

MASTER’S DEGREE IN INDUSTRIAL ENGINEER AND
SMART GRIDS

FINAL MASTER THESIS

DESIGN AND IMPLEMENTATION OF A TEST
AUTOMATION STRATEGY FOR POWERON CONTROL

SYSTEM

Autor: Alberto López-Rey Rojas
Director: Graeme Burt

Co-Director: Bruno Bicarregui Sánchez Sánchez

Madrid
Agosto de 2025

2
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

Design and Implementation of a Test Automation

Strategy for PowerOn Control System

Alberto López-Rey Rojas, Author, Graeme Burt, Director and Bruno Bicarregui Sánchez Sánchez, Director

Abstract— This work presents the design and

implementation of a visual test automation framework for

PowerOn, the SCADA/ADMS platform used by Scottish

Power. The challenge addressed is the automation of

functional and regression testing in a closed, GUI-only

environment without backend access or public APIs. After

evaluating several tools, SikuliX was selected for its cost-

effectiveness, open-source nature, and adaptability to pixel-

based recognition. The framework interacts exclusively

with the graphical interface, simulating operator actions

through image matching, OCR, and keyboard/mouse

inputs. It supports modular test design, adaptive similarity

thresholds, and error-recovery mechanisms, with runtime

configuration via Java Swing components. Batch execution

enables scalability, running tests on large datasets while

generating detailed CSV logs with outcomes, errors, and

screenshots. A case study on the Network Diagram interface

achieved a 94% success rate across 200 substations with a

median runtime of 10.5s, demonstrating robustness,

repeatability, and efficiency. Although commercial tools

like Eggplant offer more advanced features, SikuliX proved

sufficient for project goals under budget constraints. The

framework provides a foundation for extending test

automation to other PowerOn modules, integrating

backend checks, and developing centralized reporting,

contributing to more reliable and auditable testing in

critical infrastructure systems.

Keywords— PowerOn, GUI-based Automation, Test

Automation Framework, SikuliX, Image Recognition, Optical

Character Recognition (OCR), Critical Infrastructure Testing.

I. INTRODUCTION

Modern power utilities increasingly rely on Supervisory

Control and Data Acquisition (SCADA) and Advanced

Distribution Management Systems (ADMS) to ensure network

reliability, optimize daily operations, and comply with

regulatory requirements [1], [2]. Among them, PowerOn,

developed by GE Grid Solutions [3] and used by Scottish

Power, is a mission-critical platform that integrates multiple

modules such as Network Diagram, GeoView, and fault

restoration systems. Operators depend on it for monitoring,

control, and decision-making in real-time grid operations.

Testing in PowerOn has traditionally been conducted

manually. Procedures involve expert operators executing long

scripts, visually verifying results, and recording outcomes. This

approach is slow, error-prone, and lacks scalability. The

absence of backend access, public APIs, or inspectable object

trees prevents the use of conventional automation frameworks

(e.g., Selenium, Cypress), making automation in PowerOn a

challenging task.

To overcome these limitations, alternative strategies based

on graphical user interface (GUI) automation have been

explored. Several tools exist in this domain, including Eggplant,

Ranorex, TestComplete, Autolt [4], and SikuliX. Eggplant

offers advanced model-based capabilities but requires costly

licenses [5], while Ranorex and TestComplete depend on

internal UI object access [6] [7]. SikuliX, on the other hand, is

an open-source tool leveraging image recognition (OpenCV)

and optical character recognition (Tesseract), making it

particularly suited to closed, GUI-only environments such as

PowerOn [8].

This work addresses these challenges by designing and

implementing a modular, scalable, and low-cost visual test

automation framework for PowerOn using SikuliX. The

proposed framework simulates human operator actions through

image pattern matching, OCR, and input simulation. A

representative case study on the Network Diagram module

validated its robustness and scalability, achieving a 94%

success rate across 200 substations. The results demonstrate

that GUI-based automation can be a reliable and efficient

testing strategy in closed SCADA environments, providing a

foundation for future extensions and integration into broader

testing pipelines.

II. PROJECT SCOPE AND OBJECTIVES

This project aims to design and implement a visual test

automation framework for PowerOn, a critical SCADA/ADMS

system used by Scottish Power for network control and

management. Due to the platform’s lack of backend access,

absence of public APIs, and restricted internal architecture,

testing must be conducted entirely through its graphical user

interface. This presents a unique challenge for test automation,

requiring a solution that can simulate human interaction with

the GUI in a reliable, repeatable, and scalable manner.

The scope of the work includes both technical development

and methodological research. From a technical perspective, the

project involves creating modular automation scripts using

SikuliX to replicate essential test procedures already performed

manually within the RTS (Real-Time Systems) department.

From a research perspective, the work involves evaluating

various tools, benchmarking their capabilities, and critically

assessing their applicability to closed systems like PowerOn.

The automation framework developed as part of this project

focuses on a selection of key user workflows that are

representative of the broader system. While the Network

Diagram and GeoView interfaces were initial targets due to

2
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

their visual complexity and frequency of use, the framework

was designed to support multiple PowerOn interfaces,

including Work Package Manager, Safety Documents, Incident

Management… This diversity introduces varying visual layouts

and interaction behaviours, which the automation logic had to

accommodate.

The framework includes functionalities:

• Search for and open location-based records (such as

substations, switching points, fault locations) across

different PowerOn modules, like Network Diagram or

GeoView.

• Apply and validate multiple categories of filters

depending on the requirements of each test, including

sensitive case, visible locations, low voltage locations,

location type (transmission, sub transmission, grid,

primary, secondary) or location sub type (substation,

switchgear, minor). Depending on the interface

context each filter will be applied or not.

• Interact with dynamic toolbars, navigation panels,

popup dialogs, and search fields, while adapting to

different screen states and UI configuration.

• Visually validate system state changes using image

comparison and OCR. For example, confirming a

selected element is highlighted, a scale has been

applied, or a message window has been dismissed.

• Automatically log test results in a structured and

repeatable way, capturing pass/fail outcomes, timing

metrics, and specific visual errors.

To support both scalability and data collection, the project

also includes functionality to run the same test flow across a

batch of substations (potentially hundreds) and record all results

in a structured CSV file. This feature not only enables

efficiency and repeatability but also allows the company to

build test evidence and measure reliability over time.

Importantly, the project is not intended to replace the full

testing strategy of the RTS department, but to provide a proof-

of-concept and a scalable foundation for future automation. The

focus has been placed on building a robust, maintainable system

that could be expanded with minimal effort in future phases,

either by integrating with test reporting systems or by extending

the test library to cover more scenarios.

The objectives were defined to ensure meaningful progress

while acknowledging realistic constraints. As such, only

selected test scenarios were developed and validated, and

testing was limited to environments provided by Scottish Power

without full production access.

In summary, the key project objectives can be stated as

follows:

1. To investigate and compare available tools for

automating GUI-only systems like PowerOn, and to

select the most suitable one given technical and

budgetary constraints.

2. To design a modular and extensible visual automation

framework using the selected tool (SikuliX).

3. To implement and validate test procedures based on

existing manual testing workflows in the RTS

department.

4. To enable batch testing and automatic result logging

for a wide range of substations.

5. To provide a structured and well-documented

foundation for future expansion and potential

integration into broader testing infrastructure.

These objectives were used to guide the methodology,

implementation, and evaluation of the project, ensuring

alignment with both academic requirements and business

needs.

The following chapter reviews the state of the art in test

automation for closed systems, providing the technical and

industrial context that informed these objectives.

III. METHODOLOGY

The automation framework was developed within the

PowerOn test environment provided by Scottish Power, which

replicates operational conditions while restricting backend

access and administrative privileges. This constraint required

all interactions to occur through the graphical user interface,

making visual automation the only viable approach.

A. Tools and Environment Setup

All experiments were carried out in the PowerOn test

environment (v6.9.3) provided by Scottish Power. This

environment replicates the operational platform used in real

distribution networks while limiting administrative access and

backend connectivity. Consequently, all automation had to be

performed exclusively through the graphical user interface.

The main tool selected was SikuliX 2.0.5, an open-source

automation framework that leverages OpenCV for image

pattern recognition and Tesseract OCR for optical character

recognition. SikuliX enables scripts to detect on-screen

elements, simulate mouse and keyboard interactions, and

validate textual information displayed on the interface.

Scripts were implemented in Jython, which provides a Python-

like syntax on the Java Virtual Machine, facilitating modular

design and integration with other components [8]. Additional

utilities included:

• Java Swing: To improve usability and reduce user

error during test execution, several interface

components were implemented using Java Swing,

which is supported natively within the SikuliX

3
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

environment. These elements provided a basic user

interface layer on top of the script logic, allowing

operators and testers to interact with the automation in

a structured and guided way, without modifying the

code or using external tools.

• CSV-based datasets: Structured CSV files were used

to manage test inputs (such as location names,

interface elements, or operational parameters provided

by Scottish Power) and to store output logs. This

approach allowed the framework to dynamically load

real-world test data while keeping the execution

process consistent and automated. It also simplified

the user’s role, making it possible to prepare large test

batches without altering the source code. Crucially,

this structure enabled the same automation logic to be

executed repeatedly across a wide range of varied

input cases, with outputs logged for each run. This

approach supports efficient large-scale validation and

allows results to be compared, analysed, and audited

over time.

• Screenshot logging: to capture visual evidence of

error or inconsistencies during execution.

This toolchain was selected after evaluating alternatives

such as Eggplant, Ranorex, TestComplete, and Autolt. While

Eggplant offers advanced model-based testing, its high

licensing cost (€10,000 approx.) and proprietary language

(SenseTalk) made it unfeasible within the project scope.

SikuliX, although more sensitive to UI variability, was

sufficient to demonstrate the viability of GUI-based automation

in PowerOn.

In Table 1 a consolidated overview of the key strengths and

weaknesses or each automation tool is shown. The scoring is

based on both technical documentatiton and hands-on

experimentation within the constraints of the PowerOn

environment.

From Table 1, it becomes clear that Eggplant scores highest

in advanced capabilities such as AI-driven testing, OCR

accuracy, integration, support, and compliance, making it the

most robust solution overall. However, its low score in cost

(due to its expensive commercial license) and relatively steeper

learning curve in custom scripting make it a challenging choice

for lightweight or budget-constrained projects.

SikuliX, while not leading in raw power or AI features,

achieves the best balance of visual automation, scripting

flexibility, cost-efficiency, and suitability for PowerOn. It

scored particularly high in categories like cost (5/5), custom

scripting (5/5), and PowerOn compatibility (5/5), which reflects

its adaptability to GUI-only environments where no internal

access or API integration is possible. Its open-source nature,

lightweight installation, and compatibility with CSV or excel

inputs and Java GUI elements make it ideal for academic

research and proof-of-concept development.

Table 1. Tool Criteria Scores

Overall, the comparative evaluation underscores a key

trade-off: Eggplant offers superior capabilities, but SikuliX is

the most viable under real-world constraints.

B. Framework Architecture

The automation framework was designed with a four-layer

modular architecture (Figure 1), each responsible for a

specific set of tasks:

1. Input Layer: Parameters can be provided

interactively via Java Swing components (manual

mode) or imported from CSV files (batch mode). This

allows the same workflow to be executed across

hundreds of substations with no code modifications.

2. Control Layer: Orchestrates the flow of each test,

including conditional branching, retries, and fallback

logic. Watchdog mechanisms are embedded to

automatically dismiss unexpected pop-ups and

maintain continuous execution. [9] [10]

3. Action Layer: Executes GUI interactions such as

clicks, typing, scrolling, and drag-and-drop. It also

performs OCR-based checks to validate textual

outputs (e.g., confirming whether a substation name or

state change is correctly displayed).

4. Output Layer: Generates structured logs, storing

execution results in CSV format along with

timestamps, error descriptions, and screenshots. This

evidence provides traceability and facilitates post-

execution audits.

The modular design simplifies test maintenance and enables

the framework to adapt to changes in the PowerOn interface.

Image libraries were organized by module and function, with

multiple fallback variants for each element to account for

resolution differences or UI changes.

Figure 1. High-level architecture of visual automation

framework

C. Image Recognition and Robustness Mechanisms

Given the nature of PowerOn, a closed SCADA/ADMS

platform without programmatic access, APIs, or an inspectable

object tree, all automation tasks in this project were executed

using image-based logic. This approach, while fundamentally

different from DOM (Document Object Model) or code-based

automation, is particularly well suited to applications where

only the visual output is available to the tester. In such cases,

INPUT
LAYER

•CSV files

•Java Swing UI

•Data validation

CONTROL
LAYER

•Test selection

•Conditional branching

•Retry & fallback logic

ACTION
LAYER

•GUI interaction

•Image recognition

•OCR test extraction

•Clipboard operations

OUTPUT
LAYER

•CSV logging

•Screenshots on failure

•Real-time feedback

4
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

the screen itself becomes the only “interface” the automation

can observe and act upon.

Every interaction in the framework is based on the principle

of pattern matching, where the system searches the screen for a

visual element (such as a button, label, icon, or panel) that

matches a previously captured reference image. Once

identified, actions can be executed (such as click the region,

reading test from it, or waiting for its appearance or

disappearance).

To ensure consistent and reliable detection, several best

practices were implemented:

• High-quality image capture: the entire automation

strategy is based on visual pattern matching, the

quality, consistency, and reproducibility of reference

images play a crucial role in system reliability. Every

image used for matching was captured manually from

the PowerOn test environment using the exact same

conditions as those under which the automation would

later run. Capturing high-quality and consistent

images significantly reduces maintenance, lowers test

flakiness, and made the test scripts more portable

across machines with similar setups. If tests are to be

shared across different environments in the future, a

dedicated image calibration step or image regeneration

tool could be developed to ensure alignment across

systems.

• Structured image storage: To manage a growing

library of visual elements used in different automation

scenarios, a clear and scalable storage structure was

designed. Instead of placing all reference images in a

single directory, the image assets were categorised

into a hierarchical folder structure, grouped by both

interface context and functional purpose. This modular

approach offer benefits as maintainability (developers

can easily identify which tests use which images and

update them with PowerOn evolving), scalability

(structured storage prevents disorganisation and

duplication, making it easier to navigate the library

one the number of automated test cases grows) [11]

[12], reusability (shared assets can be reused across

different test scripts) and debugging and refactorings

(when a tests fails due to an image mismatch, its

location in the directory gives immediate context).

• Fallback logic: Given that PowerOn may display

slightly different versions of the same icon or interface

element depending on factors such as user settings,

resolution, screen scaling, or even system theme, the

automation framework had to account for visual

variability. To address this, each critical UI element

was assigned not one, but multiple reference images,

which represent known visual variants of the same

function. The automation code uses fallback logic,

checking for all possible versions of a button or field

before deciding that the element is not available. This

was implemented using commands like exists() or

wait() in chained conditions, trying several image

matches sequentially with a fallback priority.

• Similarity tuning: The similarity parameter in

SikuliX controls the tolerance with which the system

matches a reference image to a region on the screen.

Contrary to a uniform threshold, this project employed

adaptive similarity tuning, where the required

similarity level depends on the type of visual element

and its functional context. Adaptative similarity

thresholds were applied (0.3-0.99), allowing flexible

matching depending on visual complexity. This

adaptive approach reduced false negatives in flexible

interfaces while still maintaining accuracy where

needed. However, it also required extensive

experimentation and manual tuning. Some UI

components had to be tested with multiple similarity

levels to find the optimal balance between robustness

(avoiding test failures due to pixel-level differences)

and precision (avoiding misidentification of unrelated

screen content). This is shown in Figure 2, where

matching setting is selected to be 0.35 and it recognise

the elements, being a perfect example of how low

similarity thresholds are some times more appropriate

than higher ones.

Figure 2. Matching settings example

• Sequential state validation: the automation

framework uses sequential state validation, combining

multiple visual checks to confirm that the system is

truly ready. This typically involves verifying that one

expected image exists (e.g., a menu icon appears),

while simultaneously ensuring that another known

transitional image vanishes (e.g., a loading symbol or

transition window disappears). These checks are

implemented with wait() and waitVanish() calls in

tandem, often within controlled timeouts. This

mechanism proved essential for avoiding premature

clicks or faulty reads, particularly views where the

screen contents update dynamically. It also adds

resilience in less predictable environments, ensuring

the automation reacts to real screen conditions instead

of relying on fixed delays.

• Timeout strategies: SikuliX scripts interact with the

live screen and depend on the rendering speed of the

system, each image detection action is paired with a

defined timeout window. This prevents the automation

from hanging indefinitely in cases where an expected

element fails to appear due to error, delay, or user

interference. Timeout durations are chosen based on

the expected load time of each interface component,

going from 0.5 seconds to 2 minutes. If the timeout

5
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

expires and the image is still not found, the

frameworks would continue to the next item if the step

is optional or it is batch mode, or halts the execution

and displays a popup message, like in Figure 3.

Figure 3. Image not found error message

D. Batch Execution and Scalability

One of key strengths of the developed framework is its

ability to execute test procedures across a large set of input

values, in a consistent and fully automated manner. This is

achieved through the use of CSV-driven batch testing, a

mechanism that allows the same test logic to be dynamically

applied to dozens or even hundreds of individual elements, such

as locations, assets, configurations, or interface cases, without

requiring manual intervention between test cycles.

The approach is based on a simple but powerful idea:

separating the test logic (what actions to perform) from the data

(on which elements to perform them). Input data is stored in

structured CSV files, typically containing a list of items (e.g.,

names of substations, diagram references, configuration

identifiers). These files are loaded at runtime, and the

framework automatically iterates through each row, executing

the selected test sequence and recording the outcome of each

run.

The architecture provides several advantages:

• Scalability: the CSV-driven input model offers

inherent scalability by decoupling test logic from the

data it operates on. Testers can easily expand the

coverage of a test suite simply by adding new entries

to a CSV file, without altering the code or requiring

programming knowledge. For example, if a new set of

locations or interface components need to be

validated, they can be appended to the input list and

automatically included in the next test run [11] [12].

This means the system is capable of growing

organically with minimal technical overhead, adapting

to the evolving needs of business.

• Reusability: the automation framework separates

“what to do” from “what to test it on”, the same

functions can be applied to different datasets, test

modes, or workflows without duplication. This

dramatically reduces development time and supports

the principle of test case reusability.

• Parallelisation potential: this version of the

framework executes test cases sequentially; the

architecture is naturally suited to parallel execution in

future iterations. Since each test cycle is independent

(reading one row from the input CSV, executing a

standard procedure, and writing the result) it can be

parallelised across multiple processing threads, test

agents, or even virtual machines. This opens the door

to significant performance gains in large-scale

deployments. For instance, testing 500 inputs that

currently take several hours in sequence could be

distributed across five agents and completed in a

fraction of time. Additionally, parallelisation could

support continuous testing in CI/CD pipelines or

enable regression testing on large datasets in an

overnight cycle. Preparing the system for this future

capability reflects a forward-looking design focused

on industrial scalability.

• Result granularity: The logging system was designed

to offer fine-grained visibility into the performance

and stability of each individual test case. For every

data entry processed, the framework writes a row to a

structured output file, detailing not only whether the

test passed or failed, but also why, when and how it

was processed. This includes fields such as: input item

name, test category, result statues, error type,

execution timestamp, screenshot or reference for

debugging. Such granular output enables a range of

post-test analysis activities: error trend detection,

coverage analysis, historical comparisons, and

auditing. It also facilitates transparency and

accountability, allowing to understand not just what

failed, but where and why, paving the way for rapid

debugging and system improvement. The Figure 4

shows an example of the results for Network Diagram

substation test, where the fields commented are

included and there are some examples of error

messages.

Figure 4. Results CSV example

IV. CASE STUDY: POWERON NETWORK DIAGRAM MODULE

To illustrate the application of the architecture and design

principles described in the previous sections, this chapter

presents a complete end-to-end test case developed as part of

the automation framework. This practical example

demonstrates how the system executes a structured series of

actions to validate interface behaviour, interact with graphical

elements, handle system variability, and log the result of each

test cycle.

The scenario chosen for this case involves the visual

verification of an electrical location within PowerOn’s Network

6
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

Diagram and GeoView interfaces. This test mirrors a real-world

validation procedure frequently performed manually by RTS

operators, and was selected because it includes all major aspects

of the automation pipeline; input collection, interaction with

dynamic UI components, error handling, and result logging.

A. Automated Workflow

The automated workflow followed ten steps:

1. Launch and Log in: Before the automation can begin,

the user must manually open PowerOn and log in

using their own credentials. This manual step is

required due to system security policies and access

controls: login screens are outside the scope of GUI

automation in this environment, and credentials cannot

be passed or injected via scripts. The framework

assumes that PowerOn is running, authenticated, and

stable, with all critical UI components fully loaded.

Failing to meet this precondition may result in early

test failure or missed elements.

2. Collect test input: Once PowerOn is ready, the

framework begins by collecting the target location or

test item. This is done in two ways, depending on the

operating mode. In manual mode, a popup input dialog

(created using Java Swing) prompts the user to enter

the name of the asset or location to test, typically a

substation, node, or operational point, such as shown

in Figure 5. In batch mode, the system loads a list of

entries from an external CSV file, iterating through

each one in turn. This method is used for large-scale

testing or regression validation.

Figure 5. Popup dialog for manual testing

3. Verifying toolbar access: PowerOn toolbar is

essential for accessing different modules (Figure

6Error! Reference source not found.). The

automation begins by checking whether it is currently

visible on the screen. If not, the script looks for the

toolbar symbol by using a library of pre-captured

images. If found, it clicks the symbol to open the

toolbar. This step guarantees a predictable UI layout

and prevents accidental interference with navigation

or pattern matching later in the workflow.

Figure 6. PowerOn toolbar

4. Open Network Diagram interface: once the toolbar

is accessible, the script opens the Network Diagram

module by clicking its corresponding button. After the

initial action, the system waits for several visual

conditions to confirm that interface has fully loaded

(as in Figure 7), no overlay windows remain visible,

and the view is maximised.

Figure 7. Network Diagram

5. Prepare diagram environment: before performing

the search, the system applies a predefined set of

diagram filters, with the settings shown in . To ensure

only relevant assets are shown the following options

are enable or not: voltage levels (low or high voltage),

location types (transmission, sub transmission, grid,

primary or secondary) and visibility filters and search

modes.

Figure 8. Filter settings

6. Search for the location: the test item (e.g., substation

name) is entered into the search field of the interface.

To improve consistency and execution speed, the

framework uses a function called

copy_to_clipboard(Text) that takes the location name,

copies it to the clipboard, and pastes the value;

avoiding the latency and inconsistency of simulated

keystrokes. After this, the system clicks to initiate the

search and waits for the result panel to appear. If

7
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

multiple results are shown (it should not happen if

everything went well during the script), it selects the

first candidate in the list. This behaviour ensures the

test always proceeds with a matching, recognisable

entry, and avoids ambiguity when search results are

partially matched.

7. Verify display and scale: Once the location is

selected, the automation adjusts the zoom level or

visual scale of the diagram to a standard value (a scale

of 1.6 was selected in the script), ensuring uniform

rendering across test runs and simplifying pattern

recognition.

8. Switch to GeoView and Repeat validation: once the

Network Diagram test is completed, the system closes

the module (to ensure the next test works well), then

the toolbar is opened (if closed) and switches to the

GeoView module. All actions described previously

(filtering, searching, visual validation) are repeated

within this different interface context. Although the

overall workflow is similar, the visuals and rendering

logic in GeoView differ (see in Figure 9), requiring

separate reference images and detection logic. The

framework handles this by using mode-specific image

sets and conditionals to execute the correct steps.

Figure 9. GeoView Diagram

9. Log the result: after completing the full test cycle, the

system evaluates the success or failure of each major

step. A new output CSV file is created with test inputs

(e.g., location name), test mode (e.g., Network

Diagram, GeoView Diagram), result (pass or fail),

optional error message, timestamp of execution and

screenshot of failure state. This logging mechanism

provides traceability, debugging support, and enables

data analysis for performance monitoring or future

refinement.

10. Batch mode execution: if test runs in batch mode, the

automation restarts the loop, pulls the next input from

the list, and repeats the process. This continues until

all entries in the CSV have been processed. Batch

mode is typically used when validating many elements

across the network or during regression testing phases

to ensure no changes have broken expected

functionality.

B. Results Log and Report

A critical component of any test automation framework is

the ability to record, store, and interpret results in a structured

and accessible way. In this project, results logging was designed

with a strong emphasis on traceability, reusability, and future

integration, providing value to the operational testing needs of

Scottish Power.

The system implements a custom CSV-based reporting

mechanism that captures the outcome of each test iteration,

whether triggered manually or executed in batch mode. This

output serves as both a technical artefact for developers and an

operational report for testing teams, enabling the evaluation of

test coverage, identification of system inconsistencies, and

long-term reliability tracking.

Some important aspects from these results are:

• Structure of the result log: Each execution of a test,

whether successful or failed, triggers the creation of a

detailed log entry in a structured CSV file. This

approach was chosen for its wide compatibility,

human readability, and seamless integration with data

analysis tools such as Microsoft Excel, Power BI,

Python, and SQL-based reporting systems. The

structured of the result log was carefully designed to

strike a balance between simplicity and

expressiveness, ensuring it could be used both for

immediate inspection by testers and for programmatic

parsing in future analysis pipelines. Each row in the

CSV corresponds to a single test iteration, including

“Tested item”, “Test category”, “Test subcategory”,

“Result status”, “Timestamp”, “Error description”,

and “Screenshot path”.

• Execution feedback during runtime: While

structured result logging ensures long-term

traceability and post-test analysis, it is equally

important for the automation framework to provide

real-time execution feedback to the user. This

immediate layer of communication allows the tester or

operator to monitor progress, detect anomalies early,

and feel confident that the system is performing as

expected, especially during long or complex test

sessions. The feedback mechanism implemented in

this project include several modalities, each serving a

different purpose within the user interaction spectrum:

o On-Screen popup message: Throughout

execution, the system generates interactive

popup messages using Java Swing

components.

o Printed console logs: In addition to

graphical notifications, the system outputs

real-time execution traces to the console or

terminal window.

o Execution counters and batch progress

indicators.

o Error triggers and immediate alerts: If a

critical failure or unhandled exception

occurs, the framework is configured to raise

an immediate alert via a modal popup

window.

• Support for batch aggregation: One of the major

benefits of implementing a structured and row-wise

result logging system is the ability to perform data

aggregation and statistical analysis across large sets of

test executions. Since each row in the output CSV

8
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

represents a unique test case (including metadata such

as input value, test category, outcome, and timestamp),

this structure naturally enables both quantitative

performance evaluation and qualitative insight

generation.

• Design for auditability and expansion: To ensure

that the framework remains reliable and maintainable

over time, it was designed with auditability,

traceability, and extensibility as foundational

principles. All test logs are generated in a standardised

format and stored in clearly defined directories, with

consistent naming conventions and timestamp-based

organisation, making easy to locate and retrieve past

test results, compare outputs across test cycles,

identify historical trends in failure or instability,

submit results as part of regulatory compliance or

internal quality audits. Each log file represents a

verifiable record of system behaviour, including both

technical execution data and human-readable

summaries. This traceability is especially important in

critical infrastructure environments like

SCADA/ADMS systems, where automated testing

must meet high standards of transparency and

documentation.

C. Limitations and Considerations

While the automation framework developed in this project

successfully demonstrates the feasibility and scalability of GUI-

based testing for closed SCADA systems like PowerOn, it is

important to recognise its technical, operational, and strategic

limitations. Understanding these boundaries is essential for

setting realistic expectations, identifying areas for

improvement, and guiding future development efforts.

The most important limitations observed are:

• Dependence on visual environment: The core

limitation of the system lies in its dependency on

visual pattern recognition. Since PowerOn does not

provide APIs or direct access to its underlaying data

structures, all interactions are performed through

screen-based logic using SikuliX. While the system

accounts for this using fallback images and similarity

tuning, this reliance on pixel-level accuracy makes it

more fragile than API-based test automation

approaches.

• Image maintenance overhead: Because the

framework operates entirely via screenshot-based

logic, any updates to PowerOn’s graphical interface

may require updating the associated image library.

This creates a maintenance cost proportional to the

number of test cases and images used. Over time,

unless managed properly, this can affect scalability.

• Limited to observable behaviour: One of the

inherent constraints of visual automation frameworks

is that they can only operate on observable screen

states. This means that all test validations are restricted

to what can be seen, captured, and interpreted through

the graphical interface, excluding any form of internal

or hidden system logic. This limitation does not make

the tool less useful; it simply defines its scope. The

framework is designed to test functional, UI-level

behaviour, ensuring that what the user sees and

interacts with behaves correctly. However, it is not a

substitute for internal QA processes, such as unit

testing, integration testing, or database validation.

• Performance variability and system load: The

performance of PowerOn is affected by a range of

runtimes variables: the size of the dataset being

handled, the number of concurrent users, server

response times, and the graphical load of rendering

complex diagrams. As the automation relies entirely

on-screen response and image matching, these factors

can cause the execution to behave inconsistently or fail

if not handled carefully. Large diagrams may load

slowly than anticipated, causing timeouts during

detection. System lag or dropped frames can cause

certain elements to appear partially or with visual

artefacts, leading to recognition failures. Popups or

windows may not close cleanly, leaving overlays that

interfere with image matching. This variability

introduces some uncertainty in result interpretation. A

test marked as “Fail” may not reflect a functional

problem in PowerOn, but rather a temporary delay or

detection miss. For this reason, failed test should be

reviewed alongside logs and screenshots before

drawing conclusions.

• Manual preconditions and operator involvement:

Although much of the system has been automated, the

current version still requires a limited degree of

manual intervention, particularly at the start of a test

session. This is due to a combination of security

policies, PowerOn’s access architecture, and practical

constraints of the testing environment. Specifically:

o User must launch PowerOn manually and

enter their credentials, as the login interface

is protected against automation and includes

unpredictable graphical security elements.

o Some UI elements require manual dismissal

if they are not recognised by the watchdog

logic.

• Lack of advanced AI integration: Although some

commercial tools like Eggplant incorporate machine

learning to improve test robustness, the current

implementation using SikuliX is rule-based and

deterministic. While this offers clarity and control, it

limits adaptability in complex or ambiguous scenarios.

V. RESULT ANALYSIS

The batch execution campaign for Test 1 (Network

Diagram) was performed using Scottish Power’s dataset which

contains the information about the substations. The primary

objective was to evaluate the operational stability, accuracy,

and efficiency of the developed automation script when run

repeatedly and under varying data inputs. By automating the

same functional scenario across all dataset entries, the test

aimed to replicate a realistic operational workload, identifying

potential weak points in performance or recognition reliability.

Due to time constraints and the scope of this stage of the

project, the batch execution was carried out exclusively for this

9
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

single test case. This decision was made because this test serves

as a representative example of how the automation framework

operates: it includes multiple user interface interactions, search

operations, filtering steps, and verification stages. Successfully

validating this test in batch mode provides sufficient insight into

the framework’s expected behaviour for other tests, while

keeping the workload manageable within the available

timeframe.

The execution process was designed to log the outcome of

each iteration, capturing result, error message, failed step,

screenshot, execution duration and timestamp.

This information was stored in a CSV results file generated

dynamically for each execution session, ensuring that repeated

runs did not overwrite previous data. The output file naming

convention included a time stamp, allowing easy traceability of

historical runs.

A. Execution Summary

The dataset consisted of 200 independent runs of the

Network Diagram test on distinct substations, each representing

a unique input scenario for the automation sequence. In total

188 out of 200 runs succeeded (94%). Median execution time

per run was 10.15 seconds. The principal failure modes were

“Click scale – not found” (6/12) and “Open filters – not foud”

(6/12). Every iteration involved:

1. Launching and configuring the Network Diagram

interface.

2. Applying the appropriate filters.

3. Search for the specific substation.

4. Confirming its presence and accessibility in the

interface.

5. Recording results into the CSV file.

The result obtained were:
Table 2. Resuls summary

Total

tests

Successful

executions

Failed

executions

Average

execution

time

Average

successful

time

200 188 (94%) 12 (6%) 9.79 s 10.15 s

The performance metrics suggest that the automation

process consistent across different inputs, with no significant

increase in execution time caused by data variability.

B. Success Rate Interpretation

The observed success rate of 94% across 200 executions

provides statistically grounded evidence that the framework can

reliably interact with PowerOn’s GUI for Network Diagram

searches under varied operational conditions.

The 94% pass rate is an encouraging indicator of the

robustness and stability of the developed script. It confirms that

the implemented logic, image recognition thresholds, and

interaction timing are well-adjusted for the majority of

operational cases. The low failure rate also suggests that the

framework is sufficiently resilient to minor interface response

delays or changes in display conditions.

It is also relevant to highlight that during execution, the

automation successfully navigated through multiple interface

states and visual variations without requiring any manual

intervention. This includes handling differences in the location

of UI elements, window sizes, and background interface data,

factors that are often a challenge in SCADA and other closed-

system environments.

C. Failure Analysis

All 12 failures fell into two image-recognition categories, as

show in Table 3Error! Reference source not found.. These

issues are actionable via: regenerating higher-quality image

templates at 100% DPI, raising similarity thresholds for icons

while using sequential state validation and introducing short

fallback searches (alternative icon variants) before failing.

Table 3. Error messages from batch test

Step

Affected

Error Message Likely Cause

Open

scale
Cannot click; not

found:

1751992054822.png

Temporary delay in
rendering or partial
obstruction of the
target UI element.

Open

filters Cannot click; not
found:

1752064695766.png

Minor interface
variation or

incomplete load of the
filter menu before

interaction.

In both instances the script’s built-in error logging correctly

identified the step name, exception message, and captured a

screenshot of the screen at the moment of failure. This

capability is critical for post-mortem debugging and prevents

silent or undetected errors.

Notably, these failures occurred on isolated data entries and

were not reproducible in immediate re-execution, which further

supports the hypothesis that they were transient rather than

systematic issues.

VI. OPPORTUNITIES FOR FUTURE WORK

Building on the findings discussed in Error! Reference

source not found., several opportunities emerge for extending

the framework’s capabilities and addressing current limitations.

While the current implementation demonstrates a functional,

modular, and scalable approach to GUI-based test automation

in PowerOn, it also lays the foundation for a wide range of

future enhancements. Similar initiatives in other utilities, such

as UK Power Networks, National Grid and international

operators in Australia and North America, have explored hybrid

testing approaches combining GUI automation with backend

validation. Incorporating lessons from these implementations

could accelerate the evolution of the framework. These

opportunities span both technical refinements and strategic

extensions, aimed at increasing robustness, usability,

intelligence, and integration with enterprise-level systems.

The key areas where this framework can evolve in future

iterations are outlined in the following sections.

10
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

A. Improved Test orchestration and Execution Control

The current system is designed to execute tests sequentially,

with batch support based on CSV-driven inputs. However, its

architecture allows for:

• Test queue management: Introducing a visual or

file-based interface where testers can assemble,

reorder, and prioritise test cases.

• Parameterized test templates: Allowing

dynamic substitution of values within test scripts

(such as test location, test type or scale).

• Custom test schedules: Enabling timed or

conditional execution based on system state, test

importance, or resource availability.

These changes would move the tool from a script-based

runner to a test orchestration platform, improving flexibility and

collaborative workflows. Given the current batch execution’s

high success rate in the Network Diagram case study, improved

orchestration could extend similar reliability to a broader range

of scenarios.

B. Expansion of Test Case Library

While the initial development phase focused on navigation

through the different modules and verifying correct operation

of modules due to access restrictions (it is not possible to edit

or change anything), the PowerOn platform contains a wide

variety of functionalities that could also benefit from automated

testing.

Extending the test case library into these areas would

promote broader confidence in system integrity, uncover

regression vulnerabilities, and support cross-module integration

testing as PowerOn evolves. Such expansion would not only

broaden test coverage but also serve as foundation for

standardised regression suites within the RTS department.

C. Integration with Backend Verification Layers

At present, the framework is limited to assessing what is

visually observable. However, PowerOn generates backend

events that could be used to validate internal logic and

consistency beyond the UI layer.

This would enable hybrid testing, combining the strengths

of visual validation with programmatic verification, creating a

more complete and reliable quality assurance framework. This

hybrid model mirrors approaches adopted in other mission-

critical systems, where front-end validation is reinforced by

backend state verification to improve fault detection rates.

D. centralised Results Portal and Reporting Dashboard

Currently, results are saved in structured CSV logs, which

are ideal for traceability and later processing. However,

transforming this output into a real-time, interactive dashboard

would greatly enhance its operational value.

This would include a centralised web portal for the RTS

team, with visual dashboards highlighting key metrics,

advanced search and filtering capabilities tools to allow

engineers to explore results, and PDF or HTML reports that

could be generated automatically.

Such capabilities would turn the framework from a

standalone test tool into a continuous quality monitoring

system, supporting audits, historical analysis, and management-

level reporting. Beyond operational convenience, such

dashboards could provide key performance indicators for

management, aligning testing outcomes with organisational

performance metrics.

E. Integration with CI/CD Pipelines

Although PowerOn is not natively integrated into CI/CD

ecosystems, many of the test scripts and reporting mechanisms

could be adapted to post-deployment validation scenarios.

This type of integration would align the RTS testing strategy

with modern DevOps principles, promoting rapid delivery

without sacrificing system reliability. Although full CI/CD

integration may not be immediately achievable in PowerOn’s

production environment, establishing this capability in staging

or training systems could pave the way for gradual adoption of

DevOps-aligned practices.

VII. CONCLUSIONS

The development and execution of automated testing

procedures for the PowerOn SCADA environment have

demonstrated that a structured, image-recognition-based

automation framework can reliably interact with complex

operational interfaces and reproduce user workflows with

minimal human intervention.

The batch execution served as a practical proof of concept

for the scalability of the framework. By systematically running

the same test case against a dataset of real substation names, the

framework proved capable of handling repetitive tasks, logging

detailed execution data, and recovering from failures without

requiring a restart of the entire campaign. This approach not

only reduces the manual workload but also increases the

repeatability and consistency of test executions, which is

critical for ensuring reliability in operational environments.

The decision to limit batch testing to a single, representative

test case was driven by time constraints during the project

timeline. Nevertheless, this single-case execution provided

sufficient insight into how the framework could perform under

batch conditions and offered a solid template for scaling the

approach to other functional areas of the SCADA system. The

success of this campaign indicates that the methodology can be

applied to additional tests with only minor adaptations to the

scripts and datasets.

One of the most significant outcomes of this work was the

identification of image recognition sensitivity as both a strength

and a limitation. While high-precision matching ensures that

deviations from expected UI states are promptly detected, it

also increases the likelihood of false negatives when the visual

rendering of an element changes slightly due to background

processes, resolution differences, or other environmental

factors. This insight opens the door to future enhancements,

such as implementing adaptive similarity thresholds or

integrating additional context-aware validation methods to

reduce unnecessary failure reports.

From a performance perspective, the test executions were

stable, with consistent run times across the dataset and reliable

mechanism for capturing and storing screenshots, error

messages, and execution timestamps. This combination of

functional reliability and detailed logging greatly improves

post-execution analysis and root-cause investigation, making

11
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI

the toolset not only an execution engine but also a diagnostic

aid.

In conclusion, the project has delivered:

• A functional, adaptable automation framework for

PowerOn SCADA environment.

• A validated methodology for batch execution with

robust error handling and detailed result tracking.

• Insight into current limitations and clear paths for

improvements.

The results, obtained from 200 independent executions of

the Network Diagram workflow, strongly suggest that

extending this framework to cover additional test cases will

further enhance efficiency, accuracy, and coverage of SCADA

system validations. With the foundations now established,

future development should focus on broadening the scope of

automated tests, refining recognition algorithms, and

integrating automated reporting dashboards to support ongoing

operational testing and quality assurance.

APPENDIX A: ALIGNMENT WITH UNITED NATIONS

SUSTAINABLE DEVELOPMENT GOALS (SDGS)

This project directly and indirectly contributes to several of

the United Nations Sustainable Development Goals (SDGs),

particularly in the context of sustainable energy systems,

innovation in industry, and operational resilience in critical

infrastructure.

A. SDG 7: Affordable and Clean Energy

By enabling more reliable, repeatable, and efficient testing

of SCADA/ADMS systems used in electrical distribution, the

framework supports the stability and efficiency of power

networks. Improved testing reduces the likelihood of

operational failures and accelerates the deployment of

upgrades, contributing to the provision of affordable, reliable,

and sustainable electricity to end users.

B. SDG 9: Industry, Innovation and Infrastructure

The automation approach fosters innovation in an area

traditionally reliant on manual procedures. The modular,

scalable architecture provides a foundation for digital

transformation in utility operations, supporting the

development of resilient infrastructure and promoting

sustainable industrial processes.

C. SDG 11: Sustainable Cities and Communities

Reliable power distribution is essential for the functioning

of modern cities. By enhancing the robustness and efficiency

of control system testing, this project indirectly improves the

resilience of urban energy supply, reducing service

interruptions and their impact on communities.

D. SDG 12: Responsible Consumption and Production

Automation reduces the resource intensity of testing

activities, decreasing the need for prolonged operator

involvement and minimising wasted time and energy. This

leads to more responsible operational practices and more

efficient use of human and technical resources.

E. SDG 13: Climate Action

While the project does not directly reduce greenhouse gas

emissions, the improved reliability and efficiency in power

network operations can enable better integration of renewable

energy sources and reduce energy losses in the grid. This

contributes indirectly to climate change mitigation efforts.

In summary, the project’s main contribution to the SDGs

lies in strengthening the reliability and sustainability of critical

energy infrastructure through innovative, low-cost automation.

By reducing human error, accelerating testing cycles, and

facilitating large-scale validation, it supports the transition to

smarter, more resilient and more sustainable power systems.

REFERENCES

[1] V. C. Gungor and F. C. Lambert, “A survey on

communication networks for electric system

automation,” Computer Networks, 2006.

[2] IEEE Power & Energy Society, “IEEE Guide for

SCADA and Automation Systems,” IEEE Std, 2020.

[3] General Electric, “PowerOn Control,” GE Vernova ,

2018. [Online]. Available:

https://www.gevernova.com/grid-

solutions/sites/default/files/resources/products/brochure

s/uos/poweron_control.pdf.

[4] Autolt Consulting Ltd., “Autolt v3 Documentation,”

Autolt, 2022. [Online]. Available:

https://www.autoitscript.com/autoit3/docs/.

[5] Keysight Tecnologies, “Eggplant FUnctional User

GUide,” Keysight, 2023. [Online]. Available:

https://docs.eggplantsoftware.com/.

[6] Ranorex GmbH., “Ranorex Studio User Guide,”

Ranorex, [Online]. Available:

https://support.ranorex.com/hc/en-us.

[7] SmartBear Software, “TestComplete

Documentation,” SMARTBEAR, 2023. [Online].

Available:

https://support.smartbear.com/testcomplete/docs/.

[8] SikuliX Developers, “SikuliX Documentation,”

SikuliX, 2023. [Online]. Available:

https://sikulix.github.io/.

[9] W. T. Wang and X. Bai, “A GUI regression testing

method based on dynamic event flow analysis,” Third

International Conference on Software Testing,

Verfication and Validation Workshops, 2010.

[10] B. P. Lamancha and M. P. Usaola, “Automated

testing in a GUI based application,” Software Quality

Journal, 2010.

[11] IEEE Standards Association, “IEEE Standard for

Software and System Test Documentation,” IEEE Std,

2013.

[

12]

G. J. Myers, C. Sandler and T. Badgett, “The Art of

Software Testing,” Wiley, 2011.

