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Summary of the Project

The increasing complexity of low-voltage (LV) distribution networks [1], driven
by the integration of distributed energy resources (DER) [2], electric vehicles, and
bidirectional power flows, necessitates a shift. These complex operations [3] along-
side the need to increase supply quality and grid resilience require proactive main-
tenance strategies [4][5]. This thesis addresses the challenge of pre-emptively de-
tecting hotspot anomalies in secondary substations and underground cable pits [6].
The work aims to support Distribution System Operators (DSOs) [7] in enhancing
grid reliability, safety, and operational efficiency through data-driven predictive
maintenance models [8]. Predictive strategies enhance system reliability by re-
ducing unplanned outages and minimizing unnecessary maintenance operations,
ultimately leading to lower OPEX and improved asset longevity [9] [10].
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The topic of this work is hotspot anomalies [11]. These anomalies are localized
thermal degradations that can lead to equipment failure, service interruptions, and
safety hazards [9][12]. This thesis utilizes data from the Supervisión Avanzada de
Baja Tensión (SABT) system and Advanced Metering Infrastructure (AMI) [13],
including smart meter event logs and the operational management system (OMS)
incident reports. These data sources enable the identification and classification of
historical incidents, forming the basis for model training and validation.

Figure 1: Data sources (SABT and Smart Meters) and visual representation of a
secondary substation and an underground cable pit

The thesis proposes a hybrid approach combining analytical and machine learn-
ing (ML) models. For secondary substations, three models were developed:

• An analytical threshold model based on physical parameters such as temper-
ature and current to create the statistical thresholds.

• A general-purpose multilayer perceptron (MLP) model trained on aggregated
data for all secondary substations that reducing training but loses individu-
alized complex pattern detection.

• A secondary substation-specific ML model tailored to individual asset be-
haviour.

• An and combination of the 3 above allows for fewer false positives and results
in the economic optimum



(a) Main KPIs summary (b) Economic summary

Figure 2: KPI and economic summary for: analytical model, general ML model,
specific ML model, combination of models

For underground cable pits, where direct measurements are unavailable, a
Gaussian Mixture Model (GMM) was implemented using smart meter event logs.
This probabilistic model identifies deviations from normal behaviour patterns to
detect potential anomalies.

(a) Anomaly detection
before and after the 90 day

mark

(b) Data Gaussian
aggregation for damaged

line

(c) Gaussian probability
spread for the same

damaged line

Figure 3: GMM model examples, final model detects (post 90 day mark) either
anomalous data or the need for a new Gaussian to explain the data and comparing
the Gaussians mean number of events before and after the mark

The analytical model for secondary substations achieved the highest True
Positive Rate (TPR) to False Positive Rate (FPR) ratio, demonstrating strong
interpretability and reliability. The combined deployment of all three models
yielded the best economic performance, with a projected annual benefit exceeding
€900,000.



Table 1: Performance metrics summary of hotspot anomaly prediction GMM mod-
els for underground cable pits

Model Nº Model Description TPR FPR
13 Rate of anomaly after > 2 × rate before (us-

ing p90 probability for ’before’)
31% 4%

55 Number of normal instances after > number
of normal instances before

73% 88%

64 Mean of normal instances after > 2 × mean
of normal instances before

39% 4%

68 Combination of models 55 and 64 36% 4%
100 Logical OR between models 13 and 68 46% 8%

Table 2: Economic results of the combined model

KPI Result
True Positive Rate 60.71%
False Positive Rate 1.33%
TPR / FPR 45.5
Economic result 944,000e / yr

In the case of underground cable pits, the GMM model achieved a TPR of
46% with an FPR below 1%, validating the feasibility of predictive maintenance
in data-scarce environments. These results underscore the value of leveraging
existing SABT and Smart Meter infrastructure for anomaly detection. Although
economic break-even was not achieved for underground cable pits, the economic
analysis performed did not include social and media costs of allowing hotspot
events subsequent thermal incidents or unexpected grid element downtimes.

This thesis demonstrates that predictive maintenance for hotspot anomalies
in LV networks is both technically (for both cases) and economically viable (for
secondary substations). By integrating analytical and ML models with existing
SABT and AMI data, the proposed framework enhances grid observability and sup-
ports predictive asset management. The work contributes novel methodologies for
anomaly detection, extends predictive maintenance to previously under-monitored
assets (such as underground cable pits), and aligns with the strategic goals of DSOs
in the context of digitalization and regulatory evolution. Future work should focus
on improving data granularity, integrating maintenance logs, and exploring more
efficient ML techniques for real-time deployment.
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Resumen Del Proyecto

La creciente complejidad de las redes de distribución de baja tensión (LV)
[1], impulsada por la integración de recursos energéticos distribuidos (DER) [2],
vehículos eléctricos y flujos de potencia bidireccionales, exige un cambio de enfo-
que. Estas operaciones complejas [3], junto con la necesidad de mejorar la calidad
del suministro y la resiliencia de la red, requieren estrategias de mantenimiento
proactivo [4][5]. Esta tesis aborda el reto de detectar de forma anticipada ano-
malías térmicas (hotspot anomalies) en centros de transformación secundarios y
arquetas de cableado subterráneo [6]. El trabajo tiene como objetivo apoyar a los
Operadores del Sistema de Distribución (DSOs) [7] en la mejora de la fiabilidad, la
seguridad y la eficiencia operativa de la red mediante modelos de mantenimiento
predictivo basados en datos [8]. Las estrategias predictivas mejoran la fiabilidad
del sistema al reducir las interrupciones no planificadas y minimizar las operacio-
nes de mantenimiento innecesarias, lo que conduce a una disminución de los costes
operativos y a una mayor longevidad de los activos [9] [10].

El tema principal de este trabajo son las anomalías térmicas (hotspot ano-
malies) [11]. Estas anomalías son degradaciones térmicas localizadas que pueden
provocar fallos en los equipos, interrupciones del servicio y otros riesgos [9][12]. Es-
ta tesis utiliza datos del sistema de Supervisión Avanzada de Baja Tensión (SABT)
y de la Infraestructura de Medición Avanzada (AMI) [13], incluyendo los registros
de eventos de los contadores inteligentes y los informes de incidencias del sistema
de gestión operativa (OMS). Fuentes de datos que permiten la identificación y
clasificación de incidentes históricos, constituyendo la base para el entrenamiento



y validación de los modelos.

Figura 4: Fuentes de datos (SABT y contadores inteligentes) y representación
visual de un centro de transformación y una arqueta de cableado subterráneo

La tesis propone un enfoque híbrido que combina modelos analíticos y de
aprendizaje automático (ML). Para los centros de transformación secundarios, se
desarrollaron tres modelos:

• Un modelo analítico basado en umbrales físicos como la temperatura y la
corriente para establecer criterios estadísticos.

• Un modelo general de perceptrón multicapa (MLP) entrenado con datos
agregados de todos los centros de transformación, que reduce el tiempo de
entrenamiento pero pierde capacidad de detección de patrones complejos
individualizados.

• Un modelo específico por centro de transformación, adaptado al comporta-
miento individual de cada activo.

• Una combinación lógica tipo “and” de los tres modelos anteriores permite
reducir los falsos positivos y resulta en el óptimo económico.



(a) Resumen de los principales KPIs (b) Resumen económico

Figura 5: Resumen de KPIs y resultados económicos para: modelo analítico, modelo
ML general, modelo ML específico y combinación de modelos

Para las arquetas de cableado subterráneo, donde no se dispone de medicio-
nes directas, se implementó un modelo de mezcla gaussiana (GMM) utilizando
los registros de eventos de los contadores inteligentes. Este modelo probabilístico
identifica desviaciones respecto a los patrones normales de comportamiento para
detectar posibles anomalías.

(a) Detección de anomalías
antes y después del umbral

de 90 días

(b) Agrupación gaussiana
de datos para una línea

dañada

(c) Distribución de
probabilidad gaussiana

para la misma línea dañada

Figura 6: Ejemplos del modelo GMM. El modelo final detecta (tras el umbral
de 90 días) datos anómalos o la necesidad de una nueva gaussiana para explicar
los datos, comparando además el número medio de eventos antes y después del
umbral.

El modelo analítico para centros de transformación secundarios alcanzó la me-
jor relación entre la tasa de verdaderos positivos (TPR) y la tasa de falsos positivos
(FPR), demostrando una alta interpretabilidad y fiabilidad. La implementación
combinada de los tres modelos desarrollados ofreció el mejor rendimiento econó-
mico, con un beneficio anual proyectado superior a los €900,000.



Cuadro 3: Resumen de métricas de rendimiento de los modelos GMM para detec-
ción de anomalías térmicas en arquetas de cableado subterráneo

Modelo Nº Descripción del modelo TPR FPR
13 Tasa de anomalías después >2 × tasa an-

tes (usando probabilidad p90 para el periodo
’antes’)

31 % 4 %

55 Número de instancias normales después >nú-
mero de instancias normales antes

73 % 88 %

64 Media de instancias normales después >2 ×
media de instancias normales antes

39 % 4 %

68 Combinación de los modelos 55 y 64 36 % 4 %
100 OR lógico entre los modelos 13 y 68 46 % 8 %

Cuadro 4: Resultados económicos del modelo combinado

KPI Resultado
Tasa de verdaderos positivos (TPR) 60.71 %
Tasa de falsos positivos (FPR) 1.33 %
TPR / FPR 45.5
Resultado económico 944,000e / año

En el caso de las arquetas, el modelo GMM alcanzó una TPR del 46 % con
una FPR inferior al 1 %, validando la viabilidad del mantenimiento predictivo en
entornos con escasez de datos. Estos resultados refuerzan el valor de aprovechar
la infraestructura existente de SABT y contadores inteligentes para la detección
de anomalías. Aunque no se alcanzó el punto de equilibrio económico para las
arquetas, el análisis realizado no contempla los costes sociales ni reputacionales
derivados de permitir el desenlace de puntos calientes en elementos de la red.

Esta tesis demuestra que el mantenimiento predictivo para anomalías de punto
caliente en redes de baja tensión es viable tanto técnica (en ambos casos) como
económicamente (en centros de transformación). Al integrar modelos analíticos y
de ML con los datos existentes del SABT y AMI, el marco propuesto respalda la
gestión predictiva de activos. El trabajo aporta metodologías novedosas para la
detección de anomalías, extendiendo el mantenimiento predictivo a activos pre-
viamente menos monitorizados (como las arquetas) y se alinea con los objetivos
estratégicos de los DSOs en el contexto de la digitalización y evolución regulato-
ria. Las futuras líneas de trabajo deberían centrarse en mejorar la granularidad
de los datos, integrar registros de mantenimiento y explorar técnicas de ML más
eficientes para su despliegue en tiempo real.
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The increasing complexity of low-voltage (LV) distribution networks, driven
by the proliferation of distributed energy resources (DER), electric vehicles, and
bidirectional power flows, demands a paradigm shift in grid operation and mainte-
nance. This thesis addresses the critical challenge of detecting hotspot anoma-
lies—localized thermal degradations that pose significant reliability and safety
risks—in secondary substations and underground cable pits. Leveraging the data-
rich environment enabled by Advanced Metering Infrastructure (AMI) and the
Supervisión Avanzada de Baja Tensión (SABT) system, the work proposes a hy-
brid predictive maintenance framework combining analytical threshold models and
machine learning (ML) techniques.

For secondary substations, three predictive models were developed and vali-
dated: a physically interpretable analytical model, a general-purpose multilayer

x



perceptron (MLP) model, and a substation-specific MLP model. Each was evalu-
ated in terms of predictive accuracy, economic feasibility, and computational effi-
ciency. The analytical model demonstrated the highest TPR/FPR ratio at 7.71,
while the combined deployment of all three models yielded the most favourable eco-
nomic outcome, with a projected annual benefit exceeding 900,000€ and the gen-
eral ML model had the highest TPR at 92.86%. For underground cable pits—where
direct measurements are unavailable—a Gaussian Mixture Model (GMM) was im-
plemented using smart meter event logs. Despite data limitations, the model
achieved a 46% true positive rate with a false positive rate below 1%, demonstrat-
ing the feasibility of anomaly detection in these challenging environments.

The thesis also presents a comprehensive economic analysis, aligning model
performance with operational costs and regulatory incentives. It concludes that
predictive maintenance, when supported by robust data analytics, offers a scalable
and cost-effective solution for enhancing grid reliability and safety. The work
contributes novel methodologies for anomaly detection in LV networks, extends
predictive maintenance to previously under-monitored assets, and supports the
strategic evolution of Distribution System Operators (DSOs) toward proactive,
data-driven asset management.
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La creciente complejidad de las redes de distribución de baja tensión (BT),
impulsada por la proliferación de recursos energéticos distribuidos (DER), vehícu-
los eléctricos y flujos de potencia bidireccionales, exige un cambio de paradigma
en la operación y el mantenimiento de la red. Esta tesis aborda el desafío crítico
de detectar anomalías térmicas —degradaciones localizadas que representan ries-
gos significativos para la fiabilidad y la seguridad— en centros de transformación
secundarios y arquetas de cableado subterráneo. Aprovechando el entorno rico en
datos habilitado por la Infraestructura de Medición Avanzada (AMI) y el sistema
de Supervisión Avanzada de Baja Tensión (SABT), se propone un marco híbrido
de mantenimiento predictivo que combina modelos analíticos basados en umbrales
físicos con técnicas de aprendizaje automático (ML).

Para los centros de transformación secundarios, se desarrollaron y validaron
tres modelos predictivos: un modelo analítico basado en criterios físicos, un modelo
general de perceptrón multicapa (MLP) y un modelo específico por subestación.
Cada uno fue evaluado en términos de precisión predictiva, viabilidad económica
y eficiencia computacional. El modelo analítico demostró la mejor relación en-
tre tasa de verdaderos positivos (TPR) y tasa de falsos positivos (FPR) con un
valor de 7,72, mientras que la combinación de los tres modelos ofreció el resultado
económico más favorable, con un beneficio anual proyectado superior a 900.000
€ y el modelos de ML general obtuvo la mayor tasa TPR con un 92,86%. Para
las arquetas de cableado subterráneo —donde no existen mediciones directas—
se implementó un modelo de mezcla gaussiana (GMM) utilizando los registros de



eventos de los contadores inteligentes. A pesar de las limitaciones de datos, el
modelo alcanzó una tasa de verdaderos positivos del 46% con una tasa de falsos
positivos inferior al 1%, demostrando la viabilidad de la detección de anomalías
en estos entornos complejos.

La tesis también presenta un análisis económico exhaustivo, alineando el rendimiento
de los modelos con los costes operativos y los incentivos regulatorios. Se concluye
que el mantenimiento predictivo, respaldado por análisis de datos robustos, ofrece
una solución escalable y rentable para mejorar la fiabilidad y la seguridad de la red.
El trabajo aporta metodologías novedosas para la detección de anomalías en redes
BT, extiende el mantenimiento predictivo a activos previamente no monitorizados
y respalda la evolución estratégica de los Operadores de Sistemas de Distribución
(DSOs) hacia una gestión proactiva y basada en datos.
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Chapter 1

Introduction

This introductory chapter aims to explain the reasoning behind this thesis and
its structure. Starting with the background and motivation, following with the
objectives and methodology overview to end up discussing the organisation of the
present document.

1.1 Background and motivation

1.1.1 Background

Historically, the electric sector has been divided into four distinct segments: gen-
eration, transmission, distribution and commercialization. With each segment
operating with distinct and differentiated responsibilities and unidirectional power
flows - from generation units connected to the transmission grid, down to consump-
tion points, mainly connected via the distribution network. However, this conven-
tional model is undergoing a transformation phase. Boundaries are no longer as
clear as before and the hierarchical organisation of the grid is dissolving [1].

The main reason for this change is the introduction of emerging technology
such as intermittent power generation from Distributed Energy Resources (DER)
[2], capable of causing reverse power flows which render unidirectional protections
obsolete and significantly increase operational complexity [3]. Additionally, the
deployment of Battery Energy Storage Systems (BESS) - which are required for
an efficient renewable energy integration, the proliferation of electric vehicle (EVs)
and their potential grid interactions via schemes such as vehicle to grid (V2G) and
demand response mechanisms, all contribute to a more dynamic, less predictable
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and subsequently more complex to manage distribution grid. These developments
challenge conventional voltage control strategies and complicate the forecasting of
load and generation profiles [14] [15].

Figure 1.1: How can digital technologies and smart grids positively impact the
grid [8]

As a result Distribution Network Operators (DNO) are transitioning from
passive infrastructure managers to active Distribution System Operators (DSO)
of these new smart grids. As a parallel trend regulators, governments and con-
sumers are demanding a price reduction and an increase in reliability and service
continuity. In Spain, this pressure is reflected in the regulatory incentives to reduce
key reliability indices such as SAIFI (system average interruption frequency index)
and SAIDI (system average interruption duration index) [4]. A way to cope with
this added complexity and new demands is to optimise operations using large-scale
data analytics to enhance grid reliability alongside a great investment in new more
automated and digitalised power networks [16]. A viable course of action thanks
to the currently deployed advanced metering infrastructure (AMI).

With a daily average exceeding 600 recorded incidents in large-scale distri-
bution networks, it is crucial to pre-emptively detect anomalies and evolve into
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a predictive maintenance to minimize interruptions, ensuring service continuity
and minimising non-served energy. Amongst the most time-consuming and re-
source intensive incidents, that also poses a substantial safety threat, are instan-
taneous secondary substation thermal degradations, or also called hot spot events
[11].

The deployment of SABT (Advanced Low Voltage Supervision, in Spanish
“Supervisión Avanzada de Baja Tensión”), represents a key enabler in the transition
towards grid digitalisation and predictive maintenance as a key data source for
upstream elements. It also encompasses the remote systems and edge computing
capabilities. For downstream data collection, at the consumption points, Advanced
Metering Infrastructure (AMI) [13] is a key element. Both systems, collectively,
enhance the observability of low-voltage networks.

Digitalisation allows for the continuous collection and processing of operational
data, enabling detection of early signs of anomalies such as abnormal temperature
rises, voltage irregularities, or load imbalances. These indicators, when properly
analysed, can reveal the onset of conditions that may lead to critical thermal events
or unplanned equipment downtime. By leveraging SABT data, operators can move
from reactive to proactive maintenance strategies, improving both reliability and
cost-efficiency in increasingly complex grid environments. It is for these advan-
tages that the ’Comisión Nacional de los Mercados y la Competencia’ (CNMC) is
aligning regulation to push for digitalisation as a means for increased quality of
supply [4] [5].

The evolution from conventional distribution systems to smart grids marks a
fundamental shift in the design and operation of electrical infrastructure. Smart
grids are defined by their capacity to integrate new technologies and enable real-
time data communication and analysis. This transformation is driven as a digital-
ized solution to the complexity of modern grids [17].

The International Smart Grid Action Network (ISGAN) highlights that smart
grids are not merely technological upgrades but foundational infrastructures for
achieving climate and energy transition goals. Their capacity to integrate dis-
tributed energy resources, support bidirectional flows, and enable adaptive system
management is essential for meeting decarbonisation targets and ensuring long-
term grid sustainability [18].

In Spain, this transition is supported by regulatory and strategic frameworks
such as the ’Plan Nacional Integrado de Energía y Clima’ (PNIEC) [19] and the EU
Clean Energy Package [20], which promote digitalisation, flexibility, and resilience
in distribution networks. These policies encourage Distribution System Operators
(DSOs) to adopt advanced monitoring, automation and data analytics to manage
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increasingly dynamic and decentralised systems.

Predictive maintenance, underpinned by machine learning and statistical mod-
elling, is a cornerstone of this new operational paradigm. It allows for the early
identification of anomalies, like thermal stress or abnormal load patterns, before
they turn into service-affecting incidents, improving reliability and reducing OPEX
and CAPEX [10].

Figure 1.2: Transformation of global power systems as analysed by the World
Economic Forum [21]

i-DE, as a leading Spanish Distribution System Operator (DSO), plays a lead-
ing role in the digital transformation of low-voltage networks through its STAR
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project (’Sistema de Telegestión y Automatización de la Red’) [22] and the sub-
sequent PRADA project (’Proyecto de Renovación de Activos Digitales AMI’),
deploying over 11 million smart meters and automating tens of thousands of sec-
ondary substations. This infrastructure enables continuous monitoring of LV as-
sets and provides operational data essential for predictive maintenance algorithms.
Within this context, the proposed methodology leverages SABT data to develop
a hybrid anomaly detection system, combining analytical thresholds and machine
learning models, to pre-emptively detect indicators of thermal stress and opera-
tional irregularities. Primarily, in secondary substations and, extensively, under-
ground cable pits.

This approach aligns with Iberdrola’s strategic emphasis on enhancing grid
reliability and safety while reducing maintenance costs in increasingly complex
environments. Furthermore, it complements the company’s internal initiatives [7]
which emphasises the importance of detecting alarm signals, such as tempera-
ture, humidity, and CO2 levels and integrating thermographic imaging [23] [24] to
pre-emptively identify dielectric stress points and mitigate the risk of equipment
degradation or service disruption [9].

1.1.2 Motivation

The aforementioned complexity of current LV networks with high DER penetration
with a lower visibility, the increase of thermal degrading due to grid ageing and
the vast amount of data currently being captured in the SABT systems are all
both challenges and innovation opportunities.

Whilst there are several initiatives in favour of advances in digitalization and
smart grids deployment, currently regulators remuneration schemes do not fully
implement these incentives properly by favouring CAPEX investment rather than
OPEX reductions and therefore investment lags on strategic vision [25] [26]. This
is intended to be reverted in the following regulatory period [27] as it has been
proven that grid reliability now requires a combination of grid reinforcement and
more sophisticated flexibility and control schemes, as demonstrated by the 28A
Spanish national blackout [28]. Therefore, obtaining new ways to effectively use
the data collected via SABT for grid resilience, is a key topic for DSOs.

This project intends on proving the value and usefulness of such data to try
and solve, pre-emptively, a current problem in distribution low voltage grids that
severely reduces grid reliability and that, after research, has not been implemented
prior to this project [29]. Such problem is hotspot anomaly events in secondary
substations and more extensively in underground cable pits, where direct mea-
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surements are unavailable. These events can lead to overheating or unexpected
thermal related downtimes [23] [24] [9], compromising the grid integrity and the
safety conditions around these elements. The proposed solution involves feeding
operational data into a predictive maintenance algorithm that will be able to iden-
tify early signs of thermal problems or thermal degrading risk caused for example
by a poor connection or unsafe operations. This approach is expected to increase
the reliability and safety of the grid whilst also reduce its maintenance cost [30],
key aspect that will be crucial for the future complex and expensive to operate
distribution grids.

Additionally, as mentioned above, the novelty and relevance of this project is
an exceptional and unique way to learn how the advanced metering infrastructure
and smart meters can be used to obtain actionable insights through data analysis
techniques capable of extracting relevant conclusions resulting in an increase in
reliability. Contributing to both the scientific literature and practical grid man-
agement strategies.

Additionally, this project is aligned with several Sustainable Development
Goals, as recorded in Appendix A.

1.2 Objectives of the work

The main goal is to generate an industrially viable predictive maintenance algo-
rithm for hotspot events in both secondary substations and underground cable
pits. In order to achieve this goal 4 main objectives have been devised for the
project. Bellow they will be stated and further developed with their subsequent
division into milestones and deliverables. Modularity is required to implement
agile processes to keep improving the algorithm from a starting viable point. This
modularity allows for continuous validation and scalability. Milestones are made so
as to add key aspects at every development cycle of the predictive algorithm.

The four main objectives are:

OBJ1. Identification of historic secondary substation incidents by analysing the in-
cident reports from the Outage Management System (OMS). Then apply
graphical visualization of the line’s state prior to the incident allowing for
visual pattern recognition and anomalous state visualization using the LV –
SABT data.

OBJ2. Develop a predictive maintenance algorithm for secondary substations. De-
sign and implement a preventive anomaly detection system using both an-
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alytical methods (threshold-based criteria) and machine learning techniques
(RNN). The goal is to identify early signs of an overheating possibility using
data from smart meters and secondary substation sensors.

OBJ3. Validate the prediction algorithm with real incident and field data. Compare
the algorithm’s predictions with historical incident reports and field measure-
ments from secondary substations that experienced overheating. Emphasis
will be placed on minimizing false negatives, even at the cost of increasing
false positives, to ensure thermal anomalies are not missed.

OBJ4. Extend the methodology to underground cable pits. Apply the same detec-
tion framework to underground cable pits, where direct measurements are
unavailable. Use customer smart meter data to infer abnormal behaviour
and define detection criteria. Validate the new model with real incident
data, where possible. This part introduces additional complexity due to the
indirect nature of the data.

Next is a summary table with dates and a further breakdown of the main
objectives:

Objective Key Technical Milestones Target Date
Misc Obtain DataBase access 14/05/2025

Get to know the DB and SQL language 19/05/2025
Literature review 21/05/2025

OBJ1 Find historic CT incidents 26/05/2025
Analyse the measurement graphs prior to incidents 31/05/2025

OBJ2 Obtain analytical thresholds 04/06/2025
Find new viable features 22/06/2025
Program and train ML model 03/07/2025
Create predictive maintenance model (secondary substa-
tions)

03/07/2025

OBJ3 Application of thresholds to historic data 11/06/2025
Result validation with incidents and field measurements 14/06/2025
Test ML on historic data 07/07/2025
Result validation with incidents (ML) 10/07/2025

OBJ4 Find historic cable pit incidents 15/07/2025
Analyse the measurement graphs prior to incidents 21/07/2025
Obtain analytical thresholds 25/07/2025
Code predictive maintenance model (cable pits) 25/07/2025
Result validation – cable pits 30/07/2025
Field orders generation 01/08/2025

Table 1.1: Summary of objectives, deliverables and milestones for the project
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1.3 Methodology overview

The research conducted was a data analysis with a deep connexion with the sources
of the data and physical reasoning behind the behaviour of elements prior to the
studied faults. As there is a strong industrial component the reasoning behind
the tools produced during the investigation must and will be explained in the
methodology section, chapter 3. Nevertheless, here is a brief introduction to the
methods behind the project.

In order to achieve the objectives proposed, the methodology for the resolution
of the problem is separated into 5 steps each with individualized tasks and inter-
deliverables as mentioned above. The steps, or method followed, are:

1. Initial steps and data access

1.1. Secure access to Iberdrola’s database

i. CDSREADONLY: OMS

ii. GENESIS: asset inventory

iii. STG: AMI measurements and event logs

1.2. Familiarization with the database and the SQL environment

1.3. Develop an automatized data extraction pipeline via python

2. State of the art and problem framing

2.1. Study common thermal failure modes for secondary substations and the
main causes

2.2. Study common thermal failure modes for underground cable pits and
the main causes

2.3. Conduct literature review on predictive maintenance

2.4. Conduct literature review on applications of machine learning in smart
grids and digitalized low voltage environments

2.5. Conduct literature review on anomaly detection techniques in power
systems
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3. Algorithm development and analysis

3.1. Secondary substations analysis

i. Identification of historical incidents

ii. Data extraction and visual representation of statistical parameters
of pre failure conditions

iii. Definition of analytical thresholds based on expert knowledge and
statistical distributions

3.2. Secondary substations model development

i. Model decision

ii. Feature extraction and decision based on SABT and other available
sources

iii. Development of the model

iv. Testing and training, model evaluation and improvement applica-
tion

3.3. Secondary substations model validation

i. Extraction of test data

ii. Validation against model

3.4. Underground cable pit analysis

i. Identification of historical incidents

ii. Data extraction and visual representation of statistical parameters
of pre failure conditions

3.5. Underground cable pit model development

i. Model decision

ii. Model development

iii. Testing and training, model evaluation and improvement applica-
tion

3.6. Underground cable pit model validation

i. Extraction of test data

ii. Validation against model
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This methodology has been selected as the initial statistical analysis provides
valuable insides on the possible relationships between the causes of hotspot events
and the available data. The hybrid approach between analytical thresholds and
ML ensures interpretability of the results and robustness. The modularity and
method selected allows for result obtention and analysis of further steps in quick
one week sprints. In that way the results can be analysed and improvements for
the models can be implemented at a faster pace, always referring to the knowledge
gathered on the past sections on the problem and its data distributions.

The resources required are a laptop with the capability to install python and
SQLdeveloper. There are certain libraries and modules required alongside python
such as Pandas, Oracledb, Matplotlib, Pyplot, Pyarrow, Datawrangler, Pytorch,
Scikit-learn and TensorFlow. But most notably access to i-DE’s databases is re-
quired for this project. The database accesses required, as stated above, are:

ICDS acting as the OMS and is required as it records all the network’s
incidents, the grid elements affected, the durations and incident
cause, origin or extra information in description form

GENESIS is required as it contains all the tables related to inventory and
its management

STG is required as it contains all the SABT measurements from con-
sumer smart meters and substation meters as well as event logs
for the mentioned meters

1.4 Organisation of the document

Following the current introductory chapter, Chapter 2 describes the technical
knowledge required for the interpretability of the gathered data and results by
studying the causes for hotspot events in both grid elements analysed, as well as
literature review comparing maintenance strategies and ML models. Chapter 3
details the methodology in more depth, explaining the models designed, the de-
cisions and assumptions made. Chapter 4 contains the illustrative examples of
the models alongside an evaluation of each model with respect to their validation.
Chapter 5 provides the conclusions of the work.
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Chapter 2

Theoretical framework and state of
the art

The following chapter will review the common causes, impacts and issues related
to secondary substations and underground cable pits. It is necessary to under-
stand such causes as this will allow for an easier first filter on which data sources
should be used to gather the most relevant information. It will also ensure the
analytical study is performed with the required physical explicability. The impacts
of secondary substation incidents will allow for a further economical analysis for
break even minimum model requirements. Next, the state of the art is reviewed
in all topics related to the project: maintenance strategies, low voltage anomaly
detection and common machine learning approaches.

2.1 Common incidents in secondary substations:
causes and impact

The incident this project mainly focuses on is hotspot anomalies. Such an anomaly
in a low voltage electrical network refers to a localized area of overheating and
excessive heat accumulation in a specific element of the grid. In secondary sub-
stations these appear mainly in the cable connections of the low voltage of the
transformer, where currents are larger and many connections share the same low
voltage panel or distribution switchboard.

The main causes of hotspot events in secondary substations are typically re-
lated to minimising the transfer area of the current therefore increasing the resis-
tances and as such the temperature as seen in Figure 2.1. Some causes are: poor
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contacts that have deteriorated with age, loose contacts that loosened due to a
poor maintenance practice or strong short circuit currents that provoke magnetic
forces on the wire, thermal and or conductive insulation failure due to extreme
weather or ageing, presence of water or high humidity and there are other causes
that whilst not greatly can have an accumulating effect on the problem like over-
loading, harmonic disturbances and phase unbalances [9][12].

Figure 2.1: Thermal image of a hotspot event in a secondary substation caused by
a loose connection [source: internal maintenance reports from i-DE]

The consequences of such thermal events are varied from safety risks to main-
tenance crew, risk of equipment damage, damage to the integrity of the secondary
substation, increased losses, system malfunctions and power outages.

Another relevant aspect of hotspot anomalies is their temporal evolution.
These events often develop gradually, starting with minor increases in contact resis-
tance or insulation degradation, which may go unnoticed in early stages. However,
as the thermal stress accumulates, the degradation accelerates, potentially leading
to abrupt failures. This progressive nature makes early detection through thermal
imaging, continuous monitoring systems or data analytics crucial. Without timely
intervention, a hotspot can evolve into a critical fault, causing unplanned outages,
equipment failure, or other hazards as seen in Figure 2.2a. Therefore, integrating
predictive maintenance strategies and anomaly detection algorithms becomes es-
sential to mitigate the impact of such incidents on the reliability and safety of the
low voltage distribution network.
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(a) Damage caused by a hot spot
event detected in a routine mainte-
nance

(b) Thermal imaging of the hot spot
event

Figure 2.2: Images depicting hotspot events and consequences in a secondary
substation [source: internal maintenance reports from i-DE]

2.2 Incidents in underground cable pits

Hotspot events for underground cable pits are of a similar nature as hotspots in
secondary substations. The igniting point tends to be a poor connection, never-
theless, due to the exposed nature of such grid elements there are several more
ways in which the thermal or electrical insulation of the element can be initially
damaged. Amongst some of the most common sources are NILED connections,
where the original cable is perforated to make a new cable connection. Another
common source is weather events, though if properly designed unless a different
incident first took place environmental effects don’t tend to be the sole cause of a
fault but they are an aggravator.
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Figure 2.3: Underground cable pit thermal event in Gastiez, Spain [Source: News-
paper Gastiez-hoy: "La Calle Diputación registra varias explosiones en una arqueta
eléctrica"]

The consequences of hotspot events in underground cable pits tend to be loss
of customer connection to the grid, short-circuit faults, temperature rises, equip-
ment damage or degradation, power losses and thermal bursts due to arcing or gas
accumulation. Gases might accumulate due to thermal insulation deterioration,
poor cable joints, contaminated or sewage water draining [31]. Additionally, due to
the distributed nature of this element, detection and correction is complex when
not completely economically unviable (for both periodic and corrective mainte-
nance schemes). Nevertheless detection, whilst complex due to the lack of direct
measurements, is crucial as underground cable pits are located in urban areas and
safety is a key aspect [6].
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Figure 2.4: Common causes for underground electrical vault explosions as analysed
by IEEE [6]
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2.3 State of the art

Once understood the criticality of preventing these failure modes, a state of the art
and competition analysis was performed to understand the different strategies for
maintenance, how they could be applied to low voltage networks and how data an-
alytics is used in different models to enhance these maintenance strategies. Later,
in the Methodology chapter, Chapter 3, the basis of the actual model developed
will be explained in further detail, taking this state of the art research as bases for
the decisions made in model and structure.

2.3.1 Maintenance strategies

Maintenance can be, mainly, classified in three categories.

A maintenance strategy is a plan developed to minimise both downtime, main-
tenance costs (deemed both inefficiencies in the lean maintenance philosophy) and
ensure operational continuity and efficiency [32]. As industrial systems become in-
creasingly complex and data-driven, the range of available maintenance strategies
have expanded significantly. Despite this, most approaches can be categorized into
three main ones: corrective, preventive, and predictive maintenance.

Beyond these core strategies, several maintenance philosophies have emerged
to enhance asset reliability and operational efficiency. These include Reliability-
Centered Maintenance (RCM), which prioritizes maintenance based on asset
criticality; Total Productive Maintenance (TPM), which involves all em-
ployees in maintaining equipment; Risk-based maintenance where the assets
condition and its risk of failure is analysed; Condition-based maintenance by
monitoring performance, control of corrective actions can be altered to best suit the
asset [33] and Lean Maintenance, which applies lean manufacturing principles
to eliminate waste and improve maintenance workflows. Each of these philosophies
can fit within either corrective, preventive, or predictive frameworks, depending
on the organization’s goals, resources, and technological maturity.

In the following sections, each of these main strategies will be explored in
greater detail, highlighting their principles, implementation methods and practical
applications in modern DSO environments.
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Corrective Maintenance

Corrective maintenance, also known as reactive maintenance, involves repairing
equipment only once there is an element failure and corrective measures are re-
quired to achieve the original operational state. While simple and cost-effective
in the short term, it often leads to unplanned downtime and higher long-term
costs. Due to electricity being an essential good, regulators have enforced service
continuity and quality standards which make corrective maintenance an unde-
sired strategy for DSOs mainly due to the increased unplanned downtime and
the immediate unavailability of spare parts for many electrical distribution grid
elements.

Preventive Maintenance

Preventive maintenance is the next maintenance scheme, it aims to address po-
tential failures before they happen. Achieving this where scheduled and periodic
revisions or inspections take place to check the state of the element, typically re-
visions take place before and after peak usage of the element is expected or based
on a yearly or multi-yearly scheme. Although it reduces unexpected breakdowns,
it can lead to unnecessary interventions. Currently in distribution grids this main-
tenance strategy is the most deployed amongst DSOs [34] as it provides certain
security against system failures although a compromise must be reached between
constant inspections and reducing costs but allowing some room for failures and
subsequent unplanned downtime to appear.

Predictive Maintenance

Predictive maintenance represents a significant advancement in the management
of electrical distribution systems [12]. It relies on real-time data acquisition and
advanced analytics to assess the current condition of system components and es-
timate their risk of failure. This approach enables maintenance activities to be
scheduled based on actual usage and degradation patterns, rather than fixed in-
tervals or post-failure interventions [35].

While reactive and preventive maintenance remain the most commonly imple-
mented strategies due to their simplicity, the transition toward predictive mainte-
nance is increasingly recognized as essential [9]. Predictive strategies enhance sys-
tem reliability by reducing unplanned outages and minimizing unnecessary main-
tenance operations, ultimately leading to lower operational costs and improved
asset longevity [10].
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Despite its advantages, predictive maintenance in low voltage distribution net-
works still faces several challenges. Among them are the lack of commercially avail-
able turnkey solutions, the need for robust data infrastructure, and the integration
of intelligent monitoring systems capable of detecting early-stage anomalies. These
limitations highlight the importance of continued innovation and development in
this area to fully realize the benefits of predictive maintenance [36].

2.3.2 Anomaly detection in LV networks

Anomaly detection is a growing fiend in the continuously digitalising and increas-
ingly complex distribution systems. Some distribution companies, such as Enel’s
branch gridspertise, have started to use data for instantaneous anomaly detection
[1] but the transition to predictive maintenance is yet to fully arrive. Other compa-
nies are using data intelligence to better understand failures and their causes and
many startups have sprawl to cover the digitalization process and data intelligence
knowledge gap.

Thermographic imaging is currently being leveraged [23] [24] to identify and
prevent dielectric hotspots [9] and improve maintenance effectiveness. Also, as
discussed above, anomaly detection and failure anticipation in LV networks is a
growing research area, particularly with the increasing availability of data from
grid digitalization. Nevertheless, currently there is no publicly available source or
tool dedicated to predictive hotspot anomaly detection in low voltage networks via
data analytics.

2.3.3 Review of Analytical and Machine Learning Approaches

To support this evolution towards predictive maintenance, certain tools can be
leverage to various degrees of effectiveness. Here some of the most applied tech-
niques in industry will be stated and referenced to the case study of anomaly
detection in a DSO environment where possible.

A comprehensive review of anomaly detection techniques in energy systems
[37] categorizes methods into:

• Physical models: Based on known system behaviour.

• Statistical thresholds: Triggered when measurements deviate from expected
ranges.
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• Machine learning: Including regression (e.g., neural networks), classification,
clustering (e.g., k-means, GMM) and hybrid models.

• Image-based analysis: CNNs applied to thermographic images for hotspot
detection [9] [23].

Notably, some studies highlight the lack of prior work, at least public, specifi-
cally targeting predictive maintenance for temperature-based anomalies in electri-
cal distribution grids using ML [29], reinforcing the novelty and relevance of this
project.

Analytical techniques

Analytical methods are a more traditional method of interpreting data. It relies on
certain key characteristics like: being rule driven, having deep human interpreta-
tion and involvement, is applied to structured data (tabular, well organised data)
and if the technical expertise is available its application is simplistic. It is basically
a human based set of rules that come from experience or visual analytics.

This makes this method an attractive one for companies seeking deep expli-
cability, although certain ML techniques are also explicable but the rules come
from an automated process instead of a human. Other use cases of such models
are well defined problems, when dealing with limited data available. regulatory
requirements that need audit compliances (for the transparency and compressibil-
ity) and when there are resource constraints. Nevertheless, scalability is hindered
and complex data patterns are typically not captured. All and all, this method
provides several advantages and can be a good first level approximation to the
data.

Machine Learning: supervised, unsupervised and hybrid approaches

Even though analytical threshold-based methods are just starting to be imple-
mented for data-driven anomaly detection in low voltage grids, there is already
a next step: machine learning (ML) techniques capable of identifying complex
patterns and subtle deviations from normal behaviour [38].

Recent literature has explored a wide range of machine learning (ML) models
for applications such as fault localization, cybersecurity anomaly detection [39],
and non-technical loss identification. Although none of these studies directly ad-
dress hotspot anomaly detection in secondary substations for failure anticipation,
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the methodologies and insights derived from them are highly relevant to this re-
search. The following categories summarize the most pertinent approaches:

• Supervised and Ensemble Models: Techniques such as Logistic Regres-
sion, Support Vector Machines (SVM), Decision Trees, and Naive Bayes have
been widely applied in classification tasks [40, 41]. These models are inter-
pretable and computationally efficient, but they require labelled datasets,
which are often scarce in anomaly detection scenarios.

• Unsupervised Models: Algorithms like Isolation Forest, One-Class SVM,
Local Outlier Factor, and Autoencoders are commonly used when labelled
data is unavailable [41, 42, 37]. These models are effective in detecting novel
or rare events but may suffer from high false positive rates and sensitivity to
parameter tuning.

• Deep Learning Approaches: Multilayer Perceptrons (MLPs), Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
particularly Long Short-Term Memory (LSTM) networks, have shown strong
performance in real-time anomaly detection using smart meter data [43, 44].
LSTMs are especially suitable for time-series data due to their ability to
model temporal dependencies. They can compare predicted or expected val-
ues against actual measurements to identify anomalies. While deep models
require significant computational resources and data, their adaptability and
scalability make them promising for dynamic grid environments.

• Hybrid CNN Models: CNN-based architectures have also been employed
to identify regions of interest post-threshold, allowing for detailed simulation
only in anomalous zones [45]. This selective modelling reduces computational
overhead while maintaining diagnostic accuracy.

• Contrastive Learning: Recent studies propose contrastive learning to en-
hance feature representation and improve anomaly detection accuracy [46].
This approach is particularly useful in scenarios with limited labelled data,
although it often requires careful design of positive and negative sample pairs.

• Fault Cause Detection: Many of the aforementioned models are evaluated
based on their ability to detect root causes of faults such as overloads, phase
imbalance, harmonic distortion, poor connections, insulation degradation,
and thermal stress—factors commonly associated with hotspot anomalies
[47, 48].

• Clustering: there are many clustering methods that are commonly used for
anomaly detection, some will be mentioned here [49]:
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– k-means clustering for fast and simple classifications but probabilistic
starting positions for the centroids can yield different results also k-
means uses mean value naively for cluster centroid detection, which not
always is an efficient solution.

– Mean-shift clustering requires no initial estimate on the number of cen-
troids but the selection of the observable window is non trivial and can
greatly affect the results

– Gaussian Mixture Models (GMM) offer a more flexible probabilistic
framework for modelling the distribution of normal operational data.
They are particularly advantageous in scenarios with limited feature
availability and can provide interpretable statistical insights offering va-
riety in cluster covariance. However, they assume underlying Gaussian
distributions and may struggle with very complex, non-linear patterns
[50].

– Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
is capable of identifying outliers as noise, a very important feature. But
lacks performance if clusters are of varying densities.

– Spectral clustering uses graph properties to aggregate data points, very
useful for non convex cluster structures, nevertheless, it is more com-
putationally demanding than the above.

Figure 2.5: Cluster comparison of main techniques [49]

In the context of Distribution System Operators (DSOs), the choice of model
depends on data availability, interpretability requirements, and computational con-
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straints. RNNs, especially LSTMs, are favoured for their adaptability to time-
series data and robustness in dynamic environments that have high temporal de-
pendencies but require more computational power than multi layer perceptrons
that are efficient in complex pattern recognition. GMMs, on the other hand, are
valuable when feature selection is limited and a statistical understanding of system
behaviour is desired.

RNN are deep neural networks used in machine learning models that train
on time series data to make predictions on the next points. The distinguishing
factor with other convolutional networks is that prior inputs can influence cur-
rent inputs and outputs. Also, the weight parameter is shared for each layer as
opposed to CNNs but both architectures are updated via back propagation and
gradient descent. Although many different RNNs exist the standard RNN offers
a computationally simple first step in the model development, required for a work
based on agile philosophy. Also, vanishing gradients, the method by which the
model loses grip of long term dependencies as they have a reduced impact on the
next predictions gradients, is a lesser problem in anomaly detection of this type as
immediate deep change is one of the indicators for hotspot events. Nevertheless,
this vanishing gradient can be solved if required by the use of a long shot-term
memory (LSTM) [51].

Multilayer Perceptrons (MLPs) are feed-forward neural networks composed of
multiple layers of interconnected neurons, each applying non-linear transforma-
tions to the input data. Unlike recurrent architectures, MLPs do not retain mem-
ory of previous inputs, making them computationally efficient and well-suited for
tasks where temporal dependencies are less critical or can be captured through fea-
ture engineering. In the context of hotspot anomaly detection in power distribution
grids, MLPs offer a robust baseline due to their ability to model complex non-linear
relationships between sensor readings, environmental variables, and operational
parameters. Their simplicity facilitates rapid prototyping and deployment, align-
ing with agile development methodologies. Moreover, since hotspot events often
manifest as abrupt deviations in spatial or operational patterns rather than long-
term temporal trends, the lack of sequential memory in MLPs is not so much a
limitation but rather an advantage for this study, reducing model complexity and
training time [52].

On the other hand Gaussian Mixture Models are statistical or probabilistic
model that select a limited number of multivariable Gaussian distributions to
explain the data points. The distributions are so that the points could have been
generated by the mixture of Gaussian distributions. With some key differences on
the method, they are also classifier models like a more known k-means that group
data into clusters, but in this case the data is classified into Gaussian distributions
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with different means and covariances between the features. Its simplicity allows
for fast a clustering technique.

Figure 2.6: Bivariate GMM representation of normals as contour lines [53]
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Chapter 3

Methodology

In this chapter the methodology, steps taken and justified decisions made for the
completion of both hotspot predictive maintenance algorithms will be analysed.
First reviewing the data sources and the preprocess of such data, continuing with
the anomaly detection methodology for the secondary substations algorithm and
finishing with the underground cable pit algorithm. For each algorithm the first
data exploration and statistical analysis will be commented and then the model
created is explained with its development, assumptions made, data structure, ob-
stacles rencountered an model limitations.

3.1 Data Sources and Preprocessing

The data for all models will be extracted from i-De’s internal data bases. As
mentioned in the methodology overview, Chapter 1, there are three main data
bases from where all the data is extracted: ICDS, GENESIS and STG. These
databases are accessed through Oracle SQL Developer for exploratory means and
via python for extraction purposes.

The ICDS database is mainly to store a recollection of all outages that occur
in the distribution network. The database has three main tables, along with their
auxiliary tables, that collect all the required data for this model. These are the
incidence report table, the phase table and the ’ambito’ or elements related to
each incident table. The initial incident report contains the date, the approximate
geografical location, the type of failure mode and a brief initial description. In-
cident logging follows a 5 step process called phases, recorded in the appropriate
table. Phase one is the incident generation, then the mobile assignement, the fail-
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ure location and isolation with non served energy, the provisional resolution for
the disconnected clients and then phase 5 is the final definitive resolution of the
incident. After this final step the system has returned to the initial state. The
elements affectet table records the code of the elements that lost power because of
the failure and for each element it provides a date time of lost of power and a date
time for the reconnection of power, from wich the duration can be extracted.

The GENESIS, GIS - Geographical Information System, data base serves for
inventory purposes. It is from this table from where the information for each
element can be extracted. Some of the important information extracted are number
of customers connected, power served, nominal currents and voltages of different
elements ...

The STG records all the measurements as time synchronous profiles, with
different time granularity depending on the type of measurement. It also records
the event logs. Both profiles and events can originate from two different sources:
either the advanced low-voltage line supervisors located in secondary sub-
stations, or the smart meters located downstream at consumption points.

For the purpose of this project, we focus on measurement profiles provided
by the advanced line supervisors in secondary substations. These include voltage,
current, power and temperature profiles which are collected in each line supervisor
at 5 minute intervals, as an average of the measurements taken during those 5
minutes, and then sent all in one data packet at the end of the day.

In terms of the events, specially those this thesis focusses on, are generated
by smart meters and arrive asynchronously. Once the event takes place the data
is sent and it contains: the group, type, starting and ending date times and some
additional information depending on the event.

Figure 3.1: Data sources (SABT and Smart Meters) and visual representation of
a secondary substation and an underground cable pit
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Around September 2024 the last SABT meters were updated to allow for tem-
perature readings, as it was deemed an important feature of the line to be taken
care of analytically. This is why current SABT systems record and send back via
STG 2 key temperature indicators. One is the ambient temperature recorded by
the smart meter, which as the temperature sensor is placed adjacent to the line it
has a certain relationship with the actual temperature of the line. The other is an
estimated temperature of each of the phases and the neutral wire. The estimations
is made by combining:

• TPTMax: Maximum allowable temperature of the cable, depends on the
insulation material, in °C.

• TPTlimit: Ambient temperature at which the manufacturer specifies the
nominal current of the conductor, in °C.

• TPInom: Nominal current of the conductor, in amperes (A).

• TPThermalC: Thermal constant of the conductor, depending on its cross-
section and installation method (e.g., air, buried), in seconds.

• TPCurrentMeasMax: Maximum limit for current measurements in phases
and neutral, used to avoid false emergency alarms due to measurement errors.

• TPTamb: Ambient temperature, in °C.

• Fa: Adjustment factor based on ambient and limit temperatures.

• H(t): Thermal level of the cable at time t, dimensionless.

• I(t): Measured current at time t, for each phase or neutral.

Formulas used in the calculation of cable temperature:
UNE.EN 60255 norm, European Standard [54]

Fa =
TPTMax− TPT limit

TPTMax− TPTamb

H(t) =

(
I(t)

TPInom

)2

· 15

TPThermalC + 15
· Fa+

TPThermalC

TPThermalC + 15
·H(t− 1)

Temp = TPTamb+H(t) · (TPTMax− TPTamb)
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For the predictive maintenance model related to underground cable pits, the
data sources will come from the same database as the above information (STG -
tstgreadings) but will come from a different set of tables, those related to meter
events. These events are separated into the smart meters located at consump-
tion points, also called Remote Terminal Unit (RTU), and those sourced from
advanced line supervision system meters located in secondary substations, called
LS cards events. The events are further categorised into synchronous events and
asynchronous or spontaneous, it is these latter events that are of a greater interest
for this study. The information retrieved is sent from the meters to the centralised
information system using standardized protocols and reports such as S65, S67,
S59, S63 ...

Figure 3.2: Protocol example: RTU asynchronous event report via the STG Web-
Service [55]

For each event source there are several groups of events and a further division
of the groups into event types. Here is a summary table on such division with a
brief description of each event. Those that are of more interest to this project, as
they are analysed to be the main flagging events for underground cable pit hotspot
events, are marked. Missing types are reserved for future developments and are
therefore not included in the summary table, also certain events which are similar
to one another are gathered together for simplicity:
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Table 3.1: RTU Event Groups and Types

Group Type Description Relevant
1 1–3 Logger startup and power failure
1 4–6 Phase voltage measurement failure (1, 2, 3)
1 7 Neutral loss detected ✓
1 8 Low battery
1 9 Critical internal error
1 21–23 End of phase voltage failure (1, 2, 3)
1 24–25 Official time change (Winter/Summer)
1 26–29 Active energy impulse LED control (manual/remote)
1 67 End of neutral loss
1 68–71 Reactive energy impulse LED control (manual/remote)
1 72–75 Active + reactive impulse LED control (manual/remote)
1 30–34 Configuration changes (logger, ports, passwords,

firmware)
1 35 Battery reset performed
1 36–43 Various configuration changes (auto I/V, integration pe-

riod, transformation ratio, sync type, labels, output as-
signment)

1 44–66 Contract 1–3 operations (closure, parameters, sched-
ules)

1 90–91 Timing changes for voltage variation and long interrup-
tion

1 92–95 Reference voltage and threshold configuration changes
1 96, 102 Contracted power changes (import/export)
1 97 Firmware update (version change)
1 99–101 Reset operations (keys, data, parameters)
1 103 Max software update count reached
1 108 Scroll mode change
1 110 PLC modem reboot
1 112–116 Auto-reconnection settings
1 117–118 Smart 3-phase injection settings
1 119–120 Overvoltage/neutral loss detection toggle
1 121 Prime protocol change
2 1–3 Manual and remote connection/disconnection (button/-

command)
2 4, 13 Disconnection due to contracted power limit (Contracts

1 and 3)

Continued on next page
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Table 3.1 – continued from previous page
Group Type Description Relevant

2 5 Connection via power control (IGA)
2 6, 14 Element lock/unlock due to PSC overlimit (import/ex-

port)
2 7–8 Element enable/disable
2 9–11 Residual power control: disconnection/connection
2 12 Change in cut-off element control mode
3 1–4 Phase voltage below lower limit (average and per phase) ✓
3 5–8 Phase voltage above upper limit (average and per phase) ✓
3 9–12 Long-duration outage (all phases and per phase) ✓
3 13–16 Phase voltage below lower limit (duplicate set) ✓
3 17–20 Phase voltage above upper limit (duplicate set) ✓
3 21–24 Long-duration outage (duplicate set) ✓
3 25 High impedance fault detected (BT Supervisor) ✓
3 26 End of high impedance fault (BT Supervisor) ✓
3 27–30 Phase voltage below lower limit (Distributor event) ✓
3 31–34 Phase voltage above upper limit (Distributor event) ✓
3 35–38 Phase voltage below lower limit (Distributor event, al-

ternate set)
✓

3 39–42 Phase voltage above upper limit (Distributor event, al-
ternate set)

✓

3 43 Reconnection due to overvoltage or neutral loss / auto-
matic trip

✓

4 1–2 Manufacturer seal opened/closed
4 3–4 Magnetic field detected/cleared
4 5 Current detected without voltage
4 6 Intrusion attempt (wrong password)
4 7–8 Terminal cover opened/closed
4 9–10 Voltage detected at output terminals during remote dis-

connection
4 11–12 Infinite impedance detection at output terminals during

remote disconnection
4 13–14 Meter bypass started/ended (optional)
5 1–3 Demand response order (critical power: residual, % re-

duction, absolute)
5 4–12 Demand response order (non-critical residual power, %

reduction, absolute)

Continued on next page
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Table 3.1 – continued from previous page
Group Type Description Relevant

5 13 Change in contracted residual power value
5 14–19 Activation/end (residual power, contracted power % re-

duction and absolute power reduction)
5 20 Demand power near contracted limit (%)
5 21–22 Auxiliary relay connected/disconnected
5 23–24 IHD enabled/disabled
5 25 Change in scheduled time
6 1–2 PLC port communication started/ended
6 3–4 Optical port communication started/ended
6 5–6 Serial port communication started/ended
7 1 Key reset
7 2–6 Security key and policy changes (Master, Encryption,

Authentication, LLS, Policy)
7 7–13, 101–110 Errors in security configuration and secure communica-

tion (LLS, client, PLC)
7 14–15 Secure client modification (optical port and reader)
7 16–17 Public key update for firmware signing (Iberdrola and

Manufacturer)
7 18–19 Secure client reset (PLC and optical)
7 111–117 Errors in public key (Iberdrola/Manufacturer) &

Firmware update errors (signature and CRC verifica-
tion)

Detection of Hotspot Anomalies in LV Networks via Data Analysis.
Carlos Prieto Rodríguez de Vera

30



Table 3.2: LS Card event groups and types relevant to underground cable pit
hotspot detection

Group Type Description Relevant
1 1–2 Startup with/without data loss
1 9–20 Manufacturer errors
1 24–25 Seasonal time change
1 26 High temperature detected
1 27 End of high temperature
1 30–34 Configuration changes (RS485, passwords)
1 36–41 Parameter adjustments (transformation ratio, clock, la-

bels)
1 66–71 Period changes (profiles 1–5, real-time)
1 97–98 Firmware update and synchronization
1 100–101 Reset to default and data deletion
1 102–117 Nominal voltage/current and limit changes
3 26–31 Fuse activation/deactivation (phases R, S, T)
3 40–45 Short-circuit activation/deactivation (phases R, S, T) ✓
3 46–51 Overload activation/deactivation (phases R, S, T) ✓
3 60–63 Thermal image protection active/inactive (phases, neu-

tral)
3 64–71 Thermal image alarm activation/deactivation (phases

R, S, T, neutral)
3 72–79 Thermal image emergency activation/deactivation

(phases R, S, T, neutral)
3 60–63 Thermal image protection status (active/inactive)
6 5–6 DLMS association established/released

As seen above, the amount of data sources is varied and the granularity is big.
Therefore the amount of data managed is vast. Clear knowledge of the root causes,
consequences and possible system manifestations is key to filter out the features
and desired data sources to avoid hugely inefficient processing times.

The most relevant information from these event logs are in group 3, which
for both RTU (consumer smart meter) and LS advances supervision systems, is
related to power quality. This is because a hotspot event in an underground cable
pit will alter the voltage profile of the line, with higher loses and higher voltage
drops which will cause quality indicators to flag the line and send the events back
to the main database. Whilst a monophasic grounding fault in an underground
cable pit could be passed by the meters as a new load due to its small current,
meaning that current measurements would not be useful for this case. Return to
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earth fault detection systems are required for this current detection.

To visualize this amount of data and taking just the secondary substation
model for simplification. The data is collected at five-minutes intervals, we typ-
ically are interested in current, voltage, temperature measures alongside other
descriptive values like element reference number, location, exterior temperature
(which is obtained by using the date time and the GPS coordinates of the element
to access a publicly open source available climate API called Open Meteo to collect
this data, cleaning the data to mold it into the 5 minute interval measurements)
and some values like ventilation type and type of secondary substation. If around
16 values are collected every 5 minutes for the almost 550,000 lines and the 11
million smart meters in a one year study there would be around 9.3 × 1011 data
points and that would equate to around 900 GB of data to be processed (extrap-
olating some lower scale database extractions performed). If each data point was
a grain of rice, 8.7 Olympic swimming pools could be filled or if each byte was
written in a page and printed the paper pile would stack to 90km, almost reaching
the Kármán Line, the height where space starts, according to the FAI (Fédération
Aéronautique Internationale). Though achievable for a company with access to
cloud computing, too extensive for an individual model validation process.

This is one of the key limitations of the models presented below, even for small
scale studies the amount of data and processing time is significant, so a trade of
needs to take place between industrial scalability and manageability. Nevertheless,
due to the critical nature of identifying all possible hotspot events, due to the safety
risk related consequences, all models presented have been trained with the data of
all detected hotspot anomalies in the past year and then a control population of
undamaged lines that did not contain hotspot events was selected to validate the
model and verify false positives.

3.2 Anomaly Detection in secondary substations

This section intends on explaining the method and decisions taken towards the
development of both the analytical model of the data with physically explainable
criteria and the machine learning models that result in the predictive maintenance
algorithm for hotspot anomalies in secondary substations. But first the methods
behind a statistical analysis of the data alongside some preliminary observations
that have founded the models will be displayed, alongside the method used to
perform an economical review that will serve as a limiting factor for the model
precision required to break-even.
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3.2.1 Historic incident, statistical and economical study

Historic incidents

The data available for this study was presented in Chapter 2. These were mea-
sures coming from the SABT system for each line of the secondary substation.
Including date-time, current of the 3 phases plus the neutral wire, voltage of the
3 phases, thermal image of the 4 wires (obtained via the calculation explained
in the above section), ambient temperature (as measured by the sensor in the
smart meter which, as it is placed on the line has certain relationship with the
lines temperature), external temperature (from a weather API), geographical zone
code, type of ventilation, type of secondary substation and the respective line and
secondary substation codes for identification.

To decide on the model, the features and the criteria studied an initial statisti-
cal distribution and variable correlation study was performed. The main objective
for this study is to detect key differences between healthy lines and damaged lines
that could then be exploited by the predictive algorithm models to distinguish
between the two. For this key first step we require a dataset of damaged and
healthy lines that keep the majority of things constant such as type of secondary
substation, time of the year, loading ... To achieve this first the historic incidents
related to secondary substation hotspot events had to be detected from the OMS
database and then 2 periods would be obtained:

• The months prior to the incident were we consider the line to be damaged
as it resulted in an unplanned secondary substation downtime caused by a
hotspot event (without including the actual incident day as this would distort
the data and the key factor of the algorithm is its predictive nature)

• The data related to the months after the incident was cleared, the corrective
maintenance was performed and the secondary substation was now acting as
designed with all damaged components replaced.

To detect which secondary substations had suffered hotspot events first the
OMS database (ICDS) was accessed and all incidents for the past year, that were
recorded as unplanned outages related to medium voltage or several lines
(these were found to be the most successful markers) were extracted. The output
was a list of all incidents with its unique code, a description of the incident and
a date time. The description column was cleaned and normalised to ascii small
characters with no double gaps or accents, this is important as the description
is typically written in field by the operator that inspects the incident and could
have errors. This description list was then filtered by those that contained
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references to elements that are common consequences of hotspot events such as
smoke, heat ... then a second filter was performed to those containing the desired
location or element of such hotspot by finding those that also contained ’CT’
(centro de transformacion), electrical box, low voltage. Finally 2 more filters were
used to discard common incidents that occur in secondary substations that had
similar descriptions as the desired ones but had a known different source, these
are related to fuses, circuit breakers, cells, medium voltage lines ... Again, as these
descriptions are written in the field, the word filtering had the complexity of using
where possible word roots to avoid the effect of misspells.

This pre-extraction filter alongside the word filter reduced the size of the inci-
dent list from hundreds of thousands to about one hundred instances. It is possible
some hotspot events were lost to some filter but several filtering techniques and
different word combinations were used to loose as little hotspots whilst keeping the
filter strict to avoid poor labelling, as this would greatly affect the performance of
the models. Next, as the filters are not perfect, a by hand filter is then performed
for the last tens of incidents by carefully examining the description and available
information. This process could be further automated by the use of a large lan-
guage model, but the use of such models is internally restricted by the company,
so filtering by hand was the only option left.

Once the incidents have been filtered, another extraction is performed to ob-
tain the list of the three most affected elements related to each incident. Being
most affected those that had the longest outage time. This is an effective strat-
egy as hotspot events will require corrective maintenance before reconnecting the
secondary substation permanently but the low voltage lines and consumers can be
reenergized from a different secondary substation or an emergency backup genera-
tor. Then for each incident, if the name of any of the three elements is included in
the incident description, this tends to be the case for secondary substations as they
have distinct names by which they are referred to by the maintenance crew that
writes the descriptions, then that element is selected for that incident, if not then
the largest duration element is the one selected. This results in a list of several
secondary substations where hotpot events caused an unplanned outage.

This list is used to extract the SABT meters connected to these secondary
substations, it is from these meters where the measurements will be sourced. The
final extraction is using the final meter list and the incident date time, obtain the
SABT measurements for the months before the incident and after the corrective
maintenance. The current measurements are normalised by automatically finding
in genesis the nominal current of such lines.

The basis for the statistical study is the recorded incidents with the measure-
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ments for when they were healthy secondary substations and damaged ones but
for the model training and creation two other categories were included. First the
secondary substations that, whilst damaged due to hotspot events, they did not
cause an outage (and so were not recorded by the OMS) but were recorded in the
preventive maintenance logs. Finally a control population of secondary substations
was included in the study, these had similar loading characteristics, region loca-
tions and types of ventilation than the other 2 categories but more were included,
at a reason of 1:10 to ’simulate’ the model performance where hotspot anomalies
are uncommon.

Therefore, as a summary, the data used contains instances of both healthy and
damaged lines and a time frame of about 7 months per substation. Damaged lines
were detected via the OMS, the point were corrective maintenance was applied
is recorded and from then on it is considered a healthy line once more. For the
control population it is always considered as a healthy line.

There are 140,000 data points of damaged lines that eventually caused a sig-
nificant incident (accounting for 8 secondary substations), a further 600,000 data
points of these same secondary substations once the corrective maintenance takes
place and they can now be considered healthy lines, 2,200,000 points of damaged
lines that were repaired in routine maintenance inspections and caused no sig-
nificant outage or incident recorded by the OMS (accounting for 20 secondary
substations), 2,000,000 points of these same secondary substations once the cor-
rective maintenance took place and they were now considered healthy lines, finally,
a further 6,600,000 data points of a control population that shares the character-
istics of the other groups, assumed to be healthy (accounting for 100 secondary
substations). The time study tends to be of 2 months per type discussed here, of
the 5 discussed types.

Statistical analysis

Several statistical analysis were performed in order to visually inspect the data and
detect differences between healthy and damaged lines. Results will be presented in
the next chapter but the tests performed and the methodology will be explained
here.

After extracting the data it is read by python where several data analysis
libraries are used to plot certain relationships. Most of the data, after the prepro-
cessing mentioned, is then removed of erroneous values like nans, infinite values,
those lines with no nominal current are removed, also those measures that exceed
significantly from the nominal values (if these values were real circuit breakers and
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fuses would have gone off before reaching these levels), the values are reshaped
into floats, phase averages are calculated for some of the analysis and some minor
data processing for python library uses.

The analysis performed were:

• Temperature measurement histogram

• Several current and temperature relationship pairplots and current squared
vs temperature plots

• Phase balancing analysis plots

• Probability distribution KDE (Kernel Distribution Estimation) plots for
temperatures and currents

• Bivariate KDE plots for current temperature relationships

• Line comparison for the same time period and same secondary substation in
terms of current and temperature

• Time distributions for the evolution of line conditions

Economic analysis

To study the precision required to achieve economic break-even point, an econom-
ical study was performed. The study uses internal data or approximations for
the study of the yearly costs and benefits of implementing a large scale model for
hotspot anomaly detection. The costs are:

• The cost implied in visiting a secondary substation marked by the model as a
positive for hotspot. In total 120€ for the team displacement, a simplification
is made here assuming the team has enough time to add this to the calendar
and requires no prioritization over a different work made by the team.

• The cost for the maintenance required for those secondary substations visited
that had actual hotspots in them of 1200€. The cost is approximated at
30% of such cost as per technical expert recommendation, some hotspot
maintenance does not require an equipment change but a clean-up, minimum
element change or simply just mending the loose connection.
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• The cost for the model execution based on the execution times and the
costs for Azure’s virtual machines [56] cost comparison of family D, selecting
the most appropriate computational characteristics for each model in terms
of price, vCPUs and memory. Nevertheless, this cost was finally excluded
form the model due to its insignificance as it amounted to less than 50€
per training execution for the final combination of models (the most time
consuming part of the model but with the least frequency)

The ’benefit’ comes from the avoided cost related to the consequences of a
hotspot event, set at 120000€ (approximated cost of replacing a secondary sub-
station, also reduced to 35% as for the maintenance cost)

The combination of these items, with the estimated number of hotspot events
and the number of secondary substations, results in a precision limit for the model
so that economical feasibility can be granted. Although all direct costs and benefits
are taken into account there is an indirect benefit of minimising public exposure
to hotspot events that is not accounted for in this analysis due to its complexity
and social bases. Also, there is a cost related to safety risks imposed by a hotspot
event and its possible consequences, neither of these indirect social costs are in the
scope of this project but must be taken into consideration for a full view on the
economic side. Nevertheless, if economic feasibility is granted for a model, this
indirect marketing benefit will help increase the appeal of such model.

3.2.2 Analytical criteria

After the first statistical review of the data, the analysis of the different features
available and the state of the art research to find out what has been done and un-
derstand both the causes and consequences of hotspot events in secondary substa-
tions, an analytical criteria based model was developed. This model was intended
to perform a further study of the data and the distinguishment between healthy
and damaged lines and to base the decision making on physical phenomenon and
expert knowledge making a more understandable model that also required less
training and where more iterations could be carried.

This physically based model is recommended by some articles stated in Chapter
2 as an initial analysis and it also followed the ideas shared in i-DE of performing
a fast MVP with threshold criteria. More than 20 criteria with physical bases
on hotspot causes were analysed and thresholds devised. For this thresholds, were
reasonable, statistical values were used such as deviation form a normal rather that
hard coded values that could be more prone to errors of model expandability.

Once the criteria were selected, some combinations of criteria were analysed.
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Combining criteria allows the model to capture slightly more complex relation-
ships. Finally, as the study is carried over a period of time it is also desired to
know for each criteria the optimum percentage of time this threshold must be sur-
passed, out of the total amount of studied time, so as to consider it a sufficiently
anomalous behaviour and that the model should flag the secondary substation as
possible hotspot containing.

These processes were carried following an agile work flow, first a couple of more
evident hotspot cause related criteria were analysed and the thresholds developed
to design the first model. Then, incrementally, more criteria were added as more
relationships were detected and researched.

3.2.3 Machine learning modelling

The selection of the ML predictive model was guided by a combination of bench-
marking studies [43] [44], expert recommendations, and practical considerations. A
Multilayer Perceptron Regressor (MLP) was chosen due to its proven effectiveness
in modelling non-linear relationships in multivariate datasets [57], their relative
simplicity in implementation compared to more complex architectures, and their
ability to capture dependencies, critical for anomaly detection [58]. Unlike recur-
rent architectures, MLPs do not rely on sequential memory, which aligns well with
the nature of hotspot anomaly detection in power distribution grids, where abrupt
changes in system behaviour are more indicative than long-term temporal patterns.
The decision was also influenced by the need for a balance between computational
efficiency and predictive performance. Although there are ML techniques that
will perform better and more efficiently [59] [60] the proven capability of Neural
Networks and their simplicity to train were key aspects in designing an MVP that
proves the effectiveness of such models. As future work other ML techniques, with
a better computational power can be assessed, but this model proves the validity
of doing such a study.

Other key design decisions included the selection of input features, the size of
the time window used for training, and the choice of performance metrics. These
decisions were informed by domain knowledge and preliminary data analysis.

Two models were developed to compare between them and find out if a general
model that is trained on all the data and is cheaper to train would be enough to
detect the necessary cases or is a specific ML model created for every secondary
substation would vastly outperform this initial one.

The input data to both models consists of multivariate time series collected
from sensors installed in the secondary substations (SABT meters). Each data
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point includes timestamped measurements of electrical parameters, environmental
conditions, and operational metadata. Both models intake the date-time, phase
currents, phase temperatures, zone code, outside temperature, ventilation type,
secondary substation type. The models output include predicted values of the
ambient temperature for each line as measured by the SABT meters of each line
(which are related to the lines temperature) and anomaly flags based on the error
thresholding mechanism. As training takes place with healthy state data, when
this behaviour changes then an anomaly is detected. These outputs are designed
to be interpretable and actionable for maintenance and operational teams to avoid
the consequences of undetected hotspot events.

The generalized model, applicable to all secondary substations, is designed for
scalability and rapid deployment. The steps the model undergoes are:

• Data is extracted and cleaned

• The healthy secondary substation data is extracted

• A random sample (10% trade off between execution time and precision of
model optimization) of the new data frame is selected for model optimization

• Random train test split is performed (75/25 respectively, as per technical
recommendations in reference documents, even though temporal splits are
preferred for some data analysis [61])

• Several different model parameters are tried to decide on the optimum MLP
architecture. Main parameters searched are model hidden layer sizes and
learning rates, the model is retrained for an extensive list of parameters and
the one with the least error is selected

• A new random sample is selected, now with a larger data set, double in size
of the previous sample

• Another train test split is generated and the MLP with the optimum archi-
tecture, is retrained

• The model and standard deviation for the errors in training is stored as these
will be used for the predictive algorithm

• The predictive algorithm is a model that predicts the ambient temperature
the line should be recording with all the other features, the error is compared
to the 3 times the training standard deviation, if the error is larger than the
limit for 3 consecutive instances then the model flags the line as an anomalous
line with a high probability of having a hotspot event. A more restrictive rule
than either Nelson Rules or Western Electric Rules [62] for control charts.
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Figure 3.3: Main rules to detect out of control systems [63]

Then, a specific model tailored to each individual substation, offering poten-
tially higher accuracy at the cost of increased training time and complexity, is
developed. The basis of the model is similar as the general one, following the same
steps except, now repeated for every secondary substation. Also, as now less data is
used per model, the trade-off between precision and execution time now allows for
a larger dataset to be trained on (percent wise). Each secondary substation follows
the same steps, optimizes the architecture for that specific secondary substation,
trains the optimal model on healthy state data and then detects if 3 consecutive
errors between prediction and actual measurement lie above the 3 sigma training
limit. As opposed to the general model described above this model thrives for a
better precision over a sightly more computationally expensive process.

It is assumed that the input data collected from secondary substations is of
high quality, meaning it is accurate, complete, and free from systematic errors
or biases. It also assumes the correct labelling of healthy and damaged stage for
training. Also, the model is based on the assumption that the healthy state of
a substation remains statistically stationary over the training period and deterio-
ration on that state is minimum. The anomaly detection mechanism is assumes
that the prediction error follows a normal distribution. This statistical assumption
justifies the use of the 3 sigma rule. While this is a strict approach, it may not
hold in all cases, and deviations from normality could affect detection sensitivity
and allow more secondary substations to be flagged as anomalous.
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3.3 Anomaly detection in underground cable pits

Next, the methodology related to the predictive algorithm for underground cable
pit hotspot detection will be presented, but first a view on the available measure-
ments. As there is a lack of direct measurements, detection and differentiation is
more complex than in the above case. A decision has been made to analyse the
event logs from the SABT elements upstream from the incident but specially us-
ing the service quality events from downstream smart meters in the consumption
points. This is due to the fact that line problems should manifest in the down-
stream section of the line more vigorously by unexpected downtimes or voltage
deviations. Whilst this is not ideal, there is no other representative data sources
for the line and statistically no visible difference, when looking at upstream data
sources, between damaged lines and overloaded ones.

All this means that the methodology behind the model generation for the
predictive maintenance algorithm is significantly different from the secondary sub-
station case. Though as the information is recorded in the same databases some
access and filter processes can be reused, these will be noted and changes explained,
for the new algorithms designed a more in depth analysis will be performed.

3.3.1 Historic incident and statistical study

Historic incidents

Historic incident identification for model labelling follows a similar process to sec-
ondary substations, with the exception to data sources, features, parameters, filters
and meter type. Nevertheless the broad method is obtain all of last year’s incidents
categorised where underground cable pit hotspot events could be classified, filter
by word description, by hand filter, element identification with downtime duration,
smart meter and SABT system meters related to the elements detected in the past
step, measurement (or in this case event log) extraction, data preprocessing and
model creation (with its subsequent iterations following the agile methodology to
improve the outcome of such model).

As mentioned above, the event logs for the smart meters will be the main source
of data for this part of the project these have been explained in this chapter on
section 3.1. Knowing this is a key part of historic incident detection because it
affects the data source we are concerned with and so the filters used in the detection
of elements and meters.
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To detect which underground cable pits had suffered hotspot events last year,
the same OMS database must be accessed as before. The incidents are filtered by
those that were unplanned outages or OA (Other Attentions) related to sup-
ply nodes, electrical boxes, low voltage lines, medium voltage or several
affected boxes. The incidents that passed both filters were extracted and the
output was a list of all incidents with its unique code, a description of the incident
and a date time. The description column was cleaned and normalised to ascii small
characters with no double gaps or accents, this is important as the description is
typically written in field by the operator that inspects the incident and could have
errors. This description list was then filtered by those that contained refer-
ences to elements that are common consequences of hotspot events in underground
cable pits such as smoke, heat, sulphated ... then a second filter was performed to
those containing the desired location or element of such hotspot by finding those
that also contained ’underground cable pit’, underground LV line or . Finally an-
other filter was used to discard common description keywords that appear in many
incidents but not commonly in the desired ones, these are related to medium volt-
age. It was included in the first filter to avoid rapid discardment of incidents that
could have been classified under that characteristic, but if specifically described in
the description, MV is not a desired key word to find as then it would probably
not be related to underground cable pits, as seen in many examples. Again, as
these descriptions are written in the field, the word filtering had the complexity of
using where possible word roots to avoid the effect of misspells.

This pre-extraction filter alongside the word filter reduced the size of the in-
cident list from hundreds of thousands to about seven hundred instances. It is
possible some hotspot events were lost to some filter but several filtering tech-
niques and different word combinations were used to loose as little hotspots whilst
keeping the filter strict to avoid poor labelling, as this would greatly affect the
performance of the models. Next, as the filters are not perfect, a by hand filter
is then performed for the last hundreds of incidents by examining the description
and available information. This process could be further automated by the use of
a large language model, but the use of such models is internally restricted by the
company, so filtering by hand was the only option left.

Once the incidents have been filtered, another extraction is performed to ob-
tain the most affected element related to each incident. Being most affected the
element that had the longest outage time. This is an effective strategy few grid
elements are disconnected during a hotspot event in an underground cable pit.
Also, as hotspot events will require corrective maintenance before reconnecting the
underground connection permanently meaning it should be the one with longest
downtime duration. This results in a list of several lines (with the code of the
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secondary substation they are connected to and the line number of that secondary
substation) where hotpot events caused an unplanned outage.

This list is used to extract all the smart meters connected downstream of these
lines, it is from these meters where the measurements will be sourced. The meters
this section of the project is interested on are: SABT secondary substation super-
visor meters ’LVS’ and consumer downstream smart meters (’CN’, ’T4’, ’T4MI’).
The final extraction is using the final meter list and the incident date time, ob-
tain the SABT measurements for the 4 months before the incident. 4 months are
considered to be enough data points to extract sufficient information for the sta-
tistical analysis and further model. All data points are aligned with their initial
day being day 0 and their final day being day 120 as one day before the incident.
It is done as such so that the events logged the day of the incident are not used
in the preventive algorithm, as less than a day offers too little room for crews to
mobilise and apply the desired maintenance.

The basis for the statistical study is the event logs mainly related to power
quality events for the 4 months prior to the incident, but for the model training and
creation another category was included. A control population of healthy lines that
had no hotspot event were included in the study. But it was observed that healthy
lines have no events at all and therefore provided no challenge in differentiating
them from damaged lines. Nevertheless, there was a category of healthy lines that
offered a significant challenge, these are healthy (meaning without hotspot events)
that were overloaded during some period of the year, for example small coastal
villages during summer where tourism multiplies the regions population by ten
fold. These lines are known to have over and under voltages during these periods
and so pose a significant differentiation challenge with damages (meaning with
hotspot events) lines.

Therefore, as a summary, the data used contains instances of both healthy (no
hotspot but constant voltage deviations due to overloading) and damaged lines
and a time frame of 4 months per line. Damaged lines were detected via the OMS,
and the healthy lines (used as control for a more challenging model creation) were
detected by finding the periods where certain known lines were giving problems.
Once more, note that a real control population would be lines with no events
during the 120 day period, or just a few events if maintenance or another incident
unrelated to the line occurred. But then the model would not be as specifically
tailored to hotspot events, so the control population is taken from lines suffering
from stronger than the norm voltage deviations.

For each line mentioned here all the downstream meters were extracted and
form each a 120 day period prior to the incident was obtained. The data was first
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cleaned to remove 2 faulty meters that periodically were sending more than 1000
daily events and were deemed faulty. Then for every remaining line, every day, all
the events of all meters connected to this line are summed up and then averaged
to the number of meters in the line. As an indicator of how damaged this line is as
a whole as it is unknown the exact location of the line this underground cable pit
hotspot event occurred. In total there is a list of almost 500 lines (450 of which
are damaged, hotspot containing lines) with over 23,000 meters connected to those
lines producing for the 4 month study around 1,800,000 filtered events to the event
groups mentioned above that were of interest to this study.

Statistical analysis

The first event log analysis was a daily events plots for all lines, the incapability to
detect patterns in this format incentivised a statistical study. Probability graphs
were devised both for individual lines and the aggregation of lines, alongside a
histogram. All in the pursuit of obtaining a path towards a possible pattern
recognition that influenced model selection. These statistical analysis were once
more developed in python with statistical libraries and now not only filtering for
group of events but also for the specific event types that were of interest, ensuring
the filter was properly applied to SABT meters (LVS) and downstream smart
meters appropriately.

The analysis performed were:

• All individual lines KDE plot comparison

• Aggregated events KDE plot

• Histogram

• Individualized per line probability density plot

Economic analysis

To study the required precision of the model to achieved economic break-even a
study was performed. The study uses internal data or approximations for the study
of the yearly costs and benefits of implementing a large scale model for hotspot
anomaly detection in underground cable pits. The costs are:

Detection of Hotspot Anomalies in LV Networks via Data Analysis.
Carlos Prieto Rodríguez de Vera

44



• The cost implied in visiting an underground cable pit flagged by the model
as containing a hotspot, 120€ for the team displacement. A simplification is
made here assuming the team has enough time to add this to the calendar and
requires no prioritization over a different work made by the team. Another
simplification is that this cost is fixed, but the model flags the whole line
and then a further study must be performed to see the point of the line this
hotspot event is, if not the crew must analyse every underground cable pit
in the line until they find the damaged one, causing economic inviability.

• The cost for the maintenance required for those underground cable pits vis-
ited that had actual hotspots in them of 800€. The cost is approximated
at 50% of such cost as per technical expert recommendation, some hotspot
maintenance does not require an equipment change but a clean-up, minimum
element change or simply just mending the loose connection.

• The cost for the model execution based on the execution times and the
costs for Azure’s virtual machines [56] cost comparison of family D, selecting
the most appropriate computational characteristics for each model in terms
of price, vCPUs and memory. Nevertheless, this cost was finally excluded
form the model due to its insignificance as it amounted to less than 200€
per training execution for the final combination of models (the most time
consuming part of the model but with the least frequency)

The ’benefit’ comes from the avoided cost related to the consequences of a
hotspot event, set at 1000€ (approximated cost of replacing an underground cable
pit, also reduced to 90% as for the maintenance cost)

The combination of these items, with the estimated number of hotspot events,
the number of lines and the number of annual lines with strong voltage devia-
tions, results in a precision limit for the model so that economical feasibility can
be granted. Although all direct costs and benefits are taken into account there
is an indirect benefit of minimising public exposure to hotspot events that is not
accounted for in this analysis due to its complexity and social bases. Also, there
is a cost related to safety risks imposed by a hotspot event and its possible con-
sequences, neither of these indirect social costs are in the scope of this project
but must be taken into consideration for a full view on the economic side. Due
to the high number of lines and the relative expensiveness of visiting a line com-
pared to replacing a fully damaged one, economic unfeasibility could be possible
for almost any realistic model with the actual data available. Nevertheless, these
indirect social benefits regarding public image and safety risks, could significantly
increase the economic benefits and should be further investigated to analyse the
real economic outcome of the model.

Detection of Hotspot Anomalies in LV Networks via Data Analysis.
Carlos Prieto Rodríguez de Vera

45



3.3.2 Gaussian Mixture Model (GMM)

The model selection of the predictive algorithm for hotspot events was guided by
the prior data and statistical analysis where a probabilistic method could be used
favourably in the detection process. Although probabilistic clustering have many
different flavours [64], GMM was selected as the model used for the characteristics
of the data available with its unknown and varying cluster densities as well as its
relative efficiency, simplicity and explicability. All required for the project in hand
as long process times will complicate model adoption due to the amount of lines
studied. In the State of the Art section, Chapter 2, the clustering probabilistic
method of the Gaussian mixture model was explained. So next the methodology
of implementation will be described.

The input data to the model, as mentioned above, is the event logs coming
from the SABT system and consumer smart meters connected to the line analysed.
It is only the number of events we are concerned on as the data stored for each type
of event is different and not consistent, also the complexity of the lack of direct
measurements will reduce the effectiveness of such measurements. If the model
detects anomalous behaviour on the line, the probability of events occurring is
increasing over time (the line has a deteriorating state), especially if this growth
is exponential in the final section then the line will be flagged as anomalous.

The model does this flagging by following a series of steps analysing each of
the line in the study independently:

• Data is extracted, cleaned of outliers (faulty equipment - exagerated amount
of daily events) and dates are normalised so as to start in 0 and en in day
120 for very line

• A filtering process takes place to obtain only the groups and types of events
desired

• There is a daily summation of events for the 120 days leading to the incident,
if there is no event log for a certain day are provided a value of zero so as to
not leave gaps in the readings and so improve model performance

• The events are averaged by the number of meters connected to the line to
avoid high number of meters influencing the decision on the damage level of
the line

• A loop is performed to try the 4 main covariance matrix types and up to 40
components (Gaussian normals) to obtain the best combination, that which
explains the majority of the data
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• The data is the processed by the selected optimum GMM

• Flag the anomalous results depending on their probability outcome from the
model and study the number of required Gaussians and their characteristics.
There is a difference, as will be seen in the statistical analysis result, in the
last 30 days of the study. So comparisons between before the 90 day mark
and after that mark are one of the key flagging methods

These are the basic steps, then several iterations where made both to data and
flagging techniques, whose results will be explained Chapter 4. But the steps and
methodology remains constant.

There are several limitations to this methodology, being the main one the
lack of purpose measurements and sensors to detect pre-emptively this kind of
hotspot anomalies, the model uses already set up data sources and leverages them
to achieve the best possible outcome. Also, the lack of direct measurements makes
it difficult to benchmark the model against alternative approaches. The model
also assumes event frequency correlates with line degradation, which may not al-
ways hold true, as is the case for maintenance activity, noisy meters or certain
underground cable pit sudden failures where the current data just isn’t enough to
capture any meaningful pre-emptive trend. GMM allows for simplicity, interoper-
ability and computational efficiency but it also has some disadvantages mentioned
in Chapter 2 and might not capture complex temporal dependencies or non linear
patterns as a model with more feature might be capable of achieving. The 120 day
window was based on statistical and physical analysis by trying different window
size sensitivities but having a fixed value for all lines might not be appropriate.
An important improvement to this model is starting the count (setting the 0) once
a maintenance activity is carried out on the line but access to this information
is not currently automatizable with the available datasets. As statistically there
was a marked 30 day mark, thriving for model computational efficiency, very im-
portant point as almost 550.000 lines must be analysed via this model almost on
a weekly or bi-weekly bases, the aggregation was made daily but then again this
might not be the optimum for each case but rather a general optimum and more
granularity could capture more complex temporal patterns. Also, while computa-
tionally efficient, the loop over covariance types and components may still become
burdensome at scale, especially with thousands of lines and a general optimum
covariance type could be imposed.
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Chapter 4

Results and validation

4.1 Introduction

In this chapter the results for all 3 models will be presented for both hotspot event
types secondary substations and underground cable pits. For each of these the
statistic and economic studies results will also be analysed. Only the most signif-
icant results and graphs will be presented to prove the objective achievement and
predictive maintenance algorithm functioning. Alongside some model iterations
that were improved along the way to serve as reasoning behind the final model
decisions taken.

4.2 Anomalies in secondary substations

This section will now discuss the final predictive maintenance algorithm for sec-
ondary substations by analysing first the statistical and break-even economic anal-
ysis and then comparing each of the 3 final models, the analytical threshold model,
the general ML regression model and the specialised ML regression model for each
individual secondary substation.

The goal is to determine which model offers the best balance between predictive
accuracy, interpretability, and operational feasibility. Each model will be evaluated
not only on its technical performance but also on its potential for integration into
the distribution company.
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4.2.1 Statistical and economical analysis

The data that best should capture the increasing temperatures of the hotspot
anomaly is ambient temperature, as mentioned above this ambient temperature
is measured by sensors in the smart meter measuring the properties of the line
and therefore, due to proximity, has certain relationship with the temperature of
the wire. So, the first results from the statistical analysis is the histogram and
probability density of this ambient temperature (TA) comparing the cases with
and without hotspot anomalies in the secondary substation to see if there are any
detectable differences between them:

(a) Ambient temperature histogram (b) Ambient temperature probability den-
sity

Figure 4.1: Statistical distribution of ambient temperature

As seen in the figure, there is a significant difference between substations with
anomalies and substations without hotspot anomalies. First the shape of both
is different, when there is no anomaly the differences between night and day and
different loads can be seen but all are of a similar normalized probability. When
the secondary substation has anomalies one peak is predominant and the load
factors of the lines gains importance as temperatures are now generally higher.
When there are anomalies there is a tail of very high temperatures, non-existent
for the case when there are no anomalies, these are the actual lines that contain
these hotspot events.
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(a) 3 phase currents probability density
for a healthy line

(b) 3 phase currents probability density for
a damaged line

Figure 4.2: 3 phase currents probability density KDE plots

As seen, the damaged lines have higher phase unbalances and there is a clear
difference in the behaviours of the phase currents, there are certain peaks where
previously there was a descending monotonic curve. Wherever a monotonic curve
is altered we can assume an anomaly happened [65].
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(a) healthy lines - current (b) damaged lines - current

(c) healthy lines - current squared (d) damaged lines - current squared

Figure 4.3: Pair plot study for secondary substations

The pair plot analysis was made for several features for both healthy and dam-
aged lines each analysing the relationship with the current and with the current
squared. Features in order are: ambient temperature, current of phase 1, current
of phase 2, current of phase 3 and current of neutral cable. As seen the current /
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temperature relationship changes when an anomaly is present, where now higher
temperatures can be achieved with smaller currents. It is also observed that phases
are not balanced all the time as there is no direct correlation between them for nei-
ther damaged or healthy lines meaning unbalances either are unrelated to hotspot
events or these events are not detectable by only looking at that feature. It is also
observed that there is a higher relationship between current and ambient tempera-
ture for damaged lines, which is logic as a higher thermal degradation means more
cable heat is reaching the sensor due to a poorer thermal insulation. Nevertheless,
this relationship, though stronger, is not perfectly evident. With current squared
these trends repeat but with a larger spread of data for damaged lines than for
healthy ones, suggesting that extreme values become more common for damaged
lines.

Once the feature relationships were analysed and the statistical analysis was
observed, a temporal study was performed to try and find line degradation on a
time axes to see if there are any significantly detectable patterns.

(a) Healthy line - October (b) Healthy line - November (c) Damaged line - December

Figure 4.4: Cable degradation with passing time

The line observed in figure 4.4 was from a secondary substation that suffered
a critical failure on the first week of January due to a hotspot event. There is a
clear gradual line degradation during the months prior to the incident where tem-
perature suddenly rises the month prior to the incident although loading of the
line remains almost constant during the 3 month study. The graph presents 2 tem-
peratures, ambient temperature (TA) as measured by the sensor (this if damaged
should be closely related to current) and an 80th percentile value for the calcu-
lated 3 phase cables at each point which is calculated following the formulation
presented in 3.1. The value presented for the current is also the 80th percentile of
the 3 phases for consistency. An in depth study found out a point where gradual
degradation was no longer gradual but sudden, there was an incident which manip-
ulated the line and accelerated the line degradation for the last 20 days before the
critical failure, detecting these points in time are critical as preventive measures
must act instantly once such situations are detected.
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Figure 4.5: Point at which line degradation increased significantly

As seen, the damaged line has a higher average temperature for a smaller cur-
rent as well as having a tighter relationship between the ambient temperature and
the current explaining the thermal leakage. Another key finding is that thermal
deterioration is gradual but, certain incidents significantly worsen the condition.
Once this incident happens, the temperatures mean (dotted lines) increases signifi-
cantly for a similar loading characteristic. The temperature leakage to the exterior
of the cable is greater.

Another important analysis is how are other lines from this same substation
behaving once a hotspot event evolves. Average currents and average measured
ambient temperatures at each one of the 9 lines of a secondary substation were
analysed:

Figure 4.6: Gradient temperature between lines in a secondary substation
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Whilst most lines maintain a constant ambient temperature measurement,
independent of line loading, which implies this is the real average ambient temper-
ature of the secondary substation, one line has a temperature reading almost 20ºC
higher (almost the double from the others). Line 2 exhibits significantly higher
ambient temperature averages despite lower current levels compared to Line 8 and
other lines where ambient temperatures remain invariant of current. Possibly in-
dicating thermal anomalies or potential damage in the line. Also proving that this
’ambient temperature’ measurement is deeply affected by current once a hotspot
has been developed due to the mentioned thermal leakage.

After all these findings a bases for al three models was established and feature
selection had graphical and statistical backing. The remaining step was analysing
the economic break-even point to obtain a theoretical model’s minimum precision
to obtain this.

The basis used for the economic model is that there are 100 hotspot events (as
per the OMS system) in the 100,000 secondary substations every year, of which
around 40% have the required SABT systems to collect the required data for the
model. The cost for a crew to visit the flagged secondary substation is of 120€,
for displacement costs and assuming no other task is ignored which would have its
associated costs. The reapir process of a hotspot event depeds on the extent of the
damage and the cause, is spans from the replacement of an electrical LV box to
tightening a loose connection, therefore a cost of 1,200€ is applied (the maximum)
for 30% of the cases (rendering the real averaged out cost for maintenance at 360€.
The cost of corrective maintenance of a hotspot event, if not prevented, could be
as large as replacing the entire damaged secondary substation or just a localised
area if the transformer (the most expensive equipment) has not been damaged in
the incident, therefore a cost of 120,000€ is applied for 35% of the cases. It is
this last cost that, if avoided by flagging early the damaged substation, can be
avoided and inferred as a cost reduction for the company, so it will be treated as
a benefit. The cost inherit to model processing by virtual CPU is not included in
this study as the values were generally insignificant compared to the rest of the
results, nevertheless they will be included for every model when economic result of
each model is presented. All the values are internally sourced from the distribution
company.

The economic summary and the results are displayed here:
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Category Value

General Parameters
Number of damaged secondary substations per year 100
Percentage of SABT in secondary substations 40.0%
Total secondary substations 100,000
Probability of hotspot in secondary substations 0.001

Model Performance Limit
True Positive Rate (TPR) 8.43%
False Positive Rate (FPR) 2.92%
True Negative Rate (TNR) 97.08%
False Negative Rate (FNR) 91.57%
KPI Limit (TPR/FPR) 2.89

Confusion Matrix Values Avrg.
True Positives (TP) 3.37
False Positives (FP) 1166.77
True Negatives (TN) 38793.23
False Negatives (FN) 36.63

Model Metrics
Precision 0.29%
Recall 8.43%

Operational Costs
Cost per visit 120.00e
Number of visits 1170.14
Total visit cost 140417.31e

Repair Costs
Cost per repair 1,200.00e
Repair rate 30%
Repairs required 3.37
Total repair cost 1,213.98e

Incident Prevention Impact
Cost replacement for secondary substations 120,000.00e
Proportion of secondary substations damaged in incident 35%
Incidents avoided 3.37
Investment reduction 141,631.28e

Net Result
Operational result -0.01e

Table 4.1: Summary of economic break-even study for secondary substations
hotspot prevention model
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4.2.2 Models performance

Now the results for each of the 3 individual models (analytical threshold model,
general ML model, specific ML model) will be presented alongside the optimal
model configuration for the best economic result. For each model a brief introduc-
tion on the model, findings and model optimization steps will be discussed.

Analytical model

This model applies expert knowledge based on the outcomes of the prior data and
statistical analysis, alongside the knowledge based on the physical properties and
causes of hotspot events in secondary substations.

More than 20 different physically explainable thresholds were investigated and
compared. Such thresholds are intended to be statistical thresholds were possible
to avoid hardcoded value thresholds that reduce scalability, nevertheless certain
safety features are hardcoded to avoid infra detecting cases. Also, threshold com-
binations were analysed for model improvements, as certain high recall thresholds
can increase precision by applying combinations of such criteria. Once a reduced
selection of the highest performing thresholds was obtained, for each threshold the
optimum percentage flagging was obtained. That is, out of the studied temporal
window how many instances does the threshold need to be surpassed so as this
to be considered abnormal behaviour and require a secondary substation flagging.
This increases precision as certain criteria can be met sporadically but a repetition
of such would imply, with a higher degree of accuracy, that the secondary substa-
tion is damaged and requires maintenance due to the hotspot event and as such
must be flagged by the model. Depending on the threshold this value is different
as high precision thresholds tend to require fewer instances for the model to flag
the line whilst high recall and lower precision criteria would require a higher value
of instances detected for abnormality to be considered.

A list of the 15 most significant criteria analysed is provided below:

1. Ambient temperature measurement exceeded a safety limit.

2. Ambient temperature measurement gradient inside a secondary substation,
temperature difference between min and max of the lines, exceeds a 12ºC
limit.

3. For a line, find out if its difference between measured ambient temperature
and average secondary substation ambient temperatures over the average
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current of the line squared (thermal relationship [66]) is in the higher quartile
for the lines of the secondary substation.

4. High deviation between measured ambient temperature and average temper-
ature for the substation for that time period.

5. Temperature slope compared to current squared slope over a 30-minute in-
terval shows abnormal thermal evolution.

6. Temperature is above the 80th percentile for the substation, while at least
two of the three phases are not above their respective 80th percentile of
current.

7. At least two phases are above the 80th percentile of current, while tempera-
ture is not above its 80th percentile.

8. Z-score of temperature is higher than the Z-score of at least two of the three
current phases.

9. Thermal variability (standard deviation) within the substation is signifi-
cantly higher than the median variability across substations.

10. Current variability (standard deviation) within the substation is significantly
higher than the median variability across substations.

11. Temperature-to-current ratio is in the upper quartile across all lines.

12. Phase imbalance: the difference between the highest and lowest phase current
exceeds 10% of the average current.

13. Sudden temperature increase of at least 6°C within a 10-minute interval.

14. Ratio between the slope of ambient temperature and the slope of thermal
image (80th percentile) is close to 1, indicating consistent thermal behavior.

15. Mean squared error between ambient temperature and thermal image (80th
percentile) is below a threshold, indicating high agreement.

Next a table including the final models thresholds alongside their performance
and optimal minimum required instances are displayed (if not provided it means
that the criteria by itself has no optimal threshold and should be ideally used in a
combination of criteria), also the threshold combinations used for the final model
are included:
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Table 4.2: Performance Metrics for Toggle Criteria

Criteria Description Precision Recall
Optimal

Threshold

1 Temperature exceeds a limit 100.0% 1.3% 0%

2 Temperature gradient inside a
secondary substation 98.0% 26.5% 3.0%

3 Relationship between temperature
and current squared 42.3% 1.13% –

4 Deviation from mean temperature
in that secondary substation 66.9% 9.6% 37.0%

10 High current standard deviation in
that secondary substation 74.6% 58.3% –

12 Phase unbalances 63.4% 87.3% –

14 Close relationship between ambient
temperature and thermal image 21.4% 8.42% 22%

A Combination: Crit3 & Crit4 &
Crit10 & Crit12 58.1% 0.12% 1%

B Combination: Crit4 & Crit10 51.0% 16.0% 26%

An extensive search of combinations for the available data and test set, proved
that the optimum model configuration is the and combination between criteria 2
& 14 & A & B each with the respective optimal thresholds. This final combination
of physically explainable criteria accounts for the following model and economic
results:
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Actual
value

Prediction outcome

p n total

p′ 24 4 28

n′ 25 200 225

total 49 204 253

Table 4.3: Confusion Matrix

Metric Value

True Positives (TP) 24
False Positives (FP) 25
True Negatives (TN) 200
False Negatives (FN) 4

True Positive Rate (TPR) 85.71%
False Positive Rate (FPR) 11.11%
True Negative Rate (TNR) 88.88%
False Negative Rate (FNR) 14.29%

Precision 48.98%
Recall (Sensitivity) 85.71%
Specificity 88.88%
Accuracy 88.53%
F1 Score 62.34%

Table 4.4: Model Evaluation Summary

The result show economic feasibility of the model with the key KPI (TPR/FPR)
above the economic break-even limit calculated in the previous section of 2.89. It
is this value that affect most the economic result of the model so it will be this KPI
with which each model will be compared. The computational cost of implementing
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KPI Result
True Positive Rate 85.71%
False Positive Rate 11.11%
TPR / FPR 7.71
Economic result 891,000e / yr

Table 4.5: Economic results of the analytical model

the analytical threshold model in virtual CPUs from azure, taking the execution
times from this project and extrapolating computation times for the rest of the
secondary substations, would be the following:

• 0.47 processing minutes per secondary substation

• 313 total processing hours

• For an Azure Standard_D96ls_v5 VCPU the cost is 7.7571€/hr and has 96
vCPUs and 192 GiB (enough for the required task)

• for a total processing cost of 25.32€ per analysis (assumed negligible com-
pared to the other costs and benefits)

ML General Model

The model applies a neural network to predict ambient temperature with the
different features explained in section 3.2.3, then the prediction error is analysed
and if the 3 training sigma value is surpassed for 3 consecutive instances then
the secondary substation is flagged. This model though less targeted to each
secondary substation has a less computationally expensive training. The most
effective models tested are included in the table below, as extensive search was
required to obtain the appropriate model for the data available a trade off of 10%
of the data was used for training, as many architectures were tested.

The simplest architecture, for computational efficiency, which obtains the best
results was selected. TRP being a key indicator both for the economic benefit
and the social one, undetected hotspot events must be minimised where possi-
ble. Therefore, the optimal neural network architecture obtained, form extensive
searching of diverse architecture combinations, is a hidden layer size of 20 by 20
and a learning rate of 0.01.

Once the model architecture is selected, the model it is trained with 20% of the
data available, next some of the model training and test results are provided:
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Table 4.6: Tested Model Architectures and Performance

Learning Rate Hidden Layers Training Data TPR

0.01 (5, 5) 10% 0.86
0.01 (5, 10, 5) 10% 0.86
0.001 (10, 10) 10% 0.82
0.1 (10, 10) 10% 0.82
0.01 (10, 10) 10% 0.82
0.01 (20, 20) 10% 0.89
0.01 (20, 20, 20) 10% 0.89
0.01 (40, 20, 20, 40) 10% 0.86
0.01 (20, 15, 10, 5) 10% 0.79
0.001 (128, 64, 32, 16) 10% 0.89

(a) Lost curve for the general ML
model

(b) Error in testing for ML model

Figure 4.7: General ML model lost curve and error in testing
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(a) General ML model train real vs
predicted values (y axes)

(b) General ML model train real vs
predicted values (x axes)

Figure 4.8: General ML model train real vs predicted values

(a) General ML model test error
compared with 3 sigma limits

(b) General ML model hotspot containing
substation error compared with 3 sigma

limits

Figure 4.9: Model error for training with healthy lines and validating with damaged
lines
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As seen the difference in errors between healthy lines and damaged secondary
substations that contained hotspot anomalies is significant. The model flags sec-
ondary substations that exceeds the upper limit for 3 consecutive measures. When
tested over the 128 secondary substations explained in the Methodology section in
Chapter 3 the model results and economic results are:

Actual
value

Prediction outcome

p n total

p′ 26 2 28

n′ 64 161 106

total 63 71 253

Table 4.7: Confusion Matrix
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Metric Value

True Positives (TP) 26
False Positives (FP) 64
True Negatives (TN) 161
False Negatives (FN) 2

True Positive Rate (TPR) 92.86%
False Positive Rate (FPR) 28.44%
True Negative Rate (TNR) 71.55%
False Negative Rate (FNR) 7.14%

Precision 28.89%
Recall (Sensitivity) 92.86%
Specificity 71.55%
Accuracy 73.91%
F1 Score 43.99%

Table 4.8: Model Evaluation Summary

KPI Result
True Positive Rate 92.86%
False Positive Rate 28.44%
TPR / FPR 3.26
Economic result 178,000e / yr

Table 4.9: Economic results of the general ML model

As seen the ML captures more complex patterns and is capable of improving
on True Positive Rate, key to identify as many secondary substation incidents as
possible. Nevertheless, this increase comes at a great FPR worsening. Resulting
in almost half the ratio result than for analytical threshold model results. Which
results in a lower economic result, although the result is still significantly viable
at about 200,000€ per year, once more with no social and marketing benefits as-
sociated to a reduced number of hotspot incidents. The computational cost of
implementing the analytical threshold model in virtual CPUs from azure, taking
the execution times from this project and extrapolating computation times for the
rest of the secondary substations, would be the following:
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• 0.02 processing minutes per secondary substation

• 12 total processing hours

• For an Azure Standard_D4as_v5 VCPU the cost is 0.1375€/hr and has 4
vCPUs and 16 GiB (enough for the required task)

• for a total processing cost of 1.02€ per training (assumed negligible compared
to the other costs and benefits)

ML Specific Model

The specific ML model follows the same principle as the general ML model but it
is only trained and tested with the data from one secondary substation and is used
to detect anomalies in that secondary substation. It is a more complete model and
can find the optimal architecture out from a list of possible architectures for each
secondary substation. But, training is much more computationally expensive as an
individualized model for each secondary substation must be trained and stored. As
each model has its own optimal architecture and is selected automatically, here the
result comparison of one of the models will be presented as a guide for the general
results but the actual model performance will be displayed at the end.

First an example of a healthy line will be presented where the model predicts
the ambient temperature for the line perfectly with very small error rates. Then
a complex case study will be presented, where a model trained for when the sec-
ondary substation was healthy, gets damaged and a periodic maintenance detected
the hotspot event and corrected it. Showing how when the line was damaged pre-
diction was poor and errors were large but once the line was corrected and returned
to a healthy state the model predicts accurately once more.
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(a) Specific ML model train error
compared with 3 sigma limits

(b) Specific ML model ambient
temperature prediction vs real measured

value

Figure 4.10: Specific ML model predicts accurately for a healthy line

(a) Specific ML model test error compared
with 3 sigma limits for a repair case

(b) Specific ML model ambient
temperature prediction for a repair case

Figure 4.11: Model performance for a complex case where a damaged line gets
repaired due to a preventive maintenance

As seen in the above cases this model, even for complex cases involving a sec-
ondary substation change of state, performs adequately. This is because now each
secondary substation is trained for a healthy state of each secondary substation
and is now detecting alterations of the secondary substation form this normal /
healthy behaviour. Consideration must be taken to the complexity of training
a ML model for each individual secondary substation, this computationally de-
manding step is required to obtain these results and is the most complex of the
3 developed models, therefore a trade off must take place to decide between the
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three all factors considered.

In terms of model performance and economic results, a summary is now pre-
sented:

Actual
value

Prediction outcome

p n total

p′ 18 10 28

n′ 31 194 225

total 49 204 253

Table 4.10: Confusion Matrix

Metric Value

True Positives (TP) 18
False Positives (FP) 31
True Negatives (TN) 194
False Negatives (FN) 10

True Positive Rate (TPR) 64.29%
False Positive Rate (FPR) 13.78%
True Negative Rate (TNR) 86.22%
False Negative Rate (FNR) 35.71%

Precision 36.73%
Recall (Sensitivity) 64.29%
Specificity 86.22%
Accuracy 83.79%
F1 Score 46.75%

Table 4.11: Model Evaluation Summary
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KPI Result
True Positive Rate 64.29%
False Positive Rate 13.78%
TPR / FPR 4.7
Economic result 407,000e / yr

Table 4.12: Economic results of the specific ML model

The specific model outperforms economically the general model, there is less
cases of hotspot detected but is more specific and reduces the false positives sig-
nificantly compared to the previous model. This comes at an increased computa-
tional complexity. The computational cost of implementing the specific ML model
in virtual CPUs from azure, taking the execution times from this project and ex-
trapolating computation times for the rest of the secondary substations, would be
the following:

• 0.176 processing minutes per secondary substation

• 117 total processing hours

• For an Azure Standard_D96ls_v5 VCPU the cost is 7.7571€/hr and has 96
vCPUs and 192 GiB (enough for the required task)

• for a total processing cost of 9.48€ per round of training, meaning training
required for all secondary substations (assumed negligible compared to the
other costs and benefits)

Optimum Model

The economic optimum, once more state that this economic model does not take
into account social cost of secondary substation unexpected downtime due to
hotspot events and the safety risks concerned to such events, is a combination
of the past 3 models. Due to the relative expensiveness of secondary substation
visits the optimum economically is to combine all 3 models with ands, if all models
are flagging a secondary substation then send the maintenance crew to fix the pre-
dicted hotspot event. This is, however, not the model with the highest prediction
rate, several hotspot events will remain undetected, but the number of false pos-
itives is minimised and therefore the economic optimum is reached at this trade
off.
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KPI Result
True Positive Rate 60.71%
False Positive Rate 1.33%
TPR / FPR 45.5
Economic result 944,000e / yr

Table 4.13: Economic results of the combined model

As seen the benefits are maximised due to the significant reduction in the false
positive rate, here the models flaggings are the most accurate but several hotspot
events would remain unpredicted. In terms of computational costs:

• 0.8 processing minutes per secondary substation

• 533 total processing hours

• For an Azure Standard_D96ls_v5 VCPU the cost is 7.7571€/hr and has 96
vCPUs and 192 GiB (enough for the required task)

• for a total processing cost of 43.10€ for training (the highest of the prior but
still assumed negligible compared to the other costs and benefits)

(a) Main KPIs summary (b) Economic summary

Figure 4.12: KPI and economic summary for: analytical model, general ML model,
specific ML model, combination of models

As seen the combination of models offers the best economic result, but the
analytical model is of the same order of magnitude but has a significantly higher
TRP, meaning more hotspot events will be detected. Therefore a further study
must be made to internalise the social costs of allowing hotspot events to damage
secondary substations and then a better decision for which model to select can be
made.
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4.3 Anomalies in underground cable pits

The objective of this part of the project is to create a model capable of pre-
emptively detecting hotspot events in underground cable pits. This section will
now discuss the model created for the case of predictive maintenance for hotspot
events in underground cable pits. First a statistical analysis of the available data
will be displayed to demonstrate the decisions taken, stated in section 3.3. Then
an economic analysis will be performed alongside its limitations as model evaluator
for this specific case.

4.3.1 Statistical and economical analysis

Once more, to understand the data selection as feature for the model, the complex-
ity of this task must be stated. Underground cable pits have no direct measure-
ments, the accessible data comes either from the SABT system upstream from the
underground cable pit or the user smart meters connected downstream. As men-
tioned in Chapter 2, the causes and consequences of a hotspot event are mainly
voltage deviations and possibly fault currents alongside temperature increases.
Temperature gets discarded as viable measurement as there is no direct measure,
and no indirect measure that can be extrapolated to underground cable pits. The
lack of direct measures also complicates the specific capture of patterns related to
hotspot event in the other 2 cases. This is why, cable health in this section will
be measured by the number of power quality events the smart meters and SABT
system are logging daily for each specific line. Meaning that a healthy line should
have almost no events whilst a problematic or damaged line should have plenty
events.

Figure 4.13: Number of events per line in the time leading an incident
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As seen in figure 4.13, no pattern can be recognised as it could be done with
the secondary substation case. Therefore no regression tool would be a meaningful
tool for this instance and an analytical study would require of more information
sources. Therefore a statistical analysis was performed to see if event probability
increased as the date of the historic incident found was reached (day 120, the time
window was selected after several statistical analysis as it was the one which could
explain the most cases).

Figure 4.14: Probability distribution of number of events per day

After some prior data preprocessing to remove faulty smart meters, figure 4.14
now shows signs of a detectable pattern as the day of the incident closes in, where
figure 4.13 did not. Around the 90 day mark (30 days prior to the incident) in
several lines there is a significant increase of the probability of an event taking
place. Stating the need for a statistical or probability tool to detect the patterns
viewed. A further analysis was made with all of the lines to see if the supposed
patter can be extrapolated to all other lines or just a few so a general combined
event probability distribution and total histogram was analysed.
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Figure 4.15: Combined probability distribution shows a constant value up to the
90 day mark prior to the incident where probability increases

Figure 4.16: Histogram show a less smoothed version where the peaks after the 90
day mark and the constant distribution prior to it are even more clear

In the statistical analysis a precedent for a predictive algorithm is detected
(which due to the complexity of the problem and lack of available data was not
granted) and the type of model required is obtained. After this, an economic
analysis was performed. Nevertheless, given the low CAPEX characteristics of
underground cable pits and the high cost associated with visiting false positives
relative to the modest corrective maintenance expenses, economic viability depends
on a high accuracy of the predictive model, accuracy which is hindered by the
limited availability of direct data for this specific case.

The economic summary and the results are displayed here:
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Category Value

General Parameters
Number of damaged underground cable pits per year 500
Total UCPs 500,000
Probability of hotspot in secondary substations 0.001

Model Performance Limit
True Positive Rate (TPR) 65.70%
False Positive Rate (FPR) 0.21%
True Negative Rate (TNR) 99.71%
False Negative Rate (FNR) 35.30%
KPI Limit (TPR/FPR) 315.47

Confusion Matrix Values Avrg.
True Positives (TP) 307.33
False Positives (FP) 973.22
True Negatives (TN) 473551.78
False Negatives (FN) 167.67

Model Metrics
Precision 24%
Recall 64.7%

Operational Costs
Cost per visit 120.00e
Number of visits 1280.55
Total visit cost 153,666.20e

Repair Costs
Cost per repair 800.00e
Repair rate 50%
Repairs required 307,3
Total repair cost 122,932.95e

Incident Prevention Impact
Cost replacement for secondary substations 1,000.00e
Proportion of secondary substations damaged in incident 90%
Incidents avoided 307.33
Investment reduction 276,599.14e

Net Result
Operational result -0.01e

Table 4.14: Summary of economic break-even study for underground cable pit
hotspot prevention model
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As seen, the required precision and KPI of TPR/FPR is significantly higher
than for the secondary substation case. If distribution regulated remuneration was
TOTEX or OPEX based even with a budget deficit this could be taken care off
in exchange for the increased quality of service. As it is not the case yet, further
analysis of the social costs involved are required to ensure true economic feasibility.
As a preliminary analysis, expert knowledge from inside the distribution company
feel social benefits of avoiding such hazardous incidents will be beneficial even at
a direct economic loss.

4.3.2 Model performance

Now the results for the underground cable pit predictive maintenance algorithm
will be presented alongside the intermediate results that are used as a bases for
the decisions made towards the final model.

GMM model

As seen in the statistical analysis a probabilistic model is best suited to capture the
patterns detected. GMM represents data as a combination of multiple Gaussian
distributions that maximise the probability of generating the known data.

For the generation of the first iteration of the model 2 key aspects were anal-
ysed, first how was data imputed into the GMM and then which cases were of a
higher difficulty for the predictor and would generate more false positives, which
as observed in the economic analysis should be minimised to the minimum if eco-
nomic feasibility is to be aimed. So first a single line, that resulted in a catastrophic
failure on day 120 was analysed to see the most exaggerated pattern:
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(a) Event log data points per day (b) probability distribution of events

Figure 4.17: Analysis of one single damaged line available data

Normal healthy lines tend to have no events during the day and are easy to
differentiate (all 120 days have 0 events), that is why the model has been made to
differentiate between damaged lines and overloaded lines which are the lines that
are more difficult to classify between damaged and healthy. All FPR from now on
are referenced to such overloaded lines which account for about 43,000 lines of the
about 550,000 total lines (so around 8% of the lines). From all the overloaded lines,
the ones that were only overloaded for a specified period, eg small coastal town
in summer where tourism increases significantly cable loadings, were selected as
they were deemed the most complex cases out of all the overloaded lines for model
differentiation. The study was made as such to test the models limits, minimise
FPR and get as close as possible to the economic break-even point. Here is a
comparison between a damaged line and a overloaded one to show the complexity
in differentiating them both:
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(a) Event log data points per day for a
damaged line

(b) Event log data points per day for an
overloaded line

Figure 4.18: Comparison of event logs for a damaged line and a seasonally over-
loaded one

Around 60 different models and adaptations of the basic initial GMM were
made to capture new features that previous ones did not or to try to solve the lack
of data. The main steps will be presented as justifications of the final model.

The first step is to determine the number of components and covariance type
selected for each GMM for each line. For the selection of the optimal number of
components, a critical task that directly impacts model generalization and com-
putational efficiency, the Bayesian Information Criterion (BIC) is employed as a
penalized likelihood function that balances model fit against complexity. Formally,
the BIC is defined as:

BIC = −2 · log(L̂) + k · log(n),

where L̂ denotes the maximized likelihood of the model, k represents the num-
ber of free parameters, and n is the number of observations. The logarithmic
penalty term k · log(n) introduces a complexity cost that discourages over-fitting
by penalizing excessive parametrization. From an engineering standpoint, this
criterion ensures parsimonious model design, aligning with principles of resource-
efficient computation and robust statistical inference. Economically, BIC supports
asymptotic consistency in model selection, favouring configurations that optimize
predictive performance while minimizing unnecessary structural overhead.
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Figure 4.19: BIC penalised function to select the optimal number of components
and covariance type

Then the data is aggregated into the selected minimum number of Gaussian
normals and the 10% less likely points of the data are further analysed, in the
fugure these are marked in red.

(a) Data aggregation into Gaussians (b) Minimum number of Gaussians that
explain the data points and anomaly

flagging

Figure 4.20: Data aggregation into Gaussians and anomaly flagging

The first complete model (model 3), used the least probable points (furthest
from the normal) to label as anomalies and then comparing anomalies before and
after the 90-day mark. If the probability of these events was twice as high after
the 90 day mark than before then the line was flagged as damaged. With this
model the outcome obtained was a TPR of 28% and a FPR of 4%
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(a) Data spread example of first model (b) Anomaly detection before and after
the 90 day mark

Figure 4.21: First GMM model analysed, anomaly rate comparison

The next model (model 13) tries to eliminate errors sue to past incidents of
the same line. For example if the line is disconnected for maintenance purposes,
the ideal scenario would be to ignore those das and start the 120 day count from
there, but as access to these logs is not available, an alternative is propose to
eliminate these rare events. Using only the 90 percentile more probable points
for the ‘before’ analysis, removes skews due to past field operations. This change
improved the model performance to a TPR of 31% whilst remaining the FPR at
4%.

(a) Example of elimination of a
problematic eventful day prior to the 90

day mark due to past maintenance

(b) Example of elimination of a
problematic eventful day prior to the 90

day mark due to past maintenance

Figure 4.22: Second GMM model analysed, anomaly rate comparison when reduc-
ing effect from past incidents or maintenance events

For extreme cases the proposed model do not work, this is due to these cases
having lots of events on the last few days. This great increase of anomalous points
causes the model to adjust a special new Gaussian for this data and therefore
are no longer considered anomalous as they can be explained by this new and
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individual Gaussian. So the next proposed model (model 55) detects this increase
in Gaussian number when modelling only the first 90 days and then extending to
the full 120 days. If a new Gaussian is required to explain the last days then the
line is flagged.

(a) Example of a case where a new
Gaussian is needed to explain the last

days of a damaged line

(b) Example of a case of an overloaded
line which also requires a new Gaussian to

explain the last days

Figure 4.23: Third GMM model analysed, detecting new Gaussian required for
final data explanation

This nevertheless, poses a problem for FPR as it does not take into account
if this new Gaussian has more events than the prior Gaussians. Sometimes the
behaviour of the line changes but it is not a negative change, for example corrective
maintenance, loading change ... It is important to distinguish between normal
condition changes and condition changes where the line degrades into a damaged
line whcih contains a hotspot event. Therefore the next model proposed (model
64) also measures the average mean number of events of the Gaussians prior to
the 90 day mark and then, if a new Gaussian is required to explain the last few
days, compares it with the mean number of events of this new Gaussian. If there
is an increase in number of Gaussians and an increase in its average number of
events then the line is flagged as damaged. This increased TPR to 39% and FPR
was kept at 4%.
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(a) Data Gaussian
aggregation for damaged

line

(b) Gaussian probability
spread for the same

damaged line

(c) Example of healthy line
that changes condition due
to maintenance and would

not be flagged

Figure 4.24: Fourth GMM model analysed, detecting new Gaussian required for
final data explanation and comparing the mean number of events

The final model developed that combines the advantages of each of the mod-
els is presented in the summary table below. It is a combination of the models
explained above and, with the available data, was the best performing model
capable to be obtained as it captures several different possible damaged line be-
haviours.

Table 4.15: Performance metrics of hotspot anomaly prediction GMM models for
underground cable pits

Model Nº Model Description TPR FPR
13 Rate of anomaly after > 2 × rate before (us-

ing p90 probability for ’before’)
31% 4%

55 Number of normal instances after > number
of normal instances before

73% 88%

64 Mean of normal instances after > 2 × mean
of normal instances before

39% 4%

68 Combination of models 55 and 64 36% 4%
100 Logical OR between models 13 and 68 46% 8%

The model is capable of detecting almost 50% of the incidents with less than
10% of false positives, therefore a predictive maintenance algorithm for under-
ground cable pit hotspot events has been developed. Nevertheless, the key eco-
nomic KPI is:

• TPR = 46%

• FPR = 8% * 43000/550000 + 0.2% = 0.83%
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Resulting in a KPI of 55.73, which is smaller to the required KPI of 315 for
economic break even. So the model would be 350,000€ in the red. This again
without taking into account the social and safety related costs of such incidents
developing in underground cable pits in urban areas, which as stated by the ques-
tioned experts are assumed larger than this value.

As for the computational costs, just for completion:

• 0.24 processing minutes per secondary substation

• 1800 total processing hours

• For an Azure Standard_D96ls_v5 VCPU the cost is 7.7571€/hr and has 96
vCPUs and 192 GiB (enough for the required task)

• for a total processing cost of 145.45€ for training, assumed negligible com-
pared to the other costs
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Chapter 5

Conclusion

This chapter summarizes the main findings of the thesis, reflects on the limita-
tions encountered, and proposes some future research. It begins by revisiting
the aim of the work and evaluating the extent to which the objectives have been
achieved.

Conclusion on topic of the work

The primary aim of this thesis was to develop a predictive maintenance algo-
rithm for detecting hotspot anomalies in low-voltage (LV) networks, specifically
in secondary substations and underground cable pits. This objective was pur-
sued through a hybrid approach combining analytical threshold-based models and
machine learning (ML) techniques for secondary substations and GM model for
underground cable pits. This was achieved leveraging data from both SABT sys-
tems and smart meters, alongside data form the other 2 main databases the GIS
and the OMS for historic incident detection and data labelling.

The work successfully demonstrated that predictive maintenance for hotspot
anomalies is not only technically feasible, both cases, but also economically viable,
in secondary substations, when appropriate models are deployed. The thesis con-
tributes to the ongoing digital transformation of Distribution System Operators
(DSOs), aligning with regulatory trends and strategic goals such as increased grid
reliability, reduced operational costs, and enhanced safety.
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Summary of findings

The thesis addressed four core objectives:

1. Identification of historic incidents: A robust filtering and labeling method-
ology was developed to extract and classify hotspot-related incidents from
OMS databases. This enabled the creation of a reliable dataset for model
training and validation.

2. Development of predictive algorithms: Three models were developed for sec-
ondary substations: an analytical threshold model, a general ML model, and
a specific ML model. Each was evaluated for accuracy, interpretability, and
economic feasibility. The analytical model achieved the highest True Positive
Rate (TPR) (85.71%), while the combined model offered the best economic
performance 944,000€ / year.

3. Validation with field data: All models were validated against real-world inci-
dents and field measurements. The specific ML model demonstrated strong
performance even in complex scenarios involving maintenance interventions,
but the combined model still offered the best relationship between TPR and
FPR.

4. Extension to underground cable pits: A Gaussian Mixture Model (GMM)
was developed to detect anomalies using event logs from smart meters. De-
spite the lack of direct measurements, the model achieved a TPR of 46%
with an FPR of 0.83%, proving the feasibility of predictive maintenance in
these challenging environments.

These findings emphasize the value of SABT and AMI data in enhancing grid
observability and enabling proactive maintenance strategies. The thesis also pro-
vides a detailed economic analysis, showing that predictive models can yield sig-
nificant cost savings and operational benefits, especially if social and safety-related
impacts are considered.

Contributions to the field

This thesis makes a substantive contribution to the field of smart grid engineering
and data-driven asset management. It introduces a novel hybrid methodology for
hotspot anomaly detection in low-voltage networks, combining physically inter-
pretable analytical models with machine learning techniques tailored to the oper-
ational realities of DSOs. By leveraging existing SABT and AMI infrastructure,
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the work demonstrates that predictive maintenance is not only technically viable
but also economically advantageous under realistic deployment scenarios.

The research also extends the frontier of anomaly detection into underground
cable pits, a domain that has received limited attention due to its inherent data
limitations. Through the use of event logs and probabilistic modelling, the thesis
provides a framework for identifying degradation patterns even in the absence of
direct measurements. This represents a significant step forward in enhancing grid
observability and safety in urban areas.

Moreover, the thesis contributes an economic analysis framework that bal-
ances model performance with operational costs and benefits. This approach en-
ables DSOs to make informed decisions about model deployment. The modularity
and scalability of the proposed models further support their integration into agile
development cycles and continuous improvement processes.

In alignment with strategic goals such as decarbonization, digitalization, and
resilience, the work supports the evolution of DSOs into proactive system operators
capable of managing increasingly complex and dynamic networks. It also aligns
with key Sustainable Development Goals, reinforcing the societal relevance of the
research. Overall, the thesis bridges the gap between academic innovation and
industrial applicability, offering a robust foundation for future advancements in
smart grid maintenance and reliability engineering.

Limitations of the study

Several limitations were encountered whilst performing this project.

The lack of direct measurements in underground cable pits constrained the
model’s accuracy. Event logs were used as proxies, which may not fully capture the
degradation dynamics. For a more in-depth study, as for the secondary substation
case, data availability of more complex behaviours of the line and other protection
schemes would be useful.

While models were designed, where possible due to the agile workflow and time
frame scope of the project, with efficiency in mind, large-scale deployment across
hundreds of thousands of grid elements remains computationally intensive, though
not economically unfeasible as calculated in the results section. Nevertheless, this
project serves as an initial validation of the models and techniques and can be
further improved with less computationally expensive models.

Incident descriptions in OMS databases required manual filtering due to incon-
sistent field reporting, limiting automation of labelling. The use of a large language
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model can help automation of this section and would help with the detection of
even more incidents and therefore of better training sets for the models.

The cost-benefit analysis had several assumptions such as excluding indirect
social costs and reputational impacts, which could significantly affect the real
world value proposition. The complexity of these aspects calls for a further in-
depth study of these effects, specially for a regulated, natural monopoly as DSOs
where service quality has strict criteria.

Recommendations for future research and industrial deployment

The findings of this thesis open several promising routes for future research and
practical implementation. One of the most immediate recommendations is the
enhancement of data granularity, particularly in underground cable pits. The
current lack of direct measurements significantly limits the precision of anomaly
detection models. Future deployments should consider integrating temperature
and current sensors directly into these grid elements, enabling more accurate and
timely detection of thermal degradation and electrical faults. Or further developing
the decentralised detection strategies to flag automatically possibly damaged lines
due to smart meter event logs that would then be analysed further with new
models.

Another critical improvement lies in the integration of maintenance records
and work orders into the anomaly detection framework. By incorporating these
operational logs, models could reset anomaly counters after interventions, thereby
avoiding false positives caused by residual effects of past incidents. This would also
allow for a more dynamic and context aware model that adapts to the evolving
state of the grid.

From a methodological standpoint, future research should explore more compu-
tationally efficient machine learning techniques. Techniques such as auto encoders,
contrastive learning, or lightweight recurrent neural networks could offer similar or
improved performance with reduced computational overhead, facilitating real-time
deployment.

On the regulatory front, the current CAPEX-focused remuneration schemes
present a barrier to the adoption of predictive maintenance strategies. A shift
towards TOTEX or OPEX based models would better align incentives with the
operational efficiencies offered by data-driven approaches. Researchers and in-
dustry stakeholders should collaborate to advocate for regulatory reforms that
recognize the value of digitalization and proactive asset management to increase
the current grid’s capacity and reduce unexpected downtimes.
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Finally state that, even after the successful completion of the project and the
development of predictive maintenance algorithms for hotspot event anticipation
in secondary substations and underground cable pits using data analytics, the
project has opened several key investigation routs to further improve the models
created. The last one which will be stated is the further study of social and safety
implications of hotspot anomalies to quantify the reputational and public safety
costs associated with these incidents, integrating them into economic feasibility
models. Providing a more holistic view of the value proposition of predictive
maintenance and support its prioritization in strategic planning.
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Appendix A

SDG

The SDGs, Sustainable Development Goals [67], are a set of 17 goals created by the
United Nations in order to provide a guide for peace, prosperity and sustainability
of the human race. With an independence on the project or decisions made, it
could be argued that if these blueprints are followed, this endeavour would be
socially desirable.

The project is aligned with all goals focused on infrastructure, energy, in-
novation, reliability and sustainability. But, mainly with the following three
SDGs:

7. Affordable and Clean Energy. By reducing interruptions and lowering main-
tenance costs through predictive maintenance, this project contributes to
ensuring access to affordable, reliable, sustainable, and modern energy for
all. Pre-emptive detection of anomalies helps avoid energy losses and im-
proves the overall efficiency of the distribution network.

9. Industry, Innovation and Infrastructure. The project is deeply rooted in the
modernization of electrical infrastructure. It leverages advanced metering
infrastructure (AMI) and data-driven techniques to enhance the resilience
and intelligence of the low-voltage distribution grid, promoting innovation in
utilities.

11. Sustainable cities and communities. The current alternative to predictive
maintenance is corrective maintenance, meaning that when secondary sub-
stations incur in an unexpected downtime, apart form the subsequent loss
in reliability, once the users regain service it is mainly and temporarily via a
diesel generator which increases pollution and then requires an environmen-
tally expensive to make new secondary substation.
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