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 A B S T R A C T

Pneumatic Artificial Muscles (PAMs) are highly nonlinear actuators widely used in robotics, rehabilitation, 
and other dynamic applications. Their complex behavior poses significant challenges for traditional system 
identification methods. Although machine learning techniques have shown remarkable success in modeling 
nonlinear systems, their black-box nature often leads to interpretability issues and susceptibility to overfitting. 
This study proposes a novel hybrid modeling approach that combines the strengths of analytical models with 
neural networks to capture the inverse thermodynamic behavior of PAMs. The results demonstrate that the 
hybrid model outperformed both analytical and purely neural network models. The obtained models were 
further used for model-based control design and the results show that the application of hybrid model improved 
the tracking performance.
. Introduction

McKibben Pneumatic Artificial Muscle (PAM) is a biomimetic actu-
tor designed to replicate the behavior of skeletal muscles. Constructed 
ith a flexible rubber inner tube encased in a braided mesh shell, 
AMs are sealed at both ends, featuring a gas input on one side and 
 connection point on the other. Compared to conventional actuators, 
uch as electric and hydraulic actuators, PAMs offer significantly higher 
ower-to-weight and power-to-volume ratios. Due to these character-
stics and their similarity to human muscles, PAMs are ideal for the 
evelopment of rehabilitation therapeutic devices. Successful imple-
entations of PAMs in mechatronic systems for rehabilitation have 
een previously documented [1–3]. Beyond rehabilitation, PAMs are 
lso utilized in diverse applications, such as bio-robotics, industrial, and 
erospace [4,5].
Since the invention of PAM by Gaylord in 1958 [6] and their 

nception in the 1960s [7] for prosthetic applications, many analyti-
al models of PAMs have been developed for model-based control of 
igher precision . These models are broadly classified into static and 
hermodynamic categories. The static models are usually obtained from 
nalyzing the virtual work done by the pressure inside the air chamber 
nd the virtual work done by the external force [8,9]. Additionally, 
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some studies have employed polynomial equations to capture the re-
lationship between axial tension (𝐹 ), muscle inner pressure (𝑃 ), and 
muscle contraction (𝜀), providing alternative approaches to describe 
PAM behavior [10,11].

Thermodynamic models, on the other hand, focus on the relation-
ship between the gas mass flow rate (�̇�) and the rate of change of 
internal pressure (�̇� ) in PAMs. These models are typically used in 
conjunction with the aforementioned static models to achieve control 
objectives such as position regulation, trajectory tracking, and force 
generation. Various approaches have been proposed to model the ther-
modynamic behavior of PAMs, with the primary distinction lying in 
the representation of the gas chamber volume (𝑉 ). Inspired by the 
work of Chou and Hannaford in [8], some studies have proposed a 
similar geometry-based framework for the representation of 𝑉  [12–14]. 
Alternatively, other studies, including [10,11,15,16] use polynomial 
approximations of varying degrees to model the volume. Despite these 
advancements, the accuracy of thermodynamic models remains limited 
by factors such as gas compressibility and the non-linear elasticity of 
the bladder, leaving room for further improvement.

In recent decades, Neural Networks (NNs) have demonstrated out-
standing performance in modeling nonlinear systems [17,18]. Leverag-
ing this capability, several studies have employed NNs to enhance the 
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modeling of PAMs. For instance, [13,19] have developed a Nonlinear 
Autoregressive with Exogenous Inputs (NARX) model of PAM for real-
time control application. Similarly, [10] explored Elman recurrent neu-
ral network (RNN) to identify unmodeled dynamics and disturbances 
in PAM-based actuators. Furthermore, [20] conducted a comparative 
analysis by integrating a simplified PAM model with various RNN 
architectures, including Echo State Networks (ESN), Long Short-Term 
Memory networks (LSTM), and Gated Recurrent Units (GRU). How-
ever, RNNs present notable drawbacks: they require large amounts 
of training data to effectively capture complex temporal patterns and 
are computationally demanding, often leading to challenges such as 
vanishing gradients and overfitting, especially when data diversity is 
limited.

The studies reviewed above indicate that RNN architectures are 
favored for data-driven modeling of PAMs while thermodynamic mod-
eling of PAMs is often simplified or entirely omitted for model-based 
control. Therefore a novel physics-informed hybrid approach is pro-
posed to model the thermodynamics of PAMs. This approach integrates 
an analytical model with a Feedforward Neural Network (FNN), pro-
viding a computationally efficient alternative to RNNs while main-
taining the adaptability of data-driven methods. Moreover, the hybrid 
approach enhances model interpretability by incorporating physical 
insights—shifting from a conventional ‘black-box’ framework, where 
such insights primarily help define the model’s limitations, to a more 
transparent ‘gray-box’ paradigm, in which physical knowledge actively 
guides the training process. By combining the strengths of analytical 
and data-driven modeling, this method is expected to achieve improved 
accuracy, generalization, and efficiency. To validate its effectiveness, 
the hybrid model will be compared against LSTM networks, FNNs with 
equivalent number of parameters, and a standalone analytical model. 
Capabilities such as generalization to unseen dynamics, and robustness 
to limited training data will be assessed.

Numerous studies have explored the integration of RNN models into 
real-time control loops for the regulation of PAMs. For instance, Elman 
networks have been employed to enhance the accuracy of analytical 
models, thereby improving the performance of model-based control 
strategies [10]. Similarly, ESNs have been utilized to predict the future 
dynamics of a PAM-driven exoskeleton, enabling the implementation 
of nonlinear model predictive control (NMPC) [21]. Beyond the appli-
cation of RNNs to PAM control, many studies have explored the use 
of different neural network models for PAM control, demonstrating 
promising results [22–24]. In this context, the model proposed in 
the present study is also considered for its potential applicability in 
PAM control once trained. To this end, the control performance of 
the learned inverse thermodynamic model in position control is eval-
uated and compared against both analytical models and other learned 
approaches.

The structure of this document is organized as follows: Section 2 
details the adapted analytical model and the proposed physics-informed 
hybrid approach. Section 3 provides a comprehensive description of 
the datasets preparation and experimental setup. Section 4 presents a 
comparative analysis of the hybrid model’s performance against other 
baseline models, as well as its application to a position control problem. 
Finally, Section 5 concludes by summarizing the key findings and 
discussing potential directions for future research.

2. Design of the hybrid model

2.1. Analytical model

Based on the first law of thermodynamics, the change of internal 
energy �̇� of PAM is described by: 
�̇� = 𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡 + 𝑘𝐶𝑣(�̇�𝑖𝑛𝑇𝑖𝑛 − �̇�𝑜𝑢𝑡𝑇 ) − �̇� (1)

where 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡 are the heat transfer terms, �̇�𝑖𝑛 and �̇�𝑜𝑢𝑡 are the mass 
flows entering and leaving the chamber, 𝑘 is the specific heat ratio, 𝐶
𝑣

2 
denotes the specific heat at constant volume, 𝑇𝑖𝑛 is the temperature of 
the incoming air flow, 𝑇  is the temperature inside the chamber, �̇�  is 
the rate of change in work done by the inner pressure. To facilitate 
the modeling process, several simplifying assumptions are employed: 
(i) the gas is considered to behave as an ideal gas, (ii) the pressure and 
temperature are assumed to be uniformly distributed within each cham-
ber, and (iii) kinetic and potential energy contributions are deemed 
negligible. Under these conditions, the time derivative of the internal 
pressure �̇�  within the PAM is defined as: 

�̇� = 𝑘𝑅𝑇
𝑉

(�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡) − 𝑘
�̇�
𝑉
𝑃 + (𝑘 − 1)𝑃

𝑉
(𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡) (2)

𝑅 is the ideal gas constant, 𝑉  the volume of PAM and �̇�  the change 
rate of V. Furthermore, if the process is considered to be adiabatic 
(𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡 = 0), the equation simplifies to: 

�̇� = 𝑘𝑅𝑇
𝑉

(�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡) − 𝑘
�̇�
𝑉
𝑃 (3)

This simplified thermodynamic model, first introduced by [25], has 
been widely adopted in the research related to PAMs. For example, [15] 
extended this model by incorporating a specific representation of the 
PAM volume, expressed as: 
𝑉 = 𝐷1𝜀

2 +𝐷2𝜀 +𝐷3 (4)

where 𝐷1, 𝐷2 and 𝐷3 are the parameters to be identified. This proposed 
model of PAM volume is based on its deformation using a low-order 
polynomial, where the parameters lack physical meaning, making it 
difficult to derive insights into the underlying process being modeled. 
However, this model provides a good balance between simplicity and 
precision for the intended application. A more refined polynomial 
approximation of the volume could be considered, but this would come 
at the cost of identifying additional 𝐷𝑖 coefficients. Later, [26] also 
adopted (3) in their model-based control approach, but proposed a 
different calculation of 𝑉  based on its geometrical characteristics such 
as the initial braid angle 𝛼0, the initial diameter of the cylinder 𝐷0, the 
initial length of the muscle 𝑙0 as well as non-extensibility of threads in 
the braided mesh shell. 

𝑉 =
𝜋𝐷2

0𝑙0
4

[

1
𝑠𝑖𝑛2𝛼0

−
(1 − 𝜀)𝛾

𝑡𝑎𝑛2𝛼0

]

(1 − 𝜀) (5)

The volume can be well approximated with the carefully chosen 
parameter 𝛾. Then by assuming the volume change due to pressure 
variations 𝜕𝑉𝜕𝑃  is negligible, the derivative of volume �̇�  can be expressed 
as in [14]: 

�̇� = 𝜕𝑉
𝜕𝜀
�̇� =

𝜋𝐷2
0𝑙0
4

[

− 1
𝑠𝑖𝑛2𝛼0

+ (𝛾 + 1)
(1 − 𝜀)𝛾

𝑡𝑎𝑛2𝛼0

]

�̇� (6)

By introducing (5)–(6) into (3), a detailed thermodynamic model of 
PAM can be obtained. However, when it comes to model-based control 
design, the servovalve to be controlled often requires a desired mass 
flow �̇� = �̇�𝑖𝑛−�̇�𝑜𝑢𝑡. Therefore (3) is usually used inversely to determine 
desired mass flow �̇� given a desired system dynamic as in [11,26,27]. 
This inverse formulation is described by: 

�̇� = �̇� 𝑉
𝑘𝑅𝑇

+ 𝑃 �̇�
𝑅𝑇

(7)

By selecting appropriate parameters, such as the specific heat ratio 
for air 𝑘 = 1.4, the gas constant for dry air 𝑅 = 287𝐽∕(𝑘𝑔 ⋅ 𝐾), and 
the temperature 𝑇 = 293 K, inverse model (7) becomes the analytical 
foundation for constructing the proposed hybrid model in this study.

2.2. Hybrid model

In this study, the term ‘hybrid’ refers to the integration of an NN 
model with an analytical model. Several hybridizing strategies have 
been proposed in the literature, each leveraging the strengths of both 
methodologies. For example, [10] trained an NN model to compensate 
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Fig. 1. Proposed hybrid model for inverse thermodynamic of PAM.

for the discrepancies between the outputs of an analytical model and 
the experimental measurements, thus enhancing the model. Another 
notable example is the work of [28], who introduced Physics-Informed 
Neural Networks (PINNs). PINNs utilize an analytical model to guide 
the NN training in a supervised manner by encoding the physical 
principles of the system into the loss function. Similarly, [29] proposed 
the Deep Lagrangian Network (DeLaN), which incorporates Lagrangian 
mechanics into the network structure to estimate the inertial matrix 
of robotic systems in an unsupervised manner. Both PINNs and DeLaN 
are made possible by advances in modern automatic differentiation 
techniques, allowing the seamless integration of differential equations 
into the NN architecture. This enables the encoding of prior physical 
knowledge directly into the network topology.

The hybrid model (HM) proposed in this study integrates a two-
hidden-layer FNN with an inverse thermodynamic model (7) of PAMs, 
as depicted in Fig.  1. The role of FNN model is to estimate the volume 
of PAM based on the network inputs: 
𝑉 = 𝑉 (𝜀, �̇�, 𝑃 , �̇� ; 𝜃) (8)

where 𝜃 is NN model parameters. By leveraging automatic differenti-
ation tools, the derivative of 𝑉  of PAM w.r.t contraction 𝜀 and inner 
pressure 𝑃 , i.e. 𝜕𝑉 (𝑛)

𝜕𝜀(𝑛)
 and 𝜕𝑉 (𝑛)

𝜕𝑃 (𝑛)  can be obtained in parallel to 𝑉 (𝑛). Next, 
̂̇𝑉  can be calculated as follows: 
̂̇𝑉 = 𝜕𝑉

𝜕𝜀
�̇� + 𝜕𝑉

𝜕𝑃
�̇� (9)

The thermodynamic model, integrated into the hybrid framework, 
uses the computed volume 𝑉  and its derivatives to estimate the mass 
flow ̂̇𝑚(𝑛) who has caused the system to behave as described in inputs 
[𝜀, �̇�, 𝑃 , �̇� ](𝑛) at the same time step 𝑡𝑛. The prediction error can be 
measured with trusted mass flow value �̇�(𝑛) in mean squared error 
(MSE) loss function as in (10). Then by minimizing the loss between 
predictions and target values, we can find NN parameters 𝜃∗ that satis-
fies a desired performance of hybrid model. The process of optimization 
is described by 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

( 1
𝑁

𝑁
∑

𝑛=1
( ̂̇𝑚𝐻𝑀

(𝑛) − �̇�(𝑛))2+𝜆
2
‖𝜃‖22) (10)

where 𝜃∗ represents the NN parameters, 𝜆 is the weight decay and the 
learned HM 𝑓𝐻𝑀  is then described by : 
̂̇𝑚𝐻𝑀 = 𝑓𝐻𝑀 (𝜀, �̇�, 𝑃 , �̇� ; 𝜃∗) (11)

where 

𝑓𝐻𝑀 (𝜀, �̇�, 𝑃 , �̇� ; 𝜃) =
(

𝑃
𝑟𝑇

𝜕𝑉
𝜕𝑃

+ 𝑉
𝑘𝑟𝑇

)

�̇� + 𝑃
𝑟𝑇

𝜕𝑉
𝜕𝜀
�̇� (12)

2.3. Baselines

To evaluate the predictive performance of the hybrid model 𝑓𝐻𝑀 , 
its mass flow prediction is compared against three baseline models: an 
3 
Fig. 2. Test bench for data collection.

analytical inverse thermodynamic model 𝑓𝐴𝑀 , a FNN model 𝑓𝐹𝑁𝑁  and 
a LSTM model 𝑓𝐿𝑆𝑇𝑀 .

For the analytical model (AM) the mass flow is computed using 
(5)–(7), as the parameters have been previously identified for the 
same type of PAMs under similar operating conditions. The mass flow 
prediction from the AM is expressed as: 
̂̇𝑚𝐴𝑀 = 𝑓𝐴𝑀 (𝜀, �̇�, 𝑃 , �̇� ; 𝛾). (13)

Concurrently, a FNN network and a LSTM network were implemented 
to learn from the same training data used for 𝑓𝐻𝑀 . The process of 
fitting these two model can be described by: 

𝜙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜙

1
𝑁

𝑁
∑

𝑛=1
( ̂̇𝑚𝐹𝑁𝑁

(𝑛) − �̇�(𝑛))2 (14)

𝜓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜓

1
𝑁

𝑁
∑

𝑛=1
( ̂̇𝑚𝐿𝑆𝑇𝑀

(𝑛) − �̇�(𝑛))2 (15)

where 𝜙 and 𝜓 are model parameters. Unlike the hybrid model, the 
FNN and LSTM models are purely data-driven and do not incorporate 
any analytical model into their structure. Therefore, the mass flow 
predictions for these two models are directly derived from the input 
variables [𝜀, �̇�, 𝑃 , �̇� ], as described by: 
̂̇𝑚𝐹𝑁𝑁 = 𝑓𝐹𝑁𝑁 (𝜀, �̇�, 𝑃 , �̇� ;𝜙∗) (16)

̂̇𝑚𝐿𝑆𝑇𝑀 = 𝑓𝐿𝑆𝑇𝑀 (𝜀, �̇�, 𝑃 , �̇� ;𝜓∗) (17)

3. Experiments

3.1. Training dataset preparation

Data were collected using the test bench shown in Fig.  2, a prototype 
designed for ankle rehabilitation training. A pair of antagonistically 
linked PAMs were used to simulate the muscles of the anterior and pos-
terior calf to actuate this prototype. While both PAMs were activated 
during the experiments, only data from the upper muscle were used 
for model training as they were identical and exhibited symmetrical 
dynamics in the experiments.

The test bench includes an inclinometer and a pressure sensor to 
measure the ankle angle 𝜌 and internal pressure 𝑃 . The contraction 
ratio 𝜀 is then calculated from the ankle angle using the prototype’s 
geometric model. A simple proportional derivative (PD) controller is 
used to make the rotating part of the test bench follow desired trajec-
tories, from which the sensor data can be used directly or indirectly to 
construct the numerical training dataset [𝜀, �̇�, 𝑃 , �̇� ; �̇�]. The target values 
�̇� that causes the change in internal pressure are derived from the 
internal pressure 𝑃  and the input control voltage 𝑢 with a proportional 
directional control valve (PDCV) model, as described in [30]. The data 
collection covered eight distinct trajectories of reference sinusoidal 
signal in 𝜌, combining different amplitudes [2, 5, 7.5, 10] degrees and 
frequencies [0.5, 1] rad∕s.
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Table 1
The hyperparameters of NN model and hybrid approaches.
 HM, FNN LSTM  
 Network dimension 2 × 128 2 × 37
 Number of parameters 17320 17551
 Activation function SoftPlus Sigmoid + Tanh
 Batch size 1024
 Learning rate 1e−4
 Weight decay 1e−5
 Optimizer Adam
 Loss function Mean Squared Error (MSE)
 Number of epochs 10 000
 PyTorch initialization seed 66

Table 2
Prediction error of baselines and hybrid approaches calculated in MSE.
 Baselines Hybrid model Unit  
 Analytical FNN LSTM  
 model model model  
 Train 0.1781 0.0090 0.0055 0.1029

NL2/min2
 

 Task 1 0.2112 0.1434 0.4402 0.2027  
 Task 2 17.4198 40.8870 57.7349 3.1999  
 Task 3 3.9158 2.3689 1.6775 0.2905  

3.2. Hybrid model and baseline models training

To minimize the impact of non-model structural differences on 
performance, the hyperparameters were kept as consistent as possible 
across all models. Table  1 presents the hyperparameters chosen for the 
training of the three data-driven models. The hyperparameters of the 
hybrid model and the FNN model were kept identical to ensure that any 
performance differences observed between them would be attributed 
solely to the structural differences, specifically the inclusion of the 
analytical model in the hybrid approach.

For the LSTM model, despite maintaining the same number of hid-
den layers, the dimensionality of the hidden layer states was reduced 
to match the approximate parameter count of the other two models. 
Additionally, the activation function in the LSTM cell can only be 
restricted to a selection different from the two previous models. The 
same optimizer, learning rate, and number of epochs were used for 
all models, with these hyperparameters being selected based on the 
experience acquired from extensive training of various models. The 
obtained model parameters 𝜃∗, 𝜙∗, 𝜓∗ will be used for benchmarking 
against the analytical model during the testing phase.

3.3. Test datasets preparation

The test datasets were designed to evaluate the performance of 
the hybrid and baseline models under unseen dynamics. The test 
datasets consist of eighteen trajectories that differ from the training 
data in terms of frequency, amplitude, and signal type: (1) the first 
group is obtained by following sinusoidal reference trajectories at a 
lower frequency, i.e., 𝟎.𝟐 rad∕s, with a broader range of amplitudes 
i.e., [2, 5, 7.5, 10, 𝟏𝟓, 𝟐𝟎] degrees than the training dataset; (2) The 
second group has the same amplitudes, same signal type but at a higher 
frequency, i.e., 𝟒 rad∕s; and (3) The third group uses the same amplitude 
and frequency as the training data, i.e., 𝟏 rad∕s, but with triangular 
signals. These variations introduce new system dynamics, where lower 
frequencies correspond to smaller gas flows and higher frequencies to 
larger flows. The triangular signals further challenge the models with 
different dynamic features.

3.4. Hybrid model and baselines testing

In the testing phase, the model parameters 𝜃∗, 𝜙∗, 𝜓∗ obtained from 
the training phase were used to form 𝑓 , 𝑓  and 𝑓 . These 
𝐻𝑀 𝐹𝑁𝑁 𝐿𝑆𝑇𝑀

4 
Fig. 3. Prediction Results of different models in different tasks.

were compared with the analytical model, described by (5)–(6), to 
assess the prediction performance on the test datasets. The predictions 
of the four models, ̂̇𝑚𝐻𝑀 , ̂̇𝑚𝐴𝑀 , ̂̇𝑚𝐹𝑁𝑁 , and ̂̇𝑚𝐿𝑆𝑇𝑀 , were compared 
with the target value �̇�. The results are presented in the following 
section.

4. Results and discussion

4.1. Results in prediction

The prediction accuracy of the models across different datasets is 
summarized in Table  2, where the MSE between predicted values ̂̇𝑚 and 
target values �̇� is used as the evaluation metric. The best performance 
for each task is highlighted in bold. It is observed that in Task 1 (lower 
frequency), the hybrid model performs worse than the FNN model, but 
closer to the analytical model and better than the LSTM model. As 
shown in the first row of Fig.  3, the green dashed line (FNN) is closest 
to the target values (black solid line), followed by the blue dashed line 
(HM) and the red dashed line (AM), while the lowest fit with the target 
is the orange dashed line (LSTM). The numerical values in Table  2 
confirm this observation from Fig.  3, indicating that the hybrid model 
(HM) performs slightly better than the analytical model (AM) due to 
its smaller MSE. In Tasks 2 and 3 (higher frequency and triangular 
signals), the hybrid model shows clear improvements in prediction 
accuracy over all other models. The reduced performance of hybrid 
model in Task 1 may be attributed to the smaller airflow rates at lower 
dynamic frequencies, which limit the PDCV activation range. In this 
range, the system becomes more susceptible to external disturbances, 
such as friction in the valves, and the hybrid approach struggles to 
accurately predict the target airflow �̇� through the volume 𝑉  and its 
derivatives 𝜕𝑉𝜕𝜀  and 

𝜕𝑉
𝜕𝑃 . Additionally, the dynamics that occur at lower 

frequencies may not have been fully captured by the training dataset, 
leading to reduced model performance.

In contrast, the FNN and LSTM models perform significantly worse 
in Tasks 2 and 3. As seen in Fig.  3(b) and (c), the deviations between 
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Fig. 4. Real-time control loop.

the predicted and actual values for these models are more pronounced 
compared to the hybrid model. This suggests that the higher frequency 
and amplitude in these tasks introduced scenarios that were not well-
represented in the training data. The lack of physics-based priors likely 
impacted the models’ ability to generalize, resulting in less stability 
compared to the hybrid approach. The hybrid model consistently out-
performs all other models in tasks requiring generalization to unseen 
data. As shown in Fig.  3, the hybrid model provides significantly better 
predictions in dynamic scenarios like Task 2 (higher frequency) and 
Task 3 (triangular signals).

Generally, the hybrid model demonstrates superior prediction ac-
curacy compared to the analytical model across all datasets. However, 
the LSTM and FNN model outperforms the hybrid model in the train 
dataset and the FNN model outperforms the hybrid model in the Task 
1.

The LSTM model performs well on the training data but struggles 
to generalize to unseen scenarios, indicating that it may have learned 
specific patterns in the training data that do not translate well to new 
conditions. Meanwhile, among the three tasks prepared for testing, 
the FNN model achieves only slightly better accuracy than the hybrid 
model in Task 1 which requires a smaller prediction range than the 
training dataset. This observation reinforces the superior generalization 
capability of the hybrid model, which shows a more balanced perfor-
mance between training and testing. However, the significantly higher 
error values in the test datasets for Tasks 2 and 3 in the FNN and LSTM 
models suggest in parallel the presence of overfitting.

All models were trained for 10000 epochs with a learning rate of 
1𝑒−4, a configuration selected to strike an optimal balance between 
computational efficiency and model accuracy. While further optimiza-
tion may be possible, the results already indicate that the hybrid model 
improves upon the analytical model in all datasets and outperforms 
the baseline models in two out of four tasks. This demonstrates that 
combining analytical models with neural networks offers a robust 
and scalable approach for modeling complex nonlinear systems like 
PAMs. The hybrid approach not only achieves high accuracy but also 
ensures adaptability, making it suitable for dynamic applications while 
minimizing computational overhead.

4.2. Results in real-time control

In this section, HM, AM and FNN have been extrapolated and 
applied to a model-based control design for the manipulator shown in 
Fig.  2. The control law is described as: 
𝑢 = 𝐾𝑝(𝜌𝑑 − 𝜌) +𝐾𝑑 (�̇�𝑑 − �̇�) + 𝑢𝑓𝑓 (18)

with 𝑢𝑓𝑓  is the precompensation term calculated using different models 
and 𝐾𝑝, 𝐾𝑑 are the controller gains. The inverse PDCV model 𝑔( ̂̇𝑚, 𝑃 )
is considered as static and is approximated using polynomial fitting of 
experimental data from [30]. Given the estimated mass flow ̂̇𝑚 and 𝑃
pressure, the control input 𝑢 can then be precompensated by 𝑢𝑓𝑓 .
5 
Fig. 5. Desired joint angle 𝜌𝑑 and actual joint angles 𝜌 by different controller.

Table 3
MSE between 𝜌𝑑 and 𝜌.
 Controller PD AM+PD FNN+PD HM+PD 
 MSE 3.61 2.18 3.55 1.95  

The control target is to follow some step signals 𝜌𝑑 as shown 
in Fig.  5. The manipulator was firstly controlled using a simple PD 
controller to get rough inputs [𝜀, �̇�, 𝑃 , �̇� ] for obtained inverse model 
𝑓 , which were then processed to match the desired system dynamics 
more accurately for tracking 𝜌𝑑 . The optimized inputs [𝜀𝑑 , �̇�𝑑 , 𝑃 𝑑 , �̇� 𝑑 ]
are used for precompensation in real-time control, as shown in Fig.  4.

The performance of the control system using the models 𝑓𝐻𝑀 , 
𝑓𝐹𝑁𝑁  and 𝑓𝐴𝑀  is compared in Fig.  5. For each control design, the 
PD controller was optimized individually to achieve the best possible 
control performance. Additionally, the desired tracking signal includes 
dynamics that were not present in the training dataset, providing fur-
ther insight into how each model handles unseen dynamics in real-time 
control.

Overall, the model-based control method outperforms the simple 
PD controller when tracking nonlinear targets like 𝜌𝑑 . The hybrid and 
analytical models, when used with the PD controller, achieve smaller 
position errors compared to the FNN model. Although the performance 
of the hybrid and analytical models is nearly identical, as shown in 
Table  3, the hybrid model exhibits slightly better results than the 
analytical model in real-time control experiments.

5. Conclusion

An increasing number of researchers have embraced the idea of 
combining physical knowledge with NN to model complex nonlinear 
systems, particularly since the introduction of PINNs. This study high-
lights the potential of hybrid models that integrate analytical/physical 
and NN approaches. As modeling PAMs systems with a system identi-
fication approach is an ongoing challenge and the hybrid approaches 
have shown promising performance, this study bridges the gap of 
modeling PAMs using a hybrid approach.

The results obtained in this study show that the hybrid model 
generally outperforms an analytical model, a FNN model given the 
same network structure and a LSTM model using the same datasets. 
The experimental results also showed that the proposed hybrid model 
helps improve position control of a pair of antagonistic muscles. There 
remains, however, potential for further improvements. Future research 
could focus on incorporating additional dynamics such as friction and 
mechanical interactions, as well as expanding the training dataset to 
improve model performance.

The hybrid model is planned to be applied in future work to 
complete the development of a force and position control method for a 
medical simulator prototype.
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