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FAULT ANALYSIS OF MESHED NETWORKS 
USING ARTIFICIAL INTELLIGENCE 

Alberto Santiago Salazar, Author, Adam Dysko, Director, Ciaran Higgins, Director 

Abstract — This project evaluates Machine Learning (ML) 
techniques for fault detection, classification, and location in 
meshed distribution networks using voltage readings from 
smart meters. Two Low Carbon Technology (LCT) scenarios 
were analysed: a baseline representing the current network 
and a high LCT penetration scenario. Three fault 
classification models—Gradient Boosted Decision Trees 
(GBDT), Support Vector Machines (SVM), and Graph Neural 
Networks (GNN)—achieved over 99% accuracy in both 
scenarios, with the SVM model demonstrating superior 
computational efficiency. A GNN-based fault location model 
achieved 65% top-1 accuracy and over 98% top-10 accuracy. 
Real fault data from SPEN validated the SVM and GBDT 
models, with the SVM correctly classifying most samples. 
These results demonstrate that AI and ML techniques are 
effective for fault diagnosis in current and future networks, 
enhancing reliability and operational efficiency. 
 

Index Terms — Machine Learning, Fault location, Fault 
Classification, Graph Neural Networks, Distribution Networks.  

I. INTRODUCTION 

The distribution network is undergoing transformations 
caused by the increasing integration of Low Carbon 
Technologies (LCTs) such as photovoltaics (PV), electric 
vehicles (EVs), and heat pumps. These technologies bring 
many advantages, such as the reduction of greenhouse gas 
emissions and the support to energy independence, which are 
key to combat climate change, however their they also 
introduce technical challenges that affect traditional protection 
and monitoring systems by introducing complexities such as 
fluctuating fault levels, phase imbalances, harmonic 
disturbances, and irregular fault current profiles. At the same 
time, meshed low-voltage network configurations are being 
explored by DSOs to improve flexibility, redundancy, and 
resilience. Unlike radial networks, meshed systems have 
multiple current paths for a same load and can introduce 
bidirectional flows, which complicates fault analysis. All of 
these factors can affect the reliability of conventional 
protection schemes by reducing their sensitivity and 
selectivity, which is why developing advanced diagnostic 
methods becomes crucial for maintaining reliability and fast 
fault response under these new grid conditions. The objective 
of the project is to develop AI/ML models for fault analysis, 
with the goal of evaluating their feasibility for real-world 
deployment by DSOs. The three models that have been 
developed for fault detection and classification are Gradient 
Boosted Decision Trees (GBDT), Support Vector Machines 
(SVM), and Graph Neural Networks (GNN), while the model 

that has been developed for fault location is another GNN 
model. These algorithms have been analysed taking into 
account model accuracy, ease of implementation, 
computational complexity, interpretability and scalability. 

The developed models have been trained and evaluated 
under two different scenarios: one which resembles the 
current state of the network and another with high LCT 
integration, both based on meshed topologies. The training 
data for these models has been generated using OpenDSS, an 
open-source distribution system simulator that allows to adapt 
the load behaviour, to integrate DER, like PV systems, and 
model different electrical faults. The simulations have been 
done in real meshed LV network models provided by SPEN, 
allowing the project to have realistic electrical and topological 
characteristics. 

To validate the models beyond simulated data, real fault 
event data provided by SPEN has also been used to test the 
models. This comparison enables the assessment of the 
models' practical utility, their capacity to generalize to real-
world conditions and their potential for future integration into 
DSO fault management systems. The analysis of all the model 
will allow to determine whether AI/ML techniques can 
enhance existing fault detection frameworks and support more 
efficient and automated network operation strategies in the 
context of smart grids. 

II. THEORETICAL BACKGROUND AND STATE OF THE ART 

A. Meshed Distribution Networks 

Electrical distribution networks have traditionally been 
operated in a radial configuration, meaning that the power 
flows go in one direction from distribution substations to 
customers following a tree-like structure in which electrical 
lines are separated into branches without interconnection 
between them. Because of that, low impedance fault detection 
and isolation in radial networks are relatively straightforward 
tasks. The protection devices are coordinated in cascade, 
which ensures that the device that trips is the closest one to the 
fault, minimizing the impact of the fault and maintaining 
service continuity for as many clients as possible. This scheme 
has proven effective and simple, leveraging the fact that any 
fault current will originate from the upstream source and flow 
downstream [1], however, this topology has limitations in 
terms of reliability and redundancy, since a fault anywhere 
along a feeder or a line can isolate all downstream customers 
until the fault is cleared. In order to tackle this problems, 
distribution companies are moving towards meshed or looped 
network configurations, especially in urban areas. In these 



 

topologies the feeders are interconnected at multiple points, 
allowing power to be delivered to the loads through different 
paths, some advantages of these systems are the reduction of 
power losses, improved voltage profiles due to a reduced 
voltage drop, more flexibility, the enhancement of power 
growth postponing costly investments to increase line capacity 
[2]. However, meshed networks also introduce significant 
challenges for protection design. The most immediate issue is 
the increase in short-circuit current levels. The interconnection 
of parallel lines reduces the total short-circuit impedance 
compared to radial configurations, causing a current that can 
potentially exceed the interrupting capacity of circuit breakers 
and switchgear originally sized for radial conditions. If fault 
levels are not controlled, equipment may be damaged or fail to 
clear faults in time. Another major challenge is coordination 
and selectivity. In a radial feeder, the direction of fault current 
is predictable and fixed, allowing protective relays to be 
graded in a clear upstream–downstream sequence. In a 
meshed system, however, the fault current can flow in either 
direction, making it difficult to determine the “upstream” 
relay. Without directional sensitivity, overcurrent protection 
may trip not only the faulted section but also adjacent healthy 
feeders, causing widespread outages. Because of this, 
traditional protection schemes like overcurrent relays and 
fuses face big limitations. 

To address the aforementioned challenges, utilities are 
moving towards Active Network Management (ANM) 
techniques. ANM may include real-time monitoring of many 
elements of the network such as feeder flows and voltages, 
electric vehicles charging stations or inverters of DERs; 
automated control of switches, inverters, and other actuators 
to maintain stability and also integrates information with the 
marketing control system, production management system and 
each substation system, allowing the acquisition and sensing, 
optimization management, risk control, and fault handling of 
all the grid [3]. 

In parallel, machine learning and artificial intelligence 
techniques are increasingly being explored to enhance fault 
detection capabilities, particularly in dynamic and data-rich 
environments. These developments are especially relevant 
given the growing penetration of distributed generation and 
the increasing demand for reliability, which are driving 
interest in the 'smart meshing' of feeders. Such an evolution in 
network topology will inevitably require more advanced, 
adaptive, and data-driven fault detection and protection 
methods capable of handling bidirectional flows and rapidly 
changing system conditions. 

B. Low Carbon Technologies 

Electrical distribution networks worldwide are experiencing 
the rapid integration of Low Carbon Technologies, which 
include distributed renewable generation and new electric 
loads that support decarbonization. Notable LCTs impacting 
distribution grids are photovoltaic (PV) solar panels, electric 
vehicles (EVs), electric heat pumps, micro-CHP (Combined 
Heat and Power) units, and energy storage systems (ESS). The 

penetration of these technologies has been increasing through 
the years and will keep increasing due to policy targets for 
carbon reduction and consumer adoption of green energy 
solutions. This can be proved by the fact that many countries 
have set ambitious goals for decarbonization, EV adoption 
and electrified heating. Spain’s National Integrated Energy 
and Climate Plan (PNIEC) focuses on reducing greenhouse 
emissions by 32% relative to 1990 levels, achieve an 81% 
share of renewable energy in electricity generation by 2030 
and transition to a 100% renewable generation by 2050. 
Additionally, among other initiatives, the plan sets a target of 
22.5 GW of energy storage capacity to support the integration 
of renewable energy sources [4]. In the same way, The UK’s 
Electricity North West (ENWL) reports that penetrations of 
technologies like PV, EVs, and heat pumps are likely to 
increase significantly in the near future, affecting LV 
networks. According to ENWL’s most recent Distribution 
Future Electricity Scenarios report, published in January 2025, 
it is expected that by 2040 the energy demand will double 
driven by the adoption of 3 million electric vehicles and 1.2 
million heat pumps [5]. This transition means that the once 
passive distribution network (characterized by one-way power 
flow from substations to loads) is evolving into an active 
network with generation and new types of demand. The 
evolution and penetration of LCTs bring new opportunities 
and challenges for distribution companies. On one hand, LCTs 
like rooftop PV and local wind generation can supply clean 
energy locally, potentially reducing peak power drawn from 
the grid and losses. EVs and batteries can provide flexible 
demand or storage that might be leveraged for grid support in 
the future (vehicle-to-grid services, load shifting, etc.). On the 
other hand, these technologies were not taken into account in 
the original design of most distribution systems. Historically, 
LV feeders were built assuming all customers are consumers 
only, and network capacity was calculated for certain peak 
demand per household – with no generation or high-power 
new loads like EV chargers in mind. As a result, substantial 
LCT uptake can drive the network beyond its limits unless 
changes are made. 

The increasing adoption of LCTs can create adverse effects 
on distribution networks. The most common issues identified 
are: voltage regulation, thermal overloading, increased fault 
levels, power quality degradation and challenges to protection 
schemes. 
• Voltage Regulation: Distributed generation like PV can 

cause the voltage to rise in feeders especially at times of 
low load and high generation, whereas concentrated new 
loads like EV charging clusters or heat pumps in winter 
can cause deeper voltage drops. Moreover, if the 
deployment of LCT is uneven among the different phases 
of the network, which is something that can happen 
specially with rooftop PV systems and with home EV 
chargers, the voltage valance can be even more 
compromised. That is why maintaining all customers 
within the required voltage range becomes more 



 

challenging and may require advanced voltage control 
equipment, like on-load tap changers, voltage regulators, 
capacitor banks or power electronic components like 
STATCOMS or FACTS. These technologies require 
advanced monitoring and control strategies. In this 
context, data driven approaches are crucial for 
maintaining voltage stability. 

• Thermal Overloads: The addition of multiple LCTs 
demands can push line and transformer loading beyond 
their rated capacities particularly during evening peaks or 
seasonal cold periods. Likewise, cables and overhead 
lines may run hotter due to both increased peak currents 
and longer durations of high load (e.g., an EV charging 
for hours), potentially leading to asset aging or failure if 
not addressed through network reinforcement [6]. 

• Fault Levels and Protection: With the deployment of many 
LCTs, the short-circuit current profile of the network 
changes, this can difficult the protection coordination, 
especially in meshed or bidirectional flow conditions and 
can lead to the development of new protection strategies. 
Even if inverter-based technologies like PV and HPs 
usually have a limited fault current contribution, a big 
amount of penetration in a network can still cause this 
effects.  

• Power Quality and Losses: The high penetration of power 
electronic devices can degrade power quality through the 
injection of harmonics, voltage flicker, or rapid 
fluctuations in load and generation. While individual 
devices meet standards (IEEE 519, etc.), the aggregate 
effect of dozens of inverters can raise background 
harmonic distortion. On the losses side, a modest level of 
local generation can reduce net current flow and losses, 
but as penetration rises, network losses can actually 
increase due to circulating currents and periods of reverse 
flow that force power through more stages of 
transformation.  

Essentially, distribution networks face a more dynamic and 
less predictable power flow pattern as LCTs proliferate, which 
affects everything from component aging to the efficiency of 
operation [6]. Distribution operators are addressing these 
challenges through a combination of measures, which are the 
reinforcement of existing infrastructure and the deployment of 
smart grid elements like sensors and voltage controllers. This 
project takes advantage of the increase deployment of smart 
meters to develop ML models for fault analysis, allowing a 
secure and efficient integration of LCTs. 

C. Artificial Intelligence and Machine Learning in Power 
System Fault Diagnosis 

The complexity that has been introduced in the networks by 
the meshed configurations and distributed resources has 
increased the interest in more intelligent fault diagnosis 
techniques. The widespread deployment of smart meters and 
digital relays, combined with improved computing 
capabilities, has enabled the increasing application of 
knowledge-based approaches, such as Artificial Intelligence 

(AI) and Machine Learning (ML), in power system fault 
diagnosis over recent decades. These techniques have been 
used to achieve faster and more accurate fault detection, 
classification, and location, even under the challenging 
conditions of modern grids. 

Several AI/ML approaches have been developed 
throughout the years, starting by expert systems in the 1980s-
90s, which mimicked human operator actions for fault 
diagnosis and clearance. In order to manage uncertainty, fuzzy 
logic systems emerged and have been used for fault 
classification and even adaptive relay setting; these systems 
model partial truths rather than binary logic and handle 
uncertainties in fault patterns. 

The most widely used AI-based algorithms for fault 
location are Artificial Neural Networks (ANNs) due to their 
ability to learn complex relationships between inputs and 
outputs, their flexibility and their high precision [7]. 
Researchers have successfully trained neural network models 
to recognize different fault types on transmission lines and 
distribution feeders, achieving high accuracy in simulations.  

Beyond ANNs, many other ML techniques have been 
applied to electrical fault analysis. The main ones are Support 
Vector Machines (SVMs), which separate data by searching 
for a linear optimal hyperplane that acts as boundary among 
classes; decision tree algorithms (DTs), which have a 
hierarchical shape structure and classify data by asking 
questions about the data features; and clustering algorithms 
like k-means, which determine the class of new data points 
based on their similarity to known training data [8]. Each of 
these techniques offer unique strengths in handling the 
dynamic conditions of the modern grids. 

Currently, some distribution companies are beginning to 
implement ML/AI models and techniques to manage electrical 
faults.  

Pacific Gas and Electric (PG&E) has developed an 
ensemble model based on decision trees which uses smart 
meter data, asset allocation, weather conditions and load data 
to predict transformers failures. Between April 2021 to 
February 2022, over 270 predictions were reviewed, with 64% 
confirming relevant transformer anomalies [9]. In parallel, 
PG&E is developing a project aimed to predict sustained 
outages using meter data, historical outage records and 
weather data, but it is still in the Minimum Viable Product 
stage. 

State Grid Corporation of China (SGCC) has implemented 
AI-driven strategies to enable the development of self-healing 
grids by having different sensors in the grid equipped with AI 
capabilities which allows them to independently route power 
and address faults. This strategy has reduced fault resolution 
time from hours to less than 5 seconds, with the grid being 
able to automatically locate faults and change its topology 
[10]. Additionally, SGCC applies machine learning algorithms 
to identify patterns in historical outage data, which allows 
them to predict and mitigate faults. 

Other leading utilities, like Korea Electric Power (KEPCO), 



 

Electricite de France (EDF) and China Southern Power Grid 
(CSPG) hold patents related with the use of AI techniques in 
distribution grids. KEPCO focuses on fault diagnosis and 
management, while CSPG is developing AI-assisted fault 
detection tools to enhance response times and network 
resilience [11]. 

D. Data Acquisition and Utilization 

Throughout the past years the availability of data readings 
from the distribution network has increased thanks to the 
deployment of Advanced Metering Infrastructure (AMI). 
Smart meters, which are installed between the customer loads 
and the network, capture parameters like voltage, current, 
power or power factor in intervals that can go from second to 
minutes. This data can provide help in scheduling power 
plants, operation of subsystems or maintenance for power 
equipment. These meters also permit two-way communication 
between the utility and the meter, allowing utilities not only to 
collect the data centrally but also to control the functioning of 
the smart meter remotely.  

As the speed at which new data is generated increases, the 
volume of measurements becomes too large to be stored and 
analysed using traditional database technology, that is why 
several initiatives on how to use this data are being studied by 
DSOs to leverage the immense amount of data to better 
understand the functioning of the network and improve its 
reliability. One example is state estimation, in which smart 
meter data is fed into models that estimate voltage profiles 
across distribution grids, improving system reliability by 
enhancing network visibility. Another data application is 
power flow and load forecasting by using past energy 
consumptions from each smart meter and weather forecast 
data, allowing to prioritize grid investments by predicting the 
load at a desired time. 

III. METHODOLOGY 

This project can be divided in two different parts, the first 
one is the simulation of the electrical faults and the different 
LCT scenarios using the software OpenDSS in order to get the 
data needed to train the ML model. The second part is the 
training and testing of the ML models using specific Python 
libraries and the respective analysis of results. 

A. Software 

1) OpenDSS 
The software used in this project to simulate electrical faults 

and network operating conditions is OpenDSS (Open 
Distribution System Simulator), an open-source simulation 
tool developed by the Electric Power Research Institute 
(EPRI). OpenDSS was chosen for this project since it is 
designed for comprehensive analysis of electric power 
distribution systems, it is very useful for studying unbalanced, 
three-phase networks under a wide range of operating 
conditions and because all SPEN network models were 
available in this format. 

OpenDSS solves power flow problems using the fixed-

point iterative method, which enables the accurate modeling 
of unbalanced and non-linear systems. The software operates 
using a text-based input system through .dss script files, where 
each file defines various electrical components in the system 
such as transformers, lines and loads (resistive, inductive, or 
capacitive). Each element is assigned to a bus, which typically 
contains three electrical nodes corresponding to the three 
phases. OpenDSS can also simulate electrical faults. Faults 
can be defined at any bus within the network by specifying 
parameters such as the phases involved (e.g., A-B, B-C, A-
Ground) and the fault resistance in ohms. This allows the 
modeling of single-phase, two-phase, and three-phase short-
circuit events, providing flexibility in fault characterization. 
Simulation outputs in OpenDSS include detailed electrical 
quantities such as voltage magnitudes and angles, current 
flows, real and reactive power flows, and network losses. 
These results are stored in output files or can be exported 
through COM interfaces, enabling further analysis using 
external tools such as Python, as done in this project. 

2) Python 
Python is the programming language used in the project for 

its extensive number of scientific libraries and its use in 
machine learning applications. It was used to manage data 
preprocessing, to interact with OpenDSSS and to implement 
the ML models. The main libraries used were: 
• py_dss_interface. This library was used as a wrapper for the 

OpenDSS interface, enabling simulations of different 
networks, applying faults, extracting data and automating 
workflows directly from the Python scripts. 

• ScikitLearn. This library is widely used in ML applications 
and was used to implement the GBDT and SVM models. 
The library also allows hyperparameter tuning and 
performance evaluation metrics such as confusion 
matrices or classification reports. 

• Tensorflow and Keras. This library, which was developed 
by google, was used to develop the GNN models. Along 
with its application programming interface Keras, 
Tensorflow allows graph-based computation, making this 
library suitable for modeling meshed LV networks 

B. Network Model 

The project focused on the study of a specific SPEN 
network, which was selected due to its meshed topology with 
three different feeders and its amount of fault alarms that were 
recorded by smart meters of that network.  

The model was obtained in dss format, which had all the 
electrical components along with their parameters. A Json file 
which contained the exact coordinates of every node and the 
id names of the smart meters of the network was also 
obtained. 

The network used in this project is a low-voltage 
distribution network located in an urban area close to 
Liverpool, it has three feeders that represent step-down 
transformers that convert voltage from 11 kV to 415 V and 
has 341 different buses. The network is structured around a 
central main loop, which gives it its meshed topology and 



 

provides multiple paths for the energy to reach the loads. In 
addition to the main loop, the upper-right section of the 
network is a radial branch that connects to different loads and 
to a feeder. Figure 1 shows the location of all the buses of the 
network, where there are 125 buses highlighted in yellow 
which represent the consumers or electrical loads with smart 
meters in the system. These costumers have an average 
maximum consumption of 5 kW, which means that the grid 
has a peak demand of 625 kW. 

 

 
Figure 1. Network Loads 

C. LCT Scenarios 

In order to evaluate the performance of the models under 
evolving grid conditions two different LCT penetration 
scenarios were modelled. 

1) Baseline Scenario (Scenario 1) 
This scenario is a representation of the current state of the 

network, without extra LCTs beyond the ones that are already 
present. In order to simulate this scenario, all the loads of the 
simulation were assigned a load-shape that corresponded with 
a typical residential consumption profile with no influence of 
DG. The load-shape has two peaks, one in the morning that 
corresponds to the residential and commercial start up 
activities and other one in the evening when customers are at 
home, and during night-time the demand is relatively low. 
This baseline configuration serves to assess the models 
accuracy in traditional networks. 

2) High LCT Penetration Scenario (Scenario 2) 
This scenario acts as a projection of how the distribution 

network will operate under a context of high LCTs adoption. 
In the simulations, three key LCTs were be implemented 
across the network to reflect their growing presence in LV 
grids. PV systems were included in the model as two large 
photovoltaic plants, while the effect of EVs and heat pumps 
was modelled by modifying the demand profile of the loads. 

By doing these modifications, the power flows were 
bidirectional and more complex. These changes allowed to 
analyse the resilience and adaptability of the developed 
models, and if their performance remained within accepted 
values, it would demonstrate their suitability for supporting 
the integration of these emerging technologies in a secure and 
controlled way. 

The new load shape was configured following the 
following parameters: 

In the case of heat pumps, projections and policies estimate 
that by 2030 in Europe and the UK approximately 40% of 
households will have electric heat pumps [12]. These systems 
will have low power continuous modes that will operate 
constantly throughout the day to maintain consistent indoor 
temperatures. The average power that heat pumps will 
consume will be similar to the base household load. Taking 
everything into account, the effect in the load shape will result 
in an additive load equal to 0.4 per unit (pu) across all of the 
base load. 

For electric vehicles, the adoption forecast estimates that 
there will be a 30% penetration among households by 2030. 
To reflect the expected charging behaviour, the demand was 
concentrated during night time hours, since smart charging 
strategies like time-of-use (ToU) tariffs will be adopted. These 
strategies will flatten the overall demand curve by fitting this 
new demand during times when prices are low or when the 
network capacity is not being used. As a result, the overnight 
valley in the base load shape will evolve into a constant curve 
with a higher average demand. 

All of these changes can be seen in Figure 2, where both 
load shapes (baseline in gray and high penetration in blue) are 
compared. 

 

 
Figure 2. LCT Scenarios Load-shape 

The two PV plants were implemented in the network by 
using a specific OpenDSS command. This command allowed 
defining parameters such as the number of phases of the 
system, the bus where the plant was going to be connected, 
the nominal voltage of the plant, the peak power generation 
under maximum solar irradiance, the installation's power 
factor and a solar generation profile. Both plants were 
configured as three-phase systems, each generating 75 kW at 
unity power factor (pf = 1). Since the total network 
consumption was approximately 625 kW, the combined PV 
output represented about 25% of the total demand. The daily 
generation profile used for both plants is a generic solar curve, 
which peaks at midday when solar irradiance is highest. 



 

D. Data Recording 

The only electrical variable that was recorded in the project 
was rms voltage magnitude. This was decided based on the 
real fault data that was provided by SPEN, which consisted of 
rms voltage readings and no current measurements, due to 
customer privacy considerations. Because of this, the 
simulations were designed to only capture voltage measures, 
ensuring that the developed models could be applied directly 
to SPENs data to predict scenarios. The daily mode was used 
in the OpenDSS simulations to record the voltage magnitudes 
for every step of the daily load shape used. 

Since the ML models used for the project require two main 
inputs, which are X (data features) and y (targets), three arrays 
were generated for each simulation to match this requirement. 
The feature set (X) consisted of a 
Voltage_Magnitude_Readings Array, and two separate targets 
arrays (y1 and y2) were created, the Fault_Type_One-Hot 
Array for the classification model and the 
Fault_Location_One-Hot Array for the fault location one. The 
structure of these arrays is the following: 

• Voltage_Magnitude_Readings: This array is the primary 
input for the ML models. Its shape varies depending on the 
model, for the Gradient Boost Decision Tree and for the 
Support Vector Machine the shape is (number of nodes with 
smart meters, 1) and for the Graph Neural Network the shape 
is (number of buses, number of voltages per bus), where the 
number of voltages is 3, since each bus has three nodes with a 
different voltage. Each column represents a different bus of 
the network and each row contains the steady state voltage 
magnitudes for that bus. 

• Fault_Type_One-Hot: This array is the label for the fault 
classification model. Its shape is (number of fault types, 1), 
where each column represents all the possible scenarios (no 
fault, SLG on each of the three phases, LL for each phase pair 
(A-B, A-C, B-C), and three-phase faults). All entries are zeros 
except for a 1 in the columns corresponding to the fault type 
that is being simulated. 

• Fault_Location_One-Hot: This array is the label for the 
GNN fault location model. Its shape is (number of buses in the 
network, 1). All entries are zeros except for a '1' in the 
position corresponding to the bus where the fault is located. 

The data collection process is done with a Python function 
collect_data, which simulates the scenarios and saves each 
array into their respective dataset (X_data, Y_fault_type, 
Y_fault_location). 

E. Fault Simulation using OpenDSS 

The next step after having all the scenarios ready is to 
simulate all the faults. This process employed the Monte Carlo 
method, which consists of repeatedly doing random samples 
of an event to create a large number of scenarios, to ensure 
that the data set had a wide variety of possible fault 
conditions. 

The faults that were simulated included the most common 
types of faults in distribution systems: single line-to-ground 
faults on each phase; line-to-line faults between phases A-B, 

A-C and B-C; and three-phase faults, which makes a total of 7 
different fault scenarios. Since the objective of the project was 
to evaluate model performance for both low and high 
impedance short circuits, the fault impedance values ranged 
between 0.01 to 1 Ω. 

The fault generation process was done in Python, which 
was used as the interface to interact with OpenDSS, following 
the next sequence: 
1. Scenario definition: A fault_scenarios array was created, 

containing the name of each fault type, along with the 
phases that were involved. 

2. Bus selection: A fault_bus array was created containing a 
predefined number of buses, which were randomly 
chosen from a list of all the network buses.  

3. Automation loop: A Python loop was used to automate the 
execution of all fault scenarios. The loop iterated over 
every bus in fault_scenarios, simulating all the defined 
scenarios in fault_bus. For each iteration, a random fault 
resistance was chosen form the range 0.01 to 1 Ω.  Then, 
each parameter (location, fault type, and impedance) was 
passed to OpenDSS via the py-dss-interface library for 
them to be simulated.  

4. Data recording: after the execution the resulting electrical 
measurements were recorded using the collect_data 
function. 

F. Training the Machine Learning Algorithms 

This section describes the design, configuration and 
training of the ML models. The specific architecture, code and 
hyper parameters of each model is explained along with its 
results and achieved accuracy. 

1) Gradient Boosted Decision Trees (GBDT) 
The GBDT model was implemented using the Scikit-learn 

library’s GradientBoosingClassifier. The models objective 
was to classify each sample into one of eight possible 
scenarios using Voltage_Magnitude_Readings as input 
features (X) and Fault_Type_One-Hot as target (y). 

The code used to implement the model in Python had the 
following procedure: 

• The target array was modified from a one-hot encoding 
to an integer label, which means that in the original array 
every sample had all the columns as zero except the one which 
represented the target with a one but the modified array 
consisted of only one number which corresponded to the fault 
class (e.g. y’=0,0,0,1,0,0,0 becomes y=4).  

• The dataset was split into training and testing sets with an 
80/20 ratio for training/test. Each set had a different purpose, 
the train set was used to fit the model, enabling it to learn the 
relationships between inputs and outputs, while the test set 
was used to evaluate the models accuracy using unseen data.  

• The ML model was initialized and the hyper parameters 
were adjusted. The hyperparameters used in the model were 
number_of_trees, which sets the number of boosting stages 
that the model has, learning_rate, which controls the size of 
the steps taken by the optimizer, max_depth, which sets the 
maximum branches of the individual trees and random_state 



 

which controls reproducibility.  
• The model was trained using the training data set. 
• The accuracy was calculated with the test data set. 
In order to set the optimal hyperparameters a grid search 

with cross-validation was performed, giving the following 
results: 

o number_of_trees =100 
o learning_rate=0.1 
o max_depth=3 
o random_state=42 
o verbose=1 

After training the models with datasets from the LCT 
scenarios 1 and 2 defined in section III.C, the following 
results were obtained:  

For the model from scenario 1 (baseline) the accuracy was 
of 99.82% with a training time of 40 minutes and 50 seconds. 
The confusion matrix can be visualized in Figure 3, where it 
can be seen predicted class with the highest misclassification 
rate was class 0, which is no fault. 

 

 
Figure 3. GBDT Scenario 1 Confusion Matrix 

 
For the model from scenario 2 (high LCT penetration), the 

models accuracy is 99.76% with a similar training time to 
model 1 of 42 minutes and 14 seconds. Its decision matrix can 
be visualized in Figure 4. 

  

 
Figure 4. GBDT Scenario 2 Confusion Matrix 

 
One of the individual trees that is part of the final ensemble 

of trees can be visualized in Figure 5, where it can be seen the 
typical tree structure. Each internal node of the tree includes: 

• The decision rule for the node that decides the split. 
• The friedman_mse value, which represents the mean 

squared error produced by the split [13]. 
• The number of samples that fall to that node. 
• The predicted output value for the node, which in a 

GBDT represents the "pseudo-residuals" that are added to the 
overall prediction. The model's final output for a sample is the 
sum of the values from all the trees it passes through. 

 

 
Figure 5. Decision Tree in GBDT Ensemble 

 
2) Support Vector Machine 

The SVM model was implemented using the Scikit-learn 
library’s SVC class. Its objective was also to classify each 
sample into one of eight possible scenarios, using the Voltage 
Magnitude Array as input features (X) and the Fault Type 
One-Hot Array as the target (y). 

The code used to implement the model in Python followed 
the same general process as the GBDT model: transforming 
the target from one-hot encoding to integer labels, splitting the 
dataset into training and testing sets, initializing the model, 



 

training it on the training data, and finally evaluating accuracy 
on the test set. The only difference was the hyperparameters 
settings, which were: the kernel type; gamma ‘σ’, which is a 
kernel coefficient that controls the shape of the decision 
boundary; the regularization parameter; and random_state. 

In order to set the most optimal hyperparameters a grid 
search with cross validation was used, resulting in: 

o Radial basis function (RBF) kernel, which is a 
common kernel for SVM whose formula is 
K(x,x')=exp(-‖x-x' ‖2/(2σ2 )), where x are two 
feature vectors [14]. 

o σ='scale', which calculates automatically a suitable 
gamma value based on the training data. 

o C=1.0  
o random_state=42 

After training two models, with datasets from the LCT 
scenarios 1 and 2, the results obtained were the following: 

The first SVM model achieved an accuracy of 99.76% and 
a training time of 5 minute and 7 seconds. As seen in Figure 6, 
the class with the most misclassifications is the no-fault class 
(class 0). 

 
Figure 6. SVM Scenario 1 Confusion Matrix 

 
For the scenario 2 model, an accuracy of 99.73% was 

achieved, which shows that the model maintains its 
performance despite the increased complexity of high LCT 
penetration. The model’s confusion matrix can be visualized 
in Figure 7. 
 

 
Figure 7. SVM Scenario 2 Confusion Matrix 

 
3) Graph Neural Network 

Graph Neural Networks were selected among all the 
possible Neural Network architectures to take advantage of 
the inherent graph topology of electrical distribution networks, 
since all buses have to be interconnected by lines, and each 
bus electrical state is influenced by that of its neighbors. By 
representing the network as a graph it is possible to explicitly 
model these relationships.  

Two different GNN models were developed, one dedicated 
to fault classification, like with the GBDT and SVM models, 
and other one for fault location, which was able to localize the 
bus were the fault had occurred. Both models share the same 
input structure, which consists of:  

• A graph where each node corresponds to a bus in the 
network with three voltage magnitudes that represent each 
phase of the bus. 

• The network adjacency matrix, which was obtained by 
analysing the dss file and seing the connection among all 
buses.  

This models, unlike the previous GBDT and SVM models, 
use the voltages measurements from all the nodes in the 
network. This is crucial, since if only the voltages from smart 
meters were used, the resulting adjacency matrix for the 
measured buses would result in a matrix were all nodes would 
be connected to each other, since all the nodes that previously 
represented different bifurcations and intersections would 
collapse into a single node. 

a) Fault Classification Model 

The GNN model was implemented in Python using the 
Spektral library for handling graph-structured data within the 
Tensorflow framework. The methodology has the following 
stages: 

• The adjacency matrix is pre-processed using symmetric 
normalization, which is a standard procedure for NNs that 



 

ensures that the information is passed between connected 
nodes. The normalized matrix and the 
Voltage_Magnitude_Readings dataset are then encapsulated 
within a custom Spektral dataset class, which transforms the 
data in a format that can be processed by the GNN, where 
each sample is treated as an independent graph. 

• The data is split into training and testing sets, and then a 
BatchLoader, which is in charge of feeding batches of data to 
the model during training, assigns every sample to a batch. 

• The model is defined with the following parameters:  
o Three graph convolutional layers with 64 neurons each 

with a ReLU activation function. 
o A graph-level pooling layer which aggregates all the 

learned features of all the nodes in to a single vector. 
o A final dense layer with a softmax activation function. 

This activation function converts a vector of real numbers into 
a probability distribution, where each element represents the 
probability of belonging to a specific class, and the sum of all 
elements equals 1, which is why this layer takes the vector 
created by the graph-level pooling and outputs a probability 
distribution over the number of possible fault types. 

• The model is trained using the adam optimizer, which is 
typical optimization algorithm in NNs, and 
categorical_crossentropy as the loss function that is being 
minimized. The training process has an early stopping 
function which prevents overfitting by stopping the training 
when the model’s performance on the validation set stops 
improving. 

After training two identical fault classification GNN models 
with datasets from the LCT scenarios 1 and 2, the models’ 
performances were the following: 

For the model trained with data from scenario 1 (baseline), 
the accuracy was a 99.71% and the model’s training time was 
30 minutes and 2 seconds. The model’s confusion matrix can 
be visualized in Figure 8. 

  
Figure 8. GNN Fault Classification Scenario 1 Confusion 
Matrix 

For the model trained with data from scenario 2 (high LCT 
penetration), the accuracy was a 99.74% and the model’s 
training time was 32 minutes and 27 seconds. This model’s 
confusion matrix can be visualized in Figure 9. 

  

 
Figure 9. GNN Fault Classification Scenario 2 Confusion 
Matrix 

 
4) Fault Location Model 

The methodology that has been used to implement the GNN 
fault location model is similar to the one used for the GNN 
fault classification model, including the data preprocessing 
and splitting to training and testing sets. Therefore, only the 
distinct model architecture will be described: 

The fault location model is designed for a node level 
classification task to identify which bus is faulted. The 
architecture of the model is defined with the following 
parameters:  

• Three graph convolutional layers with 60 neurons each 
with a ReLU activation function. 

• A final dense layer is applied, which processes each 
node’s feature vector independently. This is followed by a 
softmax activation function, which produces a probability 
distribution across all buses. The predicted node where the 
fault has occurred is the one with the highest probability.  

Two location models were trained with datasets from the 
LCT scenarios 1 and 2, to evaluate their performance. Both 
models trained with 20 epochs and took around 80 minutes to 
train. 

The model trained with data from Scenario 1 (baseline) 
achieved a top-1 accuracy of 65.83%, which means that the 
model correctly identified the faulted bus as its single highest-
probability prediction in over 65% of cases. This accuracy 
improves if we take the top ranked nodes that have the highest 
probability. If we take the top-3 buses the probability of the 
faulted bus being among the three predictions increases to 



 

87.73%, if we take the top-5 buses the probability increases to 
94.10% and if we take the top-10 buses the probability 
increases to 98.36%. 

The model trained with data from Scenario 2 (high LCT 
penetration) achieved a slightly lower accuracy of 62.80%, 
which may be because the power flows from scenario 2 are 
more complex. Similar to the first model, the accuracy 
increased with a higher number of top predictions. The 
specific increase in accuracy for both models can be seen in 
Figure 10. 

 

 
Figure 10. Accuracy Comparison of GNN Fault Location 
Models 
 

The model predictions were visualized on the network. 
Figure 11 shows in yellow the top-10 buses with the highest 
probability of being the faulted bus locations for a sample, 
with the correct faulted bus being among the top-10 set, and in 
red the other buses in the network. The image shows how all 
the top-10 predicted nodes are clustered in a single localized 
area.  

 
Figure 11. Top-10 Location Model Predictions 

This clustering proves that the GNN is not simply learning 
to classify the correct node in isolation, but is successfully 
leveraging the graph structure to understand how the fault 
propagates. With this result, even if the model doesn’t predict 
the exact faulted bus, it would allow operators to narrow down 
their search to a specific area of the grid. 

G. Testing with Real Data from SPEN 

To evaluate the real world applicability of the ML models, 
real fault data was used to test the GBDT and SVM models. 
This data was provided by SPEN and consisted of alarm 
records from the network, along with smart meter rms voltage 
readings taken every 30 minutes for the day on which each 
alarm occurred. 

In order to be able to use the data in the model a 
preprocessing was done to the raw dataset for it to be in the 
same format as the model’s input: 

• The raw dataset contained various types of alarms, which 
included overvoltage, frequency deviation, under 
voltage and power outage. Since this study focuses on 
short circuits, only under voltage and power outage 
data was considered. 

• The voltage readings were recorded in 30 minute 
intervals, starting at 00:00 from that day. Due to that, 
only the reading immediately following the alarm 
timestamp was selected. For example, if an alarm 
occurred at 02:18 the voltage readings used would be 
from 02:30. This can lead to readings that do not 
correspond to the fault, since if these faults are detected 
by the network they can be cleared in a very short time.  

• Erroneous or faulty meter data was removed. For 
example, one smart meter consistently reported a 
voltage of 0V for all measures so it was removed from 
the dataset. 

• The location of the meters that had available readings 
was identified in the network model, the network under 
analysis contains 125 smart meters, but only 37 had 
readings for the relevant events. 

After preprocessing the data, the final dataset contained 70 
samples, each containing voltage readings from 36 smart 
meters. Figure 12 shows a heatmap of the final dataset, where 
it can be seen how the majority of the samples do not have 
any voltage variation and all the voltages are around the 240 
V range. However, there are 7 samples that could suggest a 
possible fault event, since some of their nodes have notable 
voltage drops. 

This dataset was not used to test the GNN models, since 
these models require readings from all nodes of the network, 
which were not available, but for future implementations, 
machine learning techniques for imputing missing data could 
be used to implement this model in real-world scenarios. 

 
Figure 12. Real Fault Data Heatmap 



 

The SVM and GBDT models were retrained using a 
simulated dataset, using only the readings from the nodes that 
had smart meters in the real dataset. After training these 
models, the real data was analysed to see the predictions. 

The SVM model classified 64 of the samples as ‘no fault’ 
and the remaining 4 samples were classified as ‘single phase 
fault’ two of them in phase 1, one in phase 2 and one in phase 
3. The samples that were predicted as faults correspond to the 
cases with the lowest voltage recorded in one of their nodes, 
which as seen in Figure 12, are sample 10, 33, 64 and 69. 
These results are considered reasonable since the fault 
predictions align with the expected scenario in the presence of 
single nodes with low voltages and the samples where voltage 
remained constant throughout all nodes were correctly 
classified as ‘no fault’, with the exception of the three cases 
that had voltage readings bellow the typical values but not 
significant enough to be clearly classified as a fault. 

The GBDT classified the majority of the samples as ‘phase 
to phase faults’, being 53 of them B-C faults and 16 A-C 
faults. This results do not seem to be correct predictions, since 
they are not consistent with the observed voltage profiles and 
they do not resemble the predictions made by the SVM model. 
Because of this, the predictions of the GBDT model are 
considered as incorrect. 

IV. RESULTS ANALYSIS 

After developing and training all the machine learning 
models, several key findings were established.  

All the fault classification models (GBDT, SVM and GNN 
classification) had a high performance across both simulated 
LCT scenarios, being able to correctly classify the samples 
over 99% of the time. This proves that ML-based approaches 
using smart meter data (i.e. using rms voltage only) are a 
viable and effective solution for fault detection and 
classification in distribution networks. These fault analysis 
methods combined with predefined operational response 
strategies tailored to each fault type detected, could 
significantly improve network reliability and reduce the 
impact of faults. In addition, the fact that the models that were 
trained with the dataset from the high LCT penetration 
scenario maintained their high accuracy, which only a slight 
performance drop compared to the baseline scenario, confirms 
that these models are robust to the evolving grid conditions 
and can still be used in the future distribution grids with the 
same credibility. Table 1 shows the exact performance of all 
the classification models in both scenarios. 
 

Table 1. Classification Model Accuracy (%) 

Classification 
Model 

Baseline 
Scenario 

High LCT penetration 
Scenario 

GBDT 99.82 99.76 

SVM 99.76 99.73 

GNN 99.71 99.74 

Regarding the computational performance there were some 
notable differences observed in the time that took every model 
to train with a similar data set each. As summarized in Table 
2, the SVM model had the shortest average training time, with 
5 minutes, followed by the GNN classification model, with 31 
minutes, being the GBDT the classification model that 
required the most training time. These differences are due to 
the algorithms that each model uses. While SVM are more 
lightweight in computation, the sequential nature of the 
GBDT makes it a computationally intensive to train. This 
training time difference is a factor that has to be taken into 
account by DSOs when deciding which machine learning 
model is the most suitable one. 

 
Table 2. Model Training Time (min) 

Model 
Average Training 

Time (min) 

GBDT Classification 41 

SVM Classification 5 

GNN Classification 31 

GNN Fault Location 80 
 

The GNN fault location model had a different performance 
compared to the classification models. For Scenario 1, the 
model was able to correctly detect the fault in with an 
accuracy of 65.83% for the top-1 prediction, this accuracy 
improved drastically if the prediction set was expanded. The 
top-5 predictions reached a 94.1% accuracy and a 98.36% 
accuracy was obtained for the top-10 predictions. In a similar 
way, the model for Scenario 2 maintained a similar 
performance than the baseline, only having a slightly lower 
accuracy, but still achieving an accuracy of over 98% for the 
top 10 predictions. This result is particularly good if it is 
compared to a random baseline, which would have a 
probability of 0.3% for one single bus and a 3% for ten 
random buses. Moreover, after representing the top-10 
predictions of the model in the network all the predicted buses 
were clustered in a single area of the network, proving that the 
model really leverages the graph structure and understands 
how faults propagates. 

After evaluating the SVM and the GBDT classification 
models with real data from SPEN showed a notable 
performance difference between models. The SVM model was 
able to correctly classify the majority of the dataset, 
identifying the samples with the biggest voltage drops as 
single phase faults and classifying the remaining samples with 
constant nominal voltage as ‘no fault’. On the other hand, the 
GBDT model didn’t predict correctly any samples, since it 
classified the majority of them as phase-to-phase faults 
without any voltage readings that support these results. This 
result can help decide which method is more suitable to 
implement, SVM may be a more attractive option based on 
this results, however, it also has to be taken into account that 
the available voltage readings on every sample was very 



 

limited, which likely contributed to the low performance of 
the GBDT model.  

Overall, these results confirm that ML-based techniques can 
deliver high accuracy and computational efficiency.  In 
addition, the use of GNN-based approaches brings advantages 
to fault location since they leverage the network topology. 

V. RECOMMENDATIONS FOR IMPLEMENTATION 

This section provides some potential improvements that can 
be implemented by SPEN or any DSO that decides to use 
machine learning models for fault analysis in distribution 
networks. This was elaborated by observing the limitations 
and challenges encountered during the development of the 
project. The improvements are the following: 

• Increase the number of input features for the model. This 
enhancement would improve the model’s accuracy and more 
scenarios could be simulated, giving the model more 
flexibility. In this project, only voltage readings were used as 
inputs for the model. The use of current readings, which were 
not used in this project due to client data privacy but are 
available for the DSO, would allow the model to classify 
faults with more precision. In addition, using external factors 
like weather conditions or seasonal patterns could also be used 
to increase the models complexity. 

• Increase the number of target fault types. This project 
only focuses on analysing short circuits, however, the 
detection of other fault conditions like overvoltage, open 
circuits or voltage sags could be implemented. Since these 
models have the ability to understand all kinds of patterns they 
are suitable for multi-class classification. This would also 
improve the models functions by supporting more 
comprehensive fault monitoring strategies. 

• Update the smart meter data acquisition strategy. One of 
the biggest challenges when analysing the real smart meter 
data provided by SPEN was that the voltage was only 
recorded every 30 minutes. Because of this, the voltage 
reading after a fault alarm could happen after the fault had 
been already cleared, not allowing for classification or 
location. Increasing the sampling frequency is not a feasible 
solution due to the amount of data that it would generate, 
therefore, a proposed strategy would be to configure smart 
meters to trigger additional recordings every time that an 
alarm is detected. In that way, the needed samples would be 
recorded, while minimizing the storage increase. 

• Increase the smart meter coverage. The analysed network 
had 125 loads, which should be connected to a smart meter, 
however, in the real dataset only voltage readings from 36 
smart meters were available per sample. If ML strategies are 
going to be implemented in the network, more data is needed 
to locate faults accurately. That is why increasing the number 
of smart meters that report their measurements would be very 
beneficial for model performance. 

• Use validation techniques to improve data quality. 
During the preprocessing stage, it was detected that some of 
the smart meter readings were faulty and had to be removed, 

since they could distort the result. The use of validation 
techniques like range checks or outlier detection, can help 
ensure that all data points are correct or in a logical range. So 
before the data is feed to the model these techniques can 
detect anomalous readings and avoid corrupted samples. 

• Use machine learning techniques to handle missing data. 
If a data set has an erroneous measure is detected, or the data 
from a smart meter is missing, a method to fill missing values 
is necessary. Some machine learning techniques, such as K-
Nearest Neighbors (KNN) imputation or Multivariate 
Imputation by Chained Equations (MICE), can be used to 
supply missing values [15]. 

VI. CONCLUSION 

The objective of the project was to evaluate the feasibility 
and performance of three supervised machine learning 
approaches for fault detection, classification and location in 
meshed distribution networks. In order to see if these models 
were able to maintain their predictive performance under 
challenging future scenarios, two cases were analysed, the 
current network configuration and a scenario with high low 
carbon technologies penetration. 

All the classification models achieved an accuracy above 
99% across both scenarios, which confirms that ML-based 
methods are viable and reliable complements to traditional 
protection schemes and will be able to be used under more 
complex operational conditions introduced by DER 
penetration. 

After analysing the performance of the classification 
models, the one that stands out is the SVM since even if the 
three models achieved similar accuracy levels when tested 
with simulated data, the computational cost of the SVM was 
significantly lower, with training times up to seven times 
shorter than the other models. In addition, despite the non-
ideal conditions for testing due to the low amount of real data, 
when testing GBDT and SVM with SPENs real data, only the 
SVM model correctly predicted the majority of the cases, 
reinforcing its suitability for its deployment. 

The GNN fault location models demonstrated strong 
performance, with a top-1 prediction accuracy exceeding 
66%, which increases to over 90% with the top-5 predictions 
and almost 99% when taking the top-10 predictions. 
Implementing this model can help DSOs to increase reliability 
by clearing faults much faster thanks to knowing the exact bus 
were the fault occurred and it highlights the benefits of 
leveraging the network’s graph structure.  

Overall, the integration of these ML approaches into 
distribution network fault management systems could bring 
substantial benefits: faster fault detection, better classification 
for targeted response and increased location accuracy, 
especially in meshed LV networks where traditional methods 
face inherent challenges. Moreover, the demonstrated 
robustness under high LCT penetration suggests that these 
techniques can support the ongoing energy transition, 
ensuring protection systems remain effective as networks 



 

evolve. However, despite the promising results of many 
research studies about the use of AI in fault management, 
there are no known commercial AI-based protection devices 
available today that would replace conventional relays such as 
IDMT, differential or distance protection. This is due to the 
high standards for safety, reliability and predictability required 
for grid protection systems, which highlights the further need 
for research in this domain to develop solutions that can take 
advantage of the AI/ML fault classification and location 
models.  

Future work should focus on improving the models with 
more input features, like current or weather conditions; 
extending the target fault types to cover more fault scenarios; 
implementing data pre-processing techniques to detect wrong 
measurements and handle missing data; and improving the 
smart meter’s data acquisition strategies to ensure higher 
temporal resolution, enabling a more accurate fault analysis. 

 

APPENDIX.     ALIGNMENT WITH THE 

SUSTAINABLE DEVELOPMENT GOALS 

This project aligns with several of these goals, which are 
closely related to energy and climate action:  

SDG 7: Affordable and Clean Energy. This project helps to 
increase stability and reliability in energy systems that 
integrate renewable energy sources by improving fault 
detection with the use of ML. This facilitates the integration of 
LCTs such as solar photovoltaic panels, electric vehicles and 
heat pumps, which makes these technologies more accessible 
for everyone while ensuring that the grid remains stable and 
secure during its operation. 

SDG 9: Industry, Innovation and Infrastructure. The use of 
AI methods to detect, classify and locate faults is an 
innovative way of fault management in distribution networks, 
which if it is implemented by DSOs it can help increase the 
reliability and advance in the use of AI technologies. This 
project is also closely aligned with the need of resilient 
infrastructure, since it supports the automation and 
digitalization of distribution network infrastructure, by 
leveraging the readings of smart meters that are being installed 
in all customer loads for predicting the state of the network.  

SDG 11: Sustainable Cities and Communities. This project 
supports this objective, whose aim is to make more safe, 
resilient and sustainable cities. The use of meshed topologies 
for distribution networks help to improve resilience in the 
electricity supply and this project enables the use of these kind 
of topology.  

SDG 13: Climate Action. One of the central challenges in 
achieving decarbonization targets is the safe and reliable 
integration of LCTs into the distribution grid. Without 
effective fault management strategies, increased DER 
penetration can destabilize the network, limiting the scale at 
which clean technologies can be deployed. This project 
addresses that challenge by providing a methodology that 
facilitates the secure and stable operation of grids under high 

levels of LCT integration. Thanks to this, DSOs can control 
and ensure that the maximum capacity of renewable 
technologies is installed on the grid safely, directly supporting 
the energy transition. 
In summary, this project contributes to the access to 
affordable and clean energy for everyone, to more resilient 
and automated infrastructure, to a more sustainable urban 
development and to climate change mitigations, all by using 
AI to analyse faults in meshed networks with LCT penetration 
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