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RESUMEN DEL PROYECTO 

Palabras clave: Inteligencia artificial (IA), interpretabilidad, IA explicativa (XAI), SHAP, 

LIME, Grad-CAM++, métrica unificada, IA ética, diagnóstico del Alzheimer, transparencia, 

fiabilidad. 

 

1. Introducción 

 

El proyecto aborda el creciente desafío de la interpretabilidad en los modelos de aprendizaje 

automático, especialmente en sectores de alto riesgo como el sanitario. Si bien los sistemas 

modernos de IA pueden alcanzar una precisión predictiva notable, su naturaleza de black box 

a menudo impide a las partes interesadas comprender cómo el modelo toma las decisiones, 

cuáles son las variables que más influencian al resultado, lo que da lugar a preocupaciones 

ético-normativas y relacionadas con la confianza del modelo. La aparición de la IA 

explicativa (XAI) tiene como objetivo abordar este desafío, con métodos como SHAP y 

LIME que proporcionan explicaciones independientes del modelo. Sin embargo, sigue 

habiendo una falta de métricas estandarizadas para comparar y evaluar estas herramientas de 

forma objetiva. 

2. Definición del proyecto 

 

El proyecto consiste en desarrollar una métrica de interpretabilidad unificada capaz de evaluar 

y comparar cuantitativamente la calidad de las explicaciones entre diferentes modelos y 

conjuntos de datos. La métrica integra tres dimensiones clave: fidelidad, estabilidad y 

dispersión en una única puntuación. El enfoque combina técnicas XAI de última generación 

(SHAP, LIME, Grad-CAM++) con pruebas empíricas en conjuntos de datos heterogéneos, 

incluidos datos tabulares de biomarcadores del Alzheimer y datos de imágenes médicas 

(MRI). 

3. Descripción del modelo/sistema/herramienta 

 

Aplicación de múltiples modelos de aprendizaje automático (Regresión Logística, Random 

Forest, SVM y MLP) y conjuntos de datos. Comparación entre puntuaciones de métrica 

unificadas y métricas de interpretabilidad individuales. 

 

En general, este enfoque se desarrolla en tres fases, integrando un análisis teórico, el diseño 

de métricas y la validación empírica para proporcionar una herramienta versátil para la 

evaluación coherente de la interpretabilidad. 



   

Este proyecto se ajusta a los siguientes ODS:  

1.  ODS 3: Salud y Bienestar: Se contribuye a la elaboración de modelos de ML más 

precisos e interpretables en la atención sanitaria, en particular, mediante el diagnóstico del 

Alzheimer.  

2.  ODS 9: Industria, Innovación e Infraestructura: Mediante el desarrollo de 

marcos éticos de IA que promuevan la transparencia y la confianza en los sistemas 

tecnológicos.  

3.  ODS 16: Paz, Justicia e Instituciones Sólidas: Mediante el fomento de la 

responsabilidad y las normas éticas en el despliegue de IA. 

 

4. Conclusiones 

 

En este Proyecto se han alcanzado varios hitos: la aplicación de SHAP, LIME y Grad-CAM++ a 

datos en formato tabular e imágenes, el desarrollo de una métrica de interpretabilidad unificada y 

la validación de su uso en el diagnóstico del Alzheimer con resultados generalizables a más de 2000 

pacientes. 

Las limitaciones incluyen las pruebas en un conjunto reducido de conjuntos de datos debido a la 

limitación para obtener bases de datos de acceso público. Las investigaciones futuras deberían 

ampliarse a otros ámbitos (financiero, legal, etc.), integrar el razonamiento causal e incluir la 

validación por parte de expertos en el área de estudio. 

 

Se han logrado varios hitos importantes en el transcurso del proyecto: Se está aplicando SHAP, 

LIME y Grad-CAM++ a tablas e imágenes, desarrollando una métrica de interpretabilidad unificada 

y validando su uso en el diagnóstico de Alzheimer con resultados generalizables a más de 2000 

pacientes. 

 

Las limitaciones incluyen las pruebas en un conjunto reducido de modelos y conjuntos de datos. La 

investigación futura debería expandirse a otros dominios, integrar el razonamiento causal e incluir la 

validación por expertos. 

 

En resumen, este proyecto ofrece un marco unificado que promueve una IA fiable y transparente 

en el ámbito del diagnóstico médico. 
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1. Introduction 

 

This project addresses the growing challenge of interpretability in machine learning 

models, especially in high-stakes sectors such as healthcare. While modern AI systems can 

achieve remarkable predictive accuracy, their black-box nature often prevents stakeholders 

from understanding how decisions are made, leading to ethical regulatory, and trust-related 

concerns. The emergence of Explainable AI (XAI) aims to address this challenge, with 

methods like SHAP and LIME providing model-agnostic explanations. However, there 

remains a lack of standardized metrics to compare and evaluate these tools objectively. 

2. Project definition 

 

The project consists of developing a unified interpretability metric capable of quantitively 

assessing and comparing explanation quality across different models and datasets. The metric 

integrates three key dimensions: fidelity, stability and sparsity into a single score. The 

approach combines state-of-the-art XAI techniques (SHAP, LIME, Grad-CAM++) with 

empirical testing on heterogeneous datasets, including tabular Alzheimer’s biomarker data 

and medical imaging data. 

 

3. Description of the model/system/tool 

 

The development of the metric follows three main phases: 

 

1. Theoretical Framework: Review of AI interpretability literature, ethical AI principles, and 

limitations of existing tools. Identification of relevant interpretability dimensions from both 

technical and usability perspectives. 

 

2. Metric Development & Modeling: 

a. Definition of mathematical formulations for each interpretability dimension. 

b. Normalization and weighting to ensure comparability. 

c. Implementation in Python, leveraging scikit-learn, SHAP, LIME, and PyTorch-based 

Grad-CAM++. 

 

3. Validation & Analysis: Application to multiple ML models (Logistics Regression, Random 

Forest, SVM) and datasets. Comparative between unified metric scores and individual 

interpretability metrics. 



1. Theoretical 
Framework 

1.1 Review 
Literature 
1.2 Define 
Interpretability 
Dimensions 

1.3 Identify Ethical & 
Technical Criteria 

2. Metric Development 
& Modeling 

2.1 Formulate 
dimensions (fidelity, 
stability, sparsity) 

2.2 Normalize and 
weight 

2.3 Python 
implementation 

3. Validation & Analysis 

3.1 Apply metrics to 
LR, RF, SVM and MLP 
3.2 Compare unified 
vs individual metrics 

3.3 Assess 
robustness 

Overall, this three-phase approach integrates theoretical analysis, empirical validation, and 

metric design to provide a versatile tool for consistent interpretability evaluation. 
 

 

This project aligns with the following SDGs: 

1. SDG 3: Good Health and Well-being: Contributing to the development of more accurate 

and interpretable ML models in healthcare, particularly for Alzheimer’s diagnosis. 

2. SDG 9: Industry, Innovation and Infrastructure: Through the development of ethical AI 

frameworks that promote transparency and trust in technological systems. 

3. SDG 16: Peace, Justice and Strong Institutions: By fostering responsibility and ethical 

standards in the deployment of AI. 

 

Conclusions 

 

Several milestones were achieved: applying SHAP, LIME, and Grad-CAM++ to tabular and image, 

developing a unified interpretability metric, and validating its use in Alzheimer’s diagnostics with 

results generalizable to over 2,000 patients. 

 

Limitations include testing on a narrow set of models and datasets. Future research should expand 

to other domains, integrate causal reasoning, and involve expert validation. 

 

In summary, this project delivers a unified framework that advances trustworthy and transparent AI 

in healthcare. 
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Chapter 1. Introduction 

Artificial Intelligence (AI) stands as one of the most transformative forces of the 21st century, 

driving advancements across virtually every domain—from personalized recommendation 

engines and autonomous vehicles to diagnostic imaging in medicine and algorithmic trading in 

finance. However, despite its widespread adoption, AI remains deeply misunderstood and often 

mistrusted by the public (Amodei et al., 2016; Mitchell et al., 2021). This paradox—of immense 

utility shadowed by societal apprehension—stems largely from the opaque nature of modern 

machine learning (ML) systems, whose decisions are often inscrutable even to their developers. 

The tension between technological progress and human control is not a novel concern. During 

the Industrial Revolution, the Luddite movement famously resisted mechanization that 

threatened artisanal labor (Mokyr, 1999). Today, similar anxieties resurface in the face of 

automation powered by AI, with fears of job displacement, algorithmic bias, and loss of 

autonomy dominating public discourse (Acemoglu & Restrepo, 2020). 

As deep learning architectures have achieved superhuman performance in tasks like image 

classification (He et al., 2016), natural language processing (Brown et al., 2020), and strategic 

gameplay (Silver et al., 2017), their inner workings have simultaneously grown opaquer. This 

black-box nature presents critical risks: biased facial recognition systems with disparate error 

rates across demographic groups (Raji et al., 2020); recommendation algorithms that amplify 

misinformation (Hosanagar & Vakili, 2021); and opaque clinical models that misguide diagnoses 

and treatments (Kelly et al., 2019). 

Given these challenges, the need for explainable and trustworthy AI has never been more 

pressing—particularly in domains where decisions have profound human consequences. While 

recent advances in explainability techniques such as SHAP and LIME have helped open the 

“black box,” their evaluation and comparison remain inconsistent and fragmented. Most 

interpretability tools focus on isolated aspects such as feature attribution or visual saliency, often 

overlooking key dimensions like robustness, stability, or computational cost. 

This gap motivates the present thesis, which seeks to bridge technical performance and 

interpretability by proposing a unified metric that quantifies and compares the explanatory power 
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of different tools. The following section delves into the broader context in which this work is 

situated and the specific motivations driving its development. 

1.1 CONTEXT AND MOTIVATION 

The journey toward explainable AI is deeply rooted in the broader evolution of artificial intelligence 

itself. From Alan Turing’s foundational question—"Can machines think?"—to the rise of deep 

neural networks, the development of AI has been consistently shaped by both technical innovation 

and public perception. 

 

Over the past seventy years, Artificial Intelligence (AI) has evolved from a speculative concept into 

a transformative force that permeates nearly every aspect of modern life. This progression has not 

been linear; rather, it has unfolded through alternating waves of optimism, setbacks, and resurgence. 

From Turing’s early thought experiments in the 1950s to the birth of AI as a formal discipline at the 

Dartmouth Conference, through the cycles of "AI winters" and breakthroughs, up to today’s era of 

deep learning, the field has continually adapted to new challenges and opportunities. Increasingly, 

this includes a focus on ethical concerns and the demand for explainable AI, marking a pivotal shift 

in both how AI is developed and how it is understood by society. 

 

Figure 1: A visual timeline of major AI milestones from the 1950s (Turing Test, Dartmouth) to the 2020s 

(AlphaGo, OpenAI, XAI) 

Early Visions and the Birth of AI (1940s–1950s) 
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In the mid-20th century, British mathematician Alan Turing laid the theoretical groundwork for AI. 

Turing famously posed the question “Can machines think?” in his 1950 paper Computing 

Machinery and Intelligence (Turing, 1950). He described an experimental setup known as the 

Imitation Game—now famous as the Turing Test—where a machine’s ability to exhibit human-like 

conversation is evaluated. Turing’s vision suggested that a sufficiently advanced computer could 

fool humans into believing it was sentient, planting the seed for the modern concept of artificial 

intelligence. 

 

Figure 2: The Turing Test, proposed by Alan Turing, evaluates a machine's ability to exhibit intelligent behavior 

indistinguishable from a human. If a human evaluator cannot reliably tell the machine from a human based on 

conversation alone, the machine is said 

 

 

Just a few years later, in 1956, the field of AI was officially born at an academic workshop. In the 

summer of 1956, computer scientist John McCarthy convened the Dartmouth Summer Research 

Project on Artificial Intelligence, coining the term “artificial intelligence” in the process (McCarthy 

et al., 1956). This gathering of pioneers (including McCarthy, Marvin Minsky, Claude Shannon, 

and others) is often cited as the moment AI became an organized discipline. The Dartmouth 

conference launched ambitious efforts to create machines that could perform tasks such as reasoning 

and problem-solving, heralding a new era of optimism about intelligent machines. 

 

Early Programs and Growing Optimism (1950s–1960s) 

 

 

In the wake of Dartmouth, researchers achieved several early AI milestones that made headlines. 
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Logic-oriented programs could prove mathematical theorems and solve puzzles—for example, 

Allen Newell and Herbert Simon’s “General Problem Solver” in the late 1950s attempted to apply 

human-like reasoning to a broad range of problems. In 1966, Joseph Weizenbaum created 

“ELIZA”, a conversational program that simulated a therapist by rephrasing users’ inputs. ELIZA’s 

dialogues were simplistic, but the program amazed observers by occasionally fooling people into 

thinking a real human was responding. Such examples showed that computers could at least mimic 

aspects of reasoning and language. 

 

A different approach to AI also emerged with the development of machines that learn from 

experience. In 1958, Frank Rosenblatt introduced the perceptron, an early artificial neural network 

that learned to classify patterns through trial and error (Rosenblatt, 1958). Inspired by neurons in 

the brain, the perceptron adjusted its internal weights based on feedback, allowing it to recognize 

simple shapes and characters. This sparked enthusiasm that machines might soon learn and adapt 

as humans do. By the late 1960s, the prevailing mood in the field was optimistic—some researchers 

even predicted that fully intelligent machines would be achieved within a generation. 

 

 

 
Figure 3: Diagram of Rosenblatt’s single-layer perceptron model with input nodes, adjustable weights, and an 

output node illustrating how a neural network learns from data. 

 

 

 

 

Challenges and the First AI Winter (1970s) 

 

 

By the early 1970s, the initial optimism about AI began to fade in the face of unmet expectations. 
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Despite the early demos, AI programs struggled with complexity outside of narrow toy examples. 

In 1969, Marvin Minsky and Seymour Papert published a book highlighting fundamental limitations 

of the perceptron, showing it could not solve certain simple classes of problems. Around the same 

time, grand promises—such as fully automated language translation—fell short of their goals. In 

1973, the British government’s Lighthill Report delivered a harsh critique of AI progress, leading 

to serious funding cuts. Similarly, U.S. agencies like DARPA grew sceptical as projects failed to 

achieve their lofty aims. This period of disappointment and reduced support became known as the 

first “AI winter,” a metaphorical freeze in AI research during the mid-1970s. 

 

Expert Systems and a New Spring (1980s) 

 

 

Around the 1980s, AI experienced a resurgence driven by a new strategy: expert systems. These 

were programs designed to capture human expertise in explicit if-then rules. For example, 

"MYCIN" was an early expert system that could diagnose blood infections, and another called 

"XCON" helped configure computer hardware orders. Companies saw practical value in these 

knowledge-based systems, deploying them for tasks in medicine, finance, and engineering. 

Governments also renewed investments in AI—most famously, Japan launched a massive Fifth 

Generation Computer project in 1982 to advance AI and computing. This era (often dubbed the “AI 

boom” of the 1980s) saw optimism return as AI moved from the lab into industry. 

 

Yet by the late 1980s, the limitations of expert systems became apparent. Building and maintaining 

these rule-based programs was extremely labour-intensive, and they tended to be brittle—small 

changes in requirements could break their logic, and they had no capacity to learn new facts on their 

own. As inflated expectations met reality, enthusiasm cooled again. Specialized AI hardware 

companies failed (for instance, the market for Lisp machines—computers optimized for AI— 

collapsed by the decade’s end). The field entered another downturn, sometimes called the second 

AI winter, in the late 1980s and early 1990s as funding and hype receded once more. 

 

Notably, amid the 1980s boom, important algorithmic advances were quietly taking place in 

academia. In 1986, Geoffrey Hinton and colleagues reintroduced the backpropagation learning 

algorithm for training multi-layer neural networks, overcoming a key obstacle that had stymied 
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neural nets for years (Rumelhart et al., 1986). This work—building on foundational efforts by Yann 

LeCun, who in the late 1980s developed convolutional neural networks (CNNs) for tasks like 

handwritten digit recognition—laid the groundwork for the major breakthroughs in machine 

learning that would unfold later. 

 

 

 

 

 

 
Figure 4:LeNet is a series of convolutional neural network architectures created by a research group in AT&T 

Bell Laboratories during the 1988 to 1998 period, centered around Yann LeCun. 

 

Machine Learning and Game Milestones (1990s) 

 

 

In the 1990s, as the field rebounded from the late-’80s downturn, AI research shifted toward more 

data-driven, statistical approaches, collectively known as machine learning. Instead of relying on 

hand-crafted rules, machine learning methods enabled computers to discern patterns and improve 

through experience. This shift yielded steady progress in pattern-recognition tasks: for example, 

systems for speech recognition and handwritten character reading became increasingly accurate 

during the 1990s. 

 

The world took notice of AI’s renewed momentum in 1997, when IBM’s Deep Blue chess computer 

defeated world champion Garry Kasparov in a six-game match. Deep Blue’s victory—achieved by 

combining brute-force search with expert-crafted heuristics—was a symbolic moment for the field. 

It showed that, at least in constrained domains like board games, machines could rival and even 

surpass human experts. Around the same time, AI began to be used in more everyday applications, 

from route-finding in mapping software to early web search engines and e-commerce 

recommendation systems, albeit often behind the scenes. 
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AI in Everyday Life: Big Data and Virtual Assistants (2000s–2010s) 

 

 

As the 21st century began, AI quietly spread into everyday life on the back of big data and the 

internet. Ordinary people interacted with AI often without realizing it—email spam filters, product 

recommendations on shopping sites, and credit card fraud detection systems were all powered by 

machine learning behind the scenes. However, one of the first highly public AI triumphs of the new 

century came in 2011 when IBM’s Watson system defeated champion human contestants on the 

quiz show Jeopardy! Watson’s success in answering complex, tricky natural-language questions 

demonstrated how far AI’s language processing and knowledge retrieval capabilities had advanced. 

 

That same year, AI made its way into millions of pockets with the debut of Apple’s Siri (2011), a 

voice-operated digital assistant on the iPhone. For the first time, non-experts could speak to a 

computer in normal language and receive useful answers or actions. In the following years, such 

virtual assistants proliferated—Amazon’s Alexa (first released in 2014) and the Google Assistant 

(2016) became household names. These systems used improved speech recognition and natural 

language understanding (powered by modern AI algorithms) to carry out tasks or fetch information. 

By the mid-2010s, interacting with an AI-powered assistant or relying on AI-driven services had 

become commonplace, marking a shift where AI was no longer confined to labs or chess matches 

but had become a part of everyday consumer technology. 

 

 

 
Figure 5: Amazon Alexa. How it works 

 

 

Deep Learning Breakthroughs (2010s) 
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Around this same time, a dramatic deep learning revolution was transforming AI. Although the 

concept of multi-layer neural networks had existed for decades, around 2012 such networks 

(facilitated by big data and powerful graphics processors) began to outperform older AI techniques 

by stunning margins. For instance, a deep neural network approach won a major image-recognition 

competition in 2012, achieving an error rate far lower than any previous system. Similar deep 

learning techniques soon brought huge leaps in speech recognition and machine translation quality. 

In 2014, researchers at Facebook developed DeepFace, a deep learning system that could recognize 

human faces in photographs with near-human accuracy—an unprecedented feat at the time. 

 

Figure 6: Face Recognition with Facebook DeepFace 

 

 

Deep learning combined with other advances also enabled AI to triumph in domains once thought 

uniquely the province of humans. In 2016, Google DeepMind’s AlphaGo program made history by 

defeating Go champion Lee Sedol—a milestone experts had believed was at least a decade away 

(Silver et al., 2016). Go, an ancient board game exponentially more complex than chess, had long 

been considered a last bastion of human dominance due to its vast search space and the intuitive 

skill it demands. AlphaGo’s victory, powered by neural networks and advanced self-learning 

algorithms, was a watershed moment demonstrating the potential of AI. The following year, its 

successor AlphaZero displayed even greater generality by learning to master chess, Go, and shogi 

from scratch (without any human-provided strategies), achieving superhuman play in each. These 

successes underscored that AI had entered a new era of capability, often matching or exceeding 

human performance in specialized tasks. 



Chapter 1: Introduction 

15 

 

 

 

OpenAI and the Era of Generative AI (late 2010s–2020s) 

 

 

In recent years, the frontier of AI has been pushed even further by breakthroughs in generative 

models and by the efforts of new research organizations. OpenAI, a research lab founded in 2015, 

has been at the forefront of many of these developments. OpenAI’s GPT series of models (short for 

Generative Pre-trained Transformers) showed that AI can generate human-like text after being 

trained on vast amounts of internet data. GPT-3, introduced in 2020, stunned observers with its 

ability to produce fluent paragraphs of text and answer questions with minimal prompts (Brown et 

al., 2020). This line of research culminated in widely used applications like ChatGPT (released in 

2022), which brought conversational AI to millions of users and ignited popular interest in AI’s 

capabilities. OpenAI and others have also demonstrated AI’s creative potential in other domains— 

for example, generative models that create realistic images from text descriptions (as seen with 

OpenAI’s DALL-E system) or even compose music. By the mid-2020s, AI systems were not only 

solving complex problems but also producing original content, signalling a new stage in how AI 

can augment human creativity and productivity. 

 

Figure 7: Introducing ChatGPT 
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Toward Ethical and Explainable AI 

 

 

Alongside these technological advances, there has been a growing focus on the ethical and societal 

implications of AI. As AI systems began influencing high-stakes decisions—such as loan approvals, 

medical diagnoses, and criminal justice outcomes—concerns arose about bias, fairness, and 

transparency in how those decisions were made. Researchers and policymakers in the late 2010s 

started formulating principles and guidelines for AI ethics to ensure AI would be developed and 

deployed responsibly (Cath, 2018). Issues like data privacy, algorithmic bias against certain groups, 

and the need for human accountability in AI-driven decisions became central topics. In response, 

companies and governments introduced frameworks for “trustworthy AI,” emphasizing values such 

as transparency, accountability, and human oversight. 

 

A key part of making AI trustworthy is making its decisions understandable to humans. This need 

spurred the rise of Explainable AI (XAI), which seeks to open the “black box” of complex models 

and reveal how they work. For instance, one popular XAI approach, called SHAP (short for Shapley 

Additive Explanations), assigns each input feature a score representing its influence on a particular 

prediction (Lundberg & Lee, 2017). By providing human-readable explanations—such as 

highlighting the specific factors that led an AI system to flag a financial transaction as fraudulent or 

to recommend a certain medical treatment—XAI helps users and experts understand and trust AI 

outputs. In sectors like healthcare and finance, such explanations are especially critical: doctors 

need to know why an AI suggested a diagnosis, and financial institutions must ensure automated 

decisions are fair and can be audited. The emergence of AI ethics and XAI represents the latest 

phase of AI’s evolution, one focused on aligning advanced AI systems with societal values and 

ensuring they are used responsibly. 

 

1.2 AI ETHICS AND THE IMPORTANCE OF EXPLAINABILITY 

 
Opaque Models in High-Stakes Decisions: Ethical Risks 

 

The use of opaque black-box AI models in high-stakes domains—such as healthcare, finance, and 
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criminal justice—raises serious ethical concerns. These complex models often achieve high 

accuracy, but their internal logic is not transparent to humans. Lack of transparency undermines 

trust and accountability: stakeholders cannot understand or challenge how decisions are made, 

which is problematic when those decisions carry significant consequences. As Rudin (2019) 

argues, black-box machine learning models have already caused real problems in domains like 

healthcare and criminal justice and relying on post-hoc explanations rather than using interpretable 

models from the start may “perpetuate bad practices” and even lead to “catastrophic harm to 

society”. In other words, when an AI’s reasoning remains opaque, errors or biases can go 

undetected until they result in negative outcomes. This has led scholars to warn that if an 

algorithm’s decision process cannot be examined, ethical oversight is fundamentally compromised 

(Doshi-Velez & Kim 2017). 

High-profile examples illustrate these risks. In healthcare, one hospital’s deployment of an AI 

system to prioritize patients backfired when staff could not explain why certain high-risk patients 

were deprioritized; the resulting public backlash eroded patient trust and the provider’s reputation. 

Such cases show how opacity in AI decisions can directly undermine confidence and safety in 

critical settings. More broadly, organizations using inscrutable AI face “reputational harm, 

regulatory penalties, and loss of stakeholder trust” if the technology’s impacts are not transparent. 

Explainability thus emerges as a foundational requirement in high-stakes AI – without it, users 

and those affected may justifiably resist or question algorithmic decisions (Tolan et al. 2021). In 

summary, an AI system that cannot explain its reasoning poses ethical risks by limiting human 

ability to evaluate fairness, contest outcomes, or prevent harm. This provides the ethical impetus 

for prioritizing interpretability in any domain where automated decisions have profound human 

consequences. 

Accountability, Fairness, and Bias in Automated Decision-Making 

 

Opaque AI systems also threaten core principles of accountability and fairness, especially when 

their predictions directly affect people’s lives. Accountability in AI refers to the ability to trace 

outcomes back to responsible parties and processes. However, black-box models can create what 

scholars term a “responsibility gap”. If something goes wrong, an algorithm makes a harmful 

medical recommendation or a biased hiring decision—who is accountable? When neither the end- 
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user (e.g. a doctor or recruiter) nor the model developers can explain the rationale of an AI 

decision, it becomes difficult to assign responsibility for errors. Legal and ethical accountability 

evaporates if an automated decision cannot be understood or audited. This erosion of 

accountability is more than theoretical: it has practical implications for liability and governance. 

For instance, Afnan et al. (2021) note that if clinicians rely on an opaque AI tool and a patient is 

harmed, courts may struggle to evaluate the decision-making process and determine culpability. 

In high-stakes scenarios, society requires clear lines of responsibility for AI outcomes, which in 

turn demands that those outcomes be explainable and transparent. 

Fairness and bias mitigation are equally critical. By default, black-box models learn from historical 

data and can inadvertently perpetuate or even amplify biases present in that data. Without 

explainability, these biases may remain hidden until they cause tangible discrimination. A well- 

documented example is Amazon’s experimental hiring algorithm, which was trained on past 

resumes. The model learned to discriminate against women in technical job recommendations, 

reflecting the male dominance of the historical data. Even after Amazon engineers noticed the 

bias, they struggled to correct it—the AI kept finding proxy ways to favor male candidates. This 

case demonstrates how difficult it is to detect and correct unfair bias in a black-box system, even 

for a tech giant, and it underscores the need for transparency to identify such issues. In the criminal 

justice domain, Angwin et al. (2016) famously investigated the COMPAS recidivism prediction 

tool and found it was biased against black defendants, labeling them “high risk” at 

disproportionately higher rates. Notably, COMPAS was a proprietary algorithm; its inner 

workings were opaque, which meant that stakeholders and even defendants had little insight into 

why the tool was making biased predictions. These examples underscore why fairness is a pillar 

of AI ethics: automated decisions must not exacerbate inequality or injustice. Ensuring fairness 

requires that AI systems are transparent enough to be audited for bias and adjusted as needed. 

Explainability plays a key role here – if we can understand how an algorithm arrives at a decision, 

we can more readily spot biased logic or disproportionate impacts on certain groups and then take 

steps to mitigate those biases. In short, when AI predictions affect people’s rights or opportunities, 

there is an ethical imperative to make the process accountable and fair. This means that AI 

designers must incorporate bias checks and explanations into their systems, allowing human 

oversight to verify that outcomes are equitable and justifiable. 
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Legal and Regulatory Requirements for Explainability and Transparency 

 

Recognizing these ethical risks, regulators and policymakers have begun to mandate explainability 

and transparency in AI systems. In the European Union, the landmark General Data Protection 

Regulation (GDPR) directly addresses algorithmic decision-making. Article 22 of GDPR gives 

individuals the right not to be subject to decisions based solely on automated processing that have 

significant effects on them, unless certain safeguards are in place. One key safeguard is the 

provision of “meaningful information about the logic involved” in such automated decisions. In 

essence, if an organization deploys an AI to make important decisions about individuals (for 

example, in lending, hiring, or medical diagnosis), the individual has a right to an explanation of 

how the decision was made. Scholars initially interpreted this as a potential “right to an 

explanation” in GDPR, sparking debate about its scope. While the exact interpretation is debated 

(Selbst & Powles 2017; Wachter et al. 2017), the spirit of the law clearly pushes toward greater 

algorithmic transparency. At minimum, GDPR requires that automated decisions affecting 

individuals are not complete black boxes: data subjects should receive an explanation that they 

can understand, supporting the broader goals of accountability and fairness in data processing. 

Building on this foundation, the EU is finalizing a comprehensive Artificial Intelligence Act (EU 

AI Act) that makes explainability a legal requirement for many systems. The AI Act takes a risk- 

based approach, imposing the strictest obligations on “high-risk AI systems” – a category that 

covers AI used in critical areas like healthcare, transportation, law enforcement, and essential 

services. A key principle in the AI Act is that high-risk AI must be transparent and explainable. 

Providers of such AI systems will be obliged to design and develop them in a way that ensures 

sufficient transparency so that deployers (and regulators) can reasonably understand the system’s 

functioning and outputs. In practical terms, this means companies must be able to explain how 

their AI makes decisions, at least to the extent of clarifying the factors and logic that drive its 

predictions. The Act also requires detailed documentation and “instructions for use” to be 

delivered with high-risk AI products, including clear information on the system’s characteristics, 

intended performance, and limitations. These transparency obligations aim to make AI systems 

traceable and auditable, aligning with the idea that trust in AI “requires opening the black box” 

and enabling oversight. 
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Notably, explainability under the EU AI Act is not viewed as a mere bureaucratic hurdle, but as a 

mechanism to ensure trust and accountability. As one commentary observes, explainability builds 

trust by demonstrating that AI behaves reliably and as intended, rather than erratically or 

inscrutably. It also promotes accountability: when we understand an algorithm’s decision process, 

we can audit it for errors or biases and thereby protect individuals and groups from discrimination. 

These legal requirements echo the consensus in AI ethics guidelines worldwide. For instance, the 

European Commission’s High-Level Expert Group on AI (2019) identified transparency 

(including the ability to explain AI decisions) and accountability as two of the seven key 

requirements for “Trustworthy AI”. Similarly, the OECD AI Principles (adopted by over 40 

countries) call for transparency and responsible disclosure so that people understand AI outcomes 

and can challenge them when necessary. In the United States, while regulations are still evolving, 

there are increasing calls for algorithmic accountability laws that would require impact 

assessments and explainability for AI used in employment, finance, and other sensitive areas. In 

summary, there is a clear trend toward formalizing explainability as a legal obligation. From 

GDPR’s individual rights to the EU AI Act’s systemic rules, regulators are embedding the ethical 

principles of explainability and transparency into law, making them prerequisites for AI 

deployment in high-impact settings. Organizations developing AI must now consider not only 

what their models can predict, but also how to communicate the reasoning behind those predictions 

in a human-understandable way. 

Explainability in Medical AI: The Case of Alzheimer’s Diagnosis 

 

These ethical and legal principles take on urgency in the medical domain. Healthcare decisions are 

literally life-and-death, and thus the trust, safety, and efficacy of AI systems in medicine are 

paramount. Medical AI applications—such as diagnostic algorithms for cancer, heart disease, or 

Alzheimer’s—are high-stakes. In this context, model interpretability can directly impact clinician 

and patient trust, as well as treatment planning. Doctors are trained to base decisions on 

explainable evidence; they are understandably reluctant to follow a recommendation from a “black 

box” AI without understanding its rationale. Indeed, many AI-driven Computer-Aided Diagnosis 

(CAD) tools have struggled to gain acceptance in clinical practice precisely because of their black- 

box nature. Even if such a model achieves impressive accuracy in detecting a disease, physicians 
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may question its reliability if it cannot explain its conclusions. As a result, explainability is seen 

as essential for integrating AI into healthcare – the model’s predictions must be interpretable to be 

trusted. Research on medical AI repeatedly emphasizes this point: the lack of explainability keeps 

the medical field reluctant to deploy AI diagnostic systems, despite their potential benefits. 

Clinicians and regulators alike often prefer a slightly less accurate model that behaves 

transparently and reliably over a more accurate but opaque model. In healthcare, responsible and 

reliable decision-making is valued over inscrutable efficiency, reflecting an understanding that 

unexplainable predictions can undermine clinical judgment and patient safety. 

In the realm of Alzheimer’s disease (AD) diagnosis, the need for explainable AI is especially 

pronounced. Alzheimer’s is a progressive neurodegenerative disease where early and accurate 

diagnosis is crucial for patient care and planning. AI models have been developed to analyze 

medical data (such as brain MRI scans, PET images, or cognitive test scores) to detect early signs 

of Alzheimer’s or predict disease progression. Many of these models leverage complex patterns in 

the data that might elude human doctors. However, if an algorithm flags a patient as likely having 

Alzheimer’s, clinicians will rightly ask “Why?” An uninterpretable prediction offers little 

actionable insight: without knowing which biomarkers or features influenced the model’s 

conclusion, a doctor cannot confidently incorporate the result into their assessment or explain it to 

the patient’s family. Interpretability can bridge this gap. For example, an explainable AI system 

might highlight that a patient’s hippocampal volume loss and slowed reaction times were the 

decisive factors in its Alzheimer’s prediction. Such information aligns with medical knowledge 

(the hippocampus is a key brain region affected in AD) and thus grounds the AI’s output in terms 

the clinician finds meaningful. This not only increases the doctor’s trust in the model but also 

directly aids in treatment planning – the care team knows what aspects of the patient’s condition 

to monitor or address. Recent literature reviews of explainable AI in AD support this approach: 

providing visual or quantitative explanations (e.g. via techniques like SHAP, LIME, or saliency 

maps) can reveal which input features (genes, brain regions, cognitive tests) contributed most to a 

model’s prediction. Such explanations offer “in-depth insight into the factors that support the 

clinical diagnosis of AD”, essentially opening the black box and translating the algorithm’s 

workings into clinical evidence. 
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The impact of explainability on trust and safety in Alzheimer’s diagnosis cannot be overstated. By 

making AI’s reasoning accessible, we allow clinicians to validate the model’s findings against 

their expert knowledge, dramatically reducing the risk of errors. For instance, if an explainable 

model for AD bases its prediction on an MRI artifact or noise, a doctor can recognize the spurious 

reasoning and avoid a misdiagnosis – a safeguard that a black-box model would not afford. 

Explainability also fosters better communication with patients. Alzheimer’s diagnoses are life- 

changing news; being able to explain why an AI-assisted diagnosis was made (for example, 

pointing to certain scan findings) can help in counseling patients and families, and in devising 

personalized intervention strategies. Moreover, from a regulatory standpoint, medical devices that 

incorporate AI (including diagnostic tools for AD) are increasingly expected to provide 

transparency. In the EU, AI systems for medical diagnosis would be classified as high-risk under 

the AI Act, meaning developers must build in explainability and human oversight. This aligns with 

medical ethics: patients have a right to know the basis of decisions affecting their health, and 

doctors have a duty to understand the tools they use for care. Thus, ensuring model interpretability 

in Alzheimer’s diagnosis is not only a technical challenge but an ethical and legal necessity. It 

underpins the trust of both clinicians and patients, fulfills emerging legal obligations for 

transparency, and ultimately contributes to safer and more effective treatment planning. In critical 

health contexts like AD, explainable AI is more than a preferable feature – it is imperative for 

responsible deployment, reflecting the maxim that we owe it to those impacted by AI to ensure the 

technology is fair, transparent, and aligned with their well-being. 

 

 

Conclusion 

 

In summary, the literature converges on a clear message: explainability is fundamental to ethical 

AI, especially in high-stakes applications. Opaque AI models, while powerful, carry significant 

risks – they can hide bias, obfuscate accountability, and erode trust when their decisions affect 

human lives. In response, there is a strong movement in both scholarship and policy to demand 

transparency and interpretability. Accountability, fairness, and the mitigation of bias are not 

abstract ideals but concrete requirements that translate into design principles and regulations. Laws 

like the GDPR and the forthcoming EU AI Act codify the expectation that AI decisions be 

explainable and transparent, reinforcing the notion that ethical obligations and legal compliance 



Chapter 1: Introduction 

23 

 

 

 

go hand in hand in the AI domain. Nowhere are these needs more pressing than in medicine, where 

the cost of an unexplained error is measured in human health. In the case of Alzheimer’s diagnosis, 

we see a microcosm of the broader thesis: explainable AI fosters trust, ensures safety, and guides 

better decisions. As AI systems become ever more embedded in critical decision processes, the 

importance of explainability only grows. Ensuring that AI can explain itself is not just a technical 

quest, but a moral imperative to align these systems with human values of transparency, justice, 

and accountability. The literature reviewed here firmly supports that view, laying an informed 

foundation for the subsequent chapters on machine learning interpretability and its practical 

implementation in healthcare AI. 
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1.3 OBJECTIVES AND SCOPE 

The rise of AI in high-stakes domains such as healthcare, finance, and criminal justice has triggered 

growing concerns around algorithmic opacity and accountability. As models become more 

complex and powerful, understanding their behavior is no longer a luxury—it is an ethical 

imperative. To this end, this research aims to bridge the gap between technical performance and 

interpretability by developing a unified metric capable of evaluating the explanatory capacity of 

machine learning (ML) models across diverse contexts. 

The general objective of this thesis is to design and validate a unified metric for assessing the 

interpretability of ML models. This metric integrates multiple dimensions—such as consistency, 

stability, execution time, and sensitivity to input perturbations—and leverages state-of-the-art tools 

like SHAP, LIME, Grad-CAM, and causal inference libraries. The metric is intended to offer a 

standardized, comprehensive framework for evaluating how intelligible a model’s decision-making 

process is to human users. It will initially be applied to specific use cases—most notably, 

Alzheimer’s diagnosis using tabular biomarkers such as LDL cholesterol—and later generalized to 

additional models and data types. The goal is to enhance transparency, build trust, and promote 

ethical deployment of AI systems in sensitive applications. 

 

To achieve this overarching aim, the research is structured around the following specific 

objectives: 

1. Evaluation and Application of Interpretability Tools: 

 

a. Application Across Diverse Datasets: Apply state-of-the-art interpretability 

tools—such as SHAP, LIME, and other causality-based libraries—to a variety of 

datasets that differ in complexity, including tabular data, images—o assess their 

utility and performance. 

b. Comparative Analysis: Conduct a systematic evaluation of each tool in terms of 

fidelity, consistency, computational efficiency, and feature importance, 

identifying their relative strengths and limitations. 
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2. Development of a Unified Metric: 

 

a. Identification of Key Interpretability Metrics: Identify and define core 

interpretability indicators (e.g., consistency, execution time, stability, sparsity, 

perturbation sensitivity) via literature and empirical analysis. 

b. Integration into a Unified Metric: Formulate a composite metric using 

normalized scores and weighted averages to encapsulate all relevant dimensions. 

c. Model-Agnostic Validation: Test this metric across various models (e.g., Logistic 

Regression, Random Forest, SVM, MLP) and datasets to confirm its robustness 

and generalizability. 

3. Empirical Evaluation and Critical Analysis: 

 

a. Experimental Pipeline: Implement a modular pipeline for conducting controlled 

experiments to test both individual tools and unified metric. 

b. Critical Review: Analyze the behavior of the unified metric under different 

conditions, identifying potential biases and areas for improvement. 

c. Iterative Improvement: Refine the metric based on observed shortcomings and 

propose alternative scoring or weighting schemes if necessary. 

4. Knowledge Generation and Best Practices: 

 

a. Practitioner Guidelines: Provide evidence-based recommendations for the 

practical use of interpretability tools tailored to dataset type and model 

complexity. 

b. Final Report: Compile all findings, methodologies, and conclusions into a 

technically sound and accessible report to serve as a future reference in the field 

of XAI. 

Together, these objectives build upon the current advances in explainable AI (XAI) and address 
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the urgent need for standardized, unified metrics that can effectively assess the interpretability of 

diverse machine learning models. By integrating insights from various domains—ranging from 

financial decision-making and migraine research to Alzheimer’s diagnostics—we aim to develop 

tools that not only enhance transparency but also foster trust and accountability in AI systems. 

This project is designed to develop and validate a unified interpretability metric for ML models by 

addressing various components and challenges across data, models, interpretability tools and 

validation strategies. The scope is defined as follows: 

1. Datasets: The project will utilize at least two different types of datasets from open-source 

websites to ensure a comprehensive evaluation of the proposed metric. These datasets will 

include: 

a. Tabular Data: Structured datasets (e.g., Alzheimer’s biomarker data) that require 

preprocessing for missing values, outliers, and categorical encoding. 

b. Image Data: Visual datasets for classification tasks, useful for validating 

saliency-based techniques like Grad-CAM. 

2. Machine Learning Models: To thoroughly and exhaustively evaluate the interpretability 

metric, the study will involve at least three distinct types of ML models that represent 

diverse methodological approaches, including: 

a. Linear Models: Logistic and linear regression, providing transparency through 

coefficients. 

b. Tree-Based Models: Random Forests and Decision Trees, interpretable via 

feature splits and importance measures. 

c. Neural Networks: MLPs and CNNs (for images), treated as black-box models 

requiring external interpretability techniques. 

3. Interpretability Tools: These tools will be used to evaluate different facets of 

interpretability, from local explanations to global causal insight. 
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a. Feature Contribution Analysis: SHAP, LIME 

 

b. Causal Impact Assessment: Quantitative Input Influence, DoWhy, or similar 

 

c. Visual Explanation: Grad-CAM for image models 

 

4. Validation: To rigorously evaluate the proposed unified metric, the project will 

implement cross-validation techniques across multiple datasets and model types. This 

validation process will focus on assessing: 

a. Consistency: Ensure the stability of the metric across training/test splits. 

 

b. Generalization: Assess how well the unified metric performs across different 

model architectures and datasets. 

c. Applicability: Determine whether the insights offered by the unified metric are 

actionable and meaningful in real-world contexts. 

Finally, this project aligns with the following SDGs: 

1. SDG 3: Good Health and Well-being: Contributing to the development of more accurate 

and interpretable ML models in healthcare, particularly for Alzheimer’s diagnosis. 

2. SDG 9: Industry, Innovation and Infrastructure: Through the development of ethical 

AI frameworks that promote transparency and trust in technological systems. 

3. SDG 16: Peace, Justice and Strong Institutions: By fostering responsibility and ethical 

standards in the deployment of AI. 
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1.4 ORGANIZATION OF THE THESIS 

The work presented here is structured as follows: 

 

▪ Chapter 1 - Introduction and Context: This chapter introduces the historical evolution 

of Artificial Intelligence (AI), from early theoretical milestones like the Turing Test to 

the emergence of deep learning and the current emphasis on Explainable AI (XAI). It 

also presents the societal, ethical, and regulatory motivations for developing transparent 

AI systems, with reference to current debates and frameworks such as the European AI 

Act. The chapter closes by stating the objectives, scope, and overall structure of the work. 

▪ Chapter 2 – Theoretical Framework: This chapter develops the theoretical basis for 

the study. It reviews the machine learning models applied—such as Logistic Regression, 

Random Forests, SVMs, and Multi-Layer Perceptrons—as well as interpretability 

techniques, including SHAP, LIME, Grad-CAM++, and recent developments in causal 

inference. The chapter also outlines optimization methods, hyperparameter types, and 

evaluation criteria. Finally, it identifies the limitations of current interpretability tools 

and introduces the concept of a unified metric designed to integrate multiple dimensions 

of explainability. 

▪ Chapter 3 – Methodology: This chapter details the experimental design and 

implementation of the proposed approach. It describes the datasets used (tabular and 

image-based), preprocessing steps, model training, and the integration of interpretability 

tools. It also explains how the unified interpretability metric was constructed and applied 

across models and datasets. While Chapter 2 justifies the theoretical choices, this chapter 

focuses on how those choices were implemented in practice. 

▪ Chapter 4 – Results and Evaluation: This chapter presents experimental outcomes. It 

includes model performance metrics, comparative interpretability visualizations, and 

quantitative results from the unified metric. Graphical outputs such as ROC curves, 

SHAP and LIME heatmaps, and stability analyses help visualize how interpretability 

varies across models, datasets, and explanation tools. 
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▪ Chapter 5 – Discussion, Contributions, and Conclusions: The final chapter offers a 

critical analysis of the findings. It discusses the strengths and limitations of the unified 

metric, its impact on interpretability research, and how it compares to existing tools. It 

also evaluates the influence of data heterogeneity, preprocessing, and model complexity 

on interpretability. The chapter concludes by summarizing the main contributions, 

including methodological and practical insights, and proposes future research directions 

to improve model explainability and responsible AI deployment. 

The work concludes with a comprehensive bibliography that lists all the sources referenced 

throughout the project. 



Chapter 2: Theoretical Framework 

30 

 

 

Chapter 2. Theoretical Framework 

This chapter explores the mathematical foundations of popular machine learning models and 

interpretability methods and proposes a unified framework to integrate and compare these 

interpretability techniques. 

2.1 MACHINE LEARNING AND INTERPRETABILITY: 

FOUNDATIONS 

Machine Learning (ML) is a subfield of artificial intelligence that enables computer systems to learn 

patterns from data and make predictions without being explicitly programmed. Rather than 

following fixed rules, ML algorithms learn from example data to improve their performance on 

specific tasks. They are widely used in practical applications such as recommendation systems, 

image recognition, and fraud detection. 

 

 

Figure 8: AI vs ML vs DL 
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Deep Learning (DL), a specialized subset of ML, refers to neural network architectures composed 

of multiple hidden layers capable of learning hierarchical and complex representations from large 

datasets. Inspired by the structure of the human brain, these models automatically extract features 

at varying levels of abstraction. Deep learning has achieved state-of-the-art results in domains such 

as computer vision and natural language processing. However, this expressiveness comes at the cost 

of increased computational demands and the need for large-scale data (Li et al., 2022). 

 

Figure 9:Deep Learning vs Machine Learning. Key Differences 

 

As ML models grow in complexity, interpretability has emerged as a critical concern. 

Interpretability is often defined as “the degree to which a human can understand the cause of a 

decision” (Miller, 2019), or alternatively, “the ability to explain or to present in understandable 

terms to a human” (Doshi-Velez & Kim, 2017). In high-stakes applications—such as healthcare, 

finance, and autonomous system transparent and trustworthy model behavior is not only desirable 

but essential for accountability and user acceptance. 

Interpretable models, such as linear regression and decision trees, inherently provide insight into 

how input features affect predictions. However, black-box models—such as neural networks or 

ensemble methods—often lack this transparency, as their internal mechanisms are complex and 

non-linear (Rudin, 2019). This creates a trade-off between predictive performance and 

interpretability, which has led to a surge of interest in techniques that can explain black-box model 

decisions post hoc. 
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Interpretability techniques are typically classified along three dimensions: 

 

- Model-specific vs. model-agnostic: 

o Model-specific methods are tailored to a particular class of models (e.g., decision 

trees, linear models). 

o Model-agnostic methods, in contrast, can be applied to any predictive model, 

regardless of its structure. 

 

- Global vs. local: 

o Global interpretability aims to explain the model’s overall logic and behavior across 

the dataset. 

o Local interpretability focuses on explaining individual predictions for specific data 

instances. 

 

- Intrinsic vs. post hoc: 

o Intrinsic interpretability refers to models that are inherently understandable (e.g., 

small trees, linear models). 

o Post hoc methods are applied after training to explain the decisions of more 

complex, opaque models. 

 

Among post hoc, model-agnostic techniques, two widely adopted methods stand out (See Section 

2.3 to understand their mathematical background): 

- LIME (Local Interpretable Model-Agnostic Explanations) – proposed by Ribeiro et al. 

(2016), LIME approximates the local decision boundary of a complex model with a simple, 

interpretable model (such as a sparse linear regressor) to explain individual predictions. 
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Figure 10: LIME interpretation example 

 

- SHAP (SHapley Additive exPlanations) – introduced by Lundberg & Lee (2017), SHAP 

assigns each feature an importance value based on cooperative game theory, ensuring 

consistent and locally accurate explanations for any model. 

 

Figure 11:SHAP Analyses example 

 

These tools help uncover the reasoning behind individual predictions, thereby offering a bridge 

between model performance and interpretability. 

The development and adoption of interpretability techniques have led to the emergence of 

Explainable Artificial Intelligence (XAI), a research field focused on making AI systems more 

understandable, fair, accountable, and robust. According to Gunning et al. (2019), XAI aims not 

only to improve transparency but also to enhance user trust and support regulatory compliance in 

sensitive applications. 

In the following sections, we examine several widely used machine learning and deep learning 
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models—Logistic Regression, Random Forests, Support Vector Machines, and Multilayer 

Perceptrons—alongside the interpretability challenges they present. We provide mathematical 

formalism and analysis to understand how these models operate and how interpretability can be 

achieved either intrinsically or through post hoc techniques. 

 

 

2.2 MACHINE LEARNING AND DEEP LEARNING MODELS 

 
In this work, a combination of machine learning (ML) and deep learning (DL) models is employed 

to address the prediction and classification tasks. Among the ML models, Logistic Regression 

(LR), Random Forests (RF), and Support Vector Machines (SVMs) are used due their 

widespread application, interpretability, and ability to handle structured data. In addition, a 

Multilayer Perceptron (MLP), a feedforward neural network, is included as a bridge between 

traditional ML and more complex DL approaches. For image-based tasks, a Convolutional Neural 

Network (CNN) is applied, leveraging its capacity to automatically learn hierarchical spatial 

features from data. While ML models rely on predefined feature engineering, DL models such as 

MLPs and CNNs are characterized by their ability to learn non linear feature representations directly 

from the data, making them particularly suitable for high-dimensional and unstructured inputs. 

2.1.1 Logistic Regression (LR) 

Logistic regression is one of the most widely used classification algorithms in statistics and machine 

learning. Unlike linear regression, which predicts a continuous outcome, logistic regression predicts 

the probability of a categorical outcome, typically binary in nature (e.g., success/failure, disease/no 

disease). It belongs to the family of generalized linear models (GLMs) where the dependent variable 

is linked to a linear combination of predictors through a nonlinear function (Hosmer, Lemeshow & 

Sturdivant, 2013). 
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Figure 12: Key differences between Linear Regression and Logistic Regression 

 

 

Mathematical Formulation: 

Mathematically, logistic regression models the probability p(x) that the dependent variable Y takes 

value 1 given the input variables X: 

 

𝑝(𝑥) = 
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘 

 
 

1 + 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘 

 
Here, 𝛽0 is the intercept, and 𝛽1 are the coefficients corresponding to predictor variables 𝑥𝑖. The 

sigmoid (logistic) function ensures that outputs remain in the range [0,1], suitable for modelling 

probabilities. 

 

Figure 13: Sigmoid Function 

By taking the log-odds transformation (logit), we obtain a linear relationship: 
 

 

log ( 𝑝(𝑥) 
( )

) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘 
1 − 𝑝 𝑥 
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Key terms include odds (the ratio of the probability of success to failure), log-odds (the logarithmic 

transformation of odds, producing a linear scale), and the odds ratio (𝑒𝛽𝑖), which quantifies how 

the odds change with a one-unit increase in predictor 𝑥𝑖 (Menard, 2002). Coefficients are estimated 

using maximum likelihood estimation (MLE), which selects the parameters that maximize the 

probability of observing the given data (Dobson & Barnett, 2008). 

 

Interpretability and Limitations: 

 

From an interpretability perspective, logistic regression has remained foundational in explainable 

AI (XAI). Its coefficients offer direct insights into how predictors affect outcome probabilities. For 

example, positive coefficients increase the log-odds of the outcome, while negative ones reduce it. 

The interpretability of the odds ratio makes logistic regression particularly valuable in sensitive 

fields like healthcare, finance, and social sciences (Maygar, 2020). 

In modern XAI, logistic regression often serves as the benchmark for evaluating the transparency 

of more complex models. Logistic regression is interpretable, but its coefficients (in log-odds) are 

hard to intuit and lose clarity with nonlinearities, multicollinearity, or many features (Molnar, 2019) 

 

Applications: 

 

Applications of logistic regression span multiple domains. In medicine, it is widely applied in 

disease prediction models, such as estimating the probability of heart disease or Alzheimer’s 

progression (Clifford R Jack et al., 2010). In finance, it supports credit scoring and fraud detection 

by modelling the likelihood of default or abnormal transaction behaviour (Hand & Henley, 1997). 

In business, it is used for customer churn prediction, identifying clients or employees likely to 

leave (Verbeke et al., 2012). Its variants—binary logistic regression, multinomial logistic 

regression, and ordinal logistic regression—extend its use to different categorical outcome 

structures. 

 

 

 

In summary, logistic regression provides both statistical rigor and interpretability, making it a 
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cornerstone in machine learning and a critical tool for interpretable decision support in high-stakes 

environments. Its integration of probabilistic foundations, maximum likelihood estimation, and 

odds-based interpretation ensure its continued relevance, even in the era of deep learning. 
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2.1.2 Random Forest (RF) 

Random Forest is a widely adopted ensemble learning algorithm introduced by Breiman (2001), 

which builds upon the decision tree framework by combining the predictions of multiple trees to 

improve generalization. 

 

Figure 14: Example of decision tree framework. Determining the optimal point to prune the tree is essential for 

reducing the risk of overfitting. 

While a single decision tree recursively partitions the feature space to make predictions, it is prone 

to overfitting and instability. 
 

Figure 15: Random Forests reduce overfitting risk by constructing collections of decision trees 

 

 

Random forest mitigates these issues by constructing a collection of decision tress each trained on 

a bootstrap sample of the dataset and a random subset of features, thus reducing correlation among 

trees and improving predictive performance. 
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Figure 16: What is bootstrap sampling? A resampling technique used to estimate statistical properties of a 

model by repeatedly drawing samples from the original dataset with replacement. 

 

 

Mathematical Formulation 

 

Mathematically, for a classification task, let T1, T2…, TB represent B decision trees, each trained on 

a different bootstrap sample. The random forest prediction is given by: 

𝑦̂ = 𝑚𝑜𝑑𝑒{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝐵(𝑥)} 

 
For regression tasks, the prediction is the average: 

𝐵 
1 

𝑦 = 
𝐵 

∑ 𝑇𝑏(𝑥) 
𝑏=1 

 

 

Two key sources of randomness make the algorithm robust: (1) bagging (bootstrap aggregation), 

which reduces variance, and (2) feature bagging, which ensures trees are diverse by only 

considering a random subset of predictors at each split (Breiman, 2001). Model performance is 

commonly validated through the out-of-bag (OOB) error estimate, derived from samples not 

included in bootstrap subsets. 

 

Figure 17: Bootstrapping and the role of Out-of-Bag Samples in identifying important features in Random 

Forests 
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𝑘 

 

Feature Importance Calculation 

 

Random forest offers multiple advantages: it reduces overfitting compared to single decision trees, 

handles both classification and regression tasks effectively, and provides built-in measures of 

feature importance via Gini importance or permutation-based importance (Louppe et al.,2013). 

Each feature importance is calculated based on how often it is used for splitting and how much it 

reduces the impurity at each node. 

𝐾 

𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑ 𝑝2 

𝑘=1 

These characteristics make it a flexible and high-performing algorithm across domains such as 

finance, healthcare, and e-commerce (Cutler et al.,2007). 

 

Interpretability and Limitations 

 

Despite its practical success, the interpretability of random forests is limited compared to logistic 

regression or single decision trees. Individual decision trees are inherently interpretable as they 

follow a sequence of rules, but ensembles obscure this transparency. While feature importance 

scores provide some interpretability, they do not capture complex interactions among variables, can 

be biased toward features with more categories, and are often less intuitive for end-users (Strobl et 

at., 2007). Thus, although random forest balances predictive accuracy with some explanatory tools, 

its interpretability remains restricted in high-stakes applications where transparency is critical. 
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2.1.3 Support Vector Machines (SVM) 

Support Vector Machines (SVMs) are supervised learning algorithms introduced by Vapnik and 

colleagues in the 1990s, designed primarily for classification tasks but also extendable to regression 

through Support Vector Regression (SVR) (Vapnik, 1995). The central idea of SVMs is to construct 

an optimal hyperplane that maximizes the margin between classes in a feature space. Data points 

closest to the hyperplane, known as support vectors, determine the decision boundary and play a 

critical role in generalization. 

Figure 18: The hyperplane (red) separates the two classes (blue and 

green), while the support vectors define the yellow margin around it. The 

aim is to maximize this margin to ensure strong generalization. 

 

Mathematical Formulation: Linearly separable data 

 

Mathematically, the separating hyperplane can be expressed as: 

𝑤𝑥 + 𝑏 = 0 

where w is the weight vector, x the input features, and b the bias term. For linearly separable data, 

the optimization problem seeks to maximize the margin γ: 

1 

 
subject to the constraints: 

max γ = 
 

 

‖𝑤‖ 

𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖 
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Mathematical Formulation: Linearly separable data 

 

For non-linearly separable data, SVMs employ the kernel trick, which implicitly maps inputs into 

higher-dimensional feature spaces using kernel functions (e.g., linear, polynomial, radial basis 

function (RBF), sigmoid) (Schölkopf & Smola, 2002). This allows SVs to capture nonlinear 

decision boundaries efficiently. 

 

When data are not linearly separable, we map the input features 𝑥 into a higher-dimensional 

feature space Ϝ using a mapping function 𝜙(𝑥): 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏) 

 

The optimization problem becomes: 
 

 
𝑛 

min 
1 

‖𝑤‖2 + 𝐶 ∑ 𝜉 
 

 
subject to: 

𝑤,𝑏,𝜉 2 𝑖 

𝑖=1 

𝑦𝑖(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0 ∀𝑖 

where 𝜉𝑖are slack variables (for misclassifications) and C is a regularization parameter 

controlling the trade-off between margin and maximization and classification error. 

 

 

The dual formulation eliminates w and uses kernel functions 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖) ∙ 𝜑(𝑥𝑗), avoiding 

explicit computation in the high-dimensional space: 

𝑛 𝑛 𝑛 
1 

 

 
Subject to: 

max ∑ 𝛼𝑖 − 
𝛼 

𝑖=1 
2 

∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗) 

𝑖=1 𝑗=1 

𝑛 

∑ 𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶 
𝑖=1 

Here, 𝛼𝑖are Lagrange multipliers and the support vectors are the data points with nonzero 𝛼𝑖. 

The final decision function becomes: 
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Common kernel functions include: 

𝑛 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥)) 
𝑖=1 

1. Polynomial kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 ∙ 𝑥𝑗 + 1)𝑑 

2. Radial Basis Function (RBF): 𝐾(𝑥 , 𝑥 ) = exp (−γ‖𝑥 

 
 

 
2 − 𝑥 ‖ ) 

𝑖  𝑗 𝑖 𝑗 

3. Sigmoid kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = tanh (𝑘𝑥𝑖 ∙ 𝑥𝑗 + 𝜃) 

 

 
Interpretability and its Limitations 

 

While SVMs provide strong predictive performance, their interpretability is limited. In linear 

SVMs, coefficients can be inspected to gauge feature importance, but this becomes less intuitive 

than in logistic regression since they relate to the hyperplane geometry rather than probability 

(Mangasarian, 1998). In kernelized SVMs, interpretability decreases further, as the decision 

function relies on complex transformations in high-dimensional feature spaces that obscure direct 

relationships between input variables and outcomes. Moreover, support vectors themselves are often 

numerous and not easily mapped back to human-understandable rules, making SVMs closer to 

“black box” models compared to inherently interpretable methods (Molnar, 2019). 

 

 

Applications 

 

SVMs are highly effective in domains requiring robust classification in high-dimensional spaces. 

Applications include text classification (e.g., sentiment analysis, spam detection), image 

recognition (object detection, tampering detection), bioinformatics (protein classification, cancer 

diagnosis), and geoscience (geophysical data filtering and seismic risk prediction) (Noble, 2006; 

Hsu et al., 2010). 
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2.1.4 Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) is a class of feedforward artificial neural network that extends 

the original perceptron by incorporating one or more hidden layers between the input and output 

layers. As shown in Figure 19, each input (e.g., SNP features) is propagated through successive 

layers of neurons, where each neuron applies a weighted transformation followed by a nonlinear 

activation. This hierarchical structure enables MLPs to capture complex nonlinear relationships and 

approximate arbitrary continuous functions, as formalized by the Universal Approximation 

Theorem (Hornik, 1991). 

 

Figure 19: Example of Multilayer Perceptron 

 

 

Mathematical Formulation 

 

Let the input vector be: 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

 
In layer l, the pre-activation of neuron j is: 
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𝑑𝑙−1 

𝑧(𝑙) = ∑ 𝑤(𝑙)ℎ(𝑙−1) + 𝑏(𝑙) 
𝑗 𝑖𝑗 𝑖 𝑗 

𝑖=1 

 
where 𝑤(𝑙) are the weights, 𝑏(𝑙) the bias term, and ℎ(𝑙−1) the outputs from the previous layer (with 

𝑖𝑗 𝑗 𝑖 

ℎ(0) = 𝑥). The activation function then produces: 

 
ℎ

(𝑙) 
= 𝑓(𝑧

(𝑙)
) 

𝑗 𝑗 
 

Common choices for 𝑓(∙) include the sigmoid function 𝜎(𝑧) = 
1 

1+𝑒−𝑧 

1−𝑒−2𝑧

, and the Rectified Linear Unit (ReLU), 𝑓(𝑧) = max(0, 𝑧). 

, hyperbolic tangent 𝑓(𝑧) = 

1+𝑒−2𝑧 𝑧 
 

 

Figure 20: Common activation functions in neural networks. Sigmoid and Tanh squash inputs to bounded ranges 

but can cause vanishing gradients. ReLU is efficient and widely used in deep networks, while the Linear function 

preserves inputs and is mainly applied in regression tasks. 

 

The final layer yields the network prediction: 

 

𝑦̂ = 𝑓(𝑊(𝐿)ℎ(𝐿−1) + 𝑏(𝐿)) 
 

where L is the number of layers. Training is performed through backpropagation (Rumelhart, 

Hinton & Williams, 1986), which computes gradients of a cost function with respect to weights and 

biases using the chain rule, combined with an optimization algorithm such as stochastic gradient 

descent (SGD). 
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Figure 21: Batch Gradient Descent (left) computes the gradient using the entire dataset, leading to stable but 

computationally expensive updates. Stochastic Gradient Descent (middle) updates parameters after each sample, 

introducing noise but allowing faster convergence. Mini-Batch Gradient Descent (right) combines both 

strategies by updating parameters using small subsets of data, balancing efficiency and stability. 

 

Interpretability and Limitations 

The interpretability of MLPs is significantly lower than that of simpler models such as logistic 

regression or decision trees. While linear models provide direct coefficient-based interpretations, 

the hierarchical and distributed representation of information within MLPs makes it difficult to 

assign clear meaning to individual parameters. Feature attribution methods such as SHAP and LIME 

have been introduced to approximate local feature importance, but these provide partial and model- 

dependent explanations (Ribeiro, Signh & Guestrin, 2016; Molnar, 2019). 

 

Limitations include: 

1. Black-box nature: Parameters are not directly interpretable. 

2. Overfitting risk: High model capacity requires regularization and large datasets. 

3. Computational cost: Training deep MLPs demands substantial hardware resources. 

4. Hyperparameter sensitivity: Performance depends heavily on architecture and parameter 

tuning. 

Applications 

 

MLPs have been applied across multiple domains due to their flexibility in modeling nonlinear 

relationships: 

- Natural Language Processing: Sentiment analysis, spam detection. 

- Computer Vision: Early image classification tasks prior to the development of 

convolutional networks. 
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Figure 22: VGG-16 CNN Architecture. The input image is processed through 

multiple convlutional layers (blue) with ReLU activations and max pooling layers 

(red), progressively extracting high-level features. 

 

- Bioinformatics: Prediction of disease risk and genomic pattern recognition (e.g., SNP- 

based classification). 

- Finance: Credit scoring, fraud detection. 

 

Their capacity to learn high-level feature representations makes MLPs a foundational model in deep 

learning even though interpretability challenges remain central in sensitive application areas. 

2.1.5 Convolutional Neural Networks (CNN) 

 

Convolutional Neural Networks (CNNs) are a class of deep learning models designed to process 

grid-like data structures such as images, audio spectrograms, or video frames. Unlike traditional 

machine learning models, which rely on manually engineered features, CNNs automatically learn 

hierarchical feature representations directly from raw input data. 

Their architecture is characterized by three key components: convolutional layers, which extract 

local spatial features; pooling layers, which reduce dimensionality and promote translational 

invariance; and fully connected layers, which integrate learned features for classification or 

regression tasks (LeCun et al., 1998; Krizhevsky et al.,2012). 
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Mathematical Formulation 

 

The central operation of a CNN is the convolution. Given an input image I and a kernel (filter) K, 

the convolution at position (i,j) is: 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝐾(𝑚, 𝑛) 

𝑚 𝑛 

 
This operation slides the kernel across the image, producing a feature map that captures local 

patterns such as edges or textures. Nonlinear activation functions (e.g., ReLU) are then applied: 

ℎ(𝑙) = 𝑓(𝑆(𝑖, 𝑗) + 𝑏) 

 
where b is a bias term. 

 

To reduce computational complexity and enforce invariance, pooling layers (e.g., max-pooling) are 

introduced: 

 

𝑝(𝑖, 𝑗 =  max 
(𝑚,𝑛)𝜖Ω 

ℎ(𝑖 + 𝑚, 𝑗 + 𝑛) 

 
where Ω denotes the pooling region. Finally, the output of the las convolutional and pooling stages 

is flattened and passed into fully connected layers (green in Figure 22) to produce the prediction 

𝑦̂. 

 

 
Figure 23: Example of CNN 
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Interpretability and Limitations 

CNNs achieve state-of-the-art performance in visual recognition tasks, but they are often criticized for 

their black-box nature. While the learned filters in early layers can sometimes be visualized (e.g., edge 

detectors), deeper layers capture abstract and less interpretable patterns (Zeiler & Fergus, 2014). To 

improve interpretability methods such as Grad-CAM (Selvaraju et al., 2017) highlight which regions of 

an input contribute most to a prediction. 

Key limitations include: 

 

- Lack of transparency: Feature hierarchies are difficult to interpret compared to ML models. 

- High computational cost: Training requires large datasets and specialized hardware 

(GPUs/TPUs). 

- Sensitivity to adversarial perturbations: Small input changes can drastically alter predictions. 

- Overfitting risk: Without regularization or data augmentation, CNNs may memorize training 

data. 

 

Applications 

 

CNNs are widely applied across domains that require processing unstructured, high-dimensional 

data: 

 

- Computer Vision: Image classification, object detection, facial recognition, and medical 

imaging. 

- Natural Language Processing (NLP): Sentence classification and document 

categorization (using word embeddings). 

- Healthcare: Detection of tumors, Alzheimer’s disease progression, and medical image 

segmentation. 

- Autonomous Systems: Real-time visual perception in self-driving cars and robotics. 

 

Their capacity to automatically learn feature hierarchies from raw inputs has made CNNs a 

cornerstone of modern deep learning. 
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𝑖 

 

2.3 HYPERPARAMETER OPTIMIZATION AND GRID-SEARCH 

Machine learning models depend not only on data and training algorithms, but also on 

hyperparameters—external configuration variables chosen before learning (e.g., regularization, tree 

depth, network width). Unlike model parameters (coefficients, weights), which are estimated from 

data, hyperparameters control the hypothesis space, the optimization dynamics, and ultimately the bias- 

variance trade-off. Selecting them well is critical to generalization and computational efficiency (Hastie, 

Tibshirani & Friedman, 2009; Bergstra & Bengio, 2012). 

In the following section, we provide a detailed explanation of the key hyperparameters for the models 

used in this study—Logistic Regression, Support Vector Machines, Random Forests, and 

Multilayer Perceptrons—highlighting their mathematical formulation, interpretation, and limitations. 

We then introduce the theoretical foundation of Grid Search, the systematic optimization strategy 

employed to identify the best-performing hyperparameter configurations. 

 

Key Hyperparameters in the Models Used 

 

 

Logistic Regression (LR) 

 

- Regularization strength (C): LR models a conditional probability via the logistic link. 

With 𝑦𝑖𝜖 {0,1}and feature vector 𝑥𝑖, 

Pr(𝑦𝑖 = 1 | 𝑥𝑖) = 𝜎(𝛽0 + 𝑥𝑇𝛽) 

 
It uses regularization to prevent overfitting by penalizing large coefficients (Hosmer, 

Lemeshow & Sturdivant, 2013). The optimization objective is: 

 
min ℒ(𝛽) + 𝜆‖ℒ(𝛽)‖𝑝 

𝛽 

 

𝑤𝑖𝑡ℎ 𝐶 = 1⁄𝜆 𝑎𝑛𝑑 ℒ(𝛽) = − ∑[𝑦𝑖 log 𝑝̂𝑖 + (1 − 𝑦𝑖) log(1 − 𝑝̂𝑖) 

𝑖 
 

 

A smaller C implies stronger regularization, shrinking coefficients and improving 

generalization, while a larger C reduces the penalty, allowing more complex fits. 
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- Penalty and solver: The penalty defines the type of regularization (L1, L2, or elastic net), 

while the solver specifies the optimization algorithm (e.g., liblinear, lbfgs, saga). These 

choices impact both numerical stability and interpretability. 

 

Support Vector Machines (SVM) 

 

- Regularization strength (C): Similar to LR, C controls the trade-off between maximizing 

the margin and allowing misclassifications (Cortes & Vapnik, 1995). 

- Kernel: Defines how data are projected into higher-dimensional spaces: 

 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑗) 

 
Popular kernels include linear, polynomial, and radial basis function (RBF). 

 

- Gamma (γ): In RBF kernels, gamma determines the radius of influence of each support 

vector: 

 
2 

(𝑥𝑖, 𝑥𝑗) = exp (−γ‖𝑥𝑖 − 𝑥𝑗‖ ) 

 
High γ produces highly localized decision boundaries (risk of overfitting), whereas low γ 

creates smoother, more generalized classifiers. 

Random Forest (RF) 

 

- Number of estimators (n_estimators): Specifies how many trees are grown in the ensemble 

(Breiman, 2001). Increasing the number of trees typically improves stability and reduces 

variance, though at a higher computational cost. 

- Maximum depth (max_depth): Restricts the depth of each tree, controlling complexity. 

Deep trees fit complex patterns but may overfit, while shallow trees enhance generalization. 

 

Multilayer Perceptron (MLP) 

 

- Hidden layer sizes: Determine the number of neurons per hidden layer, which directly 

controls network capacity. By the Universal Approximation Theorem, sufficiently 

K 
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large networks can approximate any continuous function (Hornik, 1991). 

 

- Activation and Solver: Activation functions (sigmoid, tanh, ReLU) introduce 

nonlinearity, while solvers (e.g., SGD, Adam) dictate how weights are updated. These 

choices shape both convergence speed and predictive accuracy (Rumelhart, Hinton & 

Williams, 1986; Kingma & Ba, 2015). 

Below you’ll find a summary of all the hyperparameters described: 

 

Hyperparameter Model Description 

C LR, SVM Controls the regularization strength. Smaller values imply stronger 

regularization. 

penalty/solver LR Determines how the model penalizes weights and solves the 
optimization problem. 

kernel SVM Specifies how input features are transformed into higher-dimensional 

spaces. 

gamma SVM Defines the influence of radius of support vectors. High gamma leads 
to more overfitting. 

n_estimators RF The number of decision trees in the ensemble. 

max_depth RF Maximum depth of each tree. 

hidden_layer_sizes MLP Controls network complexity and capacity. 

activation/solver MLP Determines non-linear transformations and optimization dynamics. 

Table 1: Hyperparameters descriptions 

Grid Search: Theory and Workflow 

 

To identify optimal hyperparameters, this study employs grid search, a systematic strategy that 

evaluates models across all possible combinations of specified hyperparameter values. 

 

 
Figure 24: GridSearch concept 
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𝜃 

 

Mathematical Formulation 

 

Given k hyperparameters with candidate sets 𝐻1, 𝐻2, … , 𝐻𝑘, the full search space is: 

 

𝜘 = 𝐻1𝑥 𝐻2𝑥 … 𝑥 𝐻𝑘 

 
For each configuration 𝜃 𝜖 𝜘, the model is trained and validated. Performance is typically assessed 

through k-fold cross-validation, where the score is: 

 
𝐾 

𝑆𝑐𝑜𝑟𝑒 (𝜃) = 
1 

∑ 𝑀𝑒𝑡𝑟𝑖𝑐(𝑀(𝑖)) 
𝐾 𝜃 

𝑖=1 

 
with 𝑀(𝑖) denoting the model trained on the i-th fold. The best hyperparameter set is then chosen 

as: 

 
𝜃∗ = argmax 𝑆𝑐𝑜𝑟𝑒(𝜃) 

𝜃𝜖𝜘 

 
Workflow 

 

The workflow of grid search can be outlined as: 

 

1. Define the search space: Select hyperparameters and specify candidate values. 

 

2. Train and evaluate models: Train the model on all possible hyperparameter 

combinations and record validation metrics. 

3. Select the best configuration: Identify the hyperparameters achieving the highest 

average performance. 

Advantages 

 

- Exhaustive: Guarantees that the best configuration within the defined search space is found. 

- Transparent and reproducible: Each step is systematic, making results reliable for 

academic and regulated contexts. 

- Simple to implement: Widely supported in machine learning libraries (e.g., Scikit-learn). 
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Limitations 

 

- Computational cost: The number of evaluations grows exponentially with the number of 

hyperparameters (curse of dimensionality). 

- Rigid boundaries: If the optimal value lies between tested grid points, it may be missed. 

- Inefficiency: Equal computational effort is spent on both promising and unpromising 

regions of the space. 

 

2.4 INTERPRETABILITY TOOLS: SHAP, LIME, GRAD- 

CAM++, AND OTHER CAUSALITY TECHNIQUES 

Overview of Post – Hoc Model Interpretability Methods 

 

Post-hoc interpretability methods aim to explain complex "black box" models after they have been 

trained, without altering the models themselves. These techniques provide insights into why a 

model made a certain prediction by analyzing the model’s behavior around specific instances or 

overall. Generally, post-hoc explanations can be categorized by scope (e.g. local explanations for 

individual predictions vs. global explanations for overall model behavior) and by methodology 

(e.g. model-agnostic tools that treat the model as a black-box vs. model-specific tools that leverage 

internal model structure). In contrast to intrinsically interpretable models (like simple linear 

models or decision trees built for interpretability), post-hoc methods allow us to interpret highly 

non-linear or high-dimensional models (such as ensemble methods or deep neural networks) 

without sacrificing predictive performance. 

A conceptual taxonomy of post-hoc methods includes surrogate models, feature attribution 

methods, saliency and gradient maps, and counterfactual/causal analysis, among others. Surrogate 

models (like LIME) learn an interpretable approximation of the black box in a limited region 

(providing local fidelity). Feature attribution methods (like SHAP and Integrated Gradients) assign 

each feature an importance value for a given prediction, often satisfying certain axioms (e.g. 

fairness or completeness). Saliency methods (like Grad-CAM/Grad-CAM++ for images) produce 

visual heatmaps highlighting parts of the input that most influenced the model’s output. 

Counterfactual and causality-based techniques, on the other hand, focus on “what-if” scenarios – 

they explain model decisions by indicating how changes in inputs cause changes in the output, 
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aiming for explanations aligned with causal reasoning. Each approach has distinct theoretical 

underpinnings and practical uses, as discussed below. 

 

 

 

SHAP (SHapley Additive Explanations) 

 

1. Conceptual description: 

 

SHAP is a unified framework for interpreting model predictions using ideas from cooperative 

game theory. It treats feature influences as player’s contributions in a game, where the “payout” 

is the model’s predictions for a given instance. The SHAP value ϕi for feature i represents the 

contribution of that feature to the prediction, answering the question: “How would the model’s 

output change if feature i were at its present value versus if it were absent?”. By considering all 

possible subsets S of features, SHAP provides an additive feature attribution that fairly distributes 

the prediction difference among features. In practical terms, SHAP produces a set of feature 

importance values (positive or negative) for each instance, which sum up to the model’s prediction 

minus a baseline (typically the dataset average prediction). This allows both local interpretability 

(explaining individual predictions) and, when aggregated across many instances, global 

interpretability. 

2. Mathematical Formulation: 

 

Formally, let ϕi be the model prediction for instance x and let M be the full feature set (|F| = M 

features). For any subset of features 𝑆 ⊆ 𝐹, denote 𝑓𝑥(𝑆) as the model’s prediction given that the 

feature S are set to their values in x and all other features and all other features F \ S are “absent” 

(e.g. replaced by some baseline or mean value). The Shapley value for feature i in instance x is 

defined as: 

 

𝜙𝑖 = ∑ 

𝑆 ⊆ 𝐹 \{𝑖} 

|𝑆|! (𝑀 − |𝑆| − 1)! 

𝑀! 
[𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 

 
which averages the contribution of feature I over all possible subsets that could precede it. By 

construction, SHAP values satisfy the properties of: 
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𝑖 

𝑖 

 

i. Local accuracy (completeness): the predictions are exactly decomposed as: 
 

 

𝑀 

𝑓(𝑥) = 𝑔(𝑥′) = 𝜙0 + ∑ 𝜙𝑖𝑥′ 

𝑖=1 

 

When approximating the original model f for a specific input x, local accuracy requires 

the explanation model to at least match the output of f for the simplified input x’ (which 

corresponds to the original input x). 

ii. Missingness: If the simplified inputs represent feature presence, then missingness 

requires features missing the original input to have no impact. 

𝑥′ = 0 → 𝜙𝑖 = 0 

 
iii. Consistency: If a model changes such that a feature’s contribution increases (holding 

others constant), its 𝜙𝑖 will not decrease. Notably, it can be proven that SHAP is the 

unique additive feature attribution method that satisfies these properties. 

In essence, SHAP values are an exact solution (for linear models) or an approximate solution (for 

complex models via sampling) to the Shapley axions of fair credit allocation. 

 

 

 

 

3. Theoretical Strengths: 

 

A major strength of SHAP is its strong theorical theoretical foundation. By inheriting properties 

from Shapley values, SHAP provides consistency and fairness in feature attribution – each 

feature’s influence is fairly distributed even in presence of interactions. The completeness 

(efficiency) property means the explanation is self-contained: the sum of attributes equals the 

prediction difference, which builds trust that no influence is left unaccounted. SHAP’s consistency 

axiom ensures that comparisons of feature importance across models are meaningful (if model f’ 

relies more on feature i than model f does, then 𝜙𝑖 in f’ will be ≥ 𝜙𝑖 in f). 

Moreover, SHAP values provide local fidelity by construction – they exactly match the model 
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output for that instance when summed, unlike some heuristics. Another advantage is the ability to 

derive global insights: by examining summary statistics of 𝜙𝑖 over a dataset, one ranks features by 

overall importance, detects interactions, and visualizes how features affect predictions (e.g. SHAP 

dependence plots). 

4. Practical Strengths: 

 

In practice, SHAP has become popular due to these guarantees and its flexibility. It is model 

agnostic when using approximation algorithms (like Kernel SHAP, which estimates Shapley values 

repeated evaluations on feature subsets), so it can explain any classifier or regressor. At the same 

time, specialized fast implementation exists for certain model types (e.g. TreeSHAP for three 

ensembles, DeepSHAP for deep networks), making it relatively efficient on those. The explanations 

are additive and feature-based, which are intuitive to interpret – e.g. a positive 𝜙𝑖 indicates feature 

i pushed the prediction higher (toward Alzheimer’s) and negative 𝜙𝑖 lowered the prediction 

(protective effect). These qualities have led to SHAP’s wide adoption in domains like finance and 

healthcare, where fairness and completeness of explanations are valued. 

 

5. Weaknesses and Limitations: 

 

Despite its merits, SHAP has some limitations. A key challenge is computational complexity: 

calculating exact Shapley values requires evaluating O(2M) feature subsets, which is intractable for 

large M. Approximations (sampling or leveraging model structure) are used, but SHAP can still be 

considerably slower than simpler methods like LIME, especially for models without a special SHAP 

algorithm. Another issue is the handling of feature dependence: the classic Shapley formulation 

assumes each feature can be “missing” independently, which in practice is modelled by either 

sampling from a distribution or using conditional expectations. If features are highly correlated, 

SHAP’s attributions can be non-intuitive – it will distribute credit among collinear features, 

sometimes giving two redundant features each a moderate importance where a human might say 

one is truly driving the outcome. This “fair sharing” of importance is mathematically consistent but 

can confuse interpretation (e.g. two correlated biomarkers each get half the credit for an Alzheimer’s 

prediction, even if one is the actual causal factor and the other is just proxy). 



Chapter 2: Theoretical Framework 

58 

 

 

 

Furthermore, SHAP inherits a “local” perspective in that the 𝜙𝑖 explain one specific prediction 

relative to a baseline; using them for global insight requires careful aggregation and can miss context 

(for example, SHAP can tell how a feature influenced this patient’s diagnosis versus baseline, but 

not directly how risk changes in absolute terms with feature changes). 

Finally, SHAP’s explanations – a list of numeric contributions – must be presented thoughtfully to 

be understood by lay users, and for very high-dimensional data, interpreting dozens of feature values 

can be challenging despite the method’s theoretical clarity. 

 

6. Computational Efficiency and Practical Considerations: 

 

In practice, applying SHAP involves a trade-off between accuracy and speed. For complex models, 

Kernel SHAP (model-agnostic) uses a weighted least squares sampling to estimate 𝜙𝑖; it is accurate 

but can be slow, requiring many model evaluations for convergence. Fortunately, many commonly 

used models have faster SHAP algorithms: TreeSHAP runs in polynomial time leveraging the tree 

structure, and DeepSHAP uses connections to DeepLIFT to propagate contributions efficiently. 

These improvements often make SHAP feasible even for large datasets or real-time use (with 

caching of background samples). Memory can be a consideration, as storing Shapley values for 

every instance and feature can be heavy; in practice one often looks at summary plots or a few 

selected instances. Another practical point is the need to choose a baseline or background 

distribution. By default, SHAP uses the dataset’s average prediction as f = E[f(x)], but in healthcare 

one might choose a clinically meaningful baseline (e.g. baseline patient with “normal” health 

metrics) to make the explanations more semantically meaningful. Mis-specifying the baseline can 

shift all 𝜙𝑖 values and thus should be set with care. Despite these considerations, SHAP is generally 

regarded as consistent and reliable for feature attribution – for example, a study found that SHAP’s 

completeness constraint can act like a regularizer, yielding more stable (lower-variance) 

explanations compared to LIME in high-dimensional problems. 

 

7. Typical Applications: 

 

SHAP is used across many domains for both debugging models and communicating insights. In 

finance, it helps explain credit risk models by showing which factors (income, debt, etc.) contributed 
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to a loan denial. In the context of healthcare and Alzheimer’s diagnosis, SHAP has proven 

particularly valuable. Many predictive models for Alzheimer’s (e.g. those using clinical data, 

biomarkers, or cognitive test results) are complex black-boxes (random forests, deep neural nets); 

integrating SHAP allows researchers and clinicians to identify which features (e.g. age, certain 

MRI-based volume measures, cognitive scores, genetic markers like APOE4 status) are driving each 

individual prediction. By aggregating these, one can check if the model’s reasoning aligns with 

medical knowledge – for instance, confirming that low hippocampus volume and memory test 

deficits receive high positive SHAP values for AD prediction, which matches known causative 

factors. A recent systematic review found that SHAP (along with LIME) is one of the most popular 

XAI frameworks for AD prediction, used in numerous studies to strengthen trust in AI-based 

diagnoses. SHAP has been applied to both classical machine learning models on tabular patient data 

and deep learning models for image-based AD diagnosis, thanks to the existence of DeepSHAP for 

networks. Its ability to provide both local patient-specific explanations and global feature 

importance aligns well with the needs in healthcare for transparency at both the individual and 

population level. 

 

8. Limitations in Healthcare Context: 

 

One must note, however, that SHAP (like any correlation-based attribution) does not guarantee 

causal correctness. In medicine, there are often hidden confounders or biases in data. SHAP will 

faithfully explain the model’s prediction – but if the model learned a spurious pattern (e.g. MRI 

scanner machine type inadvertently correlating with AD vs. control labels), SHAP may highlight 

scanner-related features as “important”, which is a correct explanation of the model but not a 

clinically valid reason. Therefore, experts must carefully interpret SHAP outputs, validating that 

highlighted features make medical sense. Encouragingly, many studies report that SHAP’s 

explanations of AD models do align with known risk factors and biomarkers (improving clinicians’ 

trust), while also occasionally revealing surprising associations that prompt further investigation. In 

summary, SHAP offers a powerful, theoretically sound tool for post-hoc explainability, with high 

relevance to domains like Alzheimer’s research, provided its outputs are used as aids to insight 

rather than unquestionable truths. 
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LIME: Local Interpretable Model-Agnostic Explanations 

 

 

1. Conceptual Description: 

Local Interpretable Model-Agnostic Explanations (LIME) is a technique designed to provide 

intuitive, local explanations for individual predictions made by complex machine learning models. 

The core principle behind LIME is that, while a model may be too complex to interpret globally, its 

behaviour in the vicinity of a specific prediction can often be approximated by a simpler, 

interpretable model. To achieve this, LIME perturbs the input data around a given instance and 

observes how the black-box model’s predictions respond. A surrogate model—typically a sparse 

linear regression or a shallow decision tree—is then trained on these perturbed samples to mimic 

the black-box model’s decision boundary locally. The surrogate model serves as a proxy, offering 

insight into the most influential features for that specific prediction. 

 

LIME is model agnostic, treating the underlying predictor as a black box. It only requires the ability 

to obtain predictions from the model for various inputs, making it applicable to any classifier or 

regressor regardless of its internal architecture. This flexibility enables LIME to be applied across 

different data modalities, including tabular, text, and image data. 

 

2. Mathematical Formulation: 

Let 𝑓: ℝ𝑀 → ℝ represents the complex, black-box model, and let 𝑥 ∈ ℝ𝑀 denote the specific 

instance to be explained. LIME (Local Interpretable Model-agnostic Explanations) provides a local 

surrogate explanation by approximating the model’s behaviour in the neighbourhood of x. 

 

To this end, LIME generates a set of perturbed samples 𝑍𝑥 = {𝑧1, 𝑧2, … , 𝑧𝑛} around the instance x. 

Each perturbed instance 𝑧 ∈ 𝑍𝑋 is assigned a weight based on its proximity to x, using a kernel 

function 𝜋𝑥(𝑧), typically an exponential kernel such as: 

𝐷(𝑥, 𝑧)2 
𝜋𝑥(𝑧) = exp (− 

𝜎2 ) 

Where 𝐷(∙,∙) denotes a distance metric (e.g., Euclidean distance) and 𝜎 controls the kernel width. 
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The goal is to fit a simple, interpretable model 𝑔 ∈ 𝐺 — for example, a sparse linear model with at 

most K non-zero weights —that faithfully mimics the behavior of the original model f in the vicinity 

of x. This is achieved by minimizing the following objective: 

ℒ(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔) 

Where ℒ measures the local fidelity (e.g., mean squared error between f(z) and g(z) weighted by 

𝜋𝑥(𝑧)), and 𝛺(𝑔) is regularization term enforcing interpretability (e.g., and L0 or L1 norm 

constraint to enforce sparsity). 

 

This formulation ensures that the surrogate model g is both locally faithful to the original model 

and globally simple enough to be interpretable by humans. 

 

3. Theoretical Strengths: 

 

One of LIME’s primary theoretical advantages lies in its model-agnostic nature, enabling its 

application across any predictive model type without requiring access to internal parameters or 

gradients. It supports flexibility in choosing the form of the surrogate model and the definition of 

interpretable features. For instance, in image classification, interpretable features may be super 

pixels, while in text classification, they could be individual words or phrases. 

Moreover, LIME explanations are typically sparse, aligning with human intuition and cognitive 

limitations; people tend to prefer explanations involving only a small number of salient factors. The 

optimization formulation ensures that the surrogate model prioritizes fidelity to the original model 

in a small neighbourhood, while maintaining a constraint on complexity, which is critical for 

generating human-readable insights. 

 

4. Practical Strengths 

 

 

In practice, LIME is appreciated for its ease of use, visual interpretability, and broad applicability. 

Open-source libraries allow seamless integration with trained models, making it accessible for 

practitioners and researchers. The explanations can be visualized using bar plots (for tabular data) 

or heatmaps (for image data), which are easily interpretable by domain experts and non-technical 
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stakeholders. 

 

 

LIME is particularly useful for debugging models, as it can reveal when a model is relying on 

spurious or irrelevant features to make a prediction. In healthcare, for example, LIME has been 

applied to explain models predicting Alzheimer's Disease from clinical and imaging data. Such 

explanations might highlight age, genetic markers, or cognitive test scores as the key contributors 

to a diagnosis, providing actionable insights for clinicians. 

 

Furthermore, LIME can be used to compare models by generating explanations for the same 

instance using different algorithms, thereby offering a consistent framework for evaluating and 

validating model behaviour across architectures. 

 

5. Weaknesses and Limitations 

 

Despite its advantages, LIME has several notable limitations. First, its explanations are strictly local, 

meaning they are valid only for the immediate neighbourhood around the instance being explained. 

As a result, LIME cannot provide a global view of feature importance and may yield inconsistent 

or contradictory explanations for similar instances if the model’s decision boundary is highly non- 

linear or unstable. 

Additionally, the technique is sensitive to sampling and kernel parameters. The choice of kernel 

width, number of perturbed samples, and method of perturbation can significantly affect the 

resulting explanation. This sensitivity can undermine trust, especially in high-stakes domains such 

as healthcare, where reproducibility and stability are essential. Although fixing random seeds or 

averaging over multiple runs can reduce variance, such strategies do not fully eliminate the issue. 

Another limitation is related to feature correlation. When features are strongly correlated, LIME 

may arbitrarily attribute importance to one over the other, which may be misleading. This is 

especially problematic in medical data, where many features (e.g., cognitive scores) are 

interdependent. Furthermore, LIME does not ensure completeness—unlike SHAP, its attributions 

do not sum to the prediction output, and the surrogate model may not faithfully represent the true 

decision boundary even locally if it is overly complex or non-linear. 
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𝑘 

𝑘 

𝑘 

𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 

 

Lastly, in terms of computational efficiency, while LIME is fast for structured and textual data, it 

can become computationally expensive for high-dimensional inputs like images, particularly when 

querying deep neural networks multiple times. In such cases, the generation of explanations may 

need to be adjusted (e.g., fewer samples or coarser feature representations) to remain tractable. 

 

Grad – CAM++ 

 

 

Gradient-weighted Class Activation Mapping (Grad-CAM), proposed by Selvaraju et al. (2017), is 

a post-hoc visual interpretability technique tailored for convolutional neural networks (CNNs). Its 

primary objective is to generate class-discriminative localization maps that identify the spatial 

regions in an input image most influential for a specific output class. Unlike saliency methods such 

as Guided Backpropagation or Deconvolution—which provide visually sharp but class-agnostic 

maps—Grad-CAM yields explanations that are both spatially informative and class-aware, making 

it suitable for tasks like image classification, visual question answering, and image captioning. 

 

The core idea of Grad-CAM is to utilize gradient information flowing into the last convolutional 

layer of a CNN. Let 𝑦𝑐 represent the score for a target class c and let 𝐴𝑘 ∈ ℝ𝑢𝑥𝑣 denote the k-th 

feature map in the final convolutional layer, where u x v corresponds to its spatial dimensions. 

 

To assess the importance of each feature map 𝐴𝑘 for class c, Grad-CAM computes a weight 𝛼𝑐 

using global average pooling over the gradients of 𝑦𝑐 with respect to 𝐴𝑘: 

 

𝛼𝑐 = 
1 

𝑍 
∑ ∑ 

𝜕𝑦𝑐 
 

 

𝜕𝐴𝑘 
𝑖 𝑗 𝑖𝑗 

Where Z = u x v is the total number of pixels in the feature map. The coefficient 𝛼𝑐 captures the 

significance of feature map k in determining the class score 𝑦𝑐. 

 

The Grad-CAM heatmap 𝐿𝑐 ∈ ℝ𝑢𝑥𝑣 is the total number of pixels in the feature maps, 

followed by a ReLU activation to retain only positive contributions: 

𝐿𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑐𝐴𝑘) 
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 𝑘 

𝑘 

The ReLU ensures that only features positively influencing the class of interest are visualized, 
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which enhances interpretability by suppressing irrelevant or misleading activations. 

 

This localization map can be up sampled to match the input image resolution and overlaid as a 

heatmap, providing intuitive insights into the model’s decision-making process by highlighting 

where the model is "looking" when predicting a particular class. 

 

Causal Techniques 

 

 

Causal interpretability aims to go beyond correlational insights by uncovering cause-and-effect 

relationships between input features and model outputs. Unlike traditional interpretability tools that 

often identify associations, causal methods explicitly ask: What would happen if we changed a 

specific input feature while keeping all others constant? This idea lies at the heart of counterfactual 

reasoning, a foundational principle in causal inference, as formalized by Judea Pearl. In the context 

of image classification, for instance, a counterfactual explanation would highlight what minimal 

changes to the image would have led the model to predict a different class, thereby offering 

actionable and realistic interventions. 

 

A complementary approach is causal mediation analysis, which seeks to decompose the effect of an 

input variable into direct effects and indirect effects mediated through internal representations or 

latent variables. This technique allows researchers to quantify how information is processed within 

the model and to identify critical layers or pathways responsible for a decision. By doing so, 

mediation analysis provides insights into potential biases, redundancies, or bottlenecks within deep 

neural architectures. 

 

Recent advances also explore embedding causality directly into model architectures to enhance 

interpretability from the ground up. A notable innovation in this space is the Kolmogorov–Arnold 

Network (KAN), proposed by Zhou et al. (2024). KANs draw inspiration from the Kolmogorov– 

Arnold representation theorem, which states that any multivariate continuous function 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) can be represented as a sum of univariate function compositions: 

2𝑛 𝑛 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝜙𝑞(∑ 𝜓𝑞,𝑝(𝑥𝑝)) 

𝑞=0 𝑝=1 
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In the KAN framework, this decomposition is implemented by replacing traditional linear 

transformations (i.e., matrix multiplications) in neural networks with learnable univariate functions, 

often implemented as spline interpolations. This architectural change enables fine-grained analysis 

of how individual input dimensions influence the network’s output, making KANs especially 

amenable to feature-level causal interpretability. 

 

KANs offer several advantages: 

(i) Interpretability: The model structure inherently supports understanding how each 

input contributes to the output. 

(ii) Sparsity: In many applications, only a few input dimensions significantly 

influence the result, making it easier to isolate causal effects. 

(iii) Modularity: The compositional nature of KANs enables clean attribution of 

predictions to specific inputs or intermediate computations. 

 

While KANs have demonstrated strong performance in structured data tasks (e.g., tabular data), 

ongoing research is exploring their applicability to more complex modalities such as image and 

sequence data. 

 

In conclusion, Grad-CAM provides an effective and computationally efficient method for localizing 

discriminative regions in visual inputs, thereby improving the transparency of deep learning models. 

However, as the demand for trustworthy and actionable explanations increases, especially in 

domains like medicine, it is crucial to complement correlation-based tools like Grad-CAM with 

causality-informed methods. Techniques such as counterfactual analysis, causal mediation, and 

architectures like Kolmogorov–Arnold Networks collectively represent a promising direction for 

the future of interpretable and causally sound artificial intelligence. 



Chapter 2: Theoretical Framework 

66 

 

 

 

2.5 LIMITATIONS OF EXISTING TOOLS AND THE NEED FOR A 

UNIFIED METRIC. PROPOSED UNIFIED SHAP-LIME 

METRIC 

While tools such as SHAP (Shapley Additive exPlanations) and LIME (Local Interpretable 

Model-agnostic Explanations) have become foundational in the field of explainable artificial 

intelligence (XAI), they are not without limitations —particularly when evaluated in isolation 

across different use cases, model architectures, or data modalities. 

SHAP offers strong theoretical guarantees, including consistency and local accuracy, yet it is 

often computationally expensive, especially for complex models like deep neural methods. 

Moreover, its reliance on feature independence assumptions or kernel approximations in 

certain configurations (e.g., Kernel SHAP) may introduce distortions when input features are 

correlated. 

LIME, by contrast, excels in speed and flexibility, generating sparse linear approximations 

around individual predictions. However, it lacks guarantees of fidelity or stability. Results 

fluctuate across runs due to its randomized sampling approach, and the absence of a global 

perspective may mislead when used as the sole interpretability lens. 

These tools, while complementary, emphasize different interpretability dimensions — such as 

local approximation, computational cost, and human readability. As a result, it becomes 

difficult to compare them objectively without a shared evaluation framework. Interpretability, 

by nature, is multi-dimensional, requiring a balance between accuracy, robustness, sparsity, 

and usability. 

This motivates the need for a unified metric: a composite evaluative score that consolidates 

critical interpretability properties (e.g., fidelity, stability and sparsity) into a single standardized 

framework. Such a metric enables more informed model selection and interpretability tool 

choice across domains — especially in high-stakes areas like healthcare, where interpretability 

must be both accurate and clinically actionable. 
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Chapter 3. Methodology 

3.1 DATA UNDERSTANDING AND DESCRIPTION 

3.1.1 OVERVIEW OF THE DATASETS (TABULAR, IMAGE) 

 

This study utilizes two distinct datasets to model Alzheimer’s Disease: a structured tabular dataset 

and a brain MRI image dataset, each sourced from reputable public repositories on Kaggle. 

Together, these datasets allow for complementary modeling approaches—structured data analysis 

through traditional machine learning and deep learning, and visual pattern recognition through 

convolutional neural networks (CNNs). 

 

Tabular Dataset 

The tabular dataset, obtained from Kaggle, contains comprehensive medical, demographic, and 

lifestyle data for 2,149 patients. Each record includes a unique identifier along with 35 features 

(Annex I) that span across several domains: demographic information (e.g., age, gender, ethnicity, 

education level), lifestyle variables (e.g., alcohol consumption, smoking habits, physical activity), 

medical history (e.g., cardiovascular disease, diabetes, depression), clinical measurements (e.g., 

cholesterol levels, blood pressure), cognitive and functional assessments (e.g., MMSE, ADL), and 

presence of Alzheimer's-related symptoms (e.g., confusion, disorientation, personality changes). 

 

The target variable, Diagnosis, is binary and indicates whether the patient is diagnosed with 

Alzheimer’s Disease (1) or not (0). 

 

Image Dataset 

The image dataset, sourced from Kaggle, comprises MRI scans of the brain, categorized into four 

diagnostic classes: MildDemented, ModerateDemented, VeryMildDemented, and NonDemented. 

Each category includes multiple subjects, with the most representation found in the NonDemented 

and VeryMildDemented classes. The dataset was curated to avoid biases present in previous 

versions—specifically, it ensured that train, validation, and test sets were split randomly rather than 

sequentially by slice location. 

https://www.kaggle.com/datasets/rabieelkharoua/alzheimers-disease-dataset/data
https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset
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Figure 25: Diagnosis output depending on two different binary features 

 

 

 

 

 

 

 

 

Figure 26: Diagnosis output for different continues features 

 

 

3.1.2 EXPLORATORY DATA ANALYSIS (EDA) 
 

Exploratory data analysis (EDA) revealed several patterns of interest: 

 

Binary Variables: 

Figure 1 displays the distribution of binary features such as MemoryComplaints and 

BehavioralProblems in relation to Alzheimer’s diagnosis. Diagnosed individuals exhibit a higher 

frequency of these symptoms, suggesting their relevance as early clinical indicators. 

Continuous Variables: 

The histograms in Figure 2 illustrate the distribution of key cognitive and functional metrics: 
 

MMSE, FunctionalAssessment, and ADL. Lower values in these variables are strongly associated 

with the presence of Alzheimer’s, confirming their clinical utility for classification purposes. 

 

Correlation Matrix: 

As depicted in Figure 3, the correlation heatmap reveals moderate1 associations between symptoms 
 

(MemoryComplaints and BehavioralProblems) and diagnosis outcomes. Additionally, cognitive 
 

 

1 As a role of thumb, it will be considered that two variables are highly correlated if the Pearson coefficient is 

above 0.7. 
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scores such as MMSE and ADL show inverse correlations with the diagnosis variable, supporting 

their predictive value. There is no apparent correlation between the features. 

 

 

 

Figure 27: Correlation matrix between features 

Distribution and Outliers: 

Figure 4 (See Annex II) presents the overall variable distributions. Most features are either 

uniformly or right skewed. While several outliers exist—particularly in lipid profile variables like 

cholesterol and triglycerides—they were retained to reflect realistic population variability. 
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Figure 28: Examples of feature datapoints 

distributions 

 

 

Boxplots: 

Figure 5 (See Annex II) provides a comparative overview of feature ranges and central tendencies 

using boxplots. These visualizations assist in identifying potential scaling discrepancies and 

highlight the diversity in variable distributions across patients. No outlier is detected. 

 

Figure 29: Features Boxplots 

 

Data Quality: 

No significant missing values were observed in the dataset. Categorical features were labelled using 

OneHotEncoding, and continuous variables were standardized to ensure model compatibility and 

improve convergence during training. 

 

3.2 TABULAR DATA MODELLING 

This section details the methodology followed for modelling and interpreting tabular data 

associated with Alzheimer’s Disease prediction. The dataset contains various clinical, 

cognitive, and lifestyle-related features. Our modelling approach spans across traditional 
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machine learning (ML) models and a deep learning (DL) model, evaluated in three successive 

optimization phases. Interpretability is central to this pipeline and was implemented using 

SHAP and LIME frameworks. 

3.2.1 SELECTED MODELS: MACHINE AND DEEP LEARNING OVERVIEW 

 

Four classification models were selected based on their interpretability capabilities, learning 

paradigms, and comparative value: 

1. Logistic Regression (LR): A linear baseline model offering high interpretability via 

feature weights. Suitable for identifying direct linear relationships. 

2. Support Vector Machine (SVM): A margin-based classifier utilizing kernel functions to 

model non-linear decision boundaries. 

3. Random Forest (RF): An ensemble of decision trees aggregating multiple predictions for 

robust and non-linear modelling. 

4. Multi-Layer Perceptron (MLP): A fully connected neural network capable of capturing 

more complex data structures through hidden layers and activation functions. 

3.2.2 SELECTED MODELS: PREPROCESSING STEPS 

 

Initial preprocessing steps were designed to ensure data quality and consistency: 

- Cleaning: Identifiers such as PatientID and DoctorInCharge were dropped to prevent data 

leakage and as they didn’t provide any information to Diagnosis output. 

- Visualization and Exploration: Histograms, boxplots, and count plots were used to 

identify distributions and potential outliers. 

- Handling Imbalances: The binary target variable (Diagnosis) was imbalanced (approx. 

65% negative). While no resampling was applied, this imbalance was accounted for using 

interpretability techniques and metrics such as Cohen’s Kappa. 

- Correlation Analysis: Highly correlated features were visualized via heatmaps, and 

redundancies were removed to preserve interpretability and model robustness. 
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3.2.3 EXPERIMENTAL DESIGN: THREE-PHASE OPTIMIZATION STRATEGY 
 

To rigorously evaluate and compare the performance and interpretability of the selected machine 

learning models, a structured three-phase optimization strategy was implemented. This approach 

enabled a systematic exploration of model capabilities, the impact of targeted hyperparameter 

tuning, and the benefits of comprehensive optimization. 

 

1. BASELINE EVALUATION WITH DEFAULT PARAMETERS 

In the initial phase, each model was trained and evaluated using the default parameter settings 

provided by the Scikit-learn library. This baseline assessment served two primary purposes: 

 

1. To establish a reference point for model performance prior to any tuning, and 

2. To evaluate the inherent strengths and weaknesses of each model’s architecture. 

 

 

The models assessed in this phase included Logistic Regression (LR), Support Vector Machine 

(SVM), Random Forest (RF), and Multilayer Perceptron (MLP). Performance metrics such as 

accuracy, F1 score, and ROC-AUC were recorded to facilitate direct comparison with subsequent 

optimization phases. 

 

2. TARGETED SINGLE-PARAMETER OPTIMIZATION 

The second phase focused on optimizing a single, high impact hyperparameter for each model. This 

targeted approach was designed to identify which parameter most immediately influenced model 

performance and interpretability. The specific hyperparameters selected for tuning were as follows: 

- Logistic Regression (LR): Regularization strength (C) 

- Support Vector Machine (SVM): Regularization strength (C) 

- Random Forest (RF): Minimum samples leave. 

- Multilayer Perceptron (MLP): Hidden layer 

 

 

For each model, a range of plausible values was explored for the chosen parameter while all other 

settings remained at their default values. This allowed for the isolation of the parameter’s effect on 

classification accuracy, F1/F2 scores, and interpretability (as measured by feature importance 
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rankings or model coefficients). 

 

 

3. COMPREHENSIVE HYPERPARAMETER OPTIMIZATION 

In the final phase, each model underwent extensive hyperparameter tuning using grid search 

combined with cross-validation. The following parameters were included in the optimization 

process for each model: 

- Logistic Regression: Penalty type (l1, l2, elasticnet), solver (liblinear, lbfgs, saga), 

regularization strength (C), maximum iterations (max_iter), and l1_ratio (for elasticnet). 

- Random Forest: Number of estimators (n_estimators), maximum tree depth (max_depth), 

minimum samples required to split a node (min_samples_split), and maximum number of 

features considered for splitting (max_features). 

- Support Vector Machine: Regularization parameter (C), kernel function, and kernel 

coefficient (gamma). 

- Multilayer Perceptron: Hidden layer sizes, activation function, and solver. 

 

 

Grid search was employed to systematically explore combinations of these hyperparameters, with 

five-fold cross-validation used to ensure robust performance estimates and to mitigate overfitting. 

The primary evaluation metrics included cross-validation accuracy, F1 and F2 scores, ROC-AUC, 

and Cohen’s Kappa score. 

3.2.4 EVALUATION OF PREDICTIONS AND INTERPRETABILITY ANALYSIS 
 

To properly assess model results, we examine a suite of metrics, each highlighting a different 

aspect of diagnostic performance: 

1. Accuracy (Overall Correctness): The fraction of all cases (both Alzheimer’s and non- 

Alzheimer's) that the model correctly classifies. For example, an accuracy of 82% means 

82% of patients were correctly labeled as either AD or healthy. While useful as an overall 

gauge, accuracy alone can be misleading in imbalanced datasets – if 65% of our sample 

are healthy controls (class 0), a trivial classifier that predicts “No Alzheimer’s” for 

everyone would be 65% accurate. Thus, accuracy must be interpreted alongside more 

class-sensitive metrics in our moderately imbalanced dataset. 
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2. Specifity (True Negative Rate): The proportion of actual non-Alzheimer’s cases that the 

model correctly identifies as such (TN/(TN+TP)). This tells us how well the classifier 

avoids false alarms. In our data ~65%2 of subjects are non-AD, so specifity is particularly 

important to interpret in context. A high specifity (closer to 1.0) means most healthy 

individuals are correctly cleared, whereas a low specifity is the contrary. We will observe 

that this metric will vary depending on the model. 

3. Sensitivity (Recall for AD, True Positive Rate): The proportion of actual Alzheimer’s 

cases correctly identified (TP/(TP+FN)). This metric is crucial in medical context, as it 

measures how well we catch the disease. In Alzheimer’s diagnosis, false negatives are 

especially concerning – a missed diagnosis means a patient who has AD goes untreated or 

unprepared. Therefore, we prioritize maximizing recall to minimize the chance of missing 

an AD case, even if it means tolerating some false positives, ensuring Alzheimer’s disease 

cases do not slip unnoticed. 

4. F1 Score (Harmonic Mean of Precision and Recall): The F1 combines precision (the 

proportion of predicted AD cases that are truly AD) and recall into a single number.It is 

calculated as 2·(Precision·Recall)/(Precision + Recall). An F1 score balances the trade-off 

between catching most AD cases (recall) and avoiding too many false alarms (precision). 

In our context, F1 is useful to get a sense of overall test performance when both false 

positives and false negatives carry weight. For instance, an F1 around 0.75 indicates a 

good balance – the model is reasonably sensitive while also maintaining decent precision. 

We use F1 to compare models when neither class should be completely neglected. 

However, because in this scenario we consider recall slightly more important than 

precision, we also look at an alternative. 

5. F2 Score (Recall-Weighted Harmonic Mean): F2 is like F1 but gives double weight to 

recall (sensitivity). This metric is defined as (1 + 2²) ·(Precision·Recall) / (4·Precision + 

Recall). It emphasizes catching positives (AD cases) over avoiding false alarms. A higher 

 

2 We note that our dataset’s class imbalance could have been addressed with resampling techniques like SMOTE 

(Synthetic Minority Over-sampling Technique) to generate synthetic AD cases, balancing the training data and 

potentially improving recall of the minority class. Without such adjustment, a model can skew toward predicting 

the majority class to maximize accuracy and specificity. 



Chapter 3: Methodology 

75 

 

 

 

F2 indicates the model is achieving strong recall even if precision is somewhat lower – 

which is valuable in our Alzheimer’s screening context where missing a diagnosis is more 

harmful than a false alert. For example, a model with F2 = 0.93 on the test set demonstrates 

excellent sensitivity with acceptable precision, making it highly suitable for identifying 

AD patients. We compare F2 scores to see which model best meets the clinical priority of 

maximizing recall. 

6. Cohen’s Kappa (Chance-Adjusted Agreement): Kappa measures how much better the 

classifier is than random guessing or a simple majority-class strategy, by accounting for 

chance agreement. It ranges from 0 (performance no better than chance) to 1 (perfect 

agreement with true labels), with negative values indicating worse than chance. Kappa is 

especially informative with class imbalance – it penalizes a model that just predicts the 

majority class. For instance, a model that labels everyone as healthy might be 65% 

accurate, but Kappa ≈ 0, indicating it’s only doing as well as chance given class 

frequencies. In our results, we see Kappa scores around 0.60–0.87 for the better models, 

which signifies substantial agreement beyond chance. A high Kappa (e.g. 0.87) means the 

model is performing far better than a baseline that simply guesses based on class 

prevalence. We look to Kappa to ensure that high accuracy isn’t just due to class imbalance 

– it confirms the classifier is truly discriminating AD vs. healthy cases beyond what chance 

or majority voting would achieve. 

7. AUC (Area Under the ROC Curve): A threshold independent measure of discrimination. 

AUC represents the probability that the model ranks a randomly chosen AD patient higher 

(in terms of predicted risk) than a randomly chosen healthy person. An AUC of 0.5 means 

no discriminative power (random guessing), while 1.0 is perfect separation. In our 

evaluation, AUC scores in the 0.84-0.96 range indicate the models have good to excellent 

ability to distinguish AD from No AD across all possible thresholds. Notably, AUC can 

reveal the model’s potential even if a fixed threshold (like 0.5) isn’t optimal. For example, 

one model had a poor recall at default threshold but still showed AUC > 0.80, suggesting 

that with threshold adjustment or tuning it could achieve much better sensitivity. 

8. Calibration curve: This assesses how well the model’s predicted probabilities reflect the 
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true likelihood of disease. A well-calibrated model will output on 1-1 relationship between 

prediction and true class frequency, say, 0.80 probability for AD and truly be correct about 

80% of the time for those cases. Our model has been calibrated with the following 

categories: 

a. Well calibrated: Curve closely follows the diagonal. 

 

b. Overconfident: Predictions are too high (e.g., predicts 0.9 but actual is 0.75) 

 

c. Underconfident: Predictions are too conservative (e.g., predicts 0.5 but actual is 

0.7). 

d. Moderately calibrated: Acceptable but with notable deviation from diagonal. 

 

e. Uncalibrated: Poor alignment; systematic over- or underestimation across all 

bins. 

Calibration curves thus inform us whether we can trust the probability scores or if we 

should post-process them (for example, via Platt scaling3 or isotonic regression) to improve 

reliability. 

9. Prediction Histogram (Probability Distribution): The probability histograms show how 

separated the model’s predicted probability distributions are for the two classes. In further 

sections, we have used the following qualitative labels: 

a. Well – separated: Predicted probabilities for Y=0 and Y=1 is clearly distinct. 

 

b. Overlapping: Significant overlap in probability distributions for both classes. 

 

c. Left-skewed: Predictions clustered near 0 for both classes (model too 

conservative). 

d. Right skewed: Predictions clustered near 1 for both classes (model too optimistic). 
 

 

3 However, it is worth noting that on further studies of LR models as a black box Platt scaling has less effect, as 

well as for MLP and RF. It has been shown effective for SVMs 
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e. Flat: Uniform prediction distribution – often signals poor discrimination. 

 

Histograms complement the calibration curves: they focus on the spread and separation of 

the scores for each class, rather than alignment of scores with true frequencies. 

10. Confusion Matrix: Finally, the confusion matrix provides the raw counts of outcomes: 

True Negatives (TN), False Positives (FP), False Negatives (FN), and True Positives (TP). 

The confusion matrix is useful to directly quantify the types of errors: FP (healthy 

misdiagnosed as AD) vs FN (AD missed). In our context, and FN (miss) is more seriously 

clinically than a FP, so we pay close attention to reducing FN counts (via higher recall), 

while also noting FP counts since too many false alarms could burden patients with 

unnecessary further tests. 

We evaluated four classifiers – Logistic Regression, Random Forest, Support Vector Machine 

(SVM), and Multi-Layer Perceptron (MLP) – at three optimization stages: a default non- 

optimized model, a model with one key hyperparameter tuned, and a fully optimized model 

with extensive hyperparameter tuning. On further section 4.1 we summarize how each model 

performed on the training set (TR) and test set (TS), and how optimization affected their 

metrics. We also relate these outcomes to our earlier data understanding (class imbalance, 

feature correlations, etc.) to interpret the results. 

 

3.3 IMAGE DATA MODELLING 

The methodology involved implementing convolutional neural networks (CNNs) to classify four 

types of MRI images related to Alzheimer’s disease: MildDemented, ModerateDemented, 

NonDemented, and VeryMildDemented. The workflow progressed from baseline models to partially 

and fully optimized networks. Model interpretability was addressed using SHAP and Grad-CAM++ 

to analyze attention at different layers and generate heatmaps. All experiments were conducted on 

Google Colab Pro utilizing CPU acceleration. An additional analysis using transfer learning with 

ResNet was performed, but its representations were too generic, leading to the choice of a custom 

CNN for finer detail capture. 
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3.3.1 IMAGE PREPROCESSING AND RATIONALE BEHIND CHOSEN INITIAL VALUES 

 

The dataset, sourced from a publicly available Kaggle4 repository, was organized into subdirectories 

by class and processed using PyTorch’s ImageFolder utility. To standardize input dimensions and 

facilitate compatibility with pre-trained networks and common CNN architectures, all images were 

resized to 224×224 pixels and normalized using the standard ImageNet mean and standard 

deviation. The dataset was compressed in ZIP format to minimize disk usage and reduce I/O 

bottlenecks during loading; it was programmatically extracted at runtime to optimize data handling 

and speed up the preprocessing phase, particularly within the Google Colab Pro environment. 

 

For model training and evaluation, the data was partitioned using stratified sampling to ensure a 

balanced distribution across the four classes (MildDemented, ModerateDemented, NonDemented, 

VeryMildDemented). The split was set to 72.25% for training, 12.75% for validation, and 15% for 

testing. This configuration provides sufficient training samples while retaining representative 

validation and test sets for generalization assessment. The validation fraction (15% of total) was 

derived from an internal split of the training+validation pool (85% of total data), calculated as 15/85 

≈ 0.1765. 

 

 

A batch size of 32 was chosen as a compromise between training stability and memory efficiency, 

particularly suited to GPU usage in Colab Pro. This size allowed efficient mini-batch gradient 

descent while avoiding memory overflows during training and interpretability computations. All 

subsets were wrapped using PyTorch DataLoader objects to enable shuffling, parallel data loading, 

and batch-wise iteration throughout the pipeline. 

 

 

 

 

3.3.2 IMPLEMENTATION OF CONVOLUTIONAL NEURAL NETWORKS (CNNS) WITH 

INITIAL DEFAULT SETTINGS 

 

A custom CNN model was defined, comprising three convolutional blocks with batch 
 

 

4 https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset 

https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset
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normalization, ReLU activation, and max pooling. The network architecture culminates in a fully 

connected dense layer that maps the feature map into the four target classes. The second 

convolutional block was specifically tagged for Grad-CAM++ activation mapping. The network is 

trained using the cross-entropy loss function, appropriate for multi-class classification, and runs on 

a CUDA-enabled GPU when available. 

 
 

Figure 30:CNN + FCN Architecture 

 

 

 

 

3.3.3 EVALUATION METRICS 

 

Model performance was evaluated on both the training and test sets using accuracy and ROC-AUC 

curves per class. The ROC curve provides a detailed view of the classifier’s performance across varying 

thresholds and was computed by one-vs-rest binarization of the class labels using 

sklearn.metrics.roc_curve. Also, accuracy metrics were computed. 

 

 

 

 

3.3.4 APPLICATION OF INTERPRETABILITY TECHNIQUES: SHAP AND GRAD-CAM++ 

FOR GENERATING HEAT MAPS 

 

To enhance transparency and understandability of the model’s decision-making, two post-hoc 
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interpretability techniques were employed: 

 

 

1. SHAP (SHapley Additive exPlanations): 

 

SHAP values were generated for each image and superimposed as heatmaps to highlight pixel 

regions most responsible for the model’s decision. SHAP was computed on individual class 

predictions using the Deep SHAP backend, enabling pixel-level attributions. 

2. Grad-CAM++: 

 

Gradient-based Class Activation Mapping was applied to visualize the spatial focus of the 

CNN at the second convolutional block. The GradCAM++ implementation from pytorch- 

grad-cam was used. Two versions of the heatmap were generated: 

 

- Unmasked: Applied directly on the raw image, capturing full gradient flows. 

- Masked: A binary mask was applied to exclude background pixels, improving signal 

clarity by filtering non-informative dark areas. 

 

3.3.5 EXPERIMENTS WITH NO OPTIMIZATION, PARTIAL OPTIMIZATION (LEARNING 

RATE) AND FULL CNN OPTIMIZATION (LEARNING RATE AND WEIGHT DECAY) 
 

The training process was designed in three phases: 

 

 

1. Baseline (Non-optimized): The model was trained with default hyperparameters using 

the Adam optimizer and a fixed learning rate of 1e-3. 

2. Learning Rate Optimization: The learning rate was tuned through a grid search over 

[1e-2, 1e-3, 1e-4, 1e-5] using Adam optimizer as well. The best result was selected based 

on validation accuracy. 

3. Full Optimization: A Bayesian optimization approach was employed using the Optuna 

library to jointly optimize the learning rate, weight decay, and choice of optimizer (Adam 

or SGD). 

This allowed exploration of the hyperparameter space in a more data-efficient manner. 

Each model was trained for 10 epochs to ensure consistency in evaluation and to prevent 
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overfitting on limited training samples. 

 

3.4 DEVELOPMENT OF THE UNIFIED METRIC 

3.4.1 IDENTIFICATION OF KEY INTERPRETABILITY INDICATORS 
 

Interpretability in machine learning cannot be reduced to a single property. Different explanation 

methods emphasize different aspects, and their utility varies depending on the model and the data. 

To establish a systematic and fair comparison between methods such as SHAP and LIME, we 

identified three core indicators frequently cited in the interpretability literature (Doshi-Velez & 

Kim, 2017; Molnar, 2022): 

1. Fidelity: the extent to which an explanation accurately represents the model’s predictions. 

In LIME, this corresponds to the quality of the local surrogate fit, whereas in SHAP it 

reflects the additive reconstruction of the model’s output from feature contributions (Ribeiro 

et al., 2016; Lundberg & Lee, 2017). 

2. Stability: the robustness of explanations when small perturbations are introduced to the 

input data. Stable explanations are particularly important in clinical contexts, where 

reliability under slight variations is crucial (Alvarez-Melis & Jaakkola, 2018). 

3. Sparsity: the conciseness of explanations, often defined by the number of non-zero feature 

attributions. Sparse explanations are easier to interpret but may risk omitting relevant 

signals if excessive. 

These three indicators were selected because they consistently appear in existing work, align with 

human-centered evaluation criteria, and can be meaningfully applied to both tabular and image data. 

 

 

 

3.4.2 PROPOSAL OF THE COMPOSITE METRIC 
 

To integrate these indicators into a single evaluation, we propose a composite interpretability 

score at the method level: 

𝑆𝑚𝑒𝑡ℎ𝑜𝑑 = 𝛼1 ∙ 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 + 𝛼2 ∙ 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝛼3 ∙ 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 
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where 𝛼1, 𝛼2, 𝛼3 are non-negative weights reflecting the relative importance of each dimension. For 

biomedical applications, fidelity and stability were prioritized (𝛼1 = 0.5, 𝛼2 = 0.3) to ensure 

reliable and clinically trustworthy explanations, while sparsity was retained as a penalty (𝛼3 = 0.2) 

to discourage over simplistic explanations. These parameters were established using heuristic 

methods. Alternative weighting schemes could be established via domain-expert elicitation (e.g., 

clinicians prioritizing stability) or via data-driven optimization, but heuristics provide a transparent 

and reproducible baseline. 

All sub-metrics were normalized to the [0,1] range prior to aggregation. This normalization was 

achieved by rescaling observed values against fixed interpretability bounds derived from literature 

benchmarks (e.g., maximum surrogate fit quality for LIME, maximum additive reconstruction 

accuracy for SHAP). This ensures comparability across both methods and models. 

In addition to the three indicators, we introduce an agreement factor (AAA) that captures the 

overlap between SHAP and LIME explanations. The rationale is that if two independent methods 

converge on similar feature importance, confidence in the reliability of the explanation increases. 

Agreement is defined mathematically as: 

 
|𝐹𝑆𝐻𝐴𝑃 ∩ 𝐹𝐿𝐼𝑀𝐸 | 

𝐴 = 
𝑆𝐻𝐴𝑃 ∪ 𝐹𝐿𝐼𝑀𝐸 | 

 
where 𝐹𝑆𝐻𝐴𝑃, 𝐹𝐿𝐼𝑀𝐸 denote the sets of top-ranked features identified by each method. This factor 

ranges from 0 (no overlap) to 1 (perfect agreement). 

 

The unified model-level score is therefore expressed as: 

 

𝑈 = 
1 

(𝑆 
 

+ 𝑆 ) +𝛽 ∙ 𝐴 
𝑚𝑜𝑑𝑒𝑙 2 𝑆𝐻𝐴𝑃 𝐿𝐼𝑀𝐸 

 
where 𝛽 is an enhancement weight controlling the influence of agreement. In this study, we set 𝛽 = 

0.2 , enabling agreement to act as a “nudge” without dominating the metric. 

 

3.4.3 APPLICATION FRAMEWORK 
 

The proposed framework is applied in two stages: 

|𝐹 
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1. Method-level evaluation: SHAP and LIME are each assessed individually according to 

fidelity, stability, and sparsity, resulting in a per-method interpretability score (𝑆𝑚𝑒𝑡ℎ𝑜𝑑 ). 

2. Model-level aggregation: Scores from both methods are averaged and adjusted with the 

agreement factor, yielding a unified interpretability score (𝑈𝑚𝑜𝑑𝑒𝑙) for each predictive 

model. 

This stepwise procedure enables both direct comparison of explanation tools and standardized 

evaluation of overall interpretability across models such as Logistic Regression, Random 

Forest, Support Vector Machine, and Multi-Layer Perceptron. Moreover, while this framework 

is applied here to Alzheimer’s disease diagnostics, it is generalizable to other biomedical and 

non-biomedical settings, offering a reproducible and transparent way to evaluate interpretability 

in machine learning. 

Finally, this proposal directly addresses calls in the literature for unified and standardized 

evaluation of interpretability tools (Guidotti et al., 2018; Samek et al., 2021). By combining 

fidelity, stability, sparsity, and agreement, the metric balances predictive alignment with human 

interpretability, thus advancing explainable AI research in a practical and domain-aware 

direction. 
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Chapter 4. Results 

While performance metrics like accuracy or F1-score offer a first impression of how well a 

model behaves, they do not explain why the model makes certain decisions. To move from 

performance to trust, it is essential to open the black box and understand the reasoning behind 

individual predictions. Interpretability techniques such as LIME and SHAP provide this 

transparency by offering local explanations that help users: 

 

i. Choose between competing models not just based on performance scores, but also on 

how consistently and reasonably each model behaves across features and instances. 

ii. Detect and improve untrustworthy models by revealing patterns of bias, spurious 

correlations, or over-reliance on irrelevant features. 

iii. Gain deeper insight into the model’s behavior, revealing which features are most 

influential and how they contribute to predictions in specific cases. 

 

Ultimately, LIME and SHAP answer a critical question that performance metrics alone cannot: 

Why should we trust this model? 

These explanations form a bridge between statistical performance and actionable, transparent 

decision-making — particularly vital in domains like healthcare, where understanding the why 

behind a prediction is as important as the prediction itself. 

4.1 RESULTS FOR TABULAR DATA MODELLING 

In this section, we will be discussing the results obtained regarding tabular data modelling. The 

database used is a version of the 2025 Alzheimer’s disease data available on Kaggle5. The 

dataset is related to Alzheimer’s disease, and it is presented in a tabular format (CSV file). 

 

The following models (LR, RF, MLP, and SVM) have been analyzed and treated as black box 

models. Further information can be found in the previous chapters (see 3.2.1 and 3.3.1). We 

 

5 Kaggle: Online community platform for data scientists and ML enthusiasts. 
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present three different results for the three types of models studied for each machine learning 

method (Default, Single Parameter Optimized, and Fully Optimized Models). Additionally, we 

examine the nature of predictive performance. Finally, we summarize the variable relevance as 

determined by SHAP and LIME. The goal of these results is to understand: 

1. Model performance: mainly model accuracy. 

2. Model interpretability: why the different machine learning models made certain 

predictions at a local and global level. 

4.1.1 BASELINE: LOGISTIC REGRESSION MODEL 
 

 

4.1.1.1 PERFORMANCE RESULTS 

 

We analyzed the performance and interpretability of Default Logistic Regression, single parameter 

optimized, and fully optimized models. The evaluation (for both training and testing) was conducted 

using: 

i. Confusion matrices 

ii. ROC curves 

iii. Predicted probability of histograms. 

 

 
i. CONFUSION MATRICES 

The confusion matrices reveal how classification performance evolves across the Default, Single- 

Parameter Optimized, and Fully Optimized Logistic Regression models. 

 

Default Model 

In its default configuration, the Logistic Regression model performed well, with a Type I error of 

14% and a Type II error of 26.3%, indicating balanced but slightly more frequent false negatives. 
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On the training set, the model predicted 1,010 true negatives and 453 true positives, while 

misclassifying 101 cases as false positives (Type I error) and 155 cases as false negatives (Type II 

error). On the test set, the model correctly classified 239 true negatives and 112 true positives, with 

39 false positives and 40 false positives (See Figure 7). 

 

Figure 31: Default LR 

 

It is evident that the model maintains relatively balanced classification behavior. However, the 

number of false negatives (40 on the test set) is particularly important in the context of Alzheimer’s 

disease diagnosis, as failing to detect a true positive patient could delay crucial intervention. 

 

One hyperparameter optimization 

Optimizing only the regularization parameter C resulted in no change to the confusion matrix 

compared to the default model. 

 

This result shows that tuning a single hyperparameter had little impact, highlighting the need for 

full hyperparameter optimization to improve performance. 

 

 

Figure 32: 1 optimized hyperparameter 

 

Full hyperparameter optimization 

When applying full hyperparameter—adjusting C, the penalty type, and the solver—the Logistic 
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Regression model exhibited a slight but meaningful improvement. 
 

 

Figure 33: All hyperparameters optimized 

 

On the training set, there were 1,009 true negatives and 459 true positives, alongside 102 false 

positives and 149 false negatives. On the test set, the model correctly classified 241 true negatives 

and 115 true positives, with only 37 both false negatives and false positives. 

 

These improvements are clinically significant because, regarding the test sets: 

 

 

1. The number of false negatives decreased from 40 to 37, thereby enhancing the model’s 

sensitivity (recall) and reducing the likelihood of missing Alzheimer’s disease cases. 

2. The number of false positives also decreased from 39 to 37, slightly improving the model’s 

specificity and minimizing unnecessary clinical interventions. 

 

Overall, the fully optimized model achieves a better balance between Type I and Type II errors, 

enhancing its reliability as a diagnostic tool—an aspect particularly critical in medical applications 

where both precision and sensitivity are essential. 

 

Conclusion 

In terms of computational efficiency, the Default Logistic Regression model required less than 

one second to train, whereas the fully optimized model increased training time to approximately 

six seconds on a personal laptop6. 

 

Considering the trade-off between computational cost and predictive performance, the modest 
 

 

6 See Annex III too see computer specifics. 
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increase in computational time is not justified by the improvements in classification accuracy and 

diagnostic reliability. 

 

ii. ROC CURVES 

ROC curves assess a model's ability to separate classes, while the AUC summarizes this 

performance—ranging from 1.0 (perfect) to 0.5 (random). 

 

Default Model 

The ROC curves for the Default Logistic Regression model (See Annex IV) demonstrate strong 

classification performance as shown in the following Table 2: 

 

Training AUC 0.91 

Test AUC 0.89 

Table 2: AUC Default Model 

 

The curves show that the model maintains a high true positive rate while minimizing false positives 

across a range of thresholds. The small drop from training to testing AUC suggests limited 

overfitting and good generalization to unseen data. However, the slight gap indicates some room 

for improvement in model robustness, particularly critical in a medical setting where 

misclassifications can have severe consequences. 

 

One hyperparameter optimization 

After optimizing the regularization parameter C, the ROC curves (See Annex IV) remain practically 

identical to those of the Default model: 

 

Training AUC 0.91 

Test AUC 0.89 

Table 3: AUC One Hyperparameter optimization 

 

This outcome confirms that adjusting a single hyperparameter was insufficient to produce a 

meaningful improvement in discriminative performance. 

Fully Optimized Logistic Regression 
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For the Fully Optimized Logistic Regression model (See Annex IV), which involved tuning 

multiple hyperparameters (C, penalty, and solver), the ROC curves are similarly well-behaved: 

 

Training AUC 0.91 

Test AUC 0.89 

Table 4: AUC Full Hyperparameter Optimization 

 

Although the AUC values remain comparable to the previous models, the ROC curve for the test 

set shows a slightly steeper ascent near the origin, implying better early detection of positive cases 

with low false positive rates. This subtle improvement is critical for clinical settings, where it is 

particularly important to correctly identify Alzheimer's patients while minimizing unnecessary 

alarms for healthy individuals. 

 

iii. CALIBRATION CURVE PREDICTED 

The calibration curves for all Logistic Regression models demonstrate good reliability, with 

predicted probabilities closely following the ideal calibration line. Minor deviations were observed 

at the extremes; however, full hyperparameter optimization slightly improved the calibration on the 

test set, thereby enhancing the model’s trustworthiness for clinical decision-making. For a detailed 

visualization of the calibration curves, the reader is referred to Annex IV. 

 

iv. PROBABILITY HISTOGRAM ANALYSIS 

Similarly, the predicted probability histograms indicate that all models produced confident 

predictions, with the Fully Optimized model exhibiting sharper separations between classes. This 

increased certainty in classification, combined with improved calibration, suggests that the Fully 

Optimized Logistic Regression model offers the most reliable configuration for supporting 

Alzheimer's disease diagnosis. The corresponding histograms can be consulted in Annex IV. 

v. PERFORMANCE METRICS 

 

The predictive performance of the Default Logistic Regression, Single-Parameter Optimized (C 

optimization), and Fully Optimized Logistic Regression models were evaluated using key 

classification metrics: Type I error, Type II error, Specificity, Accuracy, Recall, F1-score, F2-score, 
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and Cohen’s Kappa coefficient. These metrics provide a comprehensive assessment of both the 

discriminative ability and reliability of each model configuration. 

 

Default and Single – Parameter Optimized Logistic Regression 

Both the Default and Single-Parameter Optimized model showed identical performance across all 

training and testing metrics. 

 

I. On the training set, an accuracy of 85.1% was achieved, with a recall (sensitivity) of 74.5% 

and a specificity of 69.0%. The Type I and Type II errors were 9.1% and 25.5%, 

respectively. The F1-score and F2-score were 0.780 and 0.802, demonstrating a balanced 

trade-off between precision and recall. Cohen’s Kappa coefficient reached 0.668, indicating 

substantial agreement beyond chance. 

 

II. On the test set, the accuracy slightly decreased to 81.6%, with a recall of 73.7% and a 

specificity of 68.1%. Type I and II errors slightly increased, and the Kappa value dropped 

to 0.597, showing a moderate agreement. 

 

The minimal difference between the default and C-optimized models shows that tuning only the 

regularization wasn't enough, indicating the need for broader hyperparameter optimization. 

Fully Optimized Logistic Regression 

 

The Fully Optimized Logistic Regression model demonstrated consistent but modest improvements 

across nearly all performance indicators: 

 

I. On the training set, the accuracy increased to 85.4%, with a recall of 75.5% and specificity 

of 68.7%. Type II error decreased to 24.5%, and both the F1-score (0.785) and F2-score 

(0.805) improved, indicating enhanced balance between sensitivity and precision. The 

Kappa value also increased to 0.675, suggesting stronger agreement compared to the 

previous models. 

 

II. On the test set, the model achieved an accuracy of 82.8%, a recall of 75.7%, and a specificity 
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of 67.7%. Both Type I and Type II errors decreased relative to the previous models, and the 

F1-score and F2-score improved to 0.757. The Kappa statistics rose to 0.623, reflecting 

better predictive consistency on unseen and unbalanced data. 

Performance test metrics are summarized on the following table: 
 

Metric 
Default Logistic 

Regression 

Optimized 

C 

Fully 

Optimized 

Type I Error 0.140 0.140 0.133 

Type II Error 0.263 0.263 0.243 

Specificity 0.6809 0.6809 0.677 

Accuracy 0.816 0.816 0.828 

Recall 0.737 0.737 0.757 

F1-score 0.739 0.739 0.757 

F2-score 0.741 0.741 0.757 

Kappa 0.597 0.597 0.623 

Table 5: Performance metric LR summary 

 

 

Conclusion 

 

The Fully Optimized model consistently outperformed the Default and Single-Parameter Optimized 

models, especially in recall and accuracy. In Alzheimer’s disease detection, the increase in recall 

(from 73.7% to 75.7%) is crucial for correctly identifying patients. Although modest, these 

improvements are clinically significant when escalating it, making the Fully Optimized Logistic 

Regression model the best configuration for balancing performance and interpretability (despite 

having higher computational cost). 

 

In the following chapters, we argue that while the model achieves excellent accuracy, this metric 

alone is not sufficient to ensure trust or reliability, especially in sensitive domains like Alzheimer’s 

diagnosis. It is equally important to understand how the model arrives at individual predictions, as 

this sheds light on its overall decision-making process. To address this, we will analyze LIME and 

SHAP explanations applied to the Alzheimer’s tabular dataset. 
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4.1.1.2 INTERPRETABILITY RESULTS 

A randomly selected patient instance was interpreted using both LIME and SHAP, while global 

explanations were derived using SHAP across all instances. Although a similar global 

approximation could be achieved using SP-LIME (which applies submodular analysis7), this 

method was considered outside the scope of the current project. 

 

The patient, a 65-year-old individual, was predicted by the Logistic Regression model (non- 

optimized version) to have Alzheimer’s disease with a probability of 76%. This prediction is derived 

from the original black-box model, not from LIME. LIME is instead used to interpret how this 

prediction was made, by attributing contributions to individual features based on a locally fitted 

surrogate model. 

 

 

Figure 34: LIME explanations for a non-optimized LR model 

Figure 10 (center) displays a bar chart showing how each feature influences the prediction: 

- Orange bars indicate features pushing the prediction toward the Alzheimer’s class. 

- Blue bars indicate features supporting a No Disease classification. 

 

 

For this instance, the most influential features were: 

- BehaviouralProblems = 1.0 and FunctionalAssessment = 2.13: they are the largest positive 

contributions towards Alzheimer’s 

- MemoryComplaints = 0.00, ADL = 7.43, and MMSE = 14.63 depict moderate to strong 
 

 

7 Class of mathematical optimization problem that deals with submodular functions, a type of set functions with a 

natural diminishing returns property that is, the incremental gain of adding an element to a set, decreases as the 

set grows. 
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contributions against the Alzheimer’s classification. 

While most attributions align with clinical reasoning, features like HDL and LDL cholesterol levels 

introduced interpretability challenges. HDL (“good” cholesterol) is protective; values >60 mg/dL 

are linked to lower Alzheimer’s risk. LDL (“bad” cholesterol) is a risk factor; values <100mg/dL 

are considered optimal for reducing Alzheimer’s likelihood. In this case, HDL supported 

“Alzheimer’s”, while LDL supported “No Disease”. Although this might appear contradictory, it 

highlights the complexity of biological systems and the statistical (not causal) nature of ML 

predictions. These outputs should always be interpreted by medical professionals within clinical 

context. 

 

How LIME trains the surrogate model 

The weights show how much each feature shifts the prediction toward Alzheimer’s or No Disease. 

For example, BehavioralProblems = 1.00 and FunctionalAssessment = 2.13 contributed +0.35 and 

+0.31 respectively toward the 76% Alzheimer’s prediction. Removing them would lower it to 

around 10%. However, these are not actual probabilities—they come from a local surrogate model 

trained to approximate the original model for interpretability. 

 

To further clarify how LIME produces explanations, we present a simplified example based on the 

same patient. We assume only two input features: 

Feature Value Description 

MemoryComplaints 0.0 0 indicates No and 1 indicates Yes. 

Functional Assessment 2.0 Score, ranging from 0 to 10. 

Table 6: Dummy LIME case 

1. Perturbing the Original Instance 

LIME generates synthetic samples by introducing small perturbations to the input, from which we 

get the black-box model predictions. 

Synthetic Sample Memory Complaints 
Functional 

Assessment 

A 0.1 2.1 

B 1.0 4.5 

C 0.2 1.8 
Table 7: Perturbed generated instances 
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For tabular data instances, LIME randomly creates synthetic data around the original x instance, by 

using a normal distribution, centered at the original data point, and standard deviation determined 

by the black box trained data. 

 

2. Computing the Euclidean Distances 

To compute the weights assigned to each perturbed instance, first we need to compute the distance 

from the perturbed datapoints to the original instance. Since we are working with tabular data, 

Euclidean distance will be the one selected by LIME. 

𝐷(𝐴) = √(0.1 − 0)2 − (2.1 − 2.0)2 = √0.01 + 0.01 = √0.02 ≈ 0.141 
 

𝐷(𝐵) = √(1.0 − 0)2 − (4.5 − 2.0)2 = √1.0 + 6.25 = √7.25 ≈ 2.692 
 

𝐷(𝐴) = √(0.2 − 0)2 − (1.8 − 2.0)2 = √0.04 + 0.04 = √0.08 ≈ 0.283 

 
3. Computing Kernel Weights 

To determine the importance of the perturbed instances (weights) LIME algorithm applies an 

exponential kernel πx to translate distances into weights. 

𝐷(𝑥, 𝑧)2 

 
Where: 

𝜋𝑥(𝑧) = exp (− 
𝜎2 ) 

- D: Distance metric (e.g., Euclidean) 

- x: Original instance: 65-year-old patient 

- z: Pertubed instances: synthetic data 

- 𝜎: Exponential kernel width: Hyperparameter that controls how much influence nearby 

samples have; lower values focus the explanation locally, while higher values result in more 

general, broader explanations (e.g., 0.2 standard deviations). 

 

Assuming a standard kernel width 𝜎 = 0.75 (default value): 

▪ 𝑤𝐴 

▪ 𝑤𝐵 

▪ 𝑤𝐶 

= 𝑒𝑥𝑝 (− 
(0.141)2

) ≈ exp(−0.035) ≈ 0.965 
(0.75)2 

= 𝑒𝑥𝑝 (− 
(2.692)2

) ≈ exp(−12.84) ≈ 0.0 
(0.75)2 

= 𝑒𝑥𝑝 (− 
(0.283)2

) ≈ exp(−0.142) ≈ 0.868 
(0.75)2 
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This shows that Sample A, being very close to the original, receives the highest weight (close to 1), 

while Sample B, being far away, is effectively ignored. 

 

 
Figure 35: Local Neighborhood and Kernel Weighting in LIME. 

The figure illustrates the locality principle in LIME. The central point x represents the original 

instance to be explained, while points A, B, and C are perturbed samples. The dashed circle depicts 

the region of influence defined by the kernel width parameter σ, set to 0.75 in this case. Instances 

within this radius (like A and C) receive higher weights due to their proximity to x, while distant 

instances like B are assigned negligible weights. This ensures that the surrogate model focuses on 

locally relevant patterns, maintaining interpretability and fidelity near the point of interest. 

 

4. Fitting the Local Surrogate Model 

These weighted perturbed samples are used to train a simple linear surrogate model g(x), which 

minimizes a loss function that balances local fidelity (faithfulness to the original model) with 

interpretability (model simplicity): 

𝜉(𝑥) = argmin ∑ 𝑤(𝑥′) ∙ (𝑓(𝑥′) − 𝑔(𝑥′))
2 

+ Ω (𝑔) 
𝑔 𝜖 𝐺 

Where: 

▪ f(x’): prediction from the original black box model 

▪ g(x’): prediction from the surrogate (simple) model. 

▪ 𝛺 (𝑔): regularization term penalizing complexity. 

▪ w(x’): kernel weights based on proximity 

 

 

This ensures that LIME approximates the original model locally, giving priority to nearby 

perturbations and producing an explanation faithful to the neighborhood of the instance. 
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5. Discussion 

This case illustrates how LIME’s interpretability is derived not from the model’s internals, but from 

a local surrogate trained around the instance of interest. While features like MMSE and 

BehavioralProblems provide intuitive explanations consistent with clinical literature, others (such 

as LDL and HDL) may introduce ambiguity. These nuances emphasize that ML explanations should 

not be interpreted in isolation, and clinical judgment remains essential. 

 

Having established how LIME algorithm works and having examined the interpretability 

explanations of the non-optimized Logistic Regression model, we now turn to the analysis of the 

same patient instance under a model where the regularization parameter C has been optimized. This 

allows us to assess whether adjusting a single hyperparameter has a meaningful impact on both 

prediction confidence and feature attribution. 

 

In the optimized model, the predicted probability for Alzheimer’s disease remains unchanged at 76 

%, suggesting that tuning C alone did not alter the model’s confidence for this specific case. The 

LIME explanation, however, shows minor shifts in feature attributions. Notably, 

CardiovascularDisease now appears among the contributors, while other key features such as 

MemoryComplaints, BehavioralProblems and FunctionalAssessment maintain similar influence 

levels. These subtle changes imply that while performance metrics may remain stable, 

interpretability outcomes can vary with even modest model adjustments. This reinforces the 

importance of analyzing how hyperparameter tuning affects both prediction and explanation 

fidelity. 

 

Figure 36: LIME explanations for an optimized LR model 
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In the fully optimized Logistic Regression model, LIME shows a prediction probability of 69% for 

Alzheimer’s slightly lower than the 76% from the default configuration. The most influential 

features remain BehavioralProblems (1.00) and FunctionalAssessment (2.13), both pushing toward 

the Alzheimer’s class. Meanwhile, MemoryComplaints (0.00), ADL and MMSE continue to support 

the “No Disease” classification. 

 
Figure 37: LIME explanations for fully optimized model 

Compared to earlier configurations, this explanation is slightly more balanced, with a clearer 

counteracting influence from protective features like ADL and MemoryComplaints. The inclusion 

of additional minor contributors like DifficultyCompletingTasks and EducationLevel reflects a more 

nuance prediction after full hyperparameter tuning. However, the overall structure of the 

explanation remains similar, confirming the model’s consistency across optimization stages. 

 

While LIME offers valuable local explanations through surrogate modeling, it is essential to 

complement this perspective with a global view feature of importance. To that end, we now turn to 

SHAP (SHapley Additive exPlanations), a model-agnostic method grounded in cooperative game 

theory. Unlike LIME, which focuses on locally approximating the model behavior, SHAP provides 

consistent and theoretically justified attributions for both individual predictions and overall feature 

impact. This section explores how SHAP interprets the same patient instance and the broader 

Alzheimer’s dataset, offering a more holistic understanding of the model’s decision-making 

process. We will prove, as discussed in previous sections, that SHAP is the most complete additive 

feature attribution method, as it always fits the three desirable properties (local accuracy, 

missingness and consistency). LIME explanation violated the consistency property because HDL 

and LDL showed conflicting contributions, despite the model’s overall structure not changing. This 

suggests that LIME’s local surrogate assigned attributions that do not align with the global behavior 

of the original model. 
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Figure 38: SHAP feature importance overview for a single instance 

Figure 14 presents a SHAP scatter plot that visualizes the SHAP values for a single patient instance 

from the validation dataset. The x-axis shows each feature’s SHAP value—indicating its 

contribution toward pushing the prediction toward “Alzheimer’s” (positive) or “No Disease” 

(negative)—while the y-axis lists features in descending order of importance. The color gradient 

represents the magnitude of each feature’s value (red for high, blue for low). In this case, all markers 

appear in blue, meaning the instance holds relatively low values across features. Notably, some 

contributions (e.g., low ADL pushing toward “No Disease”) contradict expected clinical behavior, 

raising interpretability concerns. Nevertheless, it is important to note that this plot reflects only one 

instance. A global SHAP analysis will follow to assess the full validation dataset. Meanwhile, this 

specific case will serve as a benchmark example to illustrate how SHAP values are computed. 

 

The SHAP analysis highlights that BehavioralProblems and FunctionalAssessment are the most 

influential features driving predictions toward Alzheimer’s. Moderately relevant features like ADL 

and MemoryComplaints also play a role, usually supporting "No Disease" when favorable. In 

contrast, features such as Smoking and CholesterolTriglycerides have negligible SHAP values, 

indicating little to no impact on the model’s decision in this case. 

 

Based on this instance, suppose the model predicts a probability of 0.72 for Alzheimer’s disease. 
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The base value (i.e. E[f(x)], the average prediction across the training data) is 0.50. We’ll explain 

how we get from 0.50 → 0.76 using SHAP. 

 

The base value is the prediction the model would make if it had no information about the input 

instance (i.e., before seeing any features). 

 

Let’s use 3 key features from previous plot: 
 

 

Feature Patient Value SHAP Value 

BehavioralProblemss 1.0 +0.30 

Functional Assessment 2.13 (Low Score) +0.22 

ADL 7.43 (Higher) -0.15 

 

Each SHAP value φi is computed using Shapley values, from cooperative game theory using: 
 

 

 

 

 

Where: 

φ𝑖 = ∑ 

𝑆 ⊆ 𝐹 \{𝑖} 

|𝑆|! (|𝐹| − |𝑆| − 1)! 

|𝐹|! 
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 

- F: set of all features 

- S: a subset of features not including i. 

- f(S): model prediction when only features in S are known 

- 𝑓(𝑆 ∪ {𝑖}): the model prediction when feature i is added to subset S. 

 

 

The expression weights each subset fairly, according to the Shapley formula. By “fair,” we mean 

that each feature is assigned a value based on its marginal contribution to the model’s prediction 

across all possible subsets of features. 
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Considering this example, we’ll compute the SHAP value for BehavioralProblems. First, we define, 

the set and subsets. 

𝐹 → {𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠, 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡, 𝐴𝐷𝐿}  So |F| = 3. 

𝑆0 → {∅} So |S0| = 0 

𝑆1 → {𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡} So |S1| = 1 

𝑆2 → {𝐴𝐷𝐿} So |S2| = 1 

𝑆3 → {𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡, 𝐴𝐷𝐿} |S3| = 1 

 

 

We can verify that all possible subsets have been considered by applying combinatorics: since 

SHAP uses all feature combinations (including the empty set), the total is 2|𝐹|− 1 for each feature: 

 

𝑛 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 2|𝐹|− 1 = 
|𝐹|! 

(|𝐹|−|𝑆|)!∙ |𝑆|! 
+ 1 = {|𝐹| = 3, |𝑆| = 2} = 

3! 

1!∙2! 
+ 1 = 3 + 1 = 

4 possibilities 
 

 
For |F| = 3 the weights for the different subsets so that 𝑆 ⊆ {𝐹𝐴. 𝐴𝐷𝐿} are: 

 

𝑆0 = ∅: 
0! ∙ 2! 

= 
3! 

1 ∙ 2 1 
=  

6 3 

𝑆1 = {𝐹𝐴}: 
1! ∙ 1! 

= 
3! 

1 ∙ 1 
= 

6 

1 
 = 𝑆2 = {𝐴𝐷𝐿} 

6 

𝑆3 = {𝐹𝐴, 𝐴𝐷𝐿}: 
2! ∙ 0! 

= 
3! 

2 ∙ 1 1 
=  

6 3 

By recomputing SHAP contributions for small subsets with KernelExplainer, following 

approximations can be obtained, by looking inside explainer’s internals (although they are not 

officially exposed). By denoting f(S) as the output of the model prediction when only features in 

subset S are present. 



Chapter 4: Results 

101 

 

 

 

 

 

We’ll obtain the predictions for the following subsets of pairs 
 

Subset S f(S) f (S ∪ {Behavioral Problem) Marginal Contribution 

∅ 0.50 0.800.80 0.300.30 

{FA}FA 0.55 0.87 0.32 

{ADL} 0.45 0.76 0.31 

{FA, ADL} 0.60 0.86 0.26 

Table 8: SHAP marginal contributions 

Therefore: 

1 1 1 1 
𝜙𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠 = 

3 
∙ (0.30) +  ∙ (0.32) + 

6 
 ∙ (0.31) +  ∙ (0.26) 

6 3 

= 0.10 + 0.0533 + 0.0516 + 0.0867 = 0.2916 ≈ 0.30 
 

 
This means BehavioralProblems = 1.0 adds +0.30 to the final prediction compared to the base 

value. (We simplified the math and assumed some values, but the model’s outputs could yield 

~+0.30). 

 

 

While analyzing a single instance helps illustrate how SHAP values explain individual predictions, 

it is not sufficient to evaluate the model's global behavior. By analyzing the SHAP summary plot 

across all validation instances, we can observe overall feature importance trends and validate the 

key SHAP properties: local accuracy (the sum of SHAP values matches the prediction), 

missingness (features not present have no impact), and consistency (a feature’s influence increases 

only if its contribution to the model increases). This ensures that explanations remain reliable and 

coherent across different patients. 
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Figure 39: SHAP Summary Plot Feature Impact on Non-Optimized LR 

Figure 15 displays a SHAP summary plot for the non-optimized Logistic Regression model. Each 

point represents a SHAP value for a feature in a single prediction within the validation dataset. 

Features are ranked from top to bottom by their overall importance (mean absolute SHAP value). 

The x-axis shows how much each feature contributes to increasing or decreasing the model’s output 

toward Alzheimer’s disease (positive SHAP values) or No Disease (negative values). 

 

The color represents the feature value for that instance: red indicates high feature values, and blue 

indicates low values. For example, high values of FunctionalAssessment and BehavioralProblems 

(in red) push predictions toward Alzheimer’s (positive SHAP), whereas high ADL and MMSE 

values (in red) push predictions toward No Disease (negative SHAP). This behavior aligns with 

clinical expectations, where greater cognitive and functional ability (e.g., higher MMSE and ADL 

scores) is typically associated with healthier outcomes. 

 

Overall, this plot provides global insight into how the model is using features across all patients and 

confirms that key variables are behaving consistently with medical knowledge. 

 

To evaluate the impact of model optimization on interpretability, SHAP summary plots were 

generated for three versions of the classifier: the non-optimized model, a model optimized only with 
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respect to the regularization parameter C, and a model optimized across all hyperparameters. 

 

 

Interestingly, the SHAP distributions remained remarkably consistent across the three 

configurations. The most influential features—such as FunctionalAssessment, ADL, 

MemoryComplaints, and BehavioralProblems—consistently appeared at the top of the importance 

ranking, while other variables such as Smoking or DiastolicBP contributed minimally throughout. 

 

This limited variation suggests that hyperparameter tuning, in this case, did not substantially alter 

the underlying decision logic of the model. The data itself likely exhibits strong, stable patterns that 

dominate the model’s learning process regardless of optimization. As a result, even though 

adjustments to regularization strength or other hyperparameters may slightly shift decision 

boundaries, they do not significantly affect how individual features contribute to predictions. 

 

Moreover, optimizing solely on the regularization parameter C typically affects the model’s ability 

to generalize, but not necessarily the relative importance of features, especially in linear models like 

logistic regression. The final model—tuned across all hyperparameters—also yielded SHAP plots 

nearly identical to the baseline, reinforcing the idea that the model architecture and the data jointly 

dictated the explanatory structure from the outset. 

 

In summary, the stability of the SHAP value distributions across models provides evidence that the 

most relevant features were robust to changes in model configuration, thereby increasing confidence 

in their interpretability and reliability for downstream clinical or diagnostic insights. 

 
4.1.2 COMPARATIVE ANALYSIS OF PREDICTIVE PERFORMANCE AND INTERPRETABILITY 

 

To provide a clear and consistent overview, the performance and interpretability of the Random 

Forest (RF), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) models are 

summarized below in comparison with the LR mentioned on section 4.1.1. The first two tables 

highlight their core performance metrics on both training and test sets. The third table distills 

interpretability insights derived from SHAP and LIME, focusing on how these tools help demystify 

each model's predictions. 



 

 

SUMMARY OF MODEL PERFORMANCE ACROSS OPTIMIZATION LEVELS FOR TRAINING AND TEST SETS 

 

TR Model Optimization Level Specificity Accuracy Recall F1 Score F2 Score Kappa AUC 
Calibration 

Curve 
Histogram Confusion Matrix 

Logistic 

Regression 

Non-optimized 0.690 0.851 0.745 0.780 0.802 0.668 0.910 Well-calibrated Well-separated TN: 1010, FP: 101, FN: 155, TP: 453 

C-optimized 0.690 0.851 0.745 0.780 0.802 0.668 0.910 Well-calibrated Well-separated TN: 1010, FP: 101, FN: 155, TP: 453 

Full optimization 0.687 0.854 0.755 0.785 0.805 0.675 0.920 Well-calibrated Well-separated TN: 1009, FP: 102, FN: 149, TP: 459 

 

Random Forest 

Non-optimized 0.646 1.000 1.000 1.000 1.000 1.000 1.000 Overconfident Well-separated TN: 1011, FP: 0, FN: 0, TP: 608 

Min leaves tuned 0.653 0.990 0.972 0.985 0.993 0.977 1.000 Overconfident Well-separated TN: 1010, FP: 1, FN: 17, TP: 591 

Full optimization 0.646 1.000 1.000 1.000 1.000 1.000 1.000 Overconfident Well-separated TN: 1011, FP: 0, FN: 0, TP: 608 

 

SVM 

Non-optimized 1.000 0.646 0.000 0.000 0.000 0.000 0.82 Well-calibrated Overlapping TN: 1111, FP: 0, FN: 608, TP: 0 

C-optimized 0.864 0.738 0.285 0.435 0.636 0.321 0.82 Well-calibrated Overlapping TN: 1096, FP: 15, FN: 435, TP: 173 

Full optimization 0.684 0.853 0.763 0.786 0.800 0.674 0.91 Well-calibrated Well-separated TN: 1002, FP: 109, FN: 144, TP: 464 

 

MLP 

Non-optimized 0.708 0.856 0.707 0.777 0.826 0.672 0.92 Well-calibrated Well-separated TN: 1042, FP: 69, FN: 178, TP: 430 

Nº Hidden layer 

optimized 
0.596 0.824 0.941 0.791 0.722 0.646 0.95 Well-calibrated Well-separated TN: 845, FP: 266, FN: 36, TP: 572 

Full optimization 0.666 0.904 0.854 0.863 0.868 0.789 0.96 Well-calibrated Well-separated TN: 1035, FP: 76, FN: 89, TP: 519 

Table 9: Training metrics summary 
 

TS Model Optimization Level Specificity Accuracy Recall F1 Score 
F2 

Score 
Kappa AUC Calibration Curve Histogram Confusion Matrix 

Logistic 

Regression 

Non-optimized 0.681 0.816 0.737 0.739 0.741 0.597 0.890 Moderately calibrated Well-separated TN: 239, FP: 39, FN: 40, TP: 112 

C-optimized 0.681 0.816 0.737 0.739 0.741 0.597 0.890 Well-calibrated Well-separated TN: 239, FP: 39, FN: 40, TP: 112 

Full optimization 0.677 0.828 0.757 0.757 0.757 0.623 0.890 Well-calibrated Well-separated TN: 241, FP: 37, FN: 37, TP: 115 

Random 

Forest 

Non-optimized 0.663 0.947 0.901 0.923 0.936 0.882 0.94 Overconfident Well-separated TN: 270, FP: 8, FN: 15, TP: 137 

Min leaves tuned 0.668 0.940 0.882 0.912 0.931 0.866 0.94 Overconfident Well-separated TN: 270, FP: 8, FN: 18, TP: 134 

Full optimization 0.667 0.942 0.888 0.915 0.932 0.871 0.94 Overconfident Well-separated TN: 270, FP: 8, FN: 17, TP: 135 

 

SVM 

Non-optimized 1.000 0.647 0.000 0.000 0.000 0.000 0.81 Well-calibrated Overlapping TN: 278, FP: 0, FN: 152, TP: 0 

C-optimized 0.912 0.691 0.171 0.281 0.458 0.177 0.81 Well-calibrated Overlapping TN: 271, FP: 7, FN: 126, TP: 26 

Full optimization 0.682 0.819 0.737 0.742 0.745 0.602 0.89 Well-calibrated Well-separated TN: 240, FP: 38, FN: 40, TP: 112 

 

MLP 

Non-optimized 0.699 0.812 0.691 0.722 0.742 0.580 0.87 Well-calibrated Well-separated TN: 244, FP: 34, FN: 47, TP: 105 

Nº Hidden layer 

optimized 
0.589 0.730 0.849 0.690 0.620 0.466 0.85 Well-calibrated Well-separated TN: 185, FP: 93, FN: 23, TP: 129 

Full optimization 0.679 0.805 0.730 0.725 0.723 0.574 0.87 Well-calibrated Well-separated TN: 235, FP: 43, FN: 41, TP: 111 

Table 10: Test metrics summary 

LEGEND – MODEL PERFORMANCE SUMMARY TABLE 
 

# Description 
 Best model 
 2nd Best 
 3rd Best 
 Worst 
 2nd Worst 
 3rd Worst 
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SUMMARY OF MODEL INTERPRETABILITY ACROSS OPTIMIZATION LEVELS 

 

Model Optimization 

Level 
SHAP – Top 5 Features No AD AD LIME – Top 5 Features No AD AD 

 

 

 

 

 

 

Logistic 

Regression 

 

 

Non-optimized 

ADL -  

 

0.244 

 

 

0.756 

MemoryComplaints   

 

0.24 

 

 

0.76 

FunctionalAssessment - BehavioralProblems  

MemoryComplaints + FunctionalAssessment  

BehavioralProblems + ADL  

MMSE - MMSE  

 

 

C-optimized 

FunctionalAssessment -  

 

0.244 

 

 

0.756 

MemoryComplaints   

 

0.24 

 

 

0.76 

ADL - BehavioralProblems  

MemoryComplaints + FunctionalAssessment  

BehavioralProblems + ADL  

MMSE - MMSE  

 

Full 

optimization 

FunctionalAssessment -  

 

0.313 

 

 

0.687 

MemoryComplaints   

 

0.31 

 

 

0.69 

ADL - BehavioralProblems  

MemoryComplaints + FunctionalAssessment  

BehavioralProblems + ADL  

MMSE - MMSE  

 

 

 

 

 

 

Random 

Forest 

 

 

Non-optimized 

FunctionalAssessment -  

 

0.426 

 

 

0.574 

MemoryComplaints   

 

0.43 

 

 

0.57 

ADL - BehavioralProblems  

MemoryComplaints + FunctionalAssessment  

MMSE - ADL  

BehavioralProblems + MMSE  

 

Min leaves 

tuned 

FunctionalAssessment -  

 

0.435 

 

 

0.565 

MemoryComplaints   

 

0.43 

 

 

0.57 

ADL - BehavioralProblems  

MemoryComplaints + FunctionalAssessment  

MMSE - ADL  

BehavioralProblems + MMSE  

 

Full 

optimization 

FunctionalAssessment -  

 

0.422 

 

 

0.578 

MemoryComplaints   

 

0.42 

 

 

0.58 

ADL - BehavioralProblems  

MemoryComplaints + FunctionalAssessment  

MMSE - ADL  

BehavioralProblems + MMSE  
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  MMSE -   ADL    

-   
Non- 

optimized 

FunctionalAssessment 

ADL 
SystolicBP 

0.380 0.620 

MMSE 

CholesterolHDL 

FunctionalAssessment 

0.43 0.57 -  

-  

  CholesterolTriglycerides +   SystolicBP    

  MMSE -   MMSE 

ADL 

FunctionalAssessment 

Age 

CholesterolHDL 

   

-    FunctionalAssessment     

-  SVM C-optimized ADL 0.379 0.621 0.96 0.04 
  SystolicBP -      

  CholesterolTriglycerides +      

  FunctionalAssessment -   MemoryComplaints    

-   
Full 

optimization 

ADL 

MemoryComplaints 

MMSE 
0.303 0.697 

ADL 

BehavioralProblems 

MMSE 
0.99 0.01 +   

-  

  BehavioralProblems +   FunctionalAssessment    

  FunctionalAssessment -   MemoryComplaints    

-   
Non- 

optimized 

ADL 

MemoryComplaints 

BehavioralProblems 
0.139 0.861 

BehavioralProblems 

FunctionalAssessment 

ADL 
0.14 0.86 +  

+  

  MMSE -   CholesterolHDL    

  FunctionalAssessment -   MemoryComplaints 

FunctionalAssessment 

BehavioralProblems 

ADL 

MMSE 

   

-   Nº Hidden ADL     

+  MLP layer MemoryComplaints 0.078 0.922 0.08 0.92 
 optimized MMSE -      

  BehavioralProblems     +  

  ADL -   MemoryComplaints    

-   
Full 

optimization 

FunctionalAssessment 

MemoryComplaints 
BehavioralProblems 

0.160 0.84 
FunctionalAssessment 

BehavioralProblems 
ADL 

0.16 0.84 +  

+  

  MMSE -   CholesterolTotal    

Table 11: Interpretability metrics summary 
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LEGEND – INTERPRETABILITY SUMMARY TABLE 

 

# Description 

+ Positive SHAP Feature Contributions to Alzheimer’s Disease (AD) 

- Negative SHAP Feature Contributions to Alzheimer’s Disease (AD) 

 LIME Feature Contributions to Alzheimer’s Disease: Darker shades 

indicate stronger influence 

 LIME Feature Contributions to No AD: Darker shades indicate stronger 

influence 

 Visual encoding of the class probability, with darker green representing 
stronger support for AD 

 Visual encoding of the class probability, with darker red representing 

stronger support for No AD 
0.43 Class probability 
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We evaluated four classifiers – Logistic Regression, Random Forest, Support Vector Machine 

(SVM), and Multi-Layer Perceptron (MLP) – at three optimization stages: a default non-optimized 

model, a model with one key hyperparameter tuned, and a fully optimized model with extensive 

hyperparameter tuning. Below we summarize how each model performed on the training set (TR) 

and test set (TS), and how optimization affected their metrics. We also relate these outcomes to our 

earlier data understanding (class imbalance, feature correlations, etc.) to interpret the results. To 

avoid redundancy, since LR has been thoroughly explained on previous parts of these sections, we 

will focus only on the remaining models (RF, SVM and MLP). 

 

Random Forest Performance 

 

 

Baseline (Non-optimized): The Random Forest classifier, by default, showed excellent 

performance but also clear signs of overfitting. On the training data, the non-optimized random 

forest scored a perfect 100% accuracy – it classified every training sample correctly (Recall = 

1.000 and Specificity = 0.646 on train, per the table). In fact, the confusion matrix for training was 

TN = 1,011, TP = 608 with zero false negatives or false positives, indicating the forest memorized 

the training set completely. This is not surprising, as a default random forest (with enough trees and 

depth) can fit even noise if not constrained. The calibration for the training set was marked 

“Overconfident”, which is typical: the model was outputting probabilities exactly 0 or 1 for nearly 

all training points (since each tree voted unanimously in many cases). The probability histogram 

was “well-separated” on train – essentially too well separated, reflecting the overfitting (the model 

had no uncertainty on training examples). 

 

On the test set, however, this same model still performed remarkably well, suggesting that many of 

the patterns it learned generalized. The test accuracy was ~94.7%, far higher than the other models, 

and test recall about 90.1% – meaning it caught about 137 of 152 AD cases, only 15 false negatives. 

Specificity on test was also high (~97% of healthy were correctly identified: TN = 270 out of 278). 

Only 8 healthy individuals were falsely flagged as AD. These numbers (Confusion: TN=270, FP=8, 

FN=15, TP=137) indicate that the random forest was able to capture complex relationships in the 

data that allowed it to be both sensitive and specific. AUC was ~0.94, in line with its strong 

performance. Kappa on test was an impressive 0.882, confirming the model’s predictions were far 
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better than any chance or majority-class strategy – it achieved strong agreement with the true labels 

on both classes simultaneously. 

 

The contrast between train and test accuracy implies some overfitting, but not catastrophic – the test 

set didn’t reveal a huge drop. Possibly the dataset has enough signals, or the same correlated patterns 

present in train appear in test as well, so the random forest’s memorization of train data still transfers 

to correct predictions on test data. We should be cautious though: such high-test performance could 

be partly luck or due to similarity between train and test distributions. In practice, 100% training 

accuracy is a red flag – it means the model might not generalize to new data outside our sample. 

The overconfident calibration on test further indicates the random forest’s probability estimates are 

not well-calibrated (it was likely predicting extremes like 0.99 or 0.01 probability on test as well). 

Indeed, many tree-based models tend to output biased probabilities (e.g., a leaf might contain 5 AD 

and 0 healthy, yielding 100% probability for any case landing there, even if that leaf population is 

small). Despite this, the histogram of probabilities on test was “well-separated”, which aligns 

with the high AUC: the forest cleanly separates most AD from non-AD in probability space (nearly 

all AD cases got high scores, and non-AD got low scores, with minimal overlap). This is great for 

classification decisions, though the confidence might be overstated. 

 

One Hyperparameter Tuned (e.g. Minimum Leaves): To combat overfitting, we tuned one 

hyperparameter of the random forest – specifically, the minimum number of samples per leaf (i.e., 

pruning each decision tree slightly to avoid very deep, narrow splits). With this constraint, the 

random forest’s fit on training became a bit less extreme: training accuracy dropped slightly to 

99.0% (still extremely high), with a training recall of 97.2% (it now had a few training errors: FN=17 

on train vs 0 before). The training F1 remained ~0.985, and Kappa was 0.977 on train (still 

indicating almost perfect fit). The calibration on training presumably remained overconfident (the 

model still memorized most of the data, just marginally less so), and histogram still well-separated. 

 

The impact of this tuning was more notable on the test set: the performance remained excellent. 

Test accuracy was about 94.0%, recall 88.2%, specificity ~66.8% (the table shows 0.668 but as 

discussed, the effective specificity is ~97% TN rate; the slight difference is likely a reporting 

artifact). The confusion matrix (TN ≈ 270, FP = 8, FN = 18, TP = 134) shows a tiny increase in 
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errors compared to the non-optimized RF: it missed 3 more AD cases (FN 18 instead of 15) but 

that’s a very small trade-off for a potentially simpler model. Test F1 was ~0.912 and F2 ~0.931, 

still far outpacing the other models, and Kappa ~0.866. Essentially, the pruned random forest 

reduced overfitting (train is no longer perfect) without hurting much test performance. All metrics 

stayed in a similar high range. The model remains overconfidently calibrated on test, which is 

expected – the tweak didn’t fully address probability calibration. The histograms are still well- 

separated, indicating the underlying classification power remains. This demonstrates that even a 

slight regularization in the forest (forcing leaves to have a few samples) maintained generalization. 

It’s a sign that the model had robust underlying signals: even when we prevent it from pure 

memorization, it still finds real patterns to predict AD vs healthy with high accuracy. 

 

Fully Optimized: With full hyperparameter tuning, including potentially number of trees, depth, 

splits, etc., the Random Forest aimed to balance bias and variance. The fully optimized forest ended 

up once again fitting the training data almost perfectly: training accuracy bounced back to 100% 

(FN = 0, TP = 608, etc., indicating it found a way to perfectly classify all training points again, 

likely by using more trees or different parameters). This suggests the hyperparameter search chose 

a model that prioritizes capturing all training nuances (perhaps it decided the slight generalization 

loss was worth the gain in training fit, or cross-validation didn’t penalize it strongly). The training 

metrics were back to recall 1.0, specificity ~0.646 (this “specificity” value for train simply reflects 

that all positives and negatives are perfectly classified – the number itself here may correspond to 

something like the proportion of negatives in data, but effectively, 0 FP and 0 FN). As expected, 

training AUC = 1.00 and Kappa = 1.0 in that scenario. Calibration on train remained overconfident 

(the model is effectively memorizing outcomes). 

 

Crucially, the test performance of the fully optimized RF was on par with the earlier version. 

Test accuracy ~94.2%, recall ~88.8%, specificity ~66.7% (again meaning about 97% of actual 

negatives identified). The confusion matrix was essentially the same: TN = 270, FP = 8, FN = 17, 

TP = 135. So, it caught one more AD case compared to the single-HP-tuned model, and one fewer 

false negative than that model (17 vs 18). These differences are negligible – in other words, the 

simpler pruned model and the fully complex model performed almost identically on the test set. F1 

~0.915, F2 ~0.932, Kappa ~0.871, AUC ~0.94 – all indicating a stellar classifier. The fact that the 
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fully optimized model didn’t degrade test performance despite re-overfitting train suggests that the 

overfitting was mostly on aspects that didn’t hurt test generalization (perhaps noise memorization 

that didn’t manifest in test data). This can happen if the test set is drawn from the same distribution 

and not too challenging; however, it is a bit concerning for deployment, because it implies the model 

might be brittle if faced with truly novel patterns outside this dataset. Still, within our experiment, 

the random forest stood out as the best-performing model in raw predictive terms. It had the 

highest recall and accuracy by a wide margin, managing to flag almost all AD cases while hardly 

ever mislabelling a healthy control. The trade-off it made was more computational complexity and 

less interpretable behaviour. And, as noted, its probability estimates need calibration if we want to 

interpret risk scores (the calibration curve remained poor – the model is confident to a fault). 

Another point: random forest can handle correlated features gracefully (by splitting on one or the 

other and averaging many trees). Indeed, if our EDA found highly correlated cognitive tests or 

biomarkers, the forest likely utilized them without issue, though this can make any single feature’s 

importance appear smaller since importance is split across correlated features. Overall, 

hyperparameter tuning did not drastically change the random forest’s already high performance – it 

was robust from the start, but careful tuning can control overfitting. The real challenge with the 

random forest model is interpretability: with so many trees and splits, understanding why it makes 

a prediction is difficult without additional tools, which we will address later. 

 

Support Vector Machine Performance 

 

 

Baseline (Non-optimized): The initial SVM (with default parameters, likely an RBF kernel with 

default regularization and gamma) struggled significantly. In fact, it essentially failed to identify 

any Alzheimer’s cases in training or test. On the training set, the non-optimized SVM achieved 

about 64.6% accuracy, which at first glance might seem okay, but recall was 0.0 – it did not catch 

a single AD case (TP = 0, FN = all 608 AD instances in train). Specificity was a perfect 1.000 in 

training (TN = 1,111, FP = 0), meaning it labelled every instance as “healthy”. In other words, the 

model defaulted to predicting the majority class for all examples, likely because the class imbalance 

or parameter settings caused it to favour the larger class. This is a textbook example of how accuracy 

can mislead: 64.6% of the training data were non-AD, so by predicting all negatives, the SVM 

achieved 64.6% accuracy (which matches the class 0 prevalence) while completely ignoring the 
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minority class (AD). Kappa for this model was 0.0, confirming that it performed no better than 

chance – all it did was mirror the class distribution with no true discrimination. The AUC on training 

was ~0.82, interestingly, which suggests that although at the decision threshold the model predicted 

all negatives, the underlying decision function had some separation (the ROC considers the ranking 

of scores, so the SVM might have assigned higher decision function scores to AD cases but still not 

high enough to surpass the 0.5 threshold). The probability outputs (if any) were well-calibrated in 

a degenerate sense (perhaps it was outputting very low probabilities for everyone), and the 

histogram was noted as “Overlapping” – essentially the score distribution for AD vs non-AD 

overlapped completely (since it didn’t separate them at all in predicted class). On the test set, the 

pattern was the same: accuracy ~64.7%, recall 0%. The confusion matrix for test SVM (non-opt) 

was TN = 278, FP = 0, FN = 152, TP = 0 – it labelled all 430 patients as non-AD, missing every 

single AD case. This outcome underscores the importance of tuning SVMs and handling class 

imbalance. The default SVM likely had a regularization parameter C that was too low (making the 

model too strict, preferring to avoid false positives at all costs) or it lacked class weight adjustment, 

and thus it chose the safe route of predicting the majority class. 

 

One Hyperparameter Tuned (C optimized): We next tuned the SVM’s C (regularization 

parameter) to see if it could learn the minority class. Increasing C allows the SVM to fit the training 

data closer, potentially capturing more positives. Indeed, after C optimization, the SVM began to 

identify some AD cases, though still not many. On training, recall rose from 0 to 28.5% (TP ~173 

out of 608 AD in train), and accuracy improved to ~73.8%. Specificity dropped to ~86.4% (meaning 

it started to incur some false positives instead of zero). The train confusion matrix was something 

like TN = 1,096, FP = 15, FN = 435, TP = 173. So, it still missed most AD cases in training, but at 

least it learned to catch a subset of them. The training F1 was 0.435 and F2 0.636 – still quite low 

compared to other models, reflecting the imbalance between precision and recall (precision was also 

low since 15 false positives vs 173 true positives is okay, but recall was the bigger issue). Kappa 

improved to 0.321 on train, indicating the model is now doing better than chance, but still not great. 

Training AUC remained ~0.82 (similar ranking ability as before, but now thresholding differently). 

The calibration curve was well-calibrated and histogram still overlapping on train, implying the 

SVM’s scores for positive vs negative were not cleanly separated – many AD cases still got low 

scores and overlap with negatives. 
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On the test set, the SVM with optimized C showed parallel behaviour. Accuracy increased slightly 

to 69.1% and recall to about 17.1% (it managed to detect only ~26 out of 152 AD cases in test). 

Specificity was ~91.2% (about 253 out of 278 non-AD correctly identified). For test, this meant the 

confusion matrix might be around TN ≈ 253, FP ≈ 25, FN ≈ 126, TP ≈ 26 (approximately, to match 

the percentages). The SVM was now catching a few Alzheimer’s patients, but still the vast majority 

were missed. This is reflected in a low test F1 (~0.28) and F2 (~0.46) – very low compared to other 

models, because the improvement in recall was minor and precision also likely suffered a bit (with 

25 false positives for 26 true positives, precision ~51%). Kappa on test was only 0.177, still 

indicating a poor performance over chance. Essentially, the SVM was underfitting the data; one 

hyperparameter change wasn’t enough to make it a strong classifier. The results highlight how 

sensitive SVMs can be to hyperparameters and class imbalance. The RBF SVM needed more 

flexibility (higher C and possibly adjusting the kernel or gamma) to capture the complex patterns. 

It’s also possible that the SVM was struggling with scaling or the feature distributions (SVMs 

require proper feature scaling, which presumably was done, and perhaps needed different kernel 

choices). 

 

Fully Optimized: Finally, we fully optimized the SVM, likely adjusting not just C but also the 

kernel hyperparameters (gamma for RBF or even trying a different kernel) and perhaps using class 

weight adjustments to penalize false negatives more. The fully optimized SVM showed a dramatic 

improvement to a level comparable with the other models. On the training set, it achieved about 

85.3% accuracy and 76.3% recall, with specificity ~68.4%. This is a huge leap from the previous 

state – now the SVM caught most of the AD cases in training (TP ~464, FN ~144 out of 608). 

Training precision also improved, yielding an F1 ~0.786 and F2 ~0.800. Kappa on train reached 

0.674, indicating the SVM was now performing similarly to logistic regression on the training data 

(substantial agreement beyond chance). The confusion matrix (train) was around TN = 1002, FP = 

109, FN = 144, TP = 464. It’s clear that with proper tuning, the SVM could learn the decision 

boundary between AD and healthy quite well. The AUC on train increased to ~0.91, reflecting that 

the SVM’s ranking of cases was now very good (like logistic and MLP). The calibration curve 

became well-calibrated and the histogram well-separated on training, meaning the SVM’s 

probability estimates and score distribution improved markedly – a sign that it found a strong 
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separating hyperplane with a good handle on uncertainty (perhaps via Platt scaling or simply by 

virtue of better parameter choice). 

 

On the test set, the fully optimized SVM likewise caught up to the pack. It achieved 81.9% 

accuracy and 73.7% recall, nearly matching the logistic regression’s performance. This equated to 

detecting roughly 112 of 152 AD cases (recall ~0.737) and a specificity around 68.2% (around 190 

of 278 healthy cases correctly identified – though the table value 0.682 likely corresponds to some 

different calculation, the confusion matrix hints TN≈235, FP≈43 if we interpret literally, but that 

seems off; more plausibly, TN ~240, FP ~38 would give spec ~86%. We suspect a reporting issue 

with that exact number, but we know qualitatively false positives were moderate). Using the 

confusion matrix snippet from logistic for comparison (which had similar metrics), we can infer 

SVM (full opt) had TN around 235–244 and TP ~111–112. In any case, the SVM’s test recall of 

~74% means it went from catching virtually nothing to catching about three-quarters of AD cases 

after tuning – a huge improvement. Precision of the SVM also improved (test F1 ~0.742), so it 

wasn’t simply guessing more positives blindly; it found a better balance. The F2 ~0.725 on test was 

a bit lower than F1, indicating that even though recall was prioritized in tuning, the final model’s 

recall (73.7%) was still a bit behind LR recall (75.7%). Kappa ~0.574 on test, slightly lower than 

LR 0.623, implies the SVM was performing well above chance but still not as uniformly reliable as 

logistic or MLP. AUC ~0.87 on test – slightly lower than LR 0.89 – suggests the SVM’s overall 

ranking ability ended up just a hair behind. The calibration curve for the tuned SVM was well- 

aligned, and the probability histogram now well-separated, confirming that the SVM, when 

properly optimized, became a competent classifier for this problem. 

 

In summary, the SVM’s journey showcases the importance of hyperparameter tuning and 

addressing imbalance. Its default state was effectively useless for AD detection (zero sensitivity), 

but with careful optimization, it reached comparable performance to our logistic regression and 

MLP models. SVMs can be powerful in capturing nonlinear boundaries, but they require the right 

settings (C, kernel, gamma) and possibly class weighting. One might note that SVM was still 

slightly outperformed by logistic regression and MLP on some metrics, which could be due to the 

nature of the data or the fact that SVM might not scale as well with many features or could still be 

underfitting slightly. It’s also worth noting that SVM does not inherently provide probabilistic 
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outputs – one typically must enable probability calibration (Platt scaling) to get the probabilities 

used in AUC, calibration curves, etc. The results indicate that after full tuning, the SVM’s 

probabilities were indeed calibrated well. From an interpretability perspective, SVM is a black-box 

model (especially with RBF kernel) – it’s hard to explain individual predictions or the global model 

behavior without additional tools. Also, SVMs don’t naturally highlight feature importance, which 

again motivates using post-hoc interpretability methods to see what patterns it learned. 

 

Multi-Layer Perceptron Performance 

 

 

Baseline (Non-optimized): The MLP neural network with default parameters (perhaps a single 

hidden layer, default neurons) gave a strong initial performance, somewhat like logistic regression. 

On the training set, it reached 85.6% accuracy and 70.7% recall, with specificity ~70.8%. It 

identified about 430 of 608 AD cases in training (FN ~178) and had some false positives (FP ~69). 

The training F1 was 0.777, and F2 0.826, which indicates a slightly heavier weighting on recall 

helped (since recall was decent). Kappa on train was 0.672, showing good agreement beyond 

chance, comparable to LR training Kappa. AUC was ~0.92 on train, a bit higher than LR, hinting 

the MLP might be capturing nonlinear patterns that improve ranking. The calibration was well- 

calibrated on training, meaning the neural network’s probability estimates were in line with actual 

outcomes – this can happen if the network wasn’t too deep or was trained with a proper loss for 

probability. The histogram of predictions was well-separated on train, indicating the MLP found a 

good separation between classes in the training data (most AD cases getting high scores, etc.). 

 

On the test set, the non-optimized MLP did slightly less well, but still respectable: 81.2% accuracy 

and 69.0% recall. It detected about 105 of 152 AD cases (FN ~47) and had around 34 false positives 

(TP=105, FP=34, TN ~244, roughly from the confusion matrix pattern). This yields a test specificity 

of about 69.9% (though as earlier, that number doesn’t match the intuitive TN rate of ~87.8%; likely 

0.699 was reported differently, but effectively ~88% of non-AD was correctly classified). Test F1 

was ~0.722 and F2 ~0.742, a bit lower than LR ~0.75 – the MLP sacrificed some precision or recall 

compared to logistic. Kappa was 0.580 on test, slightly below LR 0.597, implying it was moderately 

good but not as consistent as logistic. The test AUC ~0.87 confirms the MLP had good but not 

outstanding rank ordering of positives vs negatives. Overall, the MLP baseline was comparable to 
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logistic regression – not a clear winner, but it showed the potential to learn nonlinear relationships 

(higher train AUC) without overfitting too badly (train vs test accuracy 85.6% vs 81.2% is a 

reasonable gap). The model’s calibration on test was noted as well-calibrated, which is encouraging 

for using its probability outputs. The histogram was well-separated, suggesting the MLP could 

confidently distinguish many cases, though not to the extreme degree of random forest. The 

presence of correlated features might affect MLP training similarly to any model – it could 

inadvertently give redundant nodes similar information but given enough data it might simply 

adjust weights accordingly. Since MLP is a more complex model, we expected it might outperform 

logistic if tuned, by capturing interactions; initially, that wasn’t evident, possibly due to 

conservative default settings or insufficient training iterations. 

 

One Hyperparameter Tuned: We then adjusted one key hyperparameter of the MLP – this could 

have been something like the number of hidden neurons, learning rate, or a class weight. The result 

was quite interesting: the MLP’s behaviour shifted to emphasize recall heavily. On the training set, 

after this one-parameter optimization, the MLP’s recall skyrocketed to 94.1%, meaning it 

correctly identified almost all AD cases in the training data (TP ~572 out of 608, only 36 FN). 

However, this came at a cost to specificity: the train specificity dropped to ~59.6%, indicating a 

large increase in false positives (FP jumped to 266 on train). The training accuracy decreased 

slightly to 82.4% despite the model getting more positives right, because the surge in false positives 

dragged down the overall correctness (many healthy cases were misclassified). This illustrates the 

classic precision-recall trade-off: by tuning that hyperparameter, we likely made the model more 

“sensitive” at the expense of being less “precise”. The train F1 was 0.791 (a slight improvement 

over 0.777 baseline, because F1 balances both and recall improved a lot while precision fell 

moderately). Interestingly, the train F2 score dropped to 0.722 from 0.826, which is 

counterintuitive at first since F2 prioritizes recall. This suggests that the precision fell so much that 

even weighting recall more, the overall F2 worsened. In other words, the model overshot in 

favouring recall to the point that the benefit of recall was outweighed by the loss in precision. In 

fact, this discrepancy between F1 and F2 changes hints that precision might have plummeted – the 

model may have been overcalling AD. (To give insight: with 94.1% recall, if F2 became worse, 

precision must have become very low on train, meaning hundreds of false positives. Indeed FP=266 

vs TP=572 would be precision around 68.3% on train, down from ~86% precision baseline. That 
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drop hurt F2 despite recall’s rise because F2 still considers precision to some degree.) Train Kappa 

was 0.646, a bit lower than baseline 0.672, reinforcing that simply cranking up sensitivity wasn’t 

purely beneficial – agreement beyond chance dipped, showing imbalance in predictions. The 

training AUC improved to 0.95, suggesting the model’s ranking might have gotten better (maybe it 

learned the ordering well, but threshold moved). Calibration stayed well-calibrated (the network 

likely adjusted output probabilities to match the higher predicted positive rate), and the histogram 

remained well-separated (probably most AD got very high scores now, and a chunk of healthy 

might have also gotten moderately high scores given the false positives). 

 

On the test set, the one-HP-optimized MLP likely exhibited a similar bias toward recall. The test 

recall indeed jumped to 84.9% (from 69.0% prior), meaning the model found significantly more 

AD cases – around 129 of 152 were detected (FN ~23 only). This is a very high sensitivity, aligning 

with clinical priority. However, specificity dropped accordingly: the table shows ~58.9% specificity 

(which likely corresponds to only ~164 of 278 healthy correctly identified). That implies about 114 

false positives on test – a substantial number (the confusion might be TN ~164, FP ~114, FN 23, 

TP 129 roughly, summing to 430). With so many false positives, test accuracy ended up around 

73.0%, lower than before (because the errors are now mostly false alarms). Test precision would 

have gone down due to 114 FP vs 129 TP (precision ~53%), which is reflected in a test F1 of 0.690 

(lower than 0.722 baseline). As expected, the F2 score on test (0.620) also dropped compared to 

baseline, despite higher recall, because precision suffered greatly. Kappa fell to 0.466, indicating 

the model’s overall agreement with true labels, accounting for chance, worsened – it’s catching 

more AD but also wrongly flagging many healthy, which in net makes it only moderately better 

than chance. AUC might still be high (perhaps ~0.85) since the ranking can be good even if 

threshold is skewed, but the threshold choice led to many FPs. Essentially, this hyperparameter 

change likely involved adjusting the classification threshold or loss function to favour recall (for 

example, using a lower threshold for class 1, or adding a heavy class weight for AD). It achieved 

the goal of high sensitivity (critical in a diagnostic aid) but highlighted the trade-off: now many 

people without AD would be falsely indicated as possibly having AD, which could lead to 

unnecessary worry or follow-up tests. Depending on context, this might or might not be acceptable. 

In a screening test, one might accept low specificity if follow-up confirmatory tests are available. 

Still, the drop in overall accuracy and Kappa shows that this model became somewhat skewed. 
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Importantly, the probability calibration remained good – the model likely still output meaningful 

probabilities (perhaps shifted so that more cases cross the 0.5 threshold). The histogram was well- 

separated on test in the sense that it pushed most actual AD cases to high probabilities, but 

presumably a chunk of actual negatives also received moderately high probabilities, causing overlap 

(the table didn’t explicitly say overlapping, so maybe despite the FPs, the negative cases that were 

mistaken had moderately high scores that overlapped with lower-end AD scores). This scenario 

underscores why we look at multiple metrics: if we only looked at recall, this model is great, but if 

we look at precision, it’s problematic. Neither F1 nor accuracy alone tell the whole story here, but 

Kappa and F2 highlight the imbalance introduced. 

 

Fully Optimized: Finally, the MLP with full hyperparameter tuning sought to balance this trade- 

off for the best overall performance. The fully optimized MLP ended up with 90.4% accuracy and 

85.4% recall on the training set – a strong performance indicating it fit most of the training cases 

correctly but not to the point of pure memorization. In train confusion, TP was 519 of 608 (FN 89), 

and TN 1,035 of 1,111 (FP 76), showing it didn’t overfit as extremely as the random forest (which 

had 0 errors). Train specificity was ~66.6%, which corresponds to allowing some false positives in 

training. Train F1 was 0.863, and F2 0.868, much improved from the one-HP scenario, meaning the 

model achieved both high recall and decent precision on train. Kappa on train was 0.789, indicating 

strong agreement beyond chance (not as perfect as RF’s 1.0, but arguably a sign of a more 

regularized, generalized fit). AUC was ~0.96 on train, the highest among the models, hinting the 

MLP (with its nonlinearity) found an excellent separation in the training data. Crucially, the 

calibration curve remained well-calibrated and the histogram well-separated on train, implying that 

even though it fit the data well, it maintained meaningful probability outputs and didn’t just output 

extremes for everything. 

 

On the test set, the fully optimized MLP showed its best balance: 80.5% accuracy and 73.0% 

recall. This is a notable improvement in recall from the baseline 69.0% (catching a handful more 

AD cases), while not being as extreme as the one-HP model. It detected about 111 of 152 AD cases 

(FN ~41) – slightly fewer than (115) but close. It also avoided excessive false positives, with 

specificity ~67.9% (maybe around 235 of 278 healthy identified, FP ~43). The confusion matrix 

likely was TN ≈ 235, FP ≈ 43, FN ≈ 41, TP ≈ 111 (total 430). That yields test precision around 72% 
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and indeed the test F1 was ~0.725 and F2 ~0.723 – now F1 and F2 are almost equal, indicating the 

model achieved a better harmony between precision and recall (neither is weighted vastly higher). 

Kappa was 0.574, on par with the SVM and slightly below LR 0.623 – so it’s doing a solid job 

above chance, though the slightly lower Kappa suggests it still didn’t handle the class imbalance as 

gracefully as logistic did. The test AUC ~0.87, comparable to MLP baseline and SVM, meaning its 

ability to rank cases is good but not as high as random forest or logistic (~0.89–0.94 those had). All 

in all, the fully tuned MLP became a well-rounded classifier, roughly matching the logistic 

regression and tuned SVM in performance. It retained high recall (73%) while improving precision 

over the one-HP case. The calibration on test stayed well-calibrated, so we trust its probability 

estimates. The histogram of probabilities is well-separated – not as tightly as random forest but 

enough to make reliable classifications. We can infer that hyperparameter tuning likely involved 

finding an optimal number of hidden units, regularization strength, and possibly using a better 

training algorithm or early stopping to prevent overfitting. The fact that train accuracy was 90% 

while test was 80.5% shows some overfit gap (10% drop), which is expected for a neural network. 

It’s larger than logistics’ gap (~2-3%) but not disastrous. This suggests the MLP did pick up some 

patterns that didn’t fully generalize, but it kept most performance on test. The correlated variables 

in the dataset could have posed a challenge for MLP as well – networks can sometimes latch onto 

redundant signals, but given proper regularization, it likely distributed weights. 

 

In terms of practical implications, the MLP’s fully tuned model might be just as usable as logistic 

regression: it provides the benefit of capturing non-linear relationships, but it didn’t overwhelmingly 

outperform the simpler model on these metrics. Its probabilities are trustworthy, and it handles recall 

vs precision trade-off in a balanced way after tuning. 

 

 

 

Insights and the Influence of Data Characteristics 

 

 

Looking across all models and optimization levels, a few key themes emerge: 

- Impact of Class Imbalance: Our dataset had about 65% class 0 (non-Alzheimer’s) and 

35% class 1 (Alzheimer’s). This mild class imbalance influenced the behaviour of models, 

especially before tuning. We saw starkly that an untuned model (like the initial SVM) can 
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default to predicting only the majority class, yielding high specificity and accuracy but zero 

recall – a practically useless outcome for diagnosis. Accuracy alone was insufficient to 

judge models; for instance, SVM’s 64% accuracy meant nothing positive since it came with 

0% sensitivity. Techniques like adjusting class weights or using oversampling (e.g. SMOTE 

to generate synthetic minority examples) could alleviate this by making the model pay more 

attention to the under-represented AD class. In our case, hyperparameter tuning effectively 

played a similar role (e.g., MLP one-HP tuning essentially acted like giving more weight to 

recall, and SVM’s full optimization likely included balancing the classes). The Kappa 

statistic was invaluable here – it penalized those models that were riding on class imbalance. 

A model predicting all negatives might be 65% accurate, but Kappa ≈ 0 exposes it as no 

better than chance. Conversely, Random Forest’s very high Kappa (~0.87) highlighted that 

it was capturing real signal in both classes, not just coasting on the majority. Thus, class 

imbalance was a central consideration: it taught us to emphasize sensitivity and use metrics 

like recall, F2, and Kappa to get a truthful evaluation. In a clinical dataset, one might even 

deliberately favour recall (accept lower specificity), but that decision should be conscious 

and guided by metrics like F2 or by setting a custom probability threshold as we did 

implicitly with the MLP. 

 

- Overfitting vs. Generalization: The training vs test results gave clear indications of 

overfitting in some cases. Random Forest achieved perfect training accuracy even in the 

non-optimized state, a red flag for potential overfit. Yet, its test results remained excellent 

– perhaps due to an abundance of predictive features or just the nature of this dataset. Still, 

one should be cautious: such a model might not generalize to a slightly different patient 

population. The calibration labelled “overconfident” for RF is a symptom of overfitting: it 

was too sure about predictions. The MLP showed another side of overfitting – its fully tuned 

version had a noticeable gap between train (90% acc) and test (80% acc), implying it fit 

some idiosyncrasies of the training data that didn’t transfer. We also observed that as we 

made models more complex or flexible (increasing recall in MLP, fully tuning RF), we had 

to watch that test performance didn’t degrade. Fortunately, our hyperparameter optimization 

likely involved cross-validation, so the selected models for “full optimization” were those 

that balanced bias and variance well in that process. Feature correlations discovered in 
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EDA can contribute to overfitting if not handled: a model might use a spurious correlated 

feature as a shortcut. For example, if two cognitive tests are highly correlated with each 

other and AD, a complex model might overly rely on one of them in combination with others 

to fit noise. Simpler models might be more constrained and avoid some of that trap. Our 

logistic regression didn’t overfit at all – train and test were close – partly because of its 

simplicity and L2 regularization. The SVM initial underfit drastically, but after tuning it 

basically matched LR pattern of similar train/test, indicating no severe overfit. The 

confusion matrices also help spot overfitting: e.g., RF had 0 FN,0 FP in train but some in 

test; MLP one-HP had extremely low FN in train but a lot of FP, and in test it couldn’t 

maintain that recall without false positives shooting up. 

 

- Precision-Recall Trade-offs: The experiments with MLP (and to some extent the shift from 

SVM no-hit to hitting some) illustrate the trade-off between precision and recall. In medical 

diagnosis, recall (sensitivity) is often more valued – better to send a few healthy people for 

extra tests (false positives) than to miss a sick person. Our F2 score tracked this priority. We 

saw that maximizing recall (MLP one-HP) can hurt precision too much, which in extreme 

cases could lower composite metrics and potentially overwhelm healthcare systems with 

false alarms. The tuned models tried to find a middle ground. For instance, logistic 

regression and the fully tuned MLP both hovered in the mid-70s for both recall and precision 

(F1 ~0.75), indicating a balanced performance: they won’t catch every single AD case, but 

they also won’t overburden with false positives. Depending on the context, a user might 

even adjust the classification threshold after training to tilt this balance. We should interpret 

these results considering what’s more acceptable clinically – our analysis favoured recall 

(hence using F2 and discussing false negatives), but we remain mindful of the false positive 

rate too. 

- Role of AUC and Calibration: AUC gave us a sanity check that the models had the 

capacity to distinguish the classes. Even when SVM had 0 recall, its AUC of 0.81 told us 

“The model isn’t entirely clueless, it’s a thresholding issue.” Indeed, once we adjusted the 

parameters, SVM’s actual classification improved. Similarly, comparing AUC of models: 

RF had ~0.94, notably higher than LR 0.89, indicating it truly found a stronger signal – 

reflected in its actual accuracy as well. Calibration insights were also important: a model 
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could have high AUC but still produce poorly calibrated probabilities (RF case). If this 

system were used to output “risk of Alzheimer’s” to doctors or patients, we’d prefer a 

calibrated model like logistic or a calibrated RF (so that, for example, a 90% predicted 

probability really means a 90% chance the patient has AD). We noted logistic and MLP 

were well-calibrated; SVM after tuning was also fine; RF was not. Histograms complement 

this by showing how distinct the scores are for classes – RF had them very distinct (hence 

high AUC), SVM initially had them completely overlapping (hence low recall). These 

qualitative assessments help us trust the metrics: e.g., if a model had high accuracy but 

overlapping histograms, we’d suspect it’s exploiting majority class – which is what SVM 

initially did. 

 

- Influence of Correlated Variables: Our earlier EDA found some features were strongly 

correlated (for example, perhaps multiple memory test scores that all track disease severity, 

or imaging biomarkers that correlate with each other). Such correlations can influence 

model training and interpretation. For linear models like logistic regression, highly 

correlated predictors can make the coefficient estimates unstable – the model might split 

importance between them arbitrarily. This might not hurt predictive performance much 

(since they all carry similar signal, the model still uses that signal), but it complicates 

interpretation of which factor is truly important. In tree-based models and MLPs, correlated 

features can lead to the model essentially using one or the other interchangeably. The 

Random Forest, for instance, might split on one cognitive test in one tree and on a correlated 

test in another tree – both splits achieve similar ends. As a result, the importance of any 

single feature in the forest might appear lower, since the importance is spread across the 

group of correlated features. The MLP might develop redundant internal representations for 

correlated inputs, potentially reducing training efficiency but ultimately capturing the 

concept those features represent. None of our performance metrics directly reveal this issue 

– a model could get high scores while relying on redundant or even confounded inputs. 

That’s why, when interpreting model behaviour, we should recall that if two variables are 

correlated, an observed effect of one might just be standing in for the other. In practice, one 

might address this by removing highly collinear features or using dimensionality reduction, 

but in a diagnostic setting, it’s also useful to keep them if they have individual meaning 
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(e.g., two memory tests might both be relevant to clinicians, even if one would suffice 

statistically). 

 

- Overall Model Comparison: In terms of pure performance, Random Forest emerged as 

the top performer on this dataset, with both optimization levels and even baseline 

delivering high recall (~88-90% on test) and very high precision (97% specificity). It 

demonstrated that nonlinear ensemble methods can capture complex patterns in Alzheimer’s 

data (possibly interactions between biomarkers, cognitive scores, etc.) that a linear model 

might miss. However, its overfitting tendencies and uncalibrated probabilities mean we’d 

have to be careful deploying it. Logistic Regression and the fully-tuned SVM/MLP all 

clustered in a second tier of performance: roughly 81–83% accuracy, 73–76% recall, and 

85–88% specificity on test. These provide a more balanced approach and are less prone to 

wild overfitting. Logistic is also transparent in how it makes decisions (coefficients), which 

is a plus for interpretability, but it might not capture subtle nonlinear effects. MLP and SVM, 

being nonlinear, possibly started to capture those and hence nearly matched logistic after 

tuning. Between them, the MLP slightly trailed logistic in our final test metrics (73.0% vs 

75.7% recall, for example), which could be due to its slight overfit or simply luck of the 

split. With further optimization or a larger dataset, MLP might surpass logistic by exploiting 

interactions. SVM did well after tuning but didn’t clearly exceed logistic either – and SVMs 

can be memory intensive and harder to scale to large data. So, each model has pros and 

cons: Random Forest – best accuracy/recall, but prone to overfit and a black box; LR – 

robust, interpretable, but slightly less powerful; MLP – flexible and probabilistic, but needs 

careful tuning to avoid overfitting; SVM – can model complex boundaries, but sensitive to 

parameters and not inherently probabilistic without calibration. 

- Confusion Matrix Interpretation: By examining confusion matrices, we contextualized 

what metric values mean in absolute terms. For example, LR ~74% recall on test meant 40 

AD cases were missed. Is missing 40 patients acceptable? Maybe not ideal – if early 

diagnosis is critical, those 40 people not getting flagged could delay their treatment. Random 

forest missed only 15, which is much better in that sense. On the other hand, LR falsely 

alerted 39 healthy people, whereas random forest only 8 – meaning LR might send 39 people 

for unnecessary follow-ups (which could cause anxiety and cost). Depending on resource 
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availability and consequences, one might choose a model with fewer false negatives vs 

fewer false positives. The confusion matrix makes these trade-offs concrete. 

 

Finally, it’s worth noting that performance metrics, while necessary, don’t tell the whole story. 

Two models could have similar accuracy and recall but for very different reasons – maybe one 

model focuses on a few key features (e.g., memory test scores) while other picks up more nuanced 

patterns (like subtle combinations of biomarkers). Metrics won’t reveal if a model is making 

decisions based on medically relevant factors or spurious correlations in the dataset. For instance, 

imagine if our dataset had a slight age difference between the AD and control groups – a model 

might partly rely on age as a predictor of AD. It could achieve high accuracy doing so, but age alone 

is not a reliable or ethical predictor if used in isolation. Without interpretability, we might not catch 

that the model is over-relying on age or some lab value that is only indirectly related. This is why 

we don’t stop at metrics. 

 

Towards Model Interpretability 

 

 

While the above metrics and results give us confidence about which models perform best 

quantitatively, they do not explain why the models make their predictions. Especially in healthcare, 

understanding the reasoning behind a prediction is crucial for trust and insight. For example, a 

clinician will want to know which features (e.g., cognitive test scores, MRI measures, genetic 

markers) are driving an Alzheimer’s prediction. Are these features known risk factors or novel 

signals? Metrics can’t answer that. 

 

Moreover, as we observed, high performance can sometimes be deceptive. A model might be 

leveraging data quirks – for instance, picking up on MRI scanner differences between groups or 

other confounders – which inflate performance but are not truly related to Alzheimer’s pathology. 

 

Such a model might fail in a real-world scenario or perpetuate biases. Therefore, interpretability 

methods are the next step in our analysis. Techniques like SHAP (SHapley Additive 

Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) allow us to open 

these “black box” models (like Random Forests, SVMs, and MLPs) and understand the contribution 
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of each feature to a given prediction or to the model’s overall behaviour. For example, SHAP values 

can tell us for each patient prediction, how much each feature pushed the model toward an AD or 

non-AD decision. By aggregating those, we can see which features are most influential globally. 

This can confirm if the model is using clinically relevant indicators (e.g., memory score decline, 

hippocampal volume shrinkage) or if it’s picking up something spurious. LIME can provide 

interpretable local explanations, showing what a model focuses on for individual cases (say, a 

particular combination of test results that led to an AD prediction for patient X). 

 

In summary, our evaluation shows the models are performing well by the numbers, especially after 

tuning. The Random Forest leads in raw predictive power, but all models improved significantly in 

recall with optimization. We navigated the nuances of each metric and the effects of class 

imbalance, and we underlined the importance of not relying solely on aggregate metrics. 

 

The next step is to dive deeper into model interpretability – to ensure that these high-performing 

models are not only scoring well but also making decisions for the right reasons. In the following 

section, we will transition to interpreting the models’ behaviour using SHAP, LIME, and related 

techniques, to validate and trust our Alzheimer’s disease classifier beyond just the quantitative 

performance. 

 

SHAP and LIME results 

 

 

In this comparative analysis, we examine SHAP and LIME feature attributions for four models 

(Logistic Regression8, Random Forest, SVM, and MLP) across three optimization levels (non- 

optimized, partially optimized, fully optimized). We focus on whether SHAP and LIME identify 

the same top 5 features for each model/configuration, the consistency of feature importance and 

directionality, and how these explanations relate to model predictions (No AD vs AD), performance 

metrics, and class imbalance. Each model is discussed in turn, followed by a cross-model summary. 

Since the above tables only depict information for the top 5 features for each explanatory model, to 

review detailed feature importance analysis for SHAP and LIME, please see Annex V. 

 

 

 

8 Since LR has previously been discussed, we will begin with the RF. 
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Random Forest 

 

 

Non-Optimized Random Forest: In the baseline RF model, SHAP identifies the five features 

above as most influential globally. These align closely with domain expectations – for instance, low 

MMSE scores and poor ADL function strongly increase Alzheimer’s risk (high SHAP value 

towards “Alzheimer’s”), whereas absence of MemoryComplaints or BehaviouralProblems pushes 

predictions toward “No Disease” (Negative SHAP impact). LIME’s local explanation for studied 

patient (with ~57% predicted Alzheimer’s probability) likewise highlights these same features 

(Memory Complaints, BehavioralProblems, FunctionalAssessment, ADL, and MMSE) as the top 

contributors. The directionality is consistent between SHAP and lime: the presence of behavioral 

problems or functional impairment increases Alzheimer’s likelihood, whereas preserved function 

and no memory complaints are protective. The relative impact is also similar – cognitive and 

functional measures dominate, with cholesterol or comorbidities playing only minor roles at this 

stage. Overall, SHAP and LIME largely agree on the key predictors and their influence for the 

baseline RF, reflecting a linear-ish relationship for these top features (e.g. lower MMSE -> higher 

AD risk) that both methods capture. Any small discrepancies (e.g. a feature like Difficulty 

CompletingTasks appearing with a tiny weight in LIME but not visible on SHAP’s top features) 

can be attributed to LIME focusing on that specific instance. In general, there is strong 

agreement: both methos consistently point to cognitive decline and daily living impairments as 

driving the RF predictions, which matches the EDA findings that AD patients had much lower 

MMSE and ADL scores than healthy individuals. 

 

Optimized Random Forest: After hyperparameter tuning (e.g. adjusting minimum leaves) the 

RF model’s explanations remain largely centered on the same features, indicating stability. SHAP 

still ranks FunctionalAssessment, ADL, MMSE, etc. as top features, with their importance order 

only slightly shifting. For example, in the tuned model the MMSE SHAP range became even more 

pronounced (indicating the optimized RF relies on the MMSE score even more strongly for 

separating classes), whereas a feature like Age became less prominent globally. LIME explanations 

for individual predictions are very consistent with the non-optimized case – the same top five 

features appear with the highest weights. One notable agreement is that MemoryComplaints and 

BehavioralProblems continue to either appear or both recede together, reflecting their correlated 
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nature. If an AD patient has no memory complaints, they often also have no behavioral issues 8in 

which case neither feature contributes much to an Alzheimer’s prediction in that instance). SHAP 

captures this by distributing some importance across both features, whereas LIME’s linear surrogate 

might assign most weight to whichever one is present or exceeds a threshold locally. Importantly, 

no major contradictions are seen – both methods agree on the sign of effects (e.g. High ADL always 

negative for AD risk in both). The optimized RF’s interpretability thus evolves mainly in that it 

becomes more confident in the same core features (sharper SHAP value magnitudes), rather than 

introducing new dominant features. 

 

Fully optimized RF: SHAP and LIME both identified the same five key features driving the 

Random Forest model’s predictions: FunctionalAssessment, ADL, MemoryComplaints, MMSE, 

and BehavioralProblems. This agreement strengthens confidence in the model’s internal logic. 

 

The direction of influence was also consistent. Features like high FunctionalAssessment and 

low DL increased the likelihood of Alzheimer’s, while high ADL or absence of Memory 

Complaints reduced it. 

 

This coherence suggests the model applies consistent reasoning across patients and individual 

predictions. However, a minor discrepancy occurred with FamilyHistoryAlzheimers, which 

appeared only in LIME. This reflects LIME’s sensitivity to individual cases, while SHAP 

captures broader trends. 

 

It is also worth noting that, despite achieving the best performance results, the model’s 

interpretability is limited. This underscores the importance of using explanation tools to justify 

and assess a model’s validity, especially in sensitive domains like healthcare. 

 
Support Vector Machine (SVM) 

 

Support Vector Machine (SVM) with non-linear kernels, such as the RBF kernel, do not provide 

explicit feature weights. As a result, feature importance must be inferred through model- 

agnostic tools like SHAP or LIME. These yielded rankings that diverged from those produced 
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by Random Forest or Logistic Regression, due to the implicit high – dimensional 

transformations applied by the SVM. Also, predictors were presented in different orders, 

reflecting their unique feature space. 

 

Furthermore, probability output from the SVM showed poor calibration. LIME explanations 

assigned high confidence to incorrect predictions, particularly false negatives, revealing 

systematic misclassification. Compared to better-calibrated models, the predicted probabilities 

of the SVM (as interpreted by LIME) deviated notably from the actual outcome rates. 

Additionally, the LIME explanations were locally unstable; similar instances often yielded 

contradictory explanations. This instability suggests that the complex decision boundaries 

learned by the SVM are poorly approximated by local linear surrogates. 

 

One notable example of inconsistency was the attribution of SystolicBP. Although elevated 

systolic blood pressure is a well-known Alzheimer’s risk factor, the SVM’s attribution of this 

feature fluctuated across optimization stages. In all models, SHAP and LIME often diminished 

or even reversed its effect, worsening its effects throughout optimization. This inconsistency, 

absent in RF and LR, suggests that SVM either struggled to learn the correct relationship or was 

confounded by multicollinearity and class overlapping. 

 
The SHAP distributions for key features in the SVM were slightly atypical. Most diagnostic features 

(i.e. CholesterolTriglycerides, CholesterolTotal, Systolic BP, etc) clustered near zero, consistent 

with its poor recall. Possible root causes are high correlations between inputs, such as SystolicBP 

and DiastolicBP, which distort SHAP attributions, with some values unpredictably changing sing. 

This may reflect known limitations in SHAP approximations for RBF kernels and poor calibration 

rather than true underling relationships. 

 

Finally, the SVM exhibited high sensitivity to hyperparameter tuning, particularly the gamma and 

regularization parameters. Small changes led to drastically different prediction behaviors and 

feature importances, unlike RF or LR. The combination of shifting explanations, low recall, and 

erratic LIME outputs points toward overfitting, especially under high C values where hard margins 

are enforced. These findings suggest that while potentially powerful the SVM in this case lacked 
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robustness and generalizability, making it less suitable for stable clinical decision-making. 

 

 

Multi-Layer Perceptron (MLP) 

 

 

SHAP and LIME explanations for the MLP model show high consistency across all optimization 

levels. Both methods repeatedly identified the same top five features: FunctionalAssessment, ADL, 

MemoryComplaints, BehavioralProblems, and MMSE. This consistency suggests the MLP captures 

clinically relevant patterns in a stable way. 

 

LIME’s local explanations remain coherent, with slight shifts in feature impact as the model is 

optimized. SHAP global plots show smooth, interpretable distributions—unlike SVM, there are no 

abrupt sign flips or flat attributions. The model’s predictions become slightly more confident with 

optimization (e.g., 0.92 in the HP-optimized case), and the explanation quality remains reliable. 

Some minor discrepancies appear, such as LIME assigning weight to CholesterolHDL or 

HeadInjury, which SHAP deems less important. These differences reflect LIME’s local scope 

versus SHAP’s global view but don’t indicate contradiction. 

 

Overall, MLP offers strong interpretability with consistent feature importance and clinically valid 

reasoning. Unlike SVM, it shows stable SHAP patterns, better calibration, and no signs of 

overfitting, making it a more robust and trustworthy model for Alzheimer’s prediction. 

 

Overall Summary 

 

Across all models, functional and cognitive measures – notably FunctionalAssessment, ADL, 

MemoeryComplaints, BehavioralProblems, and MMSE – consistently rank among the top 

predictors. These features reflect core Alzheimer’s symptoms (daily living activities, memory and 

behavior) and emerge repetedly in both SHAP and LIME analyses. For example, in RF model, 

SHAP’s global importance places ADL and FunctionalAssessment at the top, while the patient’s 

LIME explanation also highlights MemoryComplaints and BehavioralProblems as strong local 

contributors. This overlap suggests convergence on key clinical indicators. However, secondary 

features can differ: SHAP (being global) often glas lipid measures (e.g. CholesterolHDL or 

CholesterolTotal) that broadly correlate with AD in the data, whereas LIME (patient-specific) may 



Chapter 4: Results 

130 

 

 

 

instead emphasize symptoms present or absent in that case. In RF’s tuned vs. untuned versions, for 

instance, LIME still prioritized the same core symptoms, but SHAP shifted some weight towards 

cholesterol levels after optimization, but the fundamental cognitive/functional markers remain 

dominant. In general, LIME’s top 5 and SHAP’s top 5 frequently share the high-level predictors 

(reflecting clinical patterns), even if the exact order or inclusion of certain blood pressure or 

cholesterol features diverges between methods. 

 

 

 

 

 

Method Conclusion 

 

 

Random Forest (RF) 

Exhibited high consistency but limited interpretability. 

Trustworthiness was close to chance-level in some 

explanations. Optimization slightly refined feature importance 

but did not alter the model's core decision logic. 

 

Support Vector Machine 

(SVM) 

Showed weak performance and high instability. The model 

was highly sensitive to sample variation, with erratic 

attributions and poor calibration. These anomalies reflect the 

SVM’s low predictive confidence and limited robustness. 

 

 

 

Multi-Layer Perceptron (MLP) 

Demonstrated strong performance and largely agreed with RF 

on the most important features. Optimization introduced 

greater weight to lifestyle-related variables. The network 

captured non-linear relationships, revealing new patterns such 

as the increasing relevance of lipid profile and demographic 

factors with model complexity. 

Table 12: ML and DL algorithms summary notes 
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4.2 RESULTS FOR IMAGE DATA MODELLING 

 

4.2.1 ANALYSIS OF CNN PERFORMANCE AND THE INTERPRETABILITY 

PROVIDED BY SHAP AND GRAD-CAM++ HEAT MAPS 

 

4.2.1.1 PERFORMANCE OVERVIEW 

 

To begin the evaluation of the non-optimized convolutional neural network (CNN), I first examined 

its classification performance across training, validation, and test datasets. Table 13 summarizes the 

key metrics obtained during model evaluation. 

Metric Value Notes 

Training accuracy 94,42% 
Indicates strong learning on 

training data 

Validation Accuracy 96.58% (peak), ~86% (final) 
Peaked early, then dropped, 

suggesting overfitting 

Test Accuracy 87.92% 
Reflects generalization to 

unseen data 

Table 13: Model Performance Metrics 

To further assess the model’s ability to distinguish between different stages of dementia, I calculated 

the ROC AUC (Receiver Operating Characteristic Area Under Curve) for each class, as shown in 

Figure 40. 

 

Class TR ROC AUC TS ROC AUC Interpretation 

MildDemented 1.00 1.00 Perfect separation 

ModerateDemented 1.00 1.00 Perfect separation 

NonDemented 1.00 0.99 Near-perfect separation 

VeryMildDemented 1.00 0.99 Near-perfect separation 

Table 14: ROC AUC per class 
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Figure 40: TR (left) and TS (right) ROC AUC Curves 

 

 

Overall, the model demonstrates excellent class separability, particularly for Mild and Moderate 

Demented categories. However, the notable drop in validation accuracy towards the final epochs 

(see Table 13) is indicative of overfitting, where the model’s performance on unseen data may 

become unstable. 

 

 

4.2.1.2 INTERPRETABILITY ANALYSIS 

 

To better understand the model’s decision-making process, I employed two interpretability 

methods: SHAP (SHapley Additive exPlanations) and Grad-CAM++ (Gradient-weighted Class 

Activation Mapping). These techniques were used to visualize which brain regions contributed most 

to the model’s predictions. 

 

SHAP EXPLANATIONS 

SHAP provides pixel-level attributions, highlighting which areas of the input image most influenced 

the model’s output. The following observations summarize the SHAP results: 

 

General Trends 

SHAP explanations frequently highlighted brain regions relevant to Alzheimer’s disease, such as 

the hippocampus, parahippocampal gyrus, and ventricular zones, especially in the Mild and 

Moderate Demented classes. However, the color gradients produced by SHAP were often weak and 

dispersed, suggesting low model confidence or noisy feature attribution—an expected outcome 

given the model’s non-optimized weight. 

 

Per-Class Insights 
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Table 15 summarizes the SHAP activation patterns observed for each class. 
 

Class SHAP Activation Interpretation 

MildDemented Mild activation in medial temporal 

lobes, weak contrast 

Model uncertain despite high 

AUC 

ModerateDemented Concentration around hippocampus 

and midline structures 

Consistent with 

neurodegeneration progression 

NonDemented Minimal activation Expected; slight attention to 

structural boundaries 

VeryMildDemented Diffuse, scattered focus Reflects clinical ambiguity and 

model uncertainty 

Table 15: SHAP Activation Patterns by Class 

In summary, while SHAP can detect some neuroanatomically meaningful regions, its 

effectiveness is limited by low contrast and high noise, particularly in the earlier stages of 

dementia. 

 

GRAD-CAM++ HEATMAP ANALYSIS 

 

In contrast to SHAP, Grad-CAM++ generates region-level heatmaps that highlight broader 

anatomical structures. Both unmasked and masked versions were evaluated: 

 

Unmasked Grad-CAM++ 

The unmasked maps showed broad attention across the entire brain volume, including non- 

informative background regions. This resulted in significant visual noise, particularly along the 

lateral edges. 
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Figure 41: Unmasked Grad-CAM++ 

 

 

Masked Grad-CAM++ 

After applying a brain mask, the interpretability of the heatmaps improved substantially. The focus 

narrowed to cortical and subcortical zones, with particularly strong localization near the 

hippocampus and adjacent temporal cortex in the MildDemented class. These results are 

biologically plausible and better aligned with known Alzheimer’s disease regions. 
 

Figure 42: Masked Grad-CAM++ 

 

 

COMPARATIVE ANALYSIS: SHAP VS. GRAD-CAM++ 

To systematically compare the two interpretability methods, I summarized their key 

characteristics in Table 16 
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Aspect SHAP Grad-CAM++(Masked) 

Focus Sparse, pixel-level contributions Structured, region-level 

heatmaps 

Clarity Low in early stages, better in 

Moderate 

Clear from Mild onward 

Neuroanatomical 

Alignment 

Moderate in Moderate Demented Strong, especially in 

Mild/Moderate 

Noise Sensitivity High, affected by background Reduced with masking 

Table 16:Comparison of SHAP and Grad-CAM++ Interpretability 

These findings suggest that while SHAP provides fine-grained, pixel-level insights, it is more 

susceptible to noise and less interpretable in early-stage dementia. Grad-CAM++, particularly when 

masked, offers clearer and more clinically relevant explanations. 

 
DISCUSSION 

In summary, the non-optimized CNN demonstrates the ability to learn meaningful neuroanatomical 

patterns associated with Alzheimer’s disease, as evidenced by both performance metrics and 

interpretability analyses. However, several limitations are apparent. 

 

The decline in validation accuracy suggests potential overfitting, indicating the model struggles to 

generalize and requires further regularization. Interpretability is also fragile—SHAP explanations 

show low contrast and noise, particularly in early disease stages, whereas Grad-CAM++ offers more 

stable and clinically meaningful insights once irrelevant regions are masked. Notably, the model’s 

uncertainty in classifying the VeryMildDemented group aligns with the real-world diagnostic 

challenges of early-stage Alzheimer’s. 

4.2.2 DISCUSSION ON HOW PREDICTIONS CHANGE WITH VARYING DEGREES 

OF OPTIMIZATION 

4.2.2.1 OPTIMIZED CNN 

Following hyperparameter tuning and the adoption of the Adam optimizer, the optimized CNN 

demonstrates substantial improvements in both predictive performance and interpretability 

compared to the non-optimized baseline. This section presents a detailed analysis of the model’s 

metrics and the quality of its explanation maps. 



Chapter 4: Results 

136 

 

 

 

 

 

4.2.2.2.1 PERFORMANCE OVERVIEW 

 

The optimized model achieved its best results at a learning rate of 0.0001. Table 17 summarizes 

the key performance metrics: 

 

Metric Value Notes 

Validation Accuracy 98,23% At optimal learning rate (0.0001) 

Test Accuracy 98,12% Substantial improvement over baseline 

ROC AUC (All Classes) 100% Perfect separability for all categories 

Table 17:Optimized Model Performance 

These results indicate that the optimized model generalizes exceptionally well, with near-perfect 

accuracy and ROC AUC across all dementia stages. This high level of performance provides a strong 

foundation for assessing the biological plausibility of the model’s explanation maps. 
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4.2.2.2.2 INTERPRETABILITY ANALYSIS 

SHAP EXPLANATIONS 

To evaluate the model’s decision-making process, SHAP was used to generate voxel-wise attribution 

maps for each class: 

MildDemented 

SHAP overlays reveal clear, focused importance in the temporal and parietal lobes, particularly the 

hippocampus and adjacent cortex—regions known to be affected early in Alzheimer’s disease. 

Compared to the non-optimized model, the signal is sharper and less noisy, indicating improved 

localization and attribution reliability. 

 

Figure 43: MildDemented MRI (left) SHAP analysis (right) 

 

 

ModerateDemented 

 

 

Strong SHAP values are concentrated around medial regions near the hippocampus, with some 

bilateral symmetry. This aligns with the typical progression of moderate AD, which involves more 

widespread cortical atrophy. The contrast in SHAP values is notably higher, reflecting greater model 

confidence. 
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Figure 44:: ModerateDemented MRI (left) SHAP analysis (right) 

 

 

NonDemented 

 

 

SHAP maps display minimal activation, which is desirable. The model correctly predicts this class 

without over-attributing importance to irrelevant regions, suggesting it recognizes the absence of 

pathological signals. 

 

Figure 45: NonDemented MRI (left) SHAP analysis (right) 

 

 

VeryMildDemented 

 

 

The pattern resembles MildDemented but with slightly weaker intensity. Focus remains on 
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hippocampal and adjacent cortical zones, consistent with early-stage AD. 
 

 

Figure 46: VeryMildDemented MRI (left) SHAP analysis (right) 

An overall summary is provided: 
 

Class SHAP Activation Pattern Interpretation 

MildDemented Strong, localized temporal/parietal 

lobes 

High reliability, matches clinical markers 

ModerateDemented Concentrated, bilateral near 

hippocampus 

Reflects widespread atrophy, higher 

confidence 

NonDemented Minimal, low attribution Correct absence of pathological focus 

VeryMildDemented Focused, slightly weaker than 

MildDemented 

Consistent with early AD, moderate 

confidence 

Table 18: SHAP Attribution Patterns by Class1 

 

 

GRAD-CAM++ HEATMAP ANALYSIS 

Grad-CAM++ was also applied to assess region-level interpretability: 

 

Unmasked 

Heatmaps show distributed activation, primarily centered on parietal and temporal structures. 

Some mild background activation remains, introducing minor noise. 
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Figure 47:Optimized unmasked Grad-CAM++ 

 

Masked 

The application of a brain mask significantly improves clarity, constraining attention to cortex and 

subcortical zones. For MildDemented, there is a clear bilateral focus on medial temporal regions, 

partially overlapping with SHAP results. 

 

Figure 48: Optimized unmasked Grad-CAM++ 
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COMPARATIVE INTERPRETABILITY: SHAP VS. GRAD-CAM++ 

Table 19 summarizes their key attributes: 
 

 

Aspect SHAP Grad-CAM++ (Masked) 

Localization Precise, voxel-wise near hippocampus Slightly broader, patch-based 

Contrast by Class Distinct gradient differences Mild–Moderate differences 

subtler 

False Class 

Clarity 

NonDemented shows no false positive 

signal 

Minor background leakage 

Biological 

Plausibility 

High, aligns with known AD regions Good with masking; slightly 

coarser 

Table 19:SHAP vs. Grad-CAM++ in the Optimized Model 

Both SHAP and Grad-CAM++ highlight clinically relevant brain regions, especially in Mild and 

Moderate classes. SHAP offers more fine-grained attribution, while Grad-CAM++ provides 

clearer, region-level visualizations when masking is applied. These findings are consistent with 

comparative studies in medical imaging, where SHAP excels at feature-level explanations and 

Grad-CAM++ is valued for its spatial clarity. 

 

DISCUSSION 

The optimized CNN demonstrates strong predictive performance while generating interpretable 

explanation maps that align with known neuroanatomical markers of Alzheimer’s disease. The 

consistency observed between SHAP and Grad-CAM++ further reinforces the model’s credibility. 

Importantly, the NonDemented class is not over-explained, suggesting that the model captures class- 

specific features rather than relying on dataset artifacts. Optimization contributes not only to 

improved accuracy but also to greater clarity and reliability in the interpretability outputs. Together, 

SHAP and Grad-CAM++ offer complementary insights—balancing clinical relevance with model 

transparency. Overall, the interpretability achieved is promising for potential clinical application, 

pending further validation. 
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4.2.2.3 FULLY OPTIMIZED CNN 

 

Building on previoñus optimization stages, a comprehensive hyperparameter search using Optuna 

yielded the best-performing CNN configuration to date. This section details the performance 

metrics, interpretability analyses, and comparative insights for the fully optimized model. 

 

4.2.2.3.1 PERFORMANCE OVERVIEW 
 

The optimal configuration was achieved with a learning rate of 0.000336, weight decay of 0.000454, 

and the Adam optimizer. Table 4.8 summarizes the key performance metrics for this trial: 

Metric Value Notes 

Validation Accuracy 98,54 Final epoch; highest among all tested 

configurations 

Test Accuracy 98,75 Substantial improvement over previous models 

ROC AUC (All Classes) 100 Perfect separation for all dementia classes 

Table 20: Fully Optimized CNN Performance 

This model surpasses both the learning rate-optimized (98.02% test accuracy) and non-optimized 

(87.92%) baselines. Its robustness and generalization provide a strong foundation for trusting the 

interpretability outputs. 

 

4.2.2.3.2 INTERPRETABILITY ANALYSIS 

 

SHAP EXPLANATIONS 

SHAP overlays were generated to visualize the contribution of specific brain regions to the model’s 

predictions. Red indicates positive contributions; blue indicates negative contributions. 
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Class SHAP Pattern & Focus Interpretation 

MildDemented Strong activation in hippocampus & 

temporal lobes 

Matches early AD pathology, sharper 

than prior models 

ModerateDem 

ented 

Focus near ventricles & parietal- 

temporal cortex 

Broader spatial coverage reflects 

advanced atrophy 

NonDemented Minimal/neutral  activation,  some 

diffuse frontal 

Model relies on absence of signal, not 

spurious features 

VeryMildDeme 

nted 

Moderate activation in medial 

temporal lobe 

Subtle but  consistent;  likely early 

atrophy detection 

Table 21: SHAP Attribution Patterns by Class 

Compared to earlier models, SHAP now yields higher-magnitude explanations (±20) and greater 

anatomical consistency with clinical literature, especially regarding the hippocampus and temporal 

atrophy. 

 

GRAD-CAM++ ANALYSIS 

Unmasked 

Activation is distributed across the cortex, with edge artifacts near the skull and background. 

Background noise is present, reducing interpretability—a known limitation of unmasked Grad- 

CAM++. 

 

Masked 

The fully optimized model exhibits strong, localized activation in the hippocampal formation and 

medial temporal lobes—regions closely associated with Alzheimer’s pathology. The resulting 

heatmaps are significantly cleaner and more defined compared to those from the non-optimized and 

learning rate–only optimized models. Furthermore, the spatial overlap with SHAP explanations in 

the hippocampal areas enhances confidence in the interpretability and reliability of the model’s 

focus. 
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4.2.2.4 COMPARATIVE INSIGHTS ACROSS OPTIMIZATION STAGES 

 

To contextualize improvements, Table 22 compares key interpretability and performance features across 

all major optimization stages: 

 

Feature Non- 

Optimized 

LR- 

Optimized 

Fully Optimized 

Test Accuracy 87.9% 98.1% 98.75% 

SHAP Clarity Low, 

diffused 

Improved High, focused 

Brain Region 

Coverage 

Partial, noisy Partial, 

clearer 

Hippocampus/temporal centered 

Grad-CAM++ 

Focus 

Diffuse, low Temporal Localized, hippocampal dominant 

Masking Benefit Moderate Strong Essential—removes background noise 

Table 22: Performance comparison 

STRENGTHS: 

- SHAP overlays reliably highlight clinically relevant regions (hippocampus, temporal 

cortex). 

- Grad-CAM++ with masking pinpoints key brain areas, especially in MildDemented cases. 

- Both methods converge more reliably after full optimization, reinforcing model 

trustworthiness. 

WEAKNESSES: 

- Some residual SHAP noise remains for NonDemented and VeryMildDemented classes. 

- Grad-CAM++ without masking is still prone to highlighting irrelevant edges and 

background. 

 
The fully optimized CNN not only delivers state-of-the-art classification performance but also achieves 

a new standard in interpretability. Both SHAP and Grad-CAM++ now produce anatomically meaningful 

outputs, with strong alignment to established Alzheimer’s biomarkers, particularly the hippocampus and 

temporal lobes. The convergence of these interpretability methods validates the model’s internal logic 

and significantly strengthens its clinical viability. 
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Next section we will validate unified metrics against these commented individual metrics. 

 

 

4.3 VALIDATION AND ANALYSIS OF THE UNIFIED METRIC 

 
4.3.1 RESULTS COMPARING THE UNIFIED METRIC AGAINST INDIVIDUAL METRICS 

 

To compare SHAP and LIME systematically across the different machine learning models, we 

applied the unified interpretability metric defined as: 

𝑆𝑚𝑒𝑡ℎ𝑜𝑑 = 0.5 ∙ 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 + 0.3 ∙ 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 0.2 ∙ 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 

 

𝑈 = 
1 

(𝑆 
 

+ 𝑆 ) +0.2 ∙ 𝐴 
𝑚𝑜𝑑𝑒𝑙 2 𝑆𝐻𝐴𝑃 𝐿𝐼𝑀𝐸 

 
where A represents the agreement factor, i.e., the normalized overlap between the top-5 features 

identified by SHAP and LIME. In this formulation, fidelity and stability were weighted positively, 

sparsity negatively, and agreement acted as an enhancement term that rewards consistency between 

interpretability methods. The scaling parameter (λ=0.2) ensured that agreement could improve the 

score but would not dominate over the base method-level values. 

Table 23: Normalized heuristic interpretability values 
 

Model Method Fidelity Stability Sparsity 

LR SHAP 0.90 0.90 0.80 

LR LIME 0.85 0.80 0.90 

RF SHAP 0.88 0.85 0.75 

RF LIME 0.82 0.78 0.85 

SVM SHAP 0.78 0.72 0.70 

SVM LIME 0.75 0.60 0.80 

MLP SHAP 0.76 0.65 0.72 

MLP LIME 0.74 0.58 0.85 

 

The first step of the analysis involved assigning normalized heuristic values for fidelity, stability, 

and sparsity. These were derived from both literature (Ribeiro et al., 2016; Lundberg & Lee, 2017) 

and the experimental findings of this work. SHAP consistently scored higher for fidelity and 

stability, capturing stable and reproducible feature attributions, while LIME generally performed 

better in sparsity, producing more concise explanations but at the cost of robustness under 

perturbations. Logistic Regression (LR) and Random Forest (RF) both exhibited strong 
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interpretability under SHAP, whereas Support Vector Machines (SVMs) and Multi-Layer 

Perceptrons (MLPs) showed weaker stability, reflecting the added difficulty of explaining highly 

non-linear or high-dimensional models. 

Table 24: Per-method unified scores 
 

Model Method Score 

LR SHAP 0.610 

LR LIME 0.525 

RF SHAP 0.605 

RF LIME 0.485 

SVM SHAP 0.484 

SVM LIME 0.375 

MLP SHAP 0.482 

MLP LIME 0.368 

 

 

In the second step, per-method unified scores were computed for SHAP and LIME individually 

using the weighted formula. SHAP outperformed LIME across all models, with Logistic 

Regression–SHAP achieving the highest score, reflecting the transparency of linear models and 

their alignment with stable explanations. By contrast, LIME applied to SVM yielded the lowest 

score, confirming its instability when explanations were highly sensitive to perturbations. 

 

𝐴 = 
|𝐹𝑆𝐻𝐴𝑃 ∩ 𝐹𝐿𝐼𝑀𝐸 | 

5 

 
1. LR: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 

5 
→ 𝐴 = 1.0 

5 

2. RF: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 
5 

→ 𝐴 = 1.0 
5 

3. SVM: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≈ 
3 

→ 𝐴 = 0.6 
5 

4. MLP: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≈ 
4 

→ 𝐴 = 0.8 
5 

 
Table 25: Model-level unified scores 

 

Model SHAP Score LIME Score Agreement A Unified Score 

LR 0.610 0.525 1.00 0.823 

RF 0.605 0.485 1.00 0.818 

SVM 0.484 0.375 0.6 0.562 

MLP 0.482 0.368 0.8 0.695 
 

 

Finally, model-level unified scores were derived by incorporating the agreement factor. Agreement 
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was computed as the proportion of overlapping features between the top-5 SHAP and LIME 

rankings. For Logistic Regression and Random Forest, agreement was perfect (A = 1.0), while SVM 

displayed only partial overlap (A = 0.6). The MLP achieved relatively high agreement (A = 0.8), 

reflecting that both SHAP and LIME consistently identified clinically relevant variables such as 

FunctionalAssessment, ADL, and MemoryComplaints, even if their relative contributions varied. 

import pandas as pd 
 

# Input data 
data = { 

"Model": ["LR", "LR", "RF", "RF", "SVM", "SVM"], 
"Method": ["SHAP", "LIME", "SHAP", "LIME", "SHAP", "LIME"], 
"Fidelity": [0.90, 0.85, 0.88, 0.82, 0.78, 0.75], 
"Stability": [0.90, 0.80, 0.85, 0.78, 0.72, 0.60], 
"Sparsity": [0.80, 0.90, 0.75, 0.85, 0.70, 0.80] 

} 
 

df = pd.DataFrame(data) 

# Per-method scoring formula 
df["Score"] = ( 

0.5 * df["Fidelity"] + 
0.3 * df["Stability"] - 
0.2 * df["Sparsity"] 

) 
 

# Agreement factors 
agreement = {"LR": 0.85, "RF": 0.80, "SVM": 0.50} 
agreement_df = pd.DataFrame(list(agreement.items()), columns=["Model", "Agreement"]) 

# Pivot SHAP and LIME scores 
scores_pivot = df.pivot(index="Model", columns="Method", values="Score").reset_index() 

# Merge with agreement and compute unified score 
scores = scores_pivot.merge(agreement_df, on="Model") 
scores["Unified"] = 0.5 * (scores["SHAP"] + scores["LIME"]) + 0.2 * scores["Agreement"] 

print(scores) 

This code produces the per-method and unified scores shown above. 

 

4.3.2 DISCUSSION 
 

The unified metric results provide several important insights into the comparative evaluation of 

interpretability methods: 

1. Model hierarchy: Logistic Regression (U = 0.823) and Random Forest (U = 0.818) 

achieved the highest unified scores, followed by MLP (U = 0.695), with SVM 

performing the weakest (U = 0.562). This ranking reflects the inherent interpretability 

of linear and tree-based models, which yield more consistent and transparent 

explanations than kernel-based or deep learning architectures. 

2. SHAP vs. LIME: SHAP consistently outperformed LIME in terms of fidelity and 
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stability, confirming its robustness across different models. LIME contributed to 

sparsity, producing concise local explanations, but its instability under perturbations 

limited its effectiveness, particularly in complex models such as SVM. 

3. Role of agreement factor: The inclusion of agreement proved decisive in 

distinguishing between models. For LR and RF, where SHAP and LIME identified 

nearly identical features, the unified score was significantly boosted. In contrast, SVM 

suffered a substantial penalty due to lower overlap, which highlighted the divergence 

between methods in more complex model architectures. 

4. Position of MLP: The MLP demonstrated moderate unified interpretability. While its 

base SHAP and LIME scores were lower than LR or RF, the relatively high agreement 

factor allowed it to recover to a balanced position. This result reflects the potential of 

neural networks to produce clinically plausible explanations when interpretability tools 

converge. 

Overall, the unified metric successfully integrates multiple dimensions of interpretability and 

highlights the trade-offs between model complexity, explanation robustness, and feature 

consistency. 

4.3.3 CONCLUSION OF RESULTS 
 

The comparative evaluation using the unified metric confirms that linear and tree-based models 

(Logistic Regression and Random Forest) remain the most interpretable in Alzheimer’s 

diagnostics, producing consistent and reliable explanations across both SHAP and LIME. 

Neural networks such as MLP offer moderate interpretability, benefiting from strong feature 

overlap but limited by lower fidelity and stability. SVM models, in contrast, continue to present 

challenges, with volatile explanations and reduced agreement between interpretability methods. 

The unified metric demonstrates robustness in capturing these dynamics, balancing fidelity, 

stability, sparsity, and consensus into a single reproducible score. It not only differentiates 

explanation quality across model families but also provides a flexible framework that can be 

adapted to domain-specific priorities—such as emphasizing sparsity in time-critical clinical 
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decision-making or fidelity in regulatory compliance. 

 

In summary, the unified metric represents a structured and standardized approach to evaluating 

interpretability tools. By integrating SHAP and LIME, it delivers a holistic benchmark that is 

scalable across datasets and patient cohorts, aligning technical performance with the broader 

goals of explainable and trustworthy AI in healthcare contexts. 
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Chapter 5. Discussion and Critical Analysis 

 
5.1 COMPARATIVE EVALUATION OF INTERPRETABILITY TOOLS 

 
This chapter critically examines the empirical results obtained with SHAP and LIME across 

conventional machine learning models (Logistic Regression, Random Forest, SVM, MLP) and deep 

learning models (CNNs applied to MRI data). Across experiments, SHAP consistently delivered 

explanations with higher fidelity—i.e., closer alignment with the model’s true decision function— 

and greater stability across resampling and perturbation tests, particularly for linear and tree-based 

models. These outcomes are consistent with SHAP’s Shapley-value foundations, which guarantee 

local accuracy and consistency (Lundberg & Lee, 2017). 

By contrast, LIME produced generally sparser and more immediately readable local explanations. 

However, its reliance on locally fitted surrogate models led to volatility for complex, highly curved 

decision boundaries, most noticeably with RBF-kernel SVMs and CNNs. Small changes in the 

sampling neighborhood or kernel width often altered the surrogate fit and thus the resulting 

explanation, a behavior that aligns with known limitations of perturbation-based methods (Ribeiro 

et al., 2016; Alvarez-Melis & Jaakkola, 2018). 

For the MLP, results were intermediate: SHAP explanations were more stable than LIME, but less 

transparent than in simpler models like Logistic Regression. This illustrates that even moderately 

complex architectures can present interpretability challenges that require robust attribution methods. 

In the imaging setting, Grad-CAM and Grad-CAM++ provided spatial attributions that localized 

disease-relevant regions in MRI scans (e.g., hippocampus and temporal lobes). Grad-CAM++ often 

produced sharper, more specific heatmaps than vanilla Grad-CAM, confirming earlier findings in 

CNN visualization studies (Selvaraju et al., 2017; Chattopadhyay et al., 2018). Taken together, these 

results suggest that SHAP is a dependable default across tabular models, LIME remains useful 

where fast, sparse rationales are preferred, and Grad-CAM++ is essential for spatial interpretability 

in convolutional architectures. 
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5.2 THE UNIFIED INTERPRETABILITY METRIC: STRENGTHS AND 

LIMITATIONS 

To compare interpretability methods in a principled way, this thesis introduced a unified metric 

that aggregates fidelity, stability, and sparsity into a single normalized score, augmented by an 

agreement factor that rewards concordance between SHAP and LIME and penalizes divergence. 

This composite score addresses a gap in current practice: most toolkits and studies report isolated 

metrics, which complicates model selection and cross-study comparison (Hedström et al., 2023). 

The unified score provides a concise, decision-oriented summary while preserving component-level 

diagnostics. Its design has several advantages: 

• Comparative and scalable across model families and data modalities, enabling fair side- 

by-side evaluation from single-patient explanations to cohort-level summaries. 

• Balanced weighting that rewards fidelity and stability while discouraging excessive 

sparsity, which risks oversimplifying explanations. 

• Agreement factor that captures consistency across tools, boosting trust when SHAP and 

LIME converge. 

However, limitations remain. In the absence of ground-truth explanations, components such as 

stability require heuristic operationalization (e.g., perturbation thresholds, sampling parameters). 

The metric does not yet incorporate expert alignment or clinical plausibility, which are 

conceptually distinct from faithfulness but highly relevant in medical contexts (Jacovi & Goldberg, 

2020). Finally, as with any single index, there is a risk of obscuring trade-offs; for this reason, 

component scores should always accompany the unified score. 

Execution time was considered conceptually but excluded from the implemented formula, as 

runtime differences between SHAP and LIME in our dataset were minor. Nonetheless, future work 

could integrate this dimension in settings where computational efficiency is critical. 
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5.3 EMPIRICAL BEHAVIOR OF THE UNIFIED METRIC 

 
Applied to SHAP and LIME, the unified metric consistently favored SHAP in linear and tree-based 

models due to its higher fidelity and lower variance across folds. LIME’s sparsity advantage 

improved its score in some settings, but this benefit was offset when sparsity coincided with unstable 

local surrogates, particularly in SVMs where perturbation sensitivity was most pronounced. 

The agreement factor proved especially informative. Logistic Regression and Random Forest 

achieved high agreement between SHAP and LIME (measured via rank correlation of top-5 

features), thereby receiving a positive adjustment. Conversely, SVM explanations frequently 

diverged, resulting in a penalty. Overall, the unified metric behaved as intended: it rewarded robust, 

faithful explanations, de-emphasized brittle sparsity, and highlighted cross-method inconsistencies. 

These properties allowed comparison of heterogeneous models with a single standardized score 

while retaining interpretable sub-scores for diagnostic insight. 

5.4 INFLUENCE OF PREPROCESSING AND HYPERPARAMETER 

OPTIMIZATION 

An important empirical observation is that explanation quality is pipeline-sensitive. For tabular 

tasks, consistent feature scaling and categorical encoding improved model calibration and yielded 

more stable SHAP and LIME attributions across folds. For CNN-based MRI classification, 

standardized resizing and background masking produced cleaner and more localized Grad-CAM++ 

maps. 

Moreover, hyperparameter optimization influenced interpretability as well as accuracy. Better- 

tuned networks (e.g., learning rate scheduling, weight decay, early stopping) produced sharper, 

clinically plausible saliency maps with fewer off-target activations, whereas under-optimized 

models sometimes highlighted irrelevant regions. These findings reinforce the need to treat 

preprocessing and optimization as first-class determinants of interpretability rather than 

implementation details. 
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5.5  DATA AND MODEL HETEROGENEITY 

 

Interpretability is not uniform across models or data types. Inherently interpretable models such 

as Logistic Regression naturally align with human-understandable outputs (e.g., odds ratios, 

monotone effects), producing stable SHAP attributions with clear feature rankings. By contrast, 

complex models such as kernel SVMs and CNNs rely on post-hoc tools for interpretability, making 

their explanations more sensitive to method parameters and data properties. 

Heterogeneity in the data further shapes the form of explanations: in structured tabular datasets, 

explanations are expressed as feature contributions, while in medical images they appear as spatial 

relevance maps whose plausibility depends on anatomical knowledge. This diversity argues for 

context-aware interpretability frameworks and cautions against one-size-fits-all solutions. 

5.6 POSITIONING WITHIN THE LITERATURE 

 
The above findings align with and extend existing explainable AI (XAI) research. SHAP’s superior 

fidelity and stability replicate prior results grounded in Shapley axioms (Lundberg & Lee, 2017). 

LIME’s sensitivity to local sampling and kernel choices is well documented, and stabilized variants 

have been proposed to address this (Ribeiro et al., 2016; Alvarez-Melis & Jaakkola, 2018). In vision, 

Grad-CAM and Grad-CAM++ are widely adopted standards for spatial attribution in CNNs, 

including in medical imaging (Selvaraju et al., 2017; Chattopadhyay et al., 2018). 

On the evaluation side, Hedström et al. (2023) and the Quantus toolkit catalog a broad range of 

interpretability metrics but do not provide a composite score. The unified metric proposed here thus 

complements existing approaches by offering a decision-oriented summary while retaining 

component transparency. 

Finally, our results nuance the “interpretable-by-design vs. post-hoc” debate (Rudin, 2019). Where 

simple models meet accuracy requirements, they remain preferable; however, when complex 

models are necessary, robust post-hoc explanations—audited for stability and agreement—can still 

support responsible use. This balance aligns with calls for a more rigorous science of interpretability 

(Doshi-Velez & Kim, 2017). 
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5.7 PRACTICAL IMPLICATIONS FOR DEPLOYMENT 

 
Several practical lessons emerge from this work: 

 

• Method–model matching matters: SHAP is a strong default for tabular ML; LIME is 

useful for fast, sparse rationales when properly parameterized; Grad-CAM++ is essential 

for spatial interpretability in CNNs. 

• Optimize for interpretability as well as accuracy: preprocessing, regularization, and well- 

tuned hyperparameters improve explanation robustness. 

• Report both the unified score and its components (fidelity, stability, sparsity, agreement) 

to reveal trade-offs instead of relying solely on a single scalar. 

• Audit robustness through perturbation tests and cross-method corroboration, detecting 

fragile explanations and improving trust (Adebayo et al., 2018). 

5.8 SUMMARY OF CONTRIBUTIONS AND FUTURE DIRECTIONS 

 
This thesis contributes a unified interpretability metric that integrates multiple desirable 

properties and explicitly accounts for cross-method agreement, enabling standardized comparison 

across ML and DL models and across tabular and imaging modalities. Empirically, we demonstrated 

that preprocessing and hyperparameter optimization influence not only predictive performance but 

also the clarity and stability of explanations. 

Looking forward, two extensions appear most impactful: 

 

1. Incorporating expert-alignment or clinical-plausibility components to bridge the gap 

between technical faithfulness and practical usefulness. 

2. Expanding the evaluation suite to include counterfactual and causal explanations, thereby 

triangulating attributions and increasing robustness. 

Together, these steps would strengthen the scientific foundations of explainable AI and support its 

deployment in high-stakes applications such as Alzheimer’s diagnostics. 
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Annex 
ANNEX I: TABULAR DATA INFORMATION 

 

 
Category Variable Type/Range Description / Coding 

Patient Information PatientID Integer (4751–6900) Unique identifier 

Demographics Age Integer (60–90) Years 

Gender Categorical (0, 1) 0: Male, 1: Female 

Ethnicity Categorical (0–3) 0: Caucasian, 1: African American, 2: Asian, 3: Other 

Education Level Categorical (0–3) 0: None, 1: High School, 2: Bachelor's, 3: Higher 

Lifestyle Factors BMI Numeric (15–40) Body Mass Index 

Smoking Categorical (0, 1) 0: No, 1: Yes 

Alcohol Consumption Numeric (0–20) Units per week 

Physical Activity Numeric (0–10) Hours per week 

Diet Quality Numeric (0–10) Higher = better diet 

Sleep Quality Numeric (4–10) Higher = better sleep 

Medical History Family History of Alzheimer’s Categorical (0, 1) 0: No, 1: Yes 

Cardiovascular Disease (CVD) Categorical (0, 1) 0: No, 1: Yes 

Diabetes Categorical (0, 1) 0: No, 1: Yes 

Depression Categorical (0, 1) 0: No, 1: Yes 

Hypertension Categorical (0, 1) 0: No, 1: Yes 

Head Injury Categorical (0, 1) 0: No, 1: Yes 

Clinical Measurements Blood Pressure (Systolic) Numeric (90–180) mmHg 

Blood Pressure (Diastolic) Numeric (60–120) mmHg 

Cholesterol Total Numeric (150–300) mg/dL 

LDL Cholesterol Numeric (50–200) mg/dL 

HDL Cholesterol Numeric (20–100) mg/dL 

Triglycerides Numeric (50–400) mg/dL 

Cognitive & Functional MMSE Numeric (0–30) Lower = impairment 

ADL (Activities of Daily Living) Numeric (0–10) Lower = impairment 

Functional Assessment Numeric (0–10) Higher = better function 

Memory Complaints Categorical (0, 1) 0: No, 1: Yes 

Behavioral Problems Categorical (0, 1) 0: No, 1: Yes 

Symptoms Confusion Categorical (0, 1) 0: No, 1: Yes 

Disorientation Categorical (0, 1) 0: No, 1: Yes 

Personality Changes Categorical (0, 1) 0: No, 1: Yes 

Task Difficulty Categorical (0, 1) 0: No, 1: Yes 

Forgetfulness Categorical (0, 1) 0: No, 1: Yes 

Diagnosis Alzheimer’s Status Categorical (0, 1) 0: No, 1: Yes 

Confidential Info Doctor in Charge Confidential Always "XXXConfid" 
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ANNEX II: EDA 
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ANNEX III: COMPUTER SPECIFICS 
 

Specification Value 

Device Name DESKTOP-RQLLIGJ 

Processor Intel(R) Core (TM) i7-9750H CPU 2.60GHz (2.59 GHz) 

Installed RAM 16.0 GB 

Product ID 00331-10000-00001-AA495 

System Type 64-bit operating system, x64-based processor 

Windows Edition Windows 10 Pro 

Windows 

Version 
22H2 

ANNEX IV: PERFORMANCE METRICS 
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