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Abstract: Background: Insulin resistance (IR) is a metabolic disorder linked to type 2
diabetes and cardiovascular diseases. Visceral fat is a better predictor of IR than BMI
and waist circumference due to its metabolic and inflammatory impact. Methods such as
DEXA and bioimpedance (BIA) estimate body fat, while scales such as METS-IR, SPISE,
and TyG assess IR risk. This study analyzes the utility of visceral and body fat measured
by BIA compared to other indicators. Methods: A cross-sectional study was conducted
on 8590 workers in the Balearic Islands, analyzing anthropometric, clinical, and analytical
variables. Body fat and visceral fat were measured by bioimpedance, and insulin resistance
was assessed using METS-IR, SPISE, and TyG. ROC curves were used to evaluate the
predictive value of BMI, WC, and body fat. Results: The areas under the curve (AUCs) were
highest for high METS-IR, particularly in women (>0.97), indicating excellent performance.
TyG showed the lowest AUC, especially in men. Body and visceral fat showed the highest
AUC for all IR scales. Youden’s indices were highest for high METS-IR, with good predictive
capacity, while TyG showed low values, limiting its utility in predicting insulin resistance.
Conclusions: Measuring body and visceral fat by BIA is superior to BMI or WC for
estimating IR risk.

Keywords: body fat; visceral fat; insulin resistance; metabolic risk; waist circumference;
body mass index

1. Introduction
Insulin resistance (IR) is a metabolic condition characterized by a reduced ability

of cells to respond to insulin. This phenomenon is associated with an increased risk of
developing various chronic diseases, including type 2 diabetes, cardiovascular diseases,
and metabolic syndrome [1,2].

Several studies have demonstrated a strong correlation between a high body fat
percentage and IR [3].

Although the mechanisms through which obesity induces insulin resistance are not yet
fully understood, several mechanisms have been proposed, such as chronic inflammation of
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adipose tissue, mitochondrial dysfunction, and fat accumulation in the liver and muscle [4].
Several studies indicate that natural killer (NK) cells play a key role in obesity-induced
inflammation and insulin resistance, being activated in epididymal white adipose tissue
(eWAT). There, they promote the recruitment of macrophages, exacerbating inflammation
and being associated with a higher risk of insulin resistance [5].

IR occurs in the early stages of obesity, regardless of the obesity phenotype, whether it
be metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) [6].

Various anthropometric and body composition markers have been used as indirect
indicators of IR, such as body mass index (BMI), waist circumference, total body fat, and
visceral fat. Each of these metrics provides valuable information about the distribution and
amount of fat in the body, aspects closely related to metabolic health [7].

Total body fat includes all the fat present in the body, including subcutaneous fat
(beneath the skin) and visceral fat (surrounding internal organs). Although both contribute
to energy storage and body protection, visceral fat has a greater impact on metabolic
health [8]. Its proximity to vital organs and its ability to release free fatty acids directly into
the liver link it to an increased risk of developing metabolic diseases such as type 2 diabetes
and cardiovascular diseases [9].

Visceral fat is a more reliable predictor of IR compared to total body fat [10]. This
difference is explained by the fact that visceral fat is more closely linked to inflammatory
and metabolic processes that play a key role in the development of IR. According to a study
by Després et al., the amount of visceral fat was shown to be a more accurate indicator
of insulin sensitivity than BMI and waist circumference. These findings underscore the
importance of specifically evaluating visceral fat in assessing the risk of developing IR [11].

BMI, widely used to classify nutritional status, correlates with IR, as excess adipose
tissue, particularly in obesity (BMI ≥ 30 kg/m2) [12], increases lipotoxicity [13,14] and
inflammatory stress [15,16], underlying mechanisms of insulin dysfunction. However, BMI
has significant limitations [17]: it does not distinguish between lean mass and fat, nor does
it identify the distribution of adipose tissue, critical factors in determining IR.

Waist circumference (WC) is a better predictor of IR than BMI, as it reflects abdom-
inal fat accumulation [18]. Visceral adiposity, estimated by waist circumference or more
advanced measurements such as densitometry, is closely related to metabolic dysfunction
due to its high pro-inflammatory activity and impact on insulin sensitivity [19,20].

Total body fat measurement can be conducted using specialized methods that al-
low precise evaluation. These include dual-energy X-ray absorptiometry (DEXA), which
provides detailed images of body composition [21]; air displacement plethysmogra-
phy [22], which calculates the body fat percentage based on body density; and bioelectrical
impedance, which estimates body fat from the electrical resistance of tissues [23].

Recently, metabolic risk scores such as METS-IR (metabolic score for insulin resistance),
SPISE (single-point insulin sensitivity estimator), and the TyG index (triglyceride–glucose
index) have gained relevance for their ability to estimate IR more accurately and practically.

The standard method for measuring insulin sensitivity is the euglycemic–hyperinsulinemic
clamp technique, which is complex, costly, invasive, and not easily accessible. As a result,
alternative methods such as indirect markers (TyG, METS-IR, SPISE) have been developed.
The TyG index stands out due to its normal distribution in the studied population, mak-
ing statistical analysis easier. Its simplicity, accessibility, low cost, high sensitivity, and
specificity make it a useful alternative marker for insulin resistance. The TyG index shows
superiority over other indices due to its relationship with glucotoxicity and lipotoxicity,
key mechanisms in insulin resistance (IR). Hypertriglyceridemia contributes to the accu-
mulation of fatty acids in non-adipose tissues, generating ectopic lipids and lipotoxicity.
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Moreover, visceral fat, with increased lipolysis and secretion of inflammatory adipokines,
promotes an inflammatory state that interferes with insulin signaling [24].

METS-IR combines measures of triglycerides, fasting glucose, and body weight [25],
providing a practical and accurate estimation of IR [26]. Its sensitivity is especially useful
in populations with abdominal obesity, where elevated triglyceride and glucose levels are
early markers of metabolic dysfunction [27]. Studies have shown that METS-IR correlates
significantly with visceral fat and waist circumference, making it a powerful tool to identify
individuals at high risk of IR and metabolic diseases [28,29].

SPISE uses HDL cholesterol, triglycerides, and BMI to estimate insulin sensitivity [30].
Although its application is more frequent in individuals with mild or moderate obesity,
recent studies have indicated that SPISE is particularly effective in distinguishing between
normal sensitivity and insulin resistance in young populations without established dia-
betes [31,32].

The TyG index, derived from triglyceride and glucose levels, has shown a strong
association with IR [33] and visceral fat [34]. It is simple to calculate and highly reproducible,
making it ideal for population studies and clinical settings with limited resources [35].

The assessment of insulin resistance risk benefits from a multidimensional approach
that incorporates several measures of body composition and fat distribution. Combining
these metrics allows for a more precise and comprehensive evaluation of metabolic risk.
A person may have a normal BMI but a high amount of visceral fat, which would place
them at an elevated risk of IR. Similarly, the combined use of BMI, waist circumference,
and visceral fat measurements can better identify individuals at risk and guide preventive
and therapeutic interventions.

The aim of our study is to evaluate the utility of visceral and total body fat, determined
by bioimpedance, compared to waist circumference and BMI in estimating a high risk of IR.

2. Materials and Methods
2.1. Participants

A cross-sectional and descriptive study was carried out involving a total of 8590 em-
ployed individuals residing in the Balearic Islands, Spain. The participants were selected
from among those who underwent their compulsory annual occupational health assess-
ments between January 2019 and December 2020, facilitated by our occupational health
and risk prevention service. This service provides coverage to a wide range of companies
operating across multiple sectors, including healthcare, education, hospitality, construction,
retail, transportation, public administration, industry, and cleaning services.

Inclusion criteria:

• Individuals aged between 18 and 69 years;
• Voluntary agreement to participate in the study;
• Provision of informed consent for the use of their data in epidemiological research;
• Active employment in one of the participating companies, without temporary work

disability at the time of data collection.

Exclusion criteria:

• Age below 18 or above 69 years;
• Lack of employment in any of the companies involved in the research;
• Declining to participate or withholding consent for the use of personal data in

the study;
• Did not provide consent for the use of their data in epidemiological analyses;
• Lacked essential variables required for the computation of clinical or diagnostic indices.
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• The selection process for study participants is illustrated in the corresponding
flowchart (Figure 1).
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2.2. Variable Assessment

To minimize interobserver variability, all procedures were standardized in advance.
Data collection, including anthropometric, clinical, and laboratory evaluations, was con-
ducted by occupational health personnel affiliated with the participating companies.

• Sociodemographic and lifestyle data: age, sex, engagement in regular physical activity,
weekly exercise frequency, and smoking habits.

• Anthropometric and clinical parameters: body weight, height, and waist and hip
circumferences, as well as systolic and diastolic blood pressure.

• Laboratory markers: fasting plasma glucose, lipid profile, and liver enzyme levels.

2.2.1. Anthropometric Measurements

• Height (in centimeters) and body weight (in kilograms) were recorded using a SECA
700 mechanical scale and SECA 220 stadiometer, in accordance with International
Society for the Advancement of Kinanthropometry (ISAK) guidelines [36].

• Waist circumference was assessed with the participant standing upright, with their feet
together and abdomen relaxed. A SECA flexible measuring tape was used, positioned
horizontally at the midpoint between the lowest palpable rib and the iliac crest. Hip
circumference was measured at the point of greatest gluteal protrusion, also with the
tape held parallel to the ground [37].

• Body composition, including total and visceral fat, was evaluated via bioelectrical
impedance analysis (BIA), using a Tanita DC-430MA device. Elevated visceral fat was
defined as values ≥10 on the bioimpedance scale, while thresholds for high total body
fat were adjusted based on the participant’s age.

• The Tanita features an integrated auto-calibration system; however, certain steps can
be followed to ensure that it functions optimally: Place the Tanita on a hard, flat, and
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level surface. If necessary, perform a reset. Periodic calibration should be conducted
by technical service providers at least twice a year.

To ensure accurate measurements, validating the results is essential:

1. User Preparation: Measurements should be performed under consistent conditions
each time (e.g., at the same time of day, with the same hydration level, and preferably
on an empty stomach or at least two hours after eating). The individual must be
barefoot, must be wearing light clothing, and should not have engaged in intense
physical activity beforehand.

2. Comparison with Reference Standards: Repeated measurements should be performed
on the same day to verify consistency. Additionally, body fat measurements should
be compared with those obtained from a calibrated body composition device or
validated reference methods (e.g., DEXA analysis or skinfold assessments performed
by an expert).

3. General Maintenance: The platform should be regularly cleaned with a soft, dry cloth.
The use of harsh chemicals should be avoided. The device should be stored in a dry,
stable environment to prevent damage to the sensors.

2.2.2. Clinical Determinations

• Blood Pressure Assessment: Arterial blood pressure was recorded using an OMRON
M3 automated sphygmomanometer. Participants remained seated with their legs
uncrossed and at rest for at least 10 min prior to measurement. Three consecutive
readings were taken at one-minute intervals, and the mean value was used for analysis.

2.2.3. Biochemical Analyses

• Venous blood samples were drawn following a fasting period of no less than 12 h.
The samples were processed as follows: “The tube used was the 8.5 mL BD SST II
Vacutainer serum tube with separating gel, reference BD 366468. The samples were
transported to the laboratory in a refrigerator (between 5 and 10 degrees Celsius).
The samples were centrifuged in the laboratory within two hours of collection and
immediately analyzed on an autoanalyzer” [38,39].

• LDL cholesterol concentrations were estimated using the Friedewald equation, appli-
cable only when triglyceride levels were below 400 mg/dL. All biochemical variables
are reported in milligrams per deciliter (mg/dL).

2.2.4. Insulin Resistance Risk Scales Applied

• Metabolic score for insulin resistance (METS-IR). METS-IR = Ln(2 × glucose) + triglyc-
erides × BMI)/(Ln(HDL-c). High values are defined as 50 and above [40].

• SPISE = 600 × HDL0.185/triglycerides0.2 × BMI1.338. SPISE-IR = 10/SPISE. High risk
is considered at 1.51 [41].

• The triglyceride–glucose (TyG) index is calculated using the following formula:
Ln(triglycerides [mg/dL] × glucose [mg/dL]2). Values exceeding 8.81 are classi-
fied as high [42].

2.2.5. Sociodemographic Variables and Healthy Habits

Male and female were the two dichotomous variables making up gender.
The date of the medical examination was subtracted from the date of birth to deter-

mine age.
Individuals who had smoked at least one cigarette (or its equivalent in other forms)

in the previous month, or who had quit smoking less than a year prior, were considered
smokers [43].
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Socioeconomic class was determined based on the recommendation of the Spanish
Society of Epidemiology, following the 2011 National Classification of Occupations. Class I
includes managers, directors, and university professionals; class II comprises intermediate
vocations and self-employed individuals; and class III consists of manual workers [44].

The International Physical Activity Questionnaire (IPAQ) was employed to assess the
level of physical activity. This self-administered survey evaluates the amount of exercise
performed over the preceding seven days [45].

2.3. Statistical Analysis

Quantitative variables were summarized using means and standard deviations, with
comparisons between groups conducted via Student’s t-test. Categorical variables were
analyzed using the chi-square test to estimate prevalence rates. Receiver Operating Charac-
teristic (ROC) curve analysis was used to establish the optimal thresholds for moderate and
elevated cardiovascular age. This analysis included the calculation of the area under the
curve (AUC), the determination of cut-off values based on the Youden index, and assess-
ments of sensitivity and specificity. Pearson’s correlation coefficient was applied to evaluate
linear associations between continuous variables, while Cohen’s kappa statistic was used
to assess agreement between categorical scales. All statistical procedures were carried
out using SPSS software, version 29.0. A p-value below 0.05 was considered indicative of
statistical significance.

3. Results
Table 1 outlines the anthropometric and clinical characteristics of the study population.

A total of 8590 workers were included in the analysis, comprising 4104 men (47.8%) and
4486 women (52.2%). The mean age of participants was slightly above 41 years, with the
majority distributed between 30 and 49 years of age. Most individuals were classified
within social class I. Approximately 15% of both male and female participants reported
being active smokers. Regular engagement in physical activity was noted in 47.1% of men
and 38.4% of women.

Table 2 shows the mean values of body fat and visceral fat in both sexes. In both cases,
we can observe that as the amount of fat increases, the risk of insulin resistance (IR) also
increases, both for body fat and visceral fat. This increase is highly significant in all three
formulas used (p < 0.0001). When evaluating individuals with very high body fat values
and high visceral fat values measured by bioimpedance, the percentages are higher, in all
three formulas used, in individuals with high values on the IR risk scales. The differences
observed in all cases show high statistical significance (p < 0.001). However, we can also
observe that a small proportion of the sample presents normal IR risk despite elevated
body fat or visceral fat measured by bioimpedance.

In Figure 2 and Table 3, the areas under the curve (AUCs) are presented to evaluate the
predictive value of body fat (blue line), visceral fat (green line), WC (violet line), and BMI
(red line) in relation to the three criteria assessed for determining insulin resistance (IR)
risk. It is observed that the AUCs are always higher for high METS-IR, both in men and in
women, with a result exceeding 0.9 in all cases, indicating that the test result is very good.
In women, the AUC is even higher than 0.97 across all four ROC curves, with an excellent
test result, reaching 0.988 for body fat and 0.983 for visceral fat, approaching perfection.
The lowest AUCs are obtained with the TyG formula, yet for women, they exceed 0.75 in
all cases, which suggests a good result. In men, the AUCs are below 0.75 for BMI and WC,
signaling a moderate test result.
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Table 1. Sample characteristics.

Men n = 4104 Women n = 4486

Mean (SD) Mean (SD) p-Value

Age (years) 41.6 (10.6) 41.5 (10.5) 0.492
Height (cm) 175.8 (7.2) 162.5 (6.1) <0.001
Weight (kg) 81.2 (14.8) 63.9 (13.6) <0.001

Waist circumference (cm) 89.8 (12.5) 77.0 (12.0) <0.001
Hip circumference (cm) 101.8 (8.7) 99.6 (10.9) <0.001

Systolic blood pressure (mmHg) 128.6 (13.3) 117.2 (14.1) <0.001
Diastolic blood pressure (mmHg) 79.9 (10.2) 74.9 (9.9) <0.001

Glycemia (mg/dL) 93.4 (17.8) 88.9 (12.6) <0.001
Total cholesterol (mg/dL) 191.8 (36.0) 189.0 (34.8) <0.001
HDL cholesterol (mg/dL) 49.2 (11.3) 59.5 (12.8) <0.001
LDL cholesterol (mg/dL) 124.0 (54.6) 113.8 (30.7) <0.001

Triglycerides (mg/dL) 107.8 (69.4) 81.5 (46.3) <0.001
GGT (UI) 31.5 (30.0) 18.5 (15.9) <0.001
AST (UI) 24.4 (17.3) 18.2 (7.7) <0.001
ALT (UI) 29.3 (34.9) 17.3 (13.4) <0.001

% % p-value

18–29 years 15.5 16.8 0.005
30–39 years 27.8 25.1
40–49 years 32.7 34.4
50–59 years 19.0 19.7
60–69 years 5.0 4.0
Social class I 57.1 50.8 <0.001
Social class II 20.2 23.8
Social class III 22.7 25.4
Non-smokers 84.5 84.2 0.348

Smokers 15.5 15.8
No physical activity 25.9 35.1 <0.001

Physical activity 1–3 days/week 27.0 26.5
Physical activity more 3 days/week 47.1 38.4

SD—standard deviation. HDL-c—high-density lipoprotein. LDL-c—low-density lipoprotein. GGT—Gamma-
Glutamyl Transferase. AST—Aspartate Aminotransferase. ALT—Alanine Aminotransferase. Student’s t-test used
for means and chi-square test for prevalence.

Table 2. Mean values and prevalence of very high body fat and high visceral fat according to RI scale
values by sex.

Men Women

Body fat n Mean (SD) p-value n Mean (SD) p-value

METS-IR normal 3650 18.5 (6.9) <0.001 4250 28.4 (7.1) <0.001
METS-IR high 454 31.4 (6.1) 236 44.8 (4.9)

TyG normal 3318 18.8 (7.6) <0.001 4140 28.6 (7.6) <0.001
TyG high 786 24.9 (7.4) 346 37.2 (7.2)

SPISE-IR normal 3540 18.3 (6.8) <0.001 4202 28.2 (6.9) <0.001
SPISE-IR high 564 30.4 (6.2) 284 44.2 (5.1)

Visceral fat n Mean (SD) p-value n Mean (SD) p-value

METS-IR normal 3650 6.9 (3.8) <0.001 4250 4.3 (2.7) <0.001
METS-IR high 454 15.7 (4.5) 236 12.3 (3.1)

TyG normal 3318 7.1 (4.4) <0.001 4140 4.4 (3.0) <0.001
TyG high 786 11.1 (4.7) 346 8.4 (3.7)

SPISE-IR normal 3540 6.8 (3.7) <0.001 4202 4.2 (2.6) <0.001
SPISE-IR high 564 15.0 (4.5) 284 11.8 (3.2)

Men Women

Body fat very high n % p-value n % p-value

METS-IR normal 3650 5.9 <0.001 4250 5.5 <0.001
METS-IR high 454 74.4 236 87.3

TyG normal 3318 10.1 <0.001 4140 7.6 <0.001
TyG high 786 27.5 346 35.8

SPISE-IR normal 3540 4.9 <0.001 4202 4.9 <0.001
SPISE-IR high 564 67.0 284 82.4

Visceral fat high

METS-IR normal 3650 9.0 <0.001 4250 0.3 <0.001
METS-IR high 454 76.4 236 46.6

TyG normal 3318 11.8 4140 1.6
TyG high 786 33.6 346 15.6

SPISE-IR normal 3540 10.3 <0.001 4202 4.3 <0.001
SPISE-IR high 564 69.1 284 40.8

METS-IR: metabolic score for insulin resistance. TyG: triglyceride–glucose. SPISE-IR: single-point insulin
sensitivity—insulin resistance. Student’s t-test used for means.
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Table 3. Areas under the curve for body fat, visceral fat, BMI, and WC to predict high values of RI
scales by sex.

Body Fat Visceral Fat BMI Waist

Women n = 4486 AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI)

METS-IR high 0.988 (0.983–0.992) 0.981 (0.976–0.986) 0.973 (0.966–0.981) 0.979 (0.973–0.985)
TyG index high 0.810 (0.784–0.836) 0.805 (0.781–0.830) 0.790 (0.7660.814) 0.799 (0.776–0.822)
SPISE-IR high 0.985 (0.981–0.989) 0.977 (0.973–0.982) 0.969 (0.962–0.977) 0.970 (0.963–0.977)

Men n = 4104 AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI)

METS-IR high 0.972 (0.967–0.977) 0.961 (0.955–0.968) 0.933 (0.920–0.946) 0.936 (0.925–0.946)
TyG index high 0.787 (0.770–0.803) 0.750 (0.731–0.768) 0.729 (0.710–0.748) 0.743 (0.725–0.761)
SPISE-IR high 0.968 (0.962–0.973) 0.959 (0.952–0.965) 0.923 (0.911–0.935) 0.926 (0.915–0.937)

METS-IR: metabolic score for insulin resistance. TyG: triglyceride–glucose. SPISE-IR: single-point insulin
sensitivity—insulin resistance. AUC: area under the curve.
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Figure 2. ROC curves.

The highest AUCs are presented for body fat and visceral fat across the three IR risk
scales evaluated.

The cut-off points for the four methods of assessing body fat are established in Table 4.
The cut-off points for predicting high values of IR risk scales present the highest Youden
indices for high METS-IR in both men and women. The Youden index ranges from 0.719
for BMI to 0.817 for body fat in men. Similar results are observed in women, with the
Youden index ranging from 0.826 for BMI to 0.864 for body fat. These values indicate high
predictive power in all cases and high reliability.

On the other hand, the cut-off values for a high TyG index present a Youden index
below 0.5 for all three formulas evaluated and for the four methods of assessing body fat.
The highest Youden index for body fat is 0.492, and the lowest for BMI is 0.453, in women.
In men, the Youden index for body fat is 0.441, and for BMI, it is 0.352, indicating that
it is not useful for predicting IR or that it has limited applicability and should be used
with caution.
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Table 4. Cut-off points for body fat, visceral fat, BMI, and WC to predict high values of RI scales
by sex.

Body Fat Visceral Fat BMI Waist

Women n = 4486 cut-off-sens-specif-
Youden

cut-off-sens-specif-
Youden

cut-off-sens-specif-
Youden

cut-off-sens-specif-
Youden

METS-IR high 38.2-94.1-92.3-0.864 8.0-94.0-92.3-0.863 29.8-91.5-91.1-0.826 92.0-95.4-89.9-0.853
TyG index high 38.0-74.6-74.6-0.492 8.0 -74.6-74.4-0.490 29.7-72.8-72.5-0.453 92.0-73.4-73.2-0.466
SPISE-IR high 37.3-93.0-92.4-0.854 8.0-92.5-92.3-0.848 29.5-90.4-89.4-0.798 92.0-92.0-92.0-0.840

Men n = 4104 cut-off-sens-specif-
Youden

cut-off-sens-specif-
Youden

cut-off-sens-specif-
Youden

cut-off-sens-specif-
Youden

METS-IR high 25.3-91.2-90.5-0.817 11.0-87.5-86.5-0.740 29.4-6.0-85.9-0.719 98.0-87.2-86.5-0.737
TyG index high 25.0-72.9-71.2-0.441 11.0-71.8-68.8-0.406 29.4-67.9-67.3-0.352 98.0- 69.5-69.1-0.386
SPISE-IR high 24.5-90.4-90.3-0.807 11.0-88.3-87.5-0.758 29.0-96.2-83.7-0.704 98.0-5.7-84.9-0.706

METS-IR: metabolic score for insulin resistance. TyG: triglyceride–glucose. SPISE-IR: single-point insulin
sensitivity—insulin resistance.

The Pearson correlation coefficient shows moderate values between TyG, METS-IR,
and SPISE-IR, while there is an excellent positive correlation between METS-IR and SPISE-
IR (values are slightly higher in women). When studying Cohen’s kappa agreement index,
it shows a low-to-moderate degree of agreement between TyG, METS-IR, and SPISE-IR,
whereas there is very good agreement between METS-IR and SPISE-IR in both men and
women, with higher values in the latter (Table 5).

Table 5. Pearson’s correlation coefficient and Cohen’s kappa coefficient.

Pearson Cohen’s Kappa

Women TyG index METS-IR SPISE-IR Women TyG index high METS-IR high SPISE-IR high

TyG index 1 0.643 0.707 TyG index high 1 0.351 0.423
METS-IR 1 0.987 METS-IR high 1 0.861
SPISE-IR 1 SPISE-IR high 1

Men TyG index METS-IR SPISE-IR Men TyG index high METS-IR high SPISE-IR high

TyG index 1 0.552 0.620 TyG index high 1 0.487 0.385
METS-IR 1 0.984 METS-IR high 1 0.823
SPISE-IR 1 SPISE-IR high 1

METS-IR: metabolic score for insulin resistance. TyG: triglyceride–glucose. SPISE-IR: single-point insulin
sensitivity—insulin resistance.

4. Discussion
Insulin resistance (IR) is a central factor in metabolic diseases such as type 2 diabetes,

metabolic syndrome, and cardiovascular diseases. Traditional anthropometric markers,
such as BMI and waist circumference, have been used as indirect indicators of IR but
have limitations as they fail to reflect fat distribution, particularly visceral fat, which is
key in the pathophysiology of IR [46,47]. In this context, scales such as METS-IR, SPISE,
and TyG have emerged as more precise and practical tools [48]. These scales integrate
metabolic components directly related to IR, overcoming the limitations of traditional
indicators that inadequately capture the impact of visceral fat distribution, a crucial factor
in IR pathophysiology.

In our sample, we analyzed two groups: 4104 men and 4486 women with similar
characteristics. The average age was 41 years, and approximately 16% of the sample was
smokers in both sexes, aligning with data from the Spanish National Institute of Statistics
(INE) in 2022, where the national percentage of smokers was 17% [49]. However, regarding
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regular physical activity, our sample exhibited slightly higher rates (47.1% in men and 38.4%
in women) compared to the INE data for 2022 (39.7% in men and 35.7% in women) [50].

The average values of body fat and visceral fat, differentiated by sex, are an important
reflection of how body composition is associated with IR. The results reveal a clear trend:
as body fat and visceral fat increase, the risk of IR rises significantly, underscoring the
importance of considering these measures in metabolic assessments. Conversely, the
discovery of a small proportion of individuals with normal IR risk (metabolically healthy
obesity) [51] but very high body fat or visceral fat levels raises important questions. This
could be attributed to genetic variations affecting insulin sensitivity or differences in
fat distribution (e.g., subcutaneous versus visceral). This subgroup might benefit from
additional monitoring to avoid overlooking latent metabolic risk, as, despite presenting
lower metabolic risk than other individuals with obesity, their risk remains higher than
that of metabolically healthy lean individuals [52]. Furthermore, these findings emphasize
the importance of incorporating these measurements into risk population screenings. For
instance, in individuals with high visceral fat levels, early intervention in terms of diet,
physical activity, or pharmacological therapies could significantly impact the prevention of
type 2 diabetes and other related diseases [53,54]. At the population level, these findings
highlight the need for sex-specific preventive strategies, given that fat accumulation and its
metabolic impact can differ considerably between men and women.

The analysis of the ROC curves provides valuable information about the predictive
value of various anthropometric indicators for identifying IR risk, evaluated using three
different scales. The areas under the curve (AUCs) reveal the clear superiority of indicators
related to body and visceral fat, particularly when using the high METS-IR criterion, with
results consistently exceeding the 0.9 threshold in both sexes. These findings underscore
the ability of these measures to effectively discriminate between individuals at high and
low IR risk. In women, the AUC values approach perfection, especially for body fat (0.988)
and visceral fat (0.983). This suggests that these indicators not only are excellent predictive
tools but may also be more sensitive to metabolic differences in women, possibly due to
specific characteristics in fat distribution and its relationship with glucose metabolism. In
men, although the AUC values are also high, they show slight variability depending on
the criteria, with some indicators like BMI and waist circumference (WC) yielding more
modest results (below 0.75).

Differences in body fat distribution between men and women influence glucose
metabolism and the risk of metabolic diseases. Understanding these contrasts is key
to developing sex-specific health strategies. Hormonal, genetic, and physiological factors
determine these patterns: women tend to accumulate fat in the hips and thighs (gynoid
distribution), whereas men are more likely to store fat in the abdominal region, both sub-
cutaneous and visceral. Visceral fat, which surrounds internal organs, is associated with
higher metabolic and cardiovascular risks. The location of adipose tissue directly affects
insulin sensitivity. Visceral fat releases fatty acids and pro-inflammatory adipokines that
can promote insulin resistance and increase the risk of type 2 diabetes. In contrast, subcuta-
neous fat, particularly in the lower body, has a more benign or even protective metabolic
profile. Women generally exhibit greater insulin sensitivity than men, facilitating better
blood glucose regulation. This metabolic advantage is partly attributed to estrogens, which
enhance insulin action and promote healthier fat distribution. Additionally, during exercise,
women oxidize more lipids and fewer carbohydrates than men, potentially contributing
to greater glucose utilization efficiency and metabolic balance maintenance. However, in
postmenopausal women, increased visceral fat raises the risk of metabolic syndrome and
cardiovascular diseases. Therefore, incorporating these differences into prevention and
treatment strategies could enhance their effectiveness [55].
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The established cut-off points reinforce the clinical utility of these measures, especially
for high METS-IR, where the Youden indices are consistently elevated, reaching values of
up to 0.864 in women and 0.817 in men for body fat. This index reflects an optimal balance
between sensitivity and specificity, solidifying body fat as a robust marker for identifying
at-risk individuals. In contrast, the cut-off values for a high TyG index present Youden
indices below 0.5, limiting its practical utility. This is particularly notable in men, where
the highest Youden index is obtained for body fat (0.441), significantly lower than other
methods and criteria. These results call into question the generalized applicability of the
TyG index in clinical practice and suggest that its use should be complemented with more
reliable indicators, particularly in male populations.

The AUC and cut-off point analyses underscore the relevance of including precise
measures of body and visceral fat in metabolic risk assessment. This aligns with the
literature supporting the central role of visceral fat as a key determinant of IR [56] due to its
proximity to abdominal organs and its contribution to systemic inflammation and metabolic
dysfunction. On the other hand, total body fat, while less specific, remains a useful marker,
particularly in combination with other indicators [57,58]. The low accuracy of BMI [59]
and WC, especially in men, raises questions about their continued use as primary tools in
metabolic risk assessment. Although these measures are easy to obtain and widely used,
they lack the specificity necessary to capture individual differences in body composition
and fat distribution [60]. This may explain their poorer performance compared to more
advanced methods, such as bioimpedance, which allows for a more direct assessment of
visceral and body fat [61].

The results also reveal notable differences between men and women in the predictive
capacity of different indicators. In women, higher AUC values suggest that the methods
used are particularly effective in identifying IR risk. This could be related to biological
differences in fat composition and distribution, as well as hormonal patterns influencing
energy metabolism [62]. In contrast, in men, variability in results highlights the need to
develop or adapt methods that are more sensitive to the specific characteristics of this group.

The findings of correlations and concordances between the TyG, METS-IR, and SPISE-
IR indices provide key insights into their interrelationship and potential clinical utility.
Pearson’s correlation coefficient shows that although TyG has a moderate relationship
with METS-IR and SPISE-IR, its ability to reflect deeper similarities in metabolic risk
assessment appears limited. This contrasts with the excellent positive correlation observed
between METS-IR and SPISE-IR, suggesting that both indices share more robust underlying
characteristics related to IR.

Regarding Cohen’s kappa concordance index, the results reinforce this difference.
The low-to-moderate level of agreement between TyG and the other two indices could
be related to the different variables considered in each formula and their sensitivity to
specific factors such as fat distribution or triglyceride and glucose levels. In contrast,
the very good concordance between METS-IR and SPISE-IR indicates that these indices
consistently evaluate metabolic risk, particularly in women, where higher values may
reflect sex-specific sensitivity.

These findings emphasize the need to prioritize indices with higher concordance and
correlation, such as METS-IR and SPISE-IR, in the design of clinical and research strategies.

While BMI and WC will remain practical tools in primary care settings, scales such
as METS-IR, SPISE, and TyG are emerging as standards in advanced research on and
the management of metabolic diseases. Combining these tools with advanced imaging
technologies and molecular biomarkers could revolutionize early IR diagnosis, enabling
more personalized and effective interventions. The validation and adaptation of these
scales in diverse populations will be essential for their global application.
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5. Strengths and Limitations
Strengths of this study include the large sample size (almost 8600 people) and the use

of both objective obesity scales (body and visceral fat) and validated scales that are widely
used in most studies (BMI and waist circumference).

One of the primary limitations of this study is its cross-sectional design, which pre-
cludes the ability to draw causal inferences; thus, only associations between variables can
be reported. Additionally, insulin resistance was assessed using validated clinical risk
scores rather than direct biochemical or physiological measurements, which may limit the
precision of the estimates.

Furthermore, since the study population was exclusively composed of workers re-
siding in the Balearic Islands, the findings may not be generalizable to other geographic
or demographic contexts. Therefore, caution should be exercised when attempting to
extrapolate these results to different populations.

It would be useful to explore the possibility of combining indicators to improve
diagnostic accuracy. For example, integrating visceral fat with biochemical markers could
provide a more comprehensive assessment of metabolic risk, which we did not explore in
this study.

6. Conclusions
Although BMI and waist circumference are effective in assessing insulin resistance,

body fat and visceral fat assessed by bioelectrical impedance are more effective, with an
AUC of almost 1.

This study reinforces the importance of body fat and visceral fat indicators as superior
tools for assessing insulin resistance (IR) risk. Total body fat, visceral fat, BMI, and WC
are essential tools for evaluating IR. Each of these measures provides a unique perspective
on body composition and fat distribution, critical factors in assessing metabolic risk. The
integration of these metrics into clinical practice can significantly improve the identification
of individuals at risk and support the development of more effective prevention and
management strategies.

These findings have important implications for clinical practice and research, highlight-
ing the need for tailored and evidence-based strategies to effectively address metabolic risk.
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the Impact of Abdominal Adipose Tissue (Subcutaneous and Visceral) on the Occurrence of Carbohydrate and Lipid Metabolism
Disorders in Patients with Obesity-A Pilot Study. Nutrients 2024, 16, 1301. [CrossRef] [PubMed] [PubMed Central]

10. Kurniawan, L.B.; Bahrun, U.; Hatta, M.; Arif, M. Body Mass, Total Body Fat Percentage, and Visceral Fat Level Predict Insulin
Resistance Better Than Waist Circumference and Body Mass Index in Healthy Young Male Adults in Indonesia. J. Clin. Med. 2018,
7, 96. [CrossRef] [PubMed] [PubMed Central]

11. Després, J.P.; Arsenault, B.J.; Côté, M.; Cartier, A.; Lemieux, I. Abdominal obesity: The cholesterol of the 21st century? Can. J.
Cardiol. 2008, 24 (Suppl. D), 7D–12D. [CrossRef] [PubMed] [PubMed Central]

12. Clarke, S.L.; Reaven, G.M.; Leonard, D.; Barlow, C.E.; Haskell, W.L.; Willis, B.L.; DeFina, L.; Knowles, J.W.; Maron, D.J.
Cardiorespiratory Fitness, Body Mass Index, and Markers of Insulin Resistance in Apparently Healthy Women and Men. Am. J.
Med. 2020, 133, 825–830.e2. [CrossRef] [PubMed] [PubMed Central]

13. Cavaliere, G.; Cimmino, F.; Trinchese, G.; Catapano, A.; Petrella, L.; D’Angelo, M.; Lucchin, L.; Mollica, M.P. From Obesity-
Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose
Tissue and Metabolically Active Organs. Antioxidants 2023, 12, 1172. [CrossRef] [PubMed] [PubMed Central]

14. Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315.
[CrossRef] [PubMed]

15. Mentxaka, A.; Gómez-Ambrosi, J.; Ramírez, B.; Rodríguez, A.; Becerril, S.; Neira, G.; Valentí, V.; Moncada, R.; Silva, C.; Unamuno,
X.; et al. Netrin-1 Promotes Visceral Adipose Tissue Inflammation in Obesity and Is Associated with Insulin Resistance. Nutrients
2022, 14, 4372. [CrossRef] [PubMed] [PubMed Central]

16. Ghemis, , L.; Goriuc, A.; Minea, B.; Botnariu, G.E.; Mârt,u, M.A.; Ent,uc, M.; Cioloca, D.; Foia, L.G. Myeloid-Derived Suppressor
Cells (MDSCs) and Obesity-Induced Inflammation in Type 2 Diabetes. Diagnostics 2024, 14, 2453. [CrossRef] [PubMed] [PubMed
Central]

17. Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ.
Res. Public Health 2024, 21, 757. [CrossRef] [PubMed] [PubMed Central]

18. Ramírez-Manent, J.I.; Jover, A.M.; Martinez, C.S.; Tomás-Gil, P.; Martí-Lliteras, P.; López-González, Á.A. Waist Circumference Is
an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults. Nutrients 2023, 15, 257.
[CrossRef] [PubMed] [PubMed Central]

19. Radu, F.; Potcovaru, C.G.; Salmen, T.; Filip, P.V.; Pop, C.; Fierbint,eanu-Braticievici, C. The Link between NAFLD and Metabolic
Syndrome. Diagnostics 2023, 13, 614. [CrossRef] [PubMed] [PubMed Central]

20. Jurczewska, J.; Ostrowska, J.; Chełchowska, M.; Panczyk, M.; Rudnicka, E.; Kucharski, M.; Smolarczyk, R.; Szostak-Węgierek, D.
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