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Abstract—Low-voltage (LV) distribution networks
are undergoing rapid complexity growth driven by
distributed energy resources (DER), electric vehicles
and bidirectional power flows, which challenges con-
ventional protection and maintenance strategies. This
paper develops and validates a predictive maintenance
framework to anticipate hotspot anomalies, localized
thermal degradations, in secondary substations (SS)
and underground cable pits (UCPs) by leveraging
the advanced LV supervision SABT and AMI smart-
meter ecosystem. For SS, we propose a hybrid scheme
comprising (i) a physically based analytical threshold
model, (ii) a general multilayer perceptron (MLP)
regressor trained on healthy behaviour and (iii) a
substation-specific MLP; anomaly flags arise from
persistent prediction errors above a 3σ error thresh-
old. For UCPs, where direct measurements are absent,
we construct probabilistic models on smart-meter
event logs using Gaussian Mixture Models (GMMs)
with BIC-guided selection and late-window change de-
tection. On real OMS-labelled incidents, the SS com-
bined policy (AND of the three models) achieves TPR
60.71% with FPR 1.33% and delivers the best an-
nualized net economic benefit (~C944k/yr), while the
analytical model alone achieves the highest TPR/FPR
ratio (7.71) and the general ML model had the highest
TPR at 92.86%. The UCP GMM attains TPR 46%
with effective FPR < 1%, demonstrating feasibility
but not yet break-even under direct-cost assumptions;
however, safety and reputational externalities argue
for continued development. The results indicate that

data-driven predictive maintenance in LV networks is
technically viable at scale and economically attractive
for secondary substations, with a clear upgrade path
for underground cable pits. All metrics and content
are sourced from this project and will be presented
in later sections.

Index Terms—Smart grids, Low-voltage distribu-
tion networks, Predictive maintenance, Anomaly de-
tection, Multilayer Perceptron (MLP), Gaussian Mix-
ture Model (GMM), Advanced Metering Infrastruc-
ture (AMI), SABT, Economic analysis, secondary
substations, underground cable pits, hotspot events

I. INTRODUCTION

A. Background

The traditional unidirectional electricity supply
chain is dissolving as DER, battery systems, and
EV integration introduce reverse power flows and
time-varying operational states, complicating LV
operation [1] [2], forecasting and pressuring qual-
ity indices such as SAIFI/SAIDI. This constant
changes demand for a modernisation in operations,
necessitating a change in the way data is used
for everyday operations and maintenance schemes
[3]. Digitalization via SABT and AMI increases
LV observability, enabling continuous collection
of measurement profiles and asynchronous event
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logs, which are essential to shift from corrective
to predictive maintenance and reduce non-served
energy and reduce OPEX and CAPEX [4] [5].

B. Problem Statement
Hotspot anomalies are localized thermal degra-

dations that mainly originate from loose or aged
contacts, insulation deterioration, moisture ingress,
phase unbalance and overloading [6] [7] [8]. They
can escalate to service-affecting incidents and safety
risks (SS and UCPs [9] alike). While thermography
and maintenance are used reactively, a validated
predictive solution leveraging SABT/AMI data and
aligned with DSO economics [10] [11] has not
been publicly established for LV hotspot-driven
anomalies [12]. Figure: 1, 2

(a) Damage caused by a
hot spot event detected

in a routine maintenance

(b) Thermal imaging of
the hot spot event

Fig. 1: Images depicting hotspot events and conse-
quences in a secondary substation [source: internal
maintenance reports from i-DE]

Fig. 2: Underground cable pit thermal event in
Gastiez, Spain [Source: Newspaper Gastiez-hoy:
"La Calle Diputación registra varias explosiones en
una arqueta eléctrica"]

C. Objectives and Scope
This work targets industrial-grade predictive pre-

vention of hotspots in (i) secondary substations
and in (ii) underground cable pits. The objectives
include OMS-driven historic incident detection and
labelling, predictive maintenance algorithm devel-
opment for (i) with both analytical methods and ML
techniques, validation of results with real incident
and field data and finally, extend the methodology
to underground cable pits and develop a predictive
maintenance algorithm for hotspot events prediction
in such grid elements, this final part introduces
additional complexity due to the indirect nature of
the data.

D. Contributions
A hybrid predictive framework for SS that fuses

a physically interpretable thresholds with gener-
al/specific MLP regressors, yielding TPR 60.71%
with FPR 1.33% under an AND combination and
>C900k/yr net economic benefit; individually, the
analytical model achieves TPR/FPR = 7.71 and the
general MLP achieves the highest TPR (92.86%).
A GMM-based UCP hotspot predictor on event
logs that captures late-window probability inflation
and emergent Gaussian components, achieving TPR
46% with effective FPR < 1%. An economic break-
even model that ties TPR/FPR to crew visits, repairs
and incident avoidance, together with compute-cost
accounting, revealing that SS are ROI-positive today
while UCPs require either additional telemetry or
inclusion of economic externalities like safety and
press. A potentially scalable data pipeline within
SABT/AMI databases, with OMS text filtering for
robust labelling.

E. Paper Organization
Section II reviews maintenance strategies, LV

anomaly-detection approaches and ML techniques;
Section III outlines data sources, measurements
and labelling; Section IV details the SS and UCP
methodologies; Section V presents statistical, eco-
nomical and model results; Section VI discusses
trade-offs and deployment; Section VII states lim-
itations of the project; Section VIII concludes and
adds future research options to further develop the
project.
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II. RELATED WORK AND TECHNICAL CONTEXT

A. Maintenance Strategies in Power Distribution

Maintenance strategies encompass corrective,
preventive, and predictive paradigms, with comple-
mentary philosophies such as RCM, CBM, risk-
based, TPM, and lean maintenance guiding prior-
itization and workflow efficiency [13]. Corrective
maintenance minimizes planning overhead but in-
creases unplanned downtime and risk exposure; pre-
ventive maintenance schedules inspections at fixed
intervals, reducing surprise failures but incurring in
unnecessary interventions; predictive maintenance
leverages continuous monitoring and analytics to
act on condition-derived risks, reducing OPEX and
extending asset life [5]. In LV grids, preventive
schemes are the most common practice [14] but,
predictive strategies are emerging as SABT/AMI
expand observability [15].

B. LV Anomaly Detection

Within LV networks, instantaneous anomaly de-
tection is practised for operational awareness (e.g.,
PQ alarms, thermography), but predictive main-
tenance, anticipating temperature-driven hotspot
anomalies, is not commonly established. Industrial
initiatives emphasize thermography [6] [7] and di-
electric hotspot inspection [8]; academic efforts fo-
cus on fault localization, cybersecurity anomaly de-
tection [16] and non-technical loss analytics rather
than pre-failure thermal anomalies in LV assets. The
gap motivating this work is predictive, hotspot de-
tection for SS and UCPs via SABT/AMI analytics,
validated against OMS-labelled incidents.

C. Analytical and ML Approaches for Anomaly
Detection

Techniques include physical/analytical models,
statistical thresholds, supervised/unsupervised ML,
and image-based CNNs [17]. Analytical thresholds
are interpretable and suited for MVPs/auditability
but are limited for multi-factor complex relation-
ships; supervised models and deep learners (MLP,
CNN, RNN/LSTM) capture complex patterns but
some are more computationally expensive [18]; un-
supervised models (One-Class SVM, Isolation For-
est, LOF, Autoencoders) detect anomalies without

labels [17], [19], [20]; clustering (k-means, mean-
shift, DBSCAN, spectral, GMM) offers comple-
mentary structure discovery [21]. In contrast with
other deep learners, MLPs reduce model complexity
and training time [22]. GMM provides a proba-
bilistic, interpretable model with flexible covariance
structures and BIC-based selection, advantageous
when features are few and event statistics dominate
[23].

III. DATA AND SYSTEM OVERVIEW

A. System Architecture and Data Sources

Three main databases are used as data sources.
ICDS (OMS) is integrated for information related
to incident logs and affected elements, it is essential
as labelling ground truth. GENESIS (GIS) is used
for inventory characteristics and nominal parame-
ters required for data normalization. STG is the
source of SABT line-supervisor profiles and smart-
meter event logs. SABT profiles (currents, voltages,
power, ambient temperature, and computed thermal
image) arrive at 5-min interval resolution; events
arrive asynchronously from LS cards (secondary
substation) and RTU endpoints (customer smart
meters).

Fig. 3: Data sources (SABT and Smart Meters) and
visual representation of a secondary substation and
an underground cable pit

B. Measurement Set and Derived Variables

The secondary substation predictive algorithms
use three-phase and neutral currents, phase voltages,
ambient temperature (measured by sensors placed
near each conductor, therefore having a relationship
with conductors temperature), geographical ambient



temperature (from open-source weather API: Open-
meteo) and a computed thermal image per IEC/EN
60255 [24]. With constants (TPTMax, TPTlimit,
TPInom, TPThermalC, TPCurrentMeasMax) and
measured ambient temperature TPTamb and cur-
rent, the conductor temperature is [25]:

Fa =
TPTMax− TPTlimit

TPTMax− TPTamb
(1)

H(t) =

(
I(t)

TPInom

)2

·
15

TPThermalC + 15
· Fa

+
TPThermalC

TPThermalC + 15
·H(t− 1) (2)

Temp(t) = TPTamb +H(t) · [TPTMax− TPTamb] (3)

For UCP analysis, we mainly exploit power-
quality event groups/types from RTU (customer
smart meters) and LS cards (secondary substa-
tion supervisors). We focus on voltage deviations
(low/high limits), long-duration outages, overloads,
short-circuit detection and neutral loss detection
events [25].

C. Data labelling

OMS extraction, text normalization/keyword fil-
tering, manual vetting, and linkage to the most-
affected element by downtime duration produce
labelled data. For SS, we build paired windows:
months pre-incident (damaged) and post-repair
(healthy), plus preventive-maintenance cases and a
control population of similar SS, equal loadings,
characteristics, geographical location and date times
(at a 1:10 ratio). For UCPs, we aggregate 120
days of downstream events per line, normalised
for total number of meters and include seasonally
overloaded but healthy lines as hard negatives, as
the objective is to detect only those lines that
contain hotspot events that can lead to a downtime
incident with loss of power.

D. Data Volumes and Practical Limits

At a 5-min frequency and system scale (~100k
secondary substations, ~550k lines, 11M meters),
naive annual ingestion approaches ~9.3× 1011

points (~900 GB) for decided features; this neces-
sitates sampling and modular model design. Nev-
ertheless, due to the critical nature of the study
and safety risks involved, all models presented have

been trained with the data of all detected hotspot
anomalies in the past year with an additional control
population. Further studies also demonstrated that
compute costs are negligible compared to field
OPEX, these will be developed in Section V.

IV. METHODOLOGY

A. Secondary Substations (SS) Method

1) Historic Incidents and Statistical Analysis
Historic incidents are detected by applying the

required filters to the OMS results and then filter-
ing the descriptions first by key word inclusion,
unwanted key word exclusion and then a by a
hand filter (which can eventually be automated
via a LLM). Around 4.6M time stamp instances
were then recorded of both healthy and damaged
instances for the model to train, test and validate on.
This pre-extraction filters alongside the word filter
reduced the size of the incident list from hundreds
of thousands to about one hundred instances. It is
possible some hotspot events were lost to some filter
but several filtering techniques and different word
combinations were tested to loose as few hotspots
as possible whilst keeping the filter strict enough
to avoid poor labelling, as this would greatly affect
the performance of the models.

This data times were then analysed statistically
for each of the relevant features (60M data points
approximately). Mainly temperature and current
distributions and their relationships via pair-plots
were analysed for pattern detection that proved
prediction algorithms had a statistical bases.

2) Economic Analysis
We link model TPR/FPR to annual economics:

visit cost C120 per flagged SS; repair cost C1,200
at 30% of TPs (as some hotspot repairs require a
smaller cost); incident-avoidance benefit C120,000
at 35% of incidents (as not in all incidents does the
full SS get damaged). The values were agreed on
by field experts on SS maintenance. Model execu-
tion costs were assumed negligible when compared
with these costs, results will be provided in the
next section. There is additionally a significant and
complex cost related to the safety hazard and social
impact caused by such thermal incidents, that is not



included in the scope of this study but should be
further analysed.

3) Analytical Model
A physically grounded, criteria-based model was

developed to distinguish healthy from damaged
lines in secondary substations. The model relies
on expert knowledge and physical phenomena,
requiring minimal training and enabling iterative
refinement. Over 20 hotspot-related criteria were
analysed, where possible basing thresholds on sta-
tistical deviations rather than fixed values. Also, the
optimal frequency of flagging for each criteria was
analysed and criteria combinations were explored
to capture more complex anomaly patterns over
time. An agile workflow was followed, starting with
evident criteria and incrementally expanding the
model as new relationships emerged.

4) General and specific ML Model
The general ML approach focused on developing

a predictive anomaly detection system for secondary
substations using Multilayer Perceptron (MLP) re-
gressors. MLPs were chosen for their simplicity,
effectiveness in modelling non-linear relationships
and suitability for detecting abrupt changes rather
than long-term patterns [26] [27]. Two models were
built: a general model trained on data from all sec-
ondary substations for scalability and computation
efficiency and a specific model tailored to each sec-
ondary substation for higher accuracy. Both models
predict ambient temperature based on multivariate
time series profiles from the SABT - STG database:
date-time, phase currents, phase temperatures, zone
code, outside temperature, ventilation type and sec-
ondary substation type.

Both models are trained with healthy line data
and anomalies are flagged when prediction errors
exceed a 3-sigma threshold for three consecutive
time steps, following control charts theory and using
stricter conditions [28]. The methodology involved
careful feature selection, exhaustive ML architec-
ture optimisation, iterative training, and statistical
assumptions about error distribution, all within an
agile development framework. Several assumptions
like statistical stationarity over training for line
deterioration, prediction error normal distribution
and proper prior labelling.

B. Underground Cable Pits (UCP) Method

1) Historic Incidents and Statistical Analysis
Historic hotspot incidents in underground cable

pits were identified using a process analogous to
that for secondary substations, with adaptations for
data sources, features, and filters. All incidents
from the previous year were retrieved from the
OMS database and filtered for categories likely
to include UCP hotspots (e.g., unplanned outages,
Other Attentions on supply nodes, LV lines, elec-
trical boxes). Descriptions were normalized (ASCII,
lowercase, no accents ...) to mitigate operator entry
inconsistencies.

Incidents were screened for hotspot-related terms
(e.g., smoke, heat, sulphated) and location indi-
cators (underground cable pit, LV underground
line), while excluding MV-specific descriptors.
Root-based matching reduced misspell sensitivity.
This reduced the dataset from hundreds of thou-
sands to ~700 candidates, which were then man-
ually validated to ensure labelling quality—critical
for model performance. For each validated incident,
the most affected element (longest downtime) was
identified, typically the line requiring corrective
maintenance. Line meters were then extracted, in-
cluding SABT supervisors (LVS) and downstream
smart meters (CN, T4, T4MI).

For each line, event logs from all associated
meters were collected for the 120 days preceding
the incident (excluding day 0 to preserve preventive
action feasibility). Events were aggregated daily
and normalized by meter count to form a per-line
event-rate series. To challenge the model, a control
set of healthy but seasonally overloaded lines (e.g.,
coastal feeders during summer) was included, as
these exhibit voltage deviations similar to damaged
lines. Lines with zero events were excluded to avoid
trivial separability.Faulty meters generating >1000
daily events were removed. Final features represent
normalized daily event counts per line over 120
days.

The initial analysis of smart-meter event logs in-
volved plotting daily event counts per line; however,
this visualization failed to reveal actionable pat-
terns, prompting a shift toward statistical character-
ization. Using Python statistical libraries, the study



generated kernel density estimates (KDE) for indi-
vidual lines, an aggregated KDE, histograms, and
per-line probability density plots, applying refined
filters for relevant event groups and types across
SABT (LVS) and downstream meters. These anal-
yses aimed to uncover latent distributional differ-
ences between damaged and healthy lines, guiding
the subsequent selection of probabilistic modelling
techniques.

2) Economic Analysis
An economic feasibility study was conducted to

determine the precision threshold required for the
UCP anomaly detection model to achieve break-
even. The analysis considered direct costs: crew
dispatch for flagged lines (C120 per visit), cor-
rective maintenance for confirmed hotspots (C800
at 50% as some hotspot repairs require a smaller
cost) against the benefit of avoiding hotspot failures,
approximated at C1,000 per incident (discounted to
90%). Model execution costs were assumed negli-
gible when compared with these costs, results will
be provided in the next section. Using estimated
annual incident rates and the population of LV
lines, the study revealed that the high cost of field
visits relative to replacement costs imposes a strin-
gent TPR/FPR ratio for economic viability. While
indirect benefits such as improved public safety
and reputational risk mitigation were excluded from
this calculation, their inclusion could significantly
enhance the business case and should be addressed
in future assessments.

3) Gaussian Mixture Model
Model selection for hotspot anomaly detection in

underground cable pits was driven by the prior sta-
tistical analysis, which indicated that a probabilistic
approach could effectively capture the observed
late-window event escalation. Among various clus-
tering techniques [29], the Gaussian Mixture Model
(GMM) was chosen for the available data charac-
teristics, its ability to handle unknown and vari-
able cluster densities, computational efficiency and
interpretability, critical for large-scale deployment
across ~550,000 lines. The model operates on ag-
gregated daily event counts from SABT supervi-
sors and downstream smart meters, normalized by
meter count, over a 120-day window preceding

each incident. Its objective is to identify anomalous
behaviour characterized by an increasing probabil-
ity of event occurrence, particularly when this rise
accelerates in the final 30 days.

The implementation involves sequential steps:
data extraction and cleaning (removing outliers
and faulty meters), event-type filtering, daily ag-
gregation and normalization, and iterative GMM
fitting across covariance types and up to 40 compo-
nents, selecting the configuration minimizing BIC.
Anomalies are flagged based on probability thresh-
olds and structural changes, such as the emergence
of new Gaussian components after the 90-day mark.
While this approach balances scalability and inter-
pretability, it assumes event frequency correlates
with degradation, a limitation in cases of mainte-
nance activity. Fixed windowing and daily aggre-
gation, chosen as a result of the statistical analysis
and for computational efficiency, may overlook finer
temporal dynamics. But the main limitation is the
absence of direct thermal measurements constrains
benchmarking against alternative models. Future
improvements include incorporating maintenance
logs, adaptive windowing and instalment of new
direct data sources to enhance predictive accuracy
without compromising scalability.

V. RESULTS

A. Secondary Substations

1) Statistical and Economical Analysis
Ambient-temperature distributions shift with

hotspots, showing a high-temperature tail; phase-
current KDEs reveal stronger unbalances in dam-
aged lines; pairplots show tighter temperature-
current coupling and elevated temperatures at
lower currents; temporal evolution indicates grad-
ual degradation with late acceleration; inter-line
comparisons in the same SS reveal a temperature
offset on the hotspot line at similar loading when
compared to the other lines. Some of the main
analysis result graphs are presented below:



(a) Healthy line October (b) Healthy line November

(c) Damaged line
December

Fig. 4: Cable degradation with passing time

Fig. 5: Gradient temperature between lines in a
secondary substation

In terms of the economic analysis, the assump-
tions stated in the methodology were used to
develop a model to compute the minimum KPI
(TPR/FPR) required for economic break-even. With
the limitation that this model does not include the
social and safety risk involved costs which are
significant. There are around 100 incidents per year,
of which 40% <have SABT measurements. With
that the outcome is a required minimum TPR of
8.43%, FPR of 2.92%, KPI Limit (TPR/FPR) of
2.89, to obtain a final economic value of -0.01C.
Therefore any model that surpasses 2.89 will be
economically feasible.

2) Model Performance: Analytical Model
Of the +20 criteria developed with physical and

statistical thresholds 7 main ones and 2 combina-
tions were selected to create the final model which
is an and combination of criteria 2 & 14 & A &

B. These criteria are presented below alongside the
optimal threshold (the minimum required instances
of the toal data recorded for the given study period
that these criteria must be flagged before the line is
to be considered damaged by the model)

TABLE I: Performance Metrics for Toggle Criteria

Criteria Description PrecisionRecall
Optimal

Threshold

1 Temperature exceeds a
limit 100.0% 1.3% 0%

2
Temperature gradient

inside a secondary
substation

98.0% 26.5% 3.0%

3
Relationship between

temperature and current
squared

42.3% 1.13% –

4
Deviation from mean
temperature in that

secondary substation
66.9% 9.6% 37.0%

10
High current standard

deviation in that
secondary substation

74.6% 58.3% –

12 Phase unbalances 63.4% 87.3% –

14

Close relationship
between ambient

temperature and thermal
image

21.4% 8.42% 22%

A Combination: Crit3 &
Crit4 & Crit10 & Crit12 58.1% 0.12% 1%

B Combination: Crit4 &
Crit10 51.0% 16.0% 26%

Actual
value

Prediction outcome

p n total

p′

24 4
28

n′

25 200
225

total 49 204 253

TABLE II: Confusion Matrix

In terms of computations: 0.47 processing min-
utes per secondary substation, 313 total processing
hours, for an Azure Standard_D96ls_v5 VCPU the



KPI Result
True Positive Rate 85.71%
False Positive Rate 11.11%
TPR / FPR 7.71
Economic result C891,000 / yr

TABLE III: Economic results of the final analytical
model

cost is 7.7571C/hr and has 96 vCPUs and 192
GiB (enough for the required task). For a total
processing cost of 25.32C per analysis (assumed
negligible compared to the other costs and benefits)

3) Model Performance: Global ML Model
Global MLP predicts ambient temperature;

alarms occur when the 3σ confidence bands error
limit is exceeded for 3 consecutive points. Optimal
architecture after iterative search (20,20) with learn-
ing rate 0.01;

(a) General ML model test
error compared with 3

sigma limits

(b) General ML model
hotspot containing

substation error compared
with 3 sigma limits

Fig. 6: Model error for training with healthy lines
and validating with damaged lines

Actual
value

Prediction outcome

p n total

p′

26 2
28

n′

64 161
106

total 63 71 253

TABLE IV: Confusion Matrix

KPI Result
True Positive Rate 92.86%
False Positive Rate 28.44%
TPR / FPR 3.26
Economic result C178,000 / yr

TABLE V: Economic results of the general ML
model

General ML model is better at predicting, has
a higher TPR at the expense of an increased FPR
making the model less economically viable.

In terms of computation costs: 0.02 processing
minutes per secondary substation, 12 total process-
ing hours, for an Azure Standard_D4as_v5 VCPU
the cost is 0.1375C/hr and has 4 vCPUs and 16
GiB (enough for the required task). For a total
processing cost of 1.02C per training (assumed
negligible compared to the other costs and benefits).

4) Model Performance: Specific ML Model
Specific ML model follows the same steps as the

general model but a different model is generated
per secondary substation and is trained only on such
secondary substation data. As it is specific, less false
positives are flagged and there fore is economically
more viable. But, as the 3 sigma - 3 consecutive
instances rule is kept, now that the model is more
specific this rule is more strict and therefore less
positives are detected in total terms.

(a) Specific ML model train
error compared with 3

sigma limits

(b) Specific ML model
ambient temperature

prediction vs real measured
value

Fig. 7: Specific ML model predicts accurately for a
healthy line

In terms of computational costs: 0.176 process-
ing minutes per secondary substation, 117 total
processing hours, for an Azure Standard_D96ls_v5



(a) Specific ML model test
error compared with 3

sigma limits for a repair
case

(b) Specific ML model
ambient temperature

prediction for a repair case

Fig. 8: Model performance for a complex case
where a damaged line gets repaired due to a
preventive maintenance and then the model starts
predicting accurately

Actual
value

Prediction outcome

p n total

p′

18 10
28

n′

31 194
225

total 49 204 253

TABLE VI: Confusion Matrix

KPI Result
True Positive Rate 64.29%
False Positive Rate 13.78%
TPR / FPR 4.7
Economic result C407,000 / yr

TABLE VII: Economic results of the specific ML
model

VCPU the cost is 7.7571C/hr and has 96 vCPUs
and 192 GiB (enough for the required task). For
a total processing cost of 9.48C per round of
training, meaning training required for all secondary
substations (assumed negligible compared to the
other costs and benefits)

5) Model Performance: Combination Model
The economically optimum model is a logical

AND combination across (Analytical Rule-Set) ∧
(General MLP) ∧ (Specific MLP). With the limita-
tions and assumptions explained for the economical

model, if safety risks costs were included each
model would be significantly more economically
viable but this study was outside the scope of the
project. The summary of the combination model
and the comparison between all models is presented
below:

KPI Result
True Positive Rate 60.71%
False Positive Rate 1.33%
TPR / FPR 45.5
Economic result C944,000 / yr

TABLE VIII: Economic results of the combined
model

In terms of computational costs: 0.8 processing
minutes per secondary substation, 533 total process-
ing hours, for an Azure Standard_D96ls_v5 VCPU
the cost is 7.7571C/hr and has 96 vCPUs and 192
GiB (enough for the required task). For a total
processing cost of 43.10C for training (the highest
of the prior but still assumed negligible compared
to the other costs and benefits)

B. Underground Cable Pits
1) Statistical and Economical Analysis
The objective of this section of the project is

to create a predictive maintenance model capable
of pre-emptively flagging unhealthy underground
cable pits that require maintenance due to a hotspot
event. The challenge is that there is no direct mea-
surement available or purpose built sensor to detect
this. Meaning data analytics must be used with the
current sources to develop the model. The mea-
surements deemed most connected with the prob-
lem were SABT and Smart Meter asynchronous
event logs, specifically the power quality events of
over/under voltage, neutral wire disconnection and
short-circuit.

Data was aggregated at a daily bases, normalised
for the number of meters connected to the studied
line and faulty meters removed form the study.
To ensure prediction capability a prior statistical
analysis was performed as the visual time bases
analysis yielded no results.

Event-density rises after the 90-day mark across
lines, motivating late-window probabilistic logic
and backing up model selection: GMM.



(a) Main KPIs summary

(b) Economic summary

Fig. 9: KPI and economic summary for: analytical
model, general ML model, specific ML model,
combination of models

Fig. 10: Probability distribution of number of events
per day

An economic analysis was then performed to
analyse the minimum KPI (TPR/FPR) required for
economic break-even. Nevertheless, given the low
CAPEX characteristics of underground cable pits
and the high cost associated with visiting false pos-
itives relative to the modest corrective maintenance
expenses, economic viability depends on a high
accuracy of the predictive model, accuracy which
is hindered by the limited availability of direct data
for this specific case. With the limitation that this
model does not include the social and safety risk

Fig. 11: Combined probability distribution shows a
constant value up to the 90 day mark prior to the
incident where probability increases

involved costs which are significant.
There are around 500 incidents per year of the

550,000 LV lines. With that the outcome is a
required minimum TPR of 65.70%, FPR of 0.21%,
KPI Limit (TPR/FPR) of 315.47, to obtain a final
economic value of -0.01C. Therefore any model
that surpasses 315.47 will be economically feasible.

2) GMM Performance
The process of finding the optimal model was

iterative and involved preprocessing data differently
and setting certain criteria. The optimal final model
does a per line fit of GMMs, finding iteratively the
optimum: up to 40 components with four covariance
types and selected by minimum BIC. Character-
ize anomalies via least-probable points considered
anomalous point, and doing an anomalous rate
comparison between before and after the 90-day
split.

For extreme cases with vast amounts of anoma-
lous points where new Gaussians were created for
those anomalous points, detect new-Gaussian emer-
gence by comparing minimum number of Gaussians
when training for 90 first days and when training
for the full 120 days. If such new Gaussians had an
average number of events twice the mean number
of events of the pre 90 day Gaussians then flag the
line.

The results of the best several models tested
and the combination that encompasses the most
detection rate are presented below:

All FPR presented are calculated over a pop-
ulation of overloaded lines with significant meter
events related to other healthy lines, this is to
increase the complexity of the model as normal



(a) Anomaly detection before and after the 90 day mark

(b) Example of a case where a new Gaussian is needed
to explain the last days of a damaged line and such

gaussian has more than twice the average nº of events

Fig. 12: Models 13 and 68 visual representation

TABLE IX: Performance metrics of hotspot
anomaly prediction GMM models for underground
cable pits

Model Nº Model Description TPR FPR
13 Rate of anomaly after > 2 ×

rate before (using p90 proba-
bility for ’before’)

31% 4%

55 Number of normal instances
after > number of normal in-
stances before

73% 88%

64 Mean of normal instances af-
ter > 2 × mean of normal in-
stances before

39% 4%

68 Combination of models 55 and
64

36% 4%

100 Logical OR between models
13 and 68

46% 8%

healthy lines basically have no events and can easily
be separated from these 2 groups (damaged hotspot
containing lines and seasonally overloaded lines
with several daily events).

Model 100 achieves TPR 46% and FPR 8%

on overloaded lines; effective FPR ~0.83% (as
overloaded lines acount only for 43,000 out of the
550,000 lines and using a 0.2% FPR for the healthy
non event containing lines. Achieving a KPI of
55.73, break-even KPI for UCPs (315.47) is not met
under direct-cost accounting (C350k deficit), but
safety/reputational externalities exposed by internal
experts suggest continued development.

Finally, in erms of computational costs: 0.24
processing minutes per secondary substation, 1800
total processing hours, for an Azure Stan-
dard_D96ls_v5 VCPU the cost is 7.7571C/hr and
has 96 vCPUs and 192 GiB (enough for the required
task). For a total processing cost of 145.45C for
training, assumed negligible compared to the other
costs

VI. DISCUSSION

Analytical rules maximize interpretability and
TPR/FPR; general MLP maximizes recall; specific
MLP reduces FPR for a relatively more strict flag-
ging; AND combination optimizes economics by
minimising FPR while retaining useful TPR. For
UCPs, GMM is appropriate given data constraints
but requires added telemetry or a deeper external
costs study for ROI. All whilst computational costs
remain negligible, nevertheless more efficient model
can be studied to reduce model OPEX.

VII. LIMITATIONS

Absence of direct UCP measurements enforces
use of event proxies; OMS labelling requires man-
ual vetting until LLM is available internally; SS
MLPs assume stationary healthy regimes and nor-
mal residuals; study cohorts, while representative,
may not cover all regions; economic model excludes
costs related to safety and reputational externalities,
which are significant but complex.

VIII. CONCLUSION AND FUTURE WORK

This work demonstrates a scalable predictive
maintenance framework for LV hotspot anomalies
using SABT/AMI data analytics. For secondary
substations, the hybrid approach (analytical + gen-
eral MLP + specific MLP) results in economic
optimality (TPR 60.71%, FPR 1.33%, C944k/yr).



Whilst the analytical model has the highest individ-
ual KPI and one of the lowest computational costs,
also being the most physically explainable. For un-
derground cable pits, GMM-based event modelling
attains TPR 46% at effective FPR 0.83% but is not
yet break-even without cost externalities.

Future studies could include: enrich UCP teleme-
try (temperature/current, humidity/gases); integrate
maintenance/work-order logs to reset counters for
UCP modelling; explore more efficient learners (au-
toencoders, contrastive, lightweight RNN/LSTM),
dynamic windows, and seasonality-aware thresholds
for secondary substations; automate labelling with
OMS text filter via LLM to obtain more training
instances; expand economics to include safety risks
and reputation costs.
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