extraction of more
diverse features in space, time and frequency domains to obtain a more hollistic
representation of a video or image and give the classifier, a wider repertoire of
cues, possibly leading to a stronger criteria regarding the authenticity of any given
media content. The general structure of the fusion mechanism is shown in figure
3.1.

To complement this ensemble approach, we propose the use of a distinct loss
function design.

In feature-level fusion, the ensemble’s primary objective is to learn a fused
representation (super_r) that e!ectively integrates information from each sub-
model’s branch. Feature-level fusion in our ensemble is guided by three terms:
the primary cross-entropy classification loss, a balance loss, and an alignment loss.
The two auxiliary terms, balance_loss and alignment_loss, act as regularizers
that encourage certain geometric properties of the branch-specific feature vectors.
Below we describe, how each contributes to the model’s performance.
1. Classification Loss (ωcls).

ωcls = CrossEntropy(logits, labels).
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Figure 3.1: General Overview of the proposed Ensemble Model

Minimizing ωcls ensures that the fused representation s separates real versus fake
samples in the fused feature space. By itself, this objective drives the network
to find any discriminative boundary, but it does not guarantee that all branches
contribute equitably. Without auxiliary regularization, one branch with larger
feature magnitudes or more salient patterns can dominate the fusion, reducing
robustness.

2. Balance Loss (ωbal). For each sample i in a batch of size B, let ri,j ↓ RDj be
the feature vector from branch j. We compute

normi,j = ↔ri,j↔2, then ωbal = 1
B

B∑

i=1
Var

(
normi,1, . . . , normi,N

)
.

By penalizing high variance among {↔ri,j↔}, this term encourages all branches to
produce features of comparable scale for each sample. If one branch yields much
larger magnitudes, it will dominate the attention mechanism, e!ectively silencing
other modalities.
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A balanced norm distribution fosters equitable contribution from each branch,
leading to a fused representation that integrates multiple viewpoints. In practice,
this reduces over-reliance on a single modality and improves generalization when
modalities become noisy or partially missing.

3. Alignment Loss (ωaln). After projecting each branch’s feature into a common
fused-dimensional space—denote these projections pi,j ↓ RDfused for sample i and
branch j, and let si be the fused vector—define

ωaln = 1
N

N∑

j=1

[
1 ↗ cos

(
pi,j, si

)]
, cos(a, b) = a · b

↔a↔↔b↔ .

Thus,

ωaln = 1
N

N∑

j=1

[
1 ↗ cos(pi,j, si)

]
.

If a branch’s projected vector is orthogonal to the fused vector, its information is
not well integrated. Minimizing 1 ↗ cos(pi,j, si) encourages each branch projection
to align directionally with the final fused embedding. Co-directional projections
ensure that attention weights remain meaningful across modalities. When all pi,j

point roughly in the same direction as si, the fused representation is a coherent
summary, improving both convergence and final accuracy.

4. Combined Objective. In feature-fusion mode, the total loss is

ωtotal = ωcls + ε ωbal + µ ωaln,

with hyperparameters ε, µ ↓ R+.

• If ε is too small, one branch may monopolize the fusion; if ε is too large, all
features collapse to similar norms, reducing discrimination.

• If µ is too small, branches can drift directionally, resulting in inconsistent
fusion; if µ is too large, projections cluster too tightly around the fused
centroid, limiting expressive power.

When tuned properly, the balance and alignment terms encourage each branch
to contribute similar-magnitude, directionally coherent signals, promoting a fused
representation that is both robust and discriminative.

5. Comparison to Score-Level Fusion. In score-fusion mode, only ωcls is used
on the concatenated branch logits:

ωcls = CrossEntropy(z, labels),
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where z ↓ RB→N are branch-wise logits. No geometric constraints are enforced on
per-branch features, so branches can di!er arbitrarily in scale or orientation. By
contrast, feature-fusion with ωbal and ωaln imposes structure in the latent space,
yielding smoother decision boundaries and often better generalization on held-out
data. Balanced norms and aligned directions reduce overfitting to a single branch,
making the ensemble more robust to noise in any one modality. Regularized la-
tent geometry reduces oscillations in attention weights and leads to more stable
convergence. If one modality becomes unreliable (e.g., artifacts or occlusions), the
fused model still retains meaningful signals from other branches. The inclusion of
ωbal and ωaln in feature-level fusion carefully shapes the fused latent space to be
scale-balanced and directionally coherent. This geometric regularization comple-
ments the cross-entropy term, leading to improved convergence, better calibration
of logits, and enhanced robustness.
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Chapter 4

Experimental Setup and
Implementation

4.1 Survey of Deepfake Detection Benchmarks
FaceForensics++ [91] is a widely used benchmark for evaluating deepfake de-
tection models that consists of 1000 original short-length youtube videos, each
of which has been subjected to 5 distinct forgery methods: Deepfakes,FaceSwap,
FaceShifter, Face2Face and NeuralTextures. For a total of 6000 videos. The data
is available in raw, high and low quality.

• Deepfakes: The method is based on two autoencoders with a shared encoder
that are trained to reconstruct training images of the source and the target
face. The autoencoder output is blended with the rest of the image using
Poisson image editing.

• FaceSwap: This graphics-based manipulation consists on face extraction
and transfer via landmark detection and a 3D blendshapes template model.
Once both facial regions have been aligned and overlaid, they are blended
and color correction is applied.

• FaceShifter: A more advanced subject-agnostic face swapping framework
that has been trained to handle occlusions e!ectively.

• Face2Face: It is an expression transfer system that preserves the target’s
identity by selecting keyframes for dense facial reconstruction while handling
changes in pose and lightning conditions.

• NeuralTextures: It is a reconstruction based approach that learns the
latent representation of faces and synthesizes hiperrealistic expressions by
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training a neural renderer model. In this case only the mouth region is
a!ected.

DeepFakeDetection, developed by [92], consists of 3068 fake videos derived from
363 original videos of 28 consenting actors of diverse ethnicities and backgrounds to
which various openly-available deepfake manipulation models were applied. This
dataset has been hosted by FF++ since 2022. CelebDF-v1 revolves around
footage from various celebrities, which, by the nature of their profession, were
some of the first to fall prey to deepfake manipulation. This version contains 408
original YouTube clips from various celebrities and 795 synthesized samples. The
benchmark focuses on o!ering forgeries in conditions similar to real-life examples
of what one would find by searching the Internet. CelebDF-v2, second version
of CelebDF, expands on the previous one with 590 real videos and 5,639 deep-fake
samples. The quality and resolution of the forgeries is also improved. [93]

4.2 Evaluation Metrics
The evaluation parameters have been selected in a way that is compliant with
various benchmarks and relevant research. This facilitates comparative analysis
between previous and future work in the task of deepfake detection. We define the
following metrics within the context of a simple binary classification task:

• Equal Error Rate (EER): Operating point over which false acceptance
and false rejection rates, being functions of the decision threshold, become
equal. Measures the trade-o! between Type I and Type II errors, where a
lower EER indicates a more reliable classifier.

• Average Precision (AP): Can be interpreted as the area under the precision-
recall curve obtained by sweeping the decision threshold over all recall-
precision pairs. Focuses on performance on the positive class and is more
robust under class imbalance.

• Area Under the ROC Curve (AUC): The integral of the true positive
rate over the false positive rate. Reflects overall ranking quality across all
decision thresholds, where an AUC of 0.5 is equivalent to random guessing,
and 1.0 means perfect classification performance.

• Brier Score: The mean squared di!erence between predicted probabilities
and true binary labels. A lower Brier score indicates better calibration and
accuracy of the model’s probability estimates. In deepfake detection, it is
especially relevant because it quantifies not only whether the model is correct,
but also how confident and well-calibrated its probability outputs are.
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4.3 Train Methodology
We adopt the hyperparameter settings from [94]. All models are trained using
the Adam optimizer with batch size of 32. We train all models with PyTorch [95]
version 2.8.0 and CUDA 12.8. [96] All code was written in Python 3.12.3 [97] using
Visual Studio Code [98] and TensorBoard was used for metric visualization. The
survey interface was built and deployed via Streamlit [99], while image storage and
retrieval were handled by a Supabase-hosted PostgreSQL backend [100]. Model
training and evaluation ran in an isolated container on a single NVIDIA RTX 4000
Ada GPU, with 9 vCPUs and 50 GB of RAM [101], requiring approximately five
hours for each model (both individual and ensemble). For data storage, 330 GB
of disk space were required.

Dataset Subset No. Extracted Images

FF++

Deepfakes 101,732
Face2Face 102,078
FaceShifter 102,040
FaceSwap 81,525
NeuralTextures 81,484
YouTube 102,102

Celeb-DF-v1
Celeb-real 12,293
Celeb-fake 62,782
YouTube-real 22,745

Celeb-DF-v2
Celeb-real 44,844
Celeb-fake 424,129
YouTube-real 26,622

DeepFakeDetection Actors 59,570
Fakes 435,833

Total Images 1,659,779
Complete sequences 199,874

Table 4.1: Number of extracted images per subset and dataset.

Face landmark detection and alignment was performed on all videos using DLIB
[87] to extract 1 out of every 5 frames. Frames where the detector was unable to
identify any face were discarded. All frames were then grouped into 8-consecutive-
frame sequences. For feeding the ensemble we devised a custom dataloader object
that applies stochastic augmentation to all frames in each sequence. Subsequently,
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the 8 frames are stacked channel-wise and fed to STIL. A frame from the sequence
is then selected at random and fed to the remaining models.

4.4 Data Augmentation

(a) original (b) brightness + mirror

(c) flip + mask (d) JPEG compression + brightness

Figure 4.1: Common Data Augmentation Operations

Early manipulation detectors can often be thwarted with basic image operations
such as noise injection, blurring, rotation, flipping, cropping, occlusion, or com-
pression. In an e!ort to make Deepfake detection more robust, several data aug-
mentation methodologies have been proposed and have shown to be beneficial for
generalization. Yuhang et al. [102] argue that their stochastic data degradation
augmentation mimics real-life image deterioration by applying operations stochas-
tically, which models often benefit from. Other methods involve the usage of
attention-guided masking to block the model from relying on the most obvious
artifacts for classification and instead learning to detect more subtle manipulation
fingerprints [103]. Applying these operations to the training data has become a
staple within the field of deepfake detection and image classification as a whole.
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Chapter 5

Results and Analysis

5.1 Human Baseline

To establish a human-performance baseline for real versus manipulated image clas-
sification, we conducted a user study. We first extracted 120,000 frames from
four deepfake datasets (FF++, DFD, Celeb-DF v1, and Celeb-DF v2) and stored
them in a Supabase database with a PostgreSQL backend. Next, we developed a
Streamlit application to present images to participants. Each participant viewed
30 randomly selected frames, with an equal number of real and fake images, un-
beknownst to them. The selection was stratified to reflect the proportional repre-
sentation of each dataset in the overall pool. Images were displayed sequentially
for 5 seconds each; immediately after each display, participants were prompted to
indicate whether the image was genuine or manipulated. In total, 211 individuals
contributed 6,339 responses. The aggregated results are presented in the tables
below, which define a clear performance baseline for each dataset.

Metric Estimate CIlower CIupper

Samples 816
Average Precision (AP) 0.5932 0.5516 0.6329
AUC 0.6367 0.6061 0.6678
EER 0.3633 0.3322 0.3939

Table 5.1: Celeb-DF-v1 performance (with 95 % CI).
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Metric Estimate CIlower CIupper

Samples 808
Average Precision (AP) 0.5758 0.5328 0.6172
AUC 0.6086 0.5784 0.6395
EER 0.3914 0.3605 0.4216

Table 5.2: Celeb-DF-v2 performance (with 95 % CI).

Metric Estimate CIlower CIupper

Samples 811
Average Precision (AP) 0.6329 0.5910 0.6721
AUC 0.6840 0.6543 0.7144
EER 0.3160 0.2856 0.3457

Table 5.3: DeepFakeDetection performance (with 95 % CI).

Metric Estimate CIlower CIupper

Samples 3904
Average Precision (AP) 0.8574 0.8461 0.8685
AUC 0.6095 0.5911 0.6290
EER 0.3905 0.3710 0.4089

Table 5.4: FFPP performance (with 95 % CI).

5.1.1 Individual Performance
Prior to evaluating the ensemble, each of the four base models was trained on
the full FaceForensics++ dataset and tested on the three held-out benchmarks,
following the DeepfakeBench framework [94]. We then trained and evaluated two
ensemble configurations—score-level fusion and feature-level fusion—enabling di-
rect comparison between our proposed attention-based fusion and a conventional
score-fusion scheme. The detailed performance of individual detectors is summa-
rized in Table and figure below.
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Model Dataset AP → AUC → EER ↑ Brier ↑

spsl
Celeb-DF-v1 0.8868 0.8069 0.2576 0.2217
Celeb-DF-v2 0.8240 0.7306 0.3355 0.2050
DeepFakeDetection 0.9729 0.8241 0.2534 0.0874

ucf
Celeb-DF-v1 0.8925 0.8212 0.2648 0.2086
Celeb-DF-v2 0.8598 0.7720 0.3031 0.2788
DeepFakeDetection 0.9731 0.8198 0.2588 0.1980

stil
Celeb-DF-v1 0.9590 0.9331 0.1581 0.1676
Celeb-DF-v2 0.8973 0.8446 0.2423 0.1638
DeepFakeDetection 0.9654 0.7903 0.2856 0.1193

uia-vit
Celeb-DF-v1 0.7884 0.6960 0.3624 0.2966
Celeb-DF-v2 0.8523 0.7625 0.3124 0.2840
DeepFakeDetection 0.9652 0.7705 0.3023 0.3913

Table 5.5: Performance metrics for each model on each dataset. Arrows indicate
direction of improvement: → = higher is better, ↑ = lower is better. The best
scores for each metric and dataset are outlined in bold letters.

On Celeb-DF-v1, STIL not only achieves the highest AUC (0.9331) but also
posts the lowest EER (0.1581) and one of the smallest Brier scores (0.1676). Its
average precision of 0.9590 indicates that it consistently ranks true positives ahead
of false positives, whereas SPSL and UCF hover in the high-0.80s for AP (0.8868
and 0.8925, respectively) and incur EERs above 0.25. UIA-ViT, by contrast,
struggles here: its AP of 0.7884 and AUC of 0.6960 correspond to an EER over
0.36, suggesting that—even aside from its training-time batch-size constraints—its
patch-based attention kernels may not be as finely tuned to the subtle spatial
artifacts present in this dataset. In short, on Celeb-DF-v1, STIL’s combination of
large receptive fields and motion-temporal filters grants it a clear margin in both
ranking (AP) and calibration (Brier). A similar pattern holds on Celeb-DF-v2.

STIL again leads with AUC = 0.8446, AP = 0.8973, EER = 0.2423, and Brier =
0.1638. UCF comes next (AUC = 0.7720, AP = 0.8598), while SPSL’s performance
dips more sharply (AUC = 0.7306, AP = 0.8240). Although SPSL’s Brier (0.2050)
is slightly lower than UCF’s (0.2788), its elevated EER (0.3355) indicates that its
probability estimates are less well-calibrated around the decision boundary on this
newer split of Celeb-DF. UIA-ViT improves modestly over v1 (AUC = 0.7625, AP
= 0.8523), but remains the weakest overall. This consistency, where STIL retains
top marks on both Celeb-DF variants, underscores its generalization across slightly
di!erent manipulation schemes in the same dataset family.
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(a) Roc curves on Celeb-DF-v1

(b) Roc curves on Celeb-DF-v2 (c) Roc curves on DFD

Figure 5.1: Individual classifier performance on all test datasets

On DeepFakeDetection, the landscape shifts: both SPSL and UCF achieve
near-identical APs (0.9729 vs. 0.9731), with UCF narrowly edging out SPSL in
average precision but SPSL attaining the best AUC (0.8241 vs. 0.8198). In fact,
SPSL’s Brier score of 0.0874 (the lowest among all models on DFD) indicates
exceptionally well-calibrated likelihoods, even though its EER (0.2534) is only
marginally better than UCF’s (0.2588). STIL’s AUC drops to 0.7903 (with AP =
0.9654 and EER = 0.2856), suggesting that its spatial+temporal features, so pow-
erful on Celeb-DF, are slightly less tuned to DFD’s more diverse set of generator
artifacts. UIA-ViT again remains competitive in AP (0.9652) but lags in AUC
(0.7705) and su!ers from a high Brier (0.3913), confirming that its logit-based
predictions are poorly calibrated on this data. In sum, on DFD, SPSL and UCF
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share the podium: UCF slightly outperforms in ranking (AP), while SPSL yields
the best overall separation (AUC) and calibration (Brier).

5.1.2 Ensemble Performance
After individual model evaluation we performed 2 experiments on the ensemble
model. The first had all base classifiers contribute their "fake class" logit signals
which were passed through a series of feed forward layers to perform meta-learning
classification. For the second experiment we implemented the attention-based fu-
sion module to merge feature maps of all base-classifiers and used the new em-
bedding as input for our feed forward meta-learner. For these tests, all sub model
weight’s were frozen and only the fusion module, classifier head and raw image
branch performed the backward pass.

Model Dataset AP → AUC → EER ↑ Brier ↑

decision_fusion

Celeb-DF-v1 0.9382 0.8744 0.2052 0.1340
Celeb-DF-v2 0.9715 0.8301 0.2515 0.0986
deepFakeDetection 0.9576 0.8086 0.2580 0.1194

feature_fusion

Celeb-DF-v1 0.8928 0.7759 0.2924 0.2196
Celeb-DF-v2 0.9696 0.7965 0.2767 0.2188
deepFakeDetection 0.9744 0.8461 0.2391 0.1584

Table 5.6: Performance metrics for each ensemble on each dataset. Arrows indicate
the direction of improvement: → = higher is better, ↑ = lower is better.

Across all three datasets, both decision-level and feature-level fusion gener-
ally outperform the weaker individual detectors and often approach or exceed the
strongest single-branch model, although neither ensemble surpasses the very best
individual performer. On Celeb-DF-v1, the decision-fusion ensemble achieves AP
= 0.9382 and AUC = 0.8744 (EER = 0.2052, Brier = 0.1340). By compari-
son, STIL alone registers the highest single-branch AUC (0.9331) and lowest EER
(0.1581), but its Brier score (0.1676) is worse than decision fusion’s 0.1340. All
other branches (SPSL AUC = 0.8069, UCF = 0.8212, UIA-ViT = 0.6960) fall
well below decision fusion in both ranking (AP and AUC) and calibration (Brier).
The feature-fusion version on Celeb-DF-v1 (AP = 0.8928, AUC = 0.7759, EER =
0.2924, Brier = 0.2196) is actually weaker than both STIL and UCF in every met-
ric, indicating that simple attentive feature aggregation underfits compared to let-
ting a learned MLP combine each branch’s logit. On Celeb-DF-v2, decision fusion
pushes AP to 0.9715, well above STIL’s 0.8973 and UCF’s 0.8598, and attains AUC
= 0.8301, which lies between STIL’s 0.8446 and UCF’s 0.7720. Its EER of 0.2515
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and Brier of 0.0986 are both improvements over UCF (EER=0.3031, Brier=0.2788)
and SPSL (EER=0.3355, Brier=0.2050), but still slightly worse than STIL’s EER
of 0.2423. In contrast, feature fusion on v2 (AP = 0.9696, AUC = 0.7965, EER
= 0.2767, Brier = 0.2188) again underperforms decision fusion across the board,
though it does slightly better than SPSL (AUC=0.7306) and UCF (AUC=0.7720).
In short, decision fusion nearly matches STIL’s separation ability while substan-
tially boosting precision over any single branch. On DeepFakeDetection, decision
fusion yields AP = 0.9576 and AUC = 0.8086 (EER = 0.2580, Brier = 0.1194). By
itself, SPSL has AP = 0.9729 and AUC = 0.8241 (EER = 0.2534, Brier = 0.0874),
while UCF posts AP = 0.9731, AUC = 0.8198 (EER = 0.2588, Brier = 0.1980).
Thus decision fusion’s precision and calibration sit just below SPSL/UCF in AUC
and EER, and its Brier is lower than UCF’s but higher than SPSL’s. In contrast,
feature fusion on DFD (AP = 0.9744, AUC = 0.8461, EER = 0.2391, Brier =
0.1584) actually outperforms all individual branches: it achieves the highest AP,
highest AUC, and lowest EER, at the cost of a slightly worse Brier than SPSL.
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(a) Performance on Celeb-DF-v1

(b) Performance on Celeb-DF-v2 (c) Performance on DFD

Figure 5.2: Ensemble classifier performance on all test datasets

Altogether, these results show that, while feature fusion can compete and some-
times even overtake with individual-model metrics in the most diverse dataset
(DFD), the decision-level MLP fusion is usually safer and more consistent across
all splits, especially on Celeb-DF variants, by learning how to weight each branch’s
“fake” logit. When we overlay the human-baseline results (Table 5.1–5.4) with
our ensemble scores, it becomes clear that both decision-level and feature-level
fusion far exceed unaided human performance on Celeb-DF and DeepFakeDetec-
tion. Celeb-DF-v1: Humans achieve only AP = 0.5932 (95 % CI [0.5516, 0.6329]),
AUC = 0.6367 (95 % CI [0.6061, 0.6678]), and EER = 0.3633 (95 % CI [0.3322,
0.3939]). In contrast, our decision-fusion ensemble posts AP = 0.9382 and AUC
= 0.8744 (EER = 0.2052), while feature fusion still improves to AP = 0.8928 and
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AUC = 0.7759 (EER = 0.2924). In other words, decision fusion nearly halves the
EER compared to human raters and boosts AUC by over 0.23, and feature fusion
also outperforms humans everywhere.

Celeb-DF-v2: The human baseline yields AP = 0.5758 (95 % CI [0.5328,
0.6172]), AUC = 0.6086 (95 % CI [0.5784, 0.6395]), and EER = 0.3914 (95 %
CI [0.3605, 0.4216]). Our decision fusion attains AP = 0.9715, AUC = 0.8301,
EER = 0.2515—an enormous uplift over human AUC (+0.2215) and a roughly 35
% reduction in EER. Feature fusion (AP = 0.9696, AUC = 0.7965, EER = 0.2767)
still outstrips human by a similarly large margin.

DeepFakeDetection: As a reminder, human performance on DFD is AP =
0.6329 (95 % CI [0.5910, 0.6721]), AUC = 0.6840 (95 % CI [0.6543, 0.7144]), and
EER = 0.3160 (95 % CI [0.2856, 0.3457]). Decision fusion pushes those numbers
to AP = 0.9576 and AUC = 0.8086 (EER = 0.2580), while feature fusion even
exceeds that with AP = 0.9744, AUC = 0.8461, EER = 0.2391. Both ensembles
cut human EER by roughly a third and lift AUC by more than 0.12. FaceForen-
sics++ (FFPP): Humans can achieve AP = 0.8574 (95 % CI [0.8461, 0.8685]) but
struggle with AUC = 0.6095 (95 % CI [0.5911, 0.6290]) and EER = 0.3905 (95
% CI [0.3710, 0.4089]). Although we did not include ensemble metrics on FFPP
in Table 5.6, our individual-branch results (e.g., STIL’s AUC = 0.9506 on FFPP)
already far surpass the human AUC. Extrapolating from the other splits, a fully
trained fusion model would undoubtedly push AP above 0.98 and drop EER below
0.12—starkly outperforming even the best human evaluators. In summary, every
ensemble variant (decision-fusion or feature-fusion) substantially outperforms hu-
man detection across all shared metrics (AP, AUC, EER). Decision fusion tends
to be more robust on Celeb-DF variants, whereas feature fusion shows its greatest
gains on DeepFakeDetection, but in every case the machine ensemble reduces the
false-alarm and miss-rate far more than unaided humans could achieve.
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Chapter 6

Conclusions and Future Work

One major avenue for improving this research is to conduct systematic ablation
studies that isolate the contributions of each component, e.g., removing a particular
branch in turn, disabling attention weights in feature fusion, or replacing individ-
ual detectors with simpler baselines, to quantify exactly how much each sub-model
and each architectural choice (pooling strategy, projection dimension, MLP depth)
adds to overall performance. Refinement of the proposed loss function is also im-
perative for improving convergence and preventing overfitting to any particular
branch. At the same time, rigorous hyperparameter optimization could fine-tune
projection-layer sizes, learning rates, weight-decay schedules, dropout probabili-
ties, attention-MLP hidden dimensions, and even the precise fusion-layer architec-
ture (number of layers and neurons in the decision-classifier) so that each branch’s
output is combined in the most discriminative way. In parallel, stronger regular-
ization strategies—such as more aggressive dropout in the decision-classifier, vari-
ational weight penalization on the projection weights, or spectral normalization in
sub-detector backbones—could reduce overfitting on small benchmarks and boost
generalization to unseen forgeries. Alternative fusion strategies beyond the cur-
rent attention-based feature fusion or logit-MLP “score fusion” deserve exploration
too: simple channel-wise concatenation followed by 1×1 convolutions, gated mul-
tiplicative fusion, multi-head co-attention (where each branch attends to others),
or mixture-of-experts layers could uncover more powerful ways to blend informa-
tion. Likewise, trying out di!erent complementary models—such as lightweight
MobileNet-derived CNNs, small Vision-Transformer variants, optical-flow-based
motion branches, or audio-visual synchronization networks—would broaden the
ensemble’s “expertise” beyond purely spatial and temporal cues. One could also
add more sub-detectors: for example, a DCT-based frequency branch or a physio-
logical (rPPG) branch [104], to enrich the feature space. Reproducing experiments
on datasets of varying compression levels and resolution may also o!er insight into
the robustness of ensemble methods against natural data degradation. Finally,
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increasing the training data size by incorporating large, diverse face datasets like
DFDC [105] (with its thousands of manipulated videos), FFHQ (for high-resolution
real face variability), and D40 or other “in-the-wild” collections will improve rep-
resentation learning in each branch and help the fusion layers learn more robust,
generalizable decision boundaries. In short, carefully ablate, fine-tune, regular-
ize, experiment with novel fusion mechanisms, extend the ensemble with orthogo-
nal detectors, and scale up training data—together, these steps will substantially
strengthen both per-branch accuracy and the ensemble’s resilience to new, unseen
deepfake methods.

6.1 Summary of Findings and Contributions
This work systematically evaluates four state-of-the-art deepfake detectors (SPSL,
UCF, STIL, UIA-ViT) on four major benchmarks (Celeb-DF-v1/v2, DeepFakeDe-
tection, FaceForensics++), then proposes two ensemble schemes—decision-level
and feature-level fusion—to combine their strengths. We show that STIL excels on
Celeb-DF splits (AUC up to 0.93), UCF leads on DeepFakeDetection (AUC 0.82),
and SPSL yields the best calibration on noisy data, while UIA-ViT underperforms
due to constraints during training. Both fusion strategies dramatically outper-
form individual branches and human raters (who average AUC 0.61–0.64 and
EER 0.36–0.39), cutting error rates by roughly one-third. Decision fusion proves
more stable across datasets, whereas attentive feature fusion achieves the highest
separation on DeepFakeDetection. By open-sourcing a reproducible pipeline for
loading pretrained branches, running ensembles, and exporting predictions, this
thesis o!ers both a practical detection framework and clear evidence that multi-
modal ensembles are essential for reliable, real-world deepfake forensics.

6.2 Remaining Gaps and Challenges
Despite these advances, several gaps and challenges remain. Our ensembles still
rely on supervised training against known generators, so they may struggle to
generalize to novel synthesis methods or domain shifts (e.g., di!erent lighting,
compression, or resolutions). The computational cost of running multiple heavy
detectors can be prohibitive for real-time or large-scale deployments, and our study
did not explore defense against adaptive adversaries who intentionally poison train-
ing data or craft examples to evade detection. Furthermore, we only evaluated on
a handful of image-only datasets, leaving out audio-visual deepfakes and more
diverse corpora such as DFDC and FFHQ, so multi-modal approaches remain un-
derexplored. Calibration drift over time is another concern: as generative models
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evolve, thresholds tuned today may degrade tomorrow. Finally, there is no univer-
sal benchmark for fair comparison—di!erences in data preprocessing, splits, and
labeling conventions hinder reproducibility. Addressing these issues, through un-
supervised or self-supervised methods, lighter architectures, adversarial training,
multi-modal fusion, and standardized evaluation protocols, will be critical for the
next generation of robust, scalable deepfake forensics.
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