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Abstract— This work presents the design and 

implementation of a visual test automation framework for 

PowerOn, the SCADA/ADMS platform used by Scottish 

Power. The challenge addressed is the automation of 

functional and regression testing in a closed, GUI-only 

environment without backend access or public APIs. After 

evaluating several tools, SikuliX was selected for its cost-

effectiveness, open-source nature, and adaptability to pixel-

based recognition. The framework interacts exclusively 

with the graphical interface, simulating operator actions 

through image matching, OCR, and keyboard/mouse 

inputs. It supports modular test design, adaptive similarity 

thresholds, and error-recovery mechanisms, with runtime 

configuration via Java Swing components. Batch execution 

enables scalability, running tests on large datasets while 

generating detailed CSV logs with outcomes, errors, and 

screenshots. A case study on the Network Diagram interface 

achieved a 94% success rate across 200 substations with a 

median runtime of 10.5s, demonstrating robustness, 

repeatability, and efficiency. Although commercial tools 

like Eggplant offer more advanced features, SikuliX proved 

sufficient for project goals under budget constraints. The 

framework provides a foundation for extending test 

automation to other PowerOn modules, integrating 

backend checks, and developing centralized reporting, 

contributing to more reliable and auditable testing in 

critical infrastructure systems. 
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I. INTRODUCTION 

Modern power utilities increasingly rely on Supervisory 

Control and Data Acquisition (SCADA) and Advanced 

Distribution Management Systems (ADMS) to ensure network 

reliability, optimize daily operations, and comply with 

regulatory requirements [1], [2]. Among them, PowerOn, 

developed by GE Grid Solutions [3] and used by Scottish 

Power, is a mission-critical platform that integrates multiple 

modules such as Network Diagram, GeoView, and fault 

restoration systems. Operators depend on it for monitoring, 

control, and decision-making in real-time grid operations. 

Testing in PowerOn has traditionally been conducted 

manually. Procedures involve expert operators executing long 

scripts, visually verifying results, and recording outcomes. This 

approach is slow, error-prone, and lacks scalability. The 

absence of backend access, public APIs, or inspectable object 

trees prevents the use of conventional automation frameworks 

(e.g., Selenium, Cypress), making automation in PowerOn a 

challenging task. 

To overcome these limitations, alternative strategies based 

on graphical user interface (GUI) automation have been 

explored. Several tools exist in this domain, including Eggplant, 

Ranorex, TestComplete, Autolt [4], and SikuliX. Eggplant 

offers advanced model-based capabilities but requires costly 

licenses [5], while Ranorex and TestComplete depend on 

internal UI object access [6] [7]. SikuliX, on the other hand, is 

an open-source tool leveraging image recognition (OpenCV) 

and optical character recognition (Tesseract), making it 

particularly suited to closed, GUI-only environments such as 

PowerOn [8]. 

This work addresses these challenges by designing and 

implementing a modular, scalable, and low-cost visual test 

automation framework for PowerOn using SikuliX. The 

proposed framework simulates human operator actions through 

image pattern matching, OCR, and input simulation. A 

representative case study on the Network Diagram module 

validated its robustness and scalability, achieving a 94% 

success rate across 200 substations. The results demonstrate 

that GUI-based automation can be a reliable and efficient 

testing strategy in closed SCADA environments, providing a 

foundation for future extensions and integration into broader 

testing pipelines. 

 

II. PROJECT SCOPE AND OBJECTIVES 

This project aims to design and implement a visual test 

automation framework for PowerOn, a critical SCADA/ADMS 

system used by Scottish Power for network control and 

management. Due to the platform’s lack of backend access, 

absence of public APIs, and restricted internal architecture, 

testing must be conducted entirely through its graphical user 

interface. This presents a unique challenge for test automation, 

requiring a solution that can simulate human interaction with 

the GUI in a reliable, repeatable, and scalable manner. 

The scope of the work includes both technical development 

and methodological research. From a technical perspective, the 

project involves creating modular automation scripts using 

SikuliX to replicate essential test procedures already performed 

manually within the RTS (Real-Time Systems) department. 

From a research perspective, the work involves evaluating 

various tools, benchmarking their capabilities, and critically 

assessing their applicability to closed systems like PowerOn. 

The automation framework developed as part of this project 

focuses on a selection of key user workflows that are 

representative of the broader system. While the Network 

Diagram and GeoView interfaces were initial targets due to 
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their visual complexity and frequency of use, the framework 

was designed to support multiple PowerOn interfaces, 

including Work Package Manager, Safety Documents, Incident 

Management… This diversity introduces varying visual layouts 

and interaction behaviours, which the automation logic had to 

accommodate. 

The framework includes functionalities: 

• Search for and open location-based records (such as 

substations, switching points, fault locations) across 

different PowerOn modules, like Network Diagram or 

GeoView. 

• Apply and validate multiple categories of filters 

depending on the requirements of each test, including 

sensitive case, visible locations, low voltage locations, 

location type (transmission, sub transmission, grid, 

primary, secondary) or location sub type (substation, 

switchgear, minor). Depending on the interface 

context each filter will be applied or not. 

• Interact with dynamic toolbars, navigation panels, 

popup dialogs, and search fields, while adapting to 

different screen states and UI configuration. 

• Visually validate system state changes using image 

comparison and OCR. For example, confirming a 

selected element is highlighted, a scale has been 

applied, or a message window has been dismissed. 

• Automatically log test results in a structured and 

repeatable way, capturing pass/fail outcomes, timing 

metrics, and specific visual errors. 

To support both scalability and data collection, the project 

also includes functionality to run the same test flow across a 

batch of substations (potentially hundreds) and record all results 

in a structured CSV file. This feature not only enables 

efficiency and repeatability but also allows the company to 

build test evidence and measure reliability over time. 

Importantly, the project is not intended to replace the full 

testing strategy of the RTS department, but to provide a proof-

of-concept and a scalable foundation for future automation. The 

focus has been placed on building a robust, maintainable system 

that could be expanded with minimal effort in future phases, 

either by integrating with test reporting systems or by extending 

the test library to cover more scenarios. 

The objectives were defined to ensure meaningful progress 

while acknowledging realistic constraints. As such, only 

selected test scenarios were developed and validated, and 

testing was limited to environments provided by Scottish Power 

without full production access. 

In summary, the key project objectives can be stated as 

follows: 

1. To investigate and compare available tools for 

automating GUI-only systems like PowerOn, and to 

select the most suitable one given technical and 

budgetary constraints. 

2. To design a modular and extensible visual automation 

framework using the selected tool (SikuliX). 

3. To implement and validate test procedures based on 

existing manual testing workflows in the RTS 

department. 

4. To enable batch testing and automatic result logging 

for a wide range of substations. 

5. To provide a structured and well-documented 

foundation for future expansion and potential 

integration into broader testing infrastructure. 

These objectives were used to guide the methodology, 

implementation, and evaluation of the project, ensuring 

alignment with both academic requirements and business 

needs. 

The following chapter reviews the state of the art in test 

automation for closed systems, providing the technical and 

industrial context that informed these objectives. 

 

III. METHODOLOGY 

The automation framework was developed within the 

PowerOn test environment provided by Scottish Power, which 

replicates operational conditions while restricting backend 

access and administrative privileges. This constraint required 

all interactions to occur through the graphical user interface, 

making visual automation the only viable approach. 

A. Tools and Environment Setup 

All experiments were carried out in the PowerOn test 

environment (v6.9.3) provided by Scottish Power. This 

environment replicates the operational platform used in real 

distribution networks while limiting administrative access and 

backend connectivity. Consequently, all automation had to be 

performed exclusively through the graphical user interface. 

The main tool selected was SikuliX 2.0.5, an open-source 

automation framework that leverages OpenCV for image 

pattern recognition and Tesseract OCR for optical character 

recognition. SikuliX enables scripts to detect on-screen 

elements, simulate mouse and keyboard interactions, and 

validate textual information displayed on the interface. 

Scripts were implemented in Jython, which provides a Python-

like syntax on the Java Virtual Machine, facilitating modular 

design and integration with other components [8]. Additional 

utilities included: 

• Java Swing: To improve usability and reduce user 

error during test execution, several interface 

components were implemented using Java Swing, 

which is supported natively within the SikuliX 



3 
MASTER’S DEGREE IN SMART GRIDS, COMILLAS UNIVERSITY - ICAI 

environment. These elements provided a basic user 

interface layer on top of the script logic, allowing 

operators and testers to interact with the automation in 

a structured and guided way, without modifying the 

code or using external tools. 

• CSV-based datasets: Structured CSV files were used 

to manage test inputs (such as location names, 

interface elements, or operational parameters provided 

by Scottish Power) and to store output logs. This 

approach allowed the framework to dynamically load 

real-world test data while keeping the execution 

process consistent and automated. It also simplified 

the user’s role, making it possible to prepare large test 

batches without altering the source code. Crucially, 

this structure enabled the same automation logic to be 

executed repeatedly across a wide range of varied 

input cases, with outputs logged for each run. This 

approach supports efficient large-scale validation and 

allows results to be compared, analysed, and audited 

over time. 

• Screenshot logging: to capture visual evidence of 

error or inconsistencies during execution.  

 

This toolchain was selected after evaluating alternatives 

such as Eggplant, Ranorex, TestComplete, and Autolt. While 

Eggplant offers advanced model-based testing, its high 

licensing cost (€10,000 approx.) and proprietary language 

(SenseTalk) made it unfeasible within the project scope. 

SikuliX, although more sensitive to UI variability, was 

sufficient to demonstrate the viability of GUI-based automation 

in PowerOn.  

In Table 1 a consolidated overview of the key strengths and 

weaknesses or each automation tool is shown. The scoring is 

based on both technical documentatiton and hands-on 

experimentation within the constraints of the PowerOn 

environment. 

From Table 1, it becomes clear that Eggplant scores highest 

in advanced capabilities such as AI-driven testing, OCR 

accuracy, integration, support, and compliance, making it the 

most robust solution overall. However, its low score in cost 

(due to its expensive commercial license) and relatively steeper 

learning curve in custom scripting make it a challenging choice 

for lightweight or budget-constrained projects. 

SikuliX, while not leading in raw power or AI features, 

achieves the best balance of visual automation, scripting 

flexibility, cost-efficiency, and suitability for PowerOn. It 

scored particularly high in categories like cost (5/5), custom 

scripting (5/5), and PowerOn compatibility (5/5), which reflects 

its adaptability to GUI-only environments where no internal 

access or API integration is possible. Its open-source nature, 

lightweight installation, and compatibility with CSV or excel 

inputs and Java GUI elements make it ideal for academic 

research and proof-of-concept development. 

 
Table 1. Tool Criteria Scores 

 

 

Overall, the comparative evaluation underscores a key 

trade-off: Eggplant offers superior capabilities, but SikuliX is 

the most viable under real-world constraints.  

B. Framework Architecture 

The automation framework was designed with a four-layer 

modular architecture (Figure 1), each responsible for a 

specific set of tasks: 

1. Input Layer: Parameters can be provided 

interactively via Java Swing components (manual 

mode) or imported from CSV files (batch mode). This 

allows the same workflow to be executed across 

hundreds of substations with no code modifications. 

2. Control Layer: Orchestrates the flow of each test, 

including conditional branching, retries, and fallback 

logic. Watchdog mechanisms are embedded to 

automatically dismiss unexpected pop-ups and 

maintain continuous execution. [9] [10] 

3. Action Layer: Executes GUI interactions such as 

clicks, typing, scrolling, and drag-and-drop. It also 

performs OCR-based checks to validate textual 

outputs (e.g., confirming whether a substation name or 

state change is correctly displayed). 

4. Output Layer: Generates structured logs, storing 

execution results in CSV format along with 

timestamps, error descriptions, and screenshots. This 

evidence provides traceability and facilitates post-

execution audits. 

The modular design simplifies test maintenance and enables 

the framework to adapt to changes in the PowerOn interface. 

Image libraries were organized by module and function, with 

multiple fallback variants for each element to account for 

resolution differences or UI changes. 

 

 
Figure 1. High-level architecture of visual automation 

framework 

C. Image Recognition and Robustness Mechanisms 

Given the nature of PowerOn, a closed SCADA/ADMS 

platform without programmatic access, APIs, or an inspectable 

object tree, all automation tasks in this project were executed 

using image-based logic. This approach, while fundamentally 

different from DOM (Document Object Model) or code-based 

automation, is particularly well suited to applications where 

only the visual output is available to the tester. In such cases, 
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the screen itself becomes the only “interface” the automation 

can observe and act upon. 

Every interaction in the framework is based on the principle 

of pattern matching, where the system searches the screen for a 

visual element (such as a button, label, icon, or panel) that 

matches a previously captured reference image. Once 

identified, actions can be executed (such as click the region, 

reading test from it, or waiting for its appearance or 

disappearance). 

To ensure consistent and reliable detection, several best 

practices were implemented: 

• High-quality image capture: the entire automation 

strategy is based on visual pattern matching, the 

quality, consistency, and reproducibility of reference 

images play a crucial role in system reliability. Every 

image used for matching was captured manually from 

the PowerOn test environment using the exact same 

conditions as those under which the automation would 

later run. Capturing high-quality and consistent 

images significantly reduces maintenance, lowers test 

flakiness, and made the test scripts more portable 

across machines with similar setups. If tests are to be 

shared across different environments in the future, a 

dedicated image calibration step or image regeneration 

tool could be developed to ensure alignment across 

systems. 

• Structured image storage: To manage a growing 

library of visual elements used in different automation 

scenarios, a clear and scalable storage structure was 

designed. Instead of placing all reference images in a 

single directory, the image assets were categorised 

into a hierarchical folder structure, grouped by both 

interface context and functional purpose. This modular 

approach offer benefits as maintainability (developers 

can easily identify which tests use which images and 

update them with PowerOn evolving), scalability 

(structured storage prevents disorganisation and 

duplication, making it easier to navigate the library 

one the number of automated test cases grows) [11] 

[12], reusability (shared assets can be reused across 

different test scripts) and debugging and refactorings 

(when a tests fails due to an image mismatch, its 

location in the directory gives immediate context).  

• Fallback logic: Given that PowerOn may display 

slightly different versions of the same icon or interface 

element depending on factors such as user settings, 

resolution, screen scaling, or even system theme, the 

automation framework had to account for visual 

variability. To address this, each critical UI element 

was assigned not one, but multiple reference images, 

which represent known visual variants of the same 

function. The automation code uses fallback logic, 

checking for all possible versions of a button or field 

before deciding that the element is not available. This 

was implemented using commands like exists() or 

wait() in chained conditions, trying several image 

matches sequentially with a fallback priority. 

• Similarity tuning: The similarity parameter in 

SikuliX controls the tolerance with which the system 

matches a reference image to a region on the screen. 

Contrary to a uniform threshold, this project employed 

adaptive similarity tuning, where the required 

similarity level depends on the type of visual element 

and its functional context. Adaptative similarity 

thresholds were applied (0.3-0.99), allowing flexible 

matching depending on visual complexity. This 

adaptive approach reduced false negatives in flexible 

interfaces while still maintaining accuracy where 

needed. However, it also required extensive 

experimentation and manual tuning. Some UI 

components had to be tested with multiple similarity 

levels to find the optimal balance between robustness 

(avoiding test failures due to pixel-level differences) 

and precision (avoiding misidentification of unrelated 

screen content). This is shown in Figure 2, where 

matching setting is selected to be 0.35 and it recognise 

the elements, being a perfect example of how low 

similarity thresholds are some times more appropriate 

than higher ones. 

 

 
Figure 2. Matching settings example 

• Sequential state validation: the automation 

framework uses sequential state validation, combining 

multiple visual checks to confirm that the system is 

truly ready. This typically involves verifying that one 

expected image exists (e.g., a menu icon appears), 

while simultaneously ensuring that another known 

transitional image vanishes (e.g., a loading symbol or 

transition window disappears). These checks are 

implemented with wait() and waitVanish() calls in 

tandem, often within controlled timeouts. This 

mechanism proved essential for avoiding premature 

clicks or faulty reads, particularly views where the 

screen contents update dynamically. It also adds 

resilience in less predictable environments, ensuring 

the automation reacts to real screen conditions instead 

of relying on fixed delays. 

• Timeout strategies: SikuliX scripts interact with the 

live screen and depend on the rendering speed of the 

system, each image detection action is paired with a 

defined timeout window. This prevents the automation 

from hanging indefinitely in cases where an expected 

element fails to appear due to error, delay, or user 

interference. Timeout durations are chosen based on 

the expected load time of each interface component, 

going from 0.5 seconds to 2 minutes. If the timeout 
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expires and the image is still not found, the 

frameworks would continue to the next item if the step 

is optional or it is batch mode, or halts the execution 

and displays a popup message, like in Figure 3. 

 

 
Figure 3. Image not found error message 

D. Batch Execution and Scalability 

One of key strengths of the developed framework is its 

ability to execute test procedures across a large set of input 

values, in a consistent and fully automated manner. This is 

achieved through the use of CSV-driven batch testing, a 

mechanism that allows the same test logic to be dynamically 

applied to dozens or even hundreds of individual elements, such 

as locations, assets, configurations, or interface cases, without 

requiring manual intervention between test cycles. 

The approach is based on a simple but powerful idea: 

separating the test logic (what actions to perform) from the data 

(on which elements to perform them). Input data is stored in 

structured CSV files, typically containing a list of items (e.g., 

names of substations, diagram references, configuration 

identifiers). These files are loaded at runtime, and the 

framework automatically iterates through each row, executing 

the selected test sequence and recording the outcome of each 

run. 

The architecture provides several advantages: 

• Scalability: the CSV-driven input model offers 

inherent scalability by decoupling test logic from the 

data it operates on. Testers can easily expand the 

coverage of a test suite simply by adding new entries 

to a CSV file, without altering the code or requiring 

programming knowledge. For example, if a new set of 

locations or interface components need to be 

validated, they can be appended to the input list and 

automatically included in the next test run [11] [12]. 

This means the system is capable of growing 

organically with minimal technical overhead, adapting 

to the evolving needs of business. 

• Reusability: the automation framework separates 

“what to do” from “what to test it on”, the same 

functions can be applied to different datasets, test 

modes, or workflows without duplication. This 

dramatically reduces development time and supports 

the principle of test case reusability. 

• Parallelisation potential: this version of the 

framework executes test cases sequentially; the 

architecture is naturally suited to parallel execution in 

future iterations. Since each test cycle is independent 

(reading one row from the input CSV, executing a 

standard procedure, and writing the result) it can be 

parallelised across multiple processing threads, test 

agents, or even virtual machines. This opens the door 

to significant performance gains in large-scale 

deployments. For instance, testing 500 inputs that 

currently take several hours in sequence could be 

distributed across five agents and completed in a 

fraction of time. Additionally, parallelisation could 

support continuous testing in CI/CD pipelines or 

enable regression testing on large datasets in an 

overnight cycle. Preparing the system for this future 

capability reflects a forward-looking design focused 

on industrial scalability. 

• Result granularity: The logging system was designed 

to offer fine-grained visibility into the performance 

and stability of each individual test case. For every 

data entry processed, the framework writes a row to a 

structured output file, detailing not only whether the 

test passed or failed, but also why, when and how it 

was processed. This includes fields such as: input item 

name, test category, result statues, error type, 

execution timestamp, screenshot or reference for 

debugging. Such granular output enables a range of 

post-test analysis activities: error trend detection, 

coverage analysis, historical comparisons, and 

auditing. It also facilitates transparency and 

accountability, allowing to understand not just what 

failed, but where and why, paving the way for rapid 

debugging and system improvement. The Figure 4 

shows an example of the results for Network Diagram 

substation test, where the fields commented are 

included and there are some examples of error 

messages. 

 

 
Figure 4. Results CSV example 

 

IV. CASE STUDY: POWERON NETWORK DIAGRAM MODULE 

To illustrate the application of the architecture and design 

principles described in the previous sections, this chapter 

presents a complete end-to-end test case developed as part of 

the automation framework. This practical example 

demonstrates how the system executes a structured series of 

actions to validate interface behaviour, interact with graphical 

elements, handle system variability, and log the result of each 

test cycle. 

The scenario chosen for this case involves the visual 

verification of an electrical location within PowerOn’s Network 
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Diagram and GeoView interfaces. This test mirrors a real-world 

validation procedure frequently performed manually by RTS 

operators, and was selected because it includes all major aspects 

of the automation pipeline; input collection, interaction with 

dynamic UI components, error handling, and result logging. 

A. Automated Workflow 

The automated workflow followed ten steps: 

1. Launch and Log in: Before the automation can begin, 

the user must manually open PowerOn and log in 

using their own credentials. This manual step is 

required due to system security policies and access 

controls: login screens are outside the scope of GUI 

automation in this environment, and credentials cannot 

be passed or injected via scripts. The framework 

assumes that PowerOn is running, authenticated, and 

stable, with all critical UI components fully loaded. 

Failing to meet this precondition may result in early 

test failure or missed elements. 

2. Collect test input: Once PowerOn is ready, the 

framework begins by collecting the target location or 

test item. This is done in two ways, depending on the 

operating mode. In manual mode, a popup input dialog 

(created using Java Swing) prompts the user to enter 

the name of the asset or location to test, typically a 

substation, node, or operational point, such as shown 

in  Figure 5. In batch mode, the system loads a list of 

entries from an external CSV file, iterating through 

each one in turn. This method is used for large-scale 

testing or regression validation. 

 

 
Figure 5. Popup dialog for manual testing 

3. Verifying toolbar access: PowerOn toolbar is 

essential for accessing different modules (Figure 

6Error! Reference source not found.). The 

automation begins by checking whether it is currently 

visible on the screen. If not, the script looks for the 

toolbar symbol by using a library of pre-captured 

images. If found, it clicks the symbol to open the 

toolbar. This step guarantees a predictable UI layout 

and prevents accidental interference with navigation 

or pattern matching later in the workflow. 

 

 
Figure 6. PowerOn toolbar 

4. Open Network Diagram interface: once the toolbar 

is accessible, the script opens the Network Diagram 

module by clicking its corresponding button. After the 

initial action, the system waits for several visual 

conditions to confirm that interface has fully loaded 

(as in Figure 7), no overlay windows remain visible, 

and the view is maximised. 

 

 
Figure 7. Network Diagram 

5. Prepare diagram environment: before performing 

the search, the system applies a predefined set of 

diagram filters, with the settings shown in . To ensure 

only relevant assets are shown the following options 

are enable or not: voltage levels (low or high voltage), 

location types (transmission, sub transmission, grid, 

primary or secondary) and visibility filters and search 

modes. 

 

 
Figure 8. Filter settings 

6. Search for the location: the test item (e.g., substation 

name) is entered into the search field of the interface. 

To improve consistency and execution speed, the 

framework uses a function called 

copy_to_clipboard(Text) that takes the location name, 

copies it to the clipboard, and pastes the value; 

avoiding the latency and inconsistency of simulated 

keystrokes. After this, the system clicks to initiate the 

search and waits for the result panel to appear. If 
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multiple results are shown (it should not happen if 

everything went well during the script), it selects the 

first candidate in the list. This behaviour ensures the 

test always proceeds with a matching, recognisable 

entry, and avoids ambiguity when search results are 

partially matched. 

7. Verify display and scale: Once the location is 

selected, the automation adjusts the zoom level or 

visual scale of the diagram to a standard value (a scale 

of 1.6 was selected in the script), ensuring uniform 

rendering across test runs and simplifying pattern 

recognition. 

8. Switch to GeoView and Repeat validation: once the 

Network Diagram test is completed, the system closes 

the module (to ensure the next test works well), then 

the toolbar is opened (if closed) and switches to the 

GeoView module. All actions described previously 

(filtering, searching, visual validation) are repeated 

within this different interface context. Although the 

overall workflow is similar, the visuals and rendering 

logic in GeoView differ (see in Figure 9), requiring 

separate reference images and detection logic. The 

framework handles this by using mode-specific image 

sets and conditionals to execute the correct steps. 

 
Figure 9. GeoView Diagram 

9. Log the result: after completing the full test cycle, the 

system evaluates the success or failure of each major 

step. A new output CSV file is created with test inputs 

(e.g., location name), test mode (e.g., Network 

Diagram, GeoView Diagram), result (pass or fail), 

optional error message, timestamp of execution and 

screenshot of failure state. This logging mechanism 

provides traceability, debugging support, and enables 

data analysis for performance monitoring or future 

refinement. 

10. Batch mode execution: if test runs in batch mode, the 

automation restarts the loop, pulls the next input from 

the list, and repeats the process. This continues until 

all entries in the CSV have been processed. Batch 

mode is typically used when validating many elements 

across the network or during regression testing phases 

to ensure no changes have broken expected 

functionality. 

B. Results Log and Report 

A critical component of any test automation framework is 

the ability to record, store, and interpret results in a structured 

and accessible way. In this project, results logging was designed 

with a strong emphasis on traceability, reusability, and future 

integration, providing value to the operational testing needs of 

Scottish Power. 

The system implements a custom CSV-based reporting 

mechanism that captures the outcome of each test iteration, 

whether triggered manually or executed in batch mode. This 

output serves as both a technical artefact for developers and an 

operational report for testing teams, enabling the evaluation of 

test coverage, identification of system inconsistencies, and 

long-term reliability tracking. 

Some important aspects from these results are: 

• Structure of the result log: Each execution of a test, 

whether successful or failed, triggers the creation of a 

detailed log entry in a structured CSV file. This 

approach was chosen for its wide compatibility, 

human readability, and seamless integration with data 

analysis tools such as Microsoft Excel, Power BI, 

Python, and SQL-based reporting systems. The 

structured of the result log was carefully designed to 

strike a balance between simplicity and 

expressiveness, ensuring it could be used both for 

immediate inspection by testers and for programmatic 

parsing in future analysis pipelines. Each row in the 

CSV corresponds to a single test iteration, including 

“Tested item”, “Test category”, “Test subcategory”, 

“Result status”, “Timestamp”, “Error description”, 

and “Screenshot path”. 

• Execution feedback during runtime: While 

structured result logging ensures long-term 

traceability and post-test analysis, it is equally 

important for the automation framework to provide 

real-time execution feedback to the user. This 

immediate layer of communication allows the tester or 

operator to monitor progress, detect anomalies early, 

and feel confident that the system is performing as 

expected, especially during long or complex test 

sessions. The feedback mechanism implemented in 

this project include several modalities, each serving a 

different purpose within the user interaction spectrum: 

o On-Screen popup message: Throughout 

execution, the system generates interactive 

popup messages using Java Swing 

components. 

o Printed console logs: In addition to 

graphical notifications, the system outputs 

real-time execution traces to the console or 

terminal window. 

o Execution counters and batch progress 

indicators. 

o Error triggers and immediate alerts: If a 

critical failure or unhandled exception 

occurs, the framework is configured to raise 

an immediate alert via a modal popup 

window. 

• Support for batch aggregation: One of the major 

benefits of implementing a structured and row-wise 

result logging system is the ability to perform data 

aggregation and statistical analysis across large sets of 

test executions. Since each row in the output CSV 
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represents a unique test case (including metadata such 

as input value, test category, outcome, and timestamp), 

this structure naturally enables both quantitative 

performance evaluation and qualitative insight 

generation. 

• Design for auditability and expansion: To ensure 

that the framework remains reliable and maintainable 

over time, it was designed with auditability, 

traceability, and extensibility as foundational 

principles. All test logs are generated in a standardised 

format and stored in clearly defined directories, with 

consistent naming conventions and timestamp-based 

organisation, making easy to locate and retrieve past 

test results, compare outputs across test cycles, 

identify historical trends in failure or instability, 

submit results as part of regulatory compliance or 

internal quality audits. Each log file represents a 

verifiable record of system behaviour, including both 

technical execution data and human-readable 

summaries. This traceability is especially important in 

critical infrastructure environments like 

SCADA/ADMS systems, where automated testing 

must meet high standards of transparency and 

documentation. 

C. Limitations and Considerations 

While the automation framework developed in this project 

successfully demonstrates the feasibility and scalability of GUI-

based testing for closed SCADA systems like PowerOn, it is 

important to recognise its technical, operational, and strategic 

limitations. Understanding these boundaries is essential for 

setting realistic expectations, identifying areas for 

improvement, and guiding future development efforts. 

The most important limitations observed are: 

• Dependence on visual environment: The core 

limitation of the system lies in its dependency on 

visual pattern recognition. Since PowerOn does not 

provide APIs or direct access to its underlaying data 

structures, all interactions are performed through 

screen-based logic using SikuliX. While the system 

accounts for this using fallback images and similarity 

tuning, this reliance on pixel-level accuracy makes it 

more fragile than API-based test automation 

approaches. 

• Image maintenance overhead: Because the 

framework operates entirely via screenshot-based 

logic, any updates to PowerOn’s graphical interface 

may require updating the associated image library. 

This creates a maintenance cost proportional to the 

number of test cases and images used. Over time, 

unless managed properly, this can affect scalability. 

• Limited to observable behaviour: One of the 

inherent constraints of visual automation frameworks 

is that they can only operate on observable screen 

states. This means that all test validations are restricted 

to what can be seen, captured, and interpreted through 

the graphical interface, excluding any form of internal 

or hidden system logic. This limitation does not make 

the tool less useful; it simply defines its scope. The 

framework is designed to test functional, UI-level 

behaviour, ensuring that what the user sees and 

interacts with behaves correctly. However, it is not a 

substitute for internal QA processes, such as unit 

testing, integration testing, or database validation. 

• Performance variability and system load: The 

performance of PowerOn is affected by a range of 

runtimes variables: the size of the dataset being 

handled, the number of concurrent users, server 

response times, and the graphical load of rendering 

complex diagrams. As the automation relies entirely 

on-screen response and image matching, these factors 

can cause the execution to behave inconsistently or fail 

if not handled carefully. Large diagrams may load 

slowly than anticipated, causing timeouts during 

detection. System lag or dropped frames can cause 

certain elements to appear partially or with visual 

artefacts, leading to recognition failures. Popups or 

windows may not close cleanly, leaving overlays that 

interfere with image matching. This variability 

introduces some uncertainty in result interpretation. A 

test marked as “Fail” may not reflect a functional 

problem in PowerOn, but rather a temporary delay or 

detection miss. For this reason, failed test should be 

reviewed alongside logs and screenshots before 

drawing conclusions. 

• Manual preconditions and operator involvement: 

Although much of the system has been automated, the 

current version still requires a limited degree of 

manual intervention, particularly at the start of a test 

session. This is due to a combination of security 

policies, PowerOn’s access architecture, and practical 

constraints of the testing environment. Specifically: 

o User must launch PowerOn manually and 

enter their credentials, as the login interface 

is protected against automation and includes 

unpredictable graphical security elements. 

o Some UI elements require manual dismissal 

if they are not recognised by the watchdog 

logic. 

• Lack of advanced AI integration: Although some 

commercial tools like Eggplant incorporate machine 

learning to improve test robustness, the current 

implementation using SikuliX is rule-based and 

deterministic. While this offers clarity and control, it 

limits adaptability in complex or ambiguous scenarios. 

 

V. RESULT ANALYSIS 

The batch execution campaign for Test 1 (Network 

Diagram) was performed using Scottish Power’s dataset which 

contains the information about the substations. The primary 

objective was to evaluate the operational stability, accuracy, 

and efficiency of the developed automation script when run 

repeatedly and under varying data inputs. By automating the 

same functional scenario across all dataset entries, the test 

aimed to replicate a realistic operational workload, identifying 

potential weak points in performance or recognition reliability. 

Due to time constraints and the scope of this stage of the 

project, the batch execution was carried out exclusively for this 
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single test case. This decision was made because this test serves 

as a representative example of how the automation framework 

operates: it includes multiple user interface interactions, search 

operations, filtering steps, and verification stages. Successfully 

validating this test in batch mode provides sufficient insight into 

the framework’s expected behaviour for other tests, while 

keeping the workload manageable within the available 

timeframe. 

The execution process was designed to log the outcome of 

each iteration, capturing result, error message, failed step, 

screenshot, execution duration and timestamp. 

This information was stored in a CSV results file generated 

dynamically for each execution session, ensuring that repeated 

runs did not overwrite previous data. The output file naming 

convention included a time stamp, allowing easy traceability of 

historical runs. 

A. Execution Summary 

The dataset consisted of 200 independent runs of the 

Network Diagram test on distinct substations, each representing 

a unique input scenario for the automation sequence. In total 

188 out of 200 runs succeeded (94%). Median execution time 

per run was 10.15 seconds. The principal failure modes were 

“Click scale – not found” (6/12) and “Open filters – not foud” 

(6/12). Every iteration involved: 

1. Launching and configuring the Network Diagram 

interface. 

2. Applying the appropriate filters. 

3. Search for the specific substation. 

4. Confirming its presence and accessibility in the 

interface. 

5. Recording results into the CSV file. 

 

The result obtained were: 
Table 2. Resuls summary 

Total 

tests 

Successful 

executions 

Failed 

executions 

Average 

execution 

time 

Average 

successful 

time 

200 188 (94%) 12 (6%) 9.79 s 10.15 s 

 

The performance metrics suggest that the automation 

process consistent across different inputs, with no significant 

increase in execution time caused by data variability. 

B. Success Rate Interpretation 

The observed success rate of 94% across 200 executions 

provides statistically grounded evidence that the framework can 

reliably interact with PowerOn’s GUI for Network Diagram 

searches under varied operational conditions. 

The 94% pass rate is an encouraging indicator of the 

robustness and stability of the developed script. It confirms that 

the implemented logic, image recognition thresholds, and 

interaction timing are well-adjusted for the majority of 

operational cases. The low failure rate also suggests that the 

framework is sufficiently resilient to minor interface response 

delays or changes in display conditions. 

It is also relevant to highlight that during execution, the 

automation successfully navigated through multiple interface 

states and visual variations without requiring any manual 

intervention. This includes handling differences in the location 

of UI elements, window sizes, and background interface data, 

factors that are often a challenge in SCADA and other closed-

system environments. 

C. Failure Analysis 

All 12 failures fell into two image-recognition categories, as 

show in Table 3Error! Reference source not found.. These 

issues are actionable via: regenerating higher-quality image 

templates at 100% DPI, raising similarity thresholds for icons 

while using sequential state validation and introducing short 

fallback searches (alternative icon variants) before failing. 

 
Table 3. Error messages from batch test 

Step 

Affected 

Error Message Likely Cause 

Open 

scale 
Cannot click; not 

found: 

1751992054822.png 

Temporary delay in 
rendering or partial 
obstruction of the 
target UI element. 

Open 

filters Cannot click; not 
found: 

1752064695766.png 

Minor interface 
variation or 

incomplete load of the 
filter menu before 

interaction. 

 

In both instances the script’s built-in error logging correctly 

identified the step name, exception message, and captured a 

screenshot of the screen at the moment of failure. This 

capability is critical for post-mortem debugging and prevents 

silent or undetected errors. 

Notably, these failures occurred on isolated data entries and 

were not reproducible in immediate re-execution, which further 

supports the hypothesis that they were transient rather than 

systematic issues. 

 

VI. OPPORTUNITIES FOR FUTURE WORK 

Building on the findings discussed in Error! Reference 

source not found., several opportunities emerge for extending 

the framework’s capabilities and addressing current limitations. 

While the current implementation demonstrates a functional, 

modular, and scalable approach to GUI-based test automation 

in PowerOn, it also lays the foundation for a wide range of 

future enhancements. Similar initiatives in other utilities, such 

as UK Power Networks, National Grid and international 

operators in Australia and North America, have explored hybrid 

testing approaches combining GUI automation with backend 

validation. Incorporating lessons from these implementations 

could accelerate the evolution of the framework. These 

opportunities span both technical refinements and strategic 

extensions, aimed at increasing robustness, usability, 

intelligence, and integration with enterprise-level systems. 

The key areas where this framework can evolve in future 

iterations are outlined in the following sections. 
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A. Improved Test orchestration and Execution Control 

The current system is designed to execute tests sequentially, 

with batch support based on CSV-driven inputs. However, its 

architecture allows for: 

• Test queue management: Introducing a visual or 

file-based interface where testers can assemble, 

reorder, and prioritise test cases. 

• Parameterized test templates: Allowing 

dynamic substitution of values within test scripts 

(such as test location, test type or scale). 

• Custom test schedules: Enabling timed or 

conditional execution based on system state, test 

importance, or resource availability. 

These changes would move the tool from a script-based 

runner to a test orchestration platform, improving flexibility and 

collaborative workflows. Given the current batch execution’s 

high success rate in the Network Diagram case study, improved 

orchestration could extend similar reliability to a broader range 

of scenarios. 

B. Expansion of Test Case Library 

While the initial development phase focused on navigation 

through the different modules and verifying correct operation 

of modules due to access restrictions (it is not possible to edit 

or change anything), the PowerOn platform contains a wide 

variety of functionalities that could also benefit from automated 

testing. 

Extending the test case library into these areas would 

promote broader confidence in system integrity, uncover 

regression vulnerabilities, and support cross-module integration 

testing as PowerOn evolves. Such expansion would not only 

broaden test coverage but also serve as foundation for 

standardised regression suites within the RTS department. 

C. Integration with Backend Verification Layers 

At present, the framework is limited to assessing what is 

visually observable. However, PowerOn generates backend 

events that could be used to validate internal logic and 

consistency beyond the UI layer. 

This would enable hybrid testing, combining the strengths 

of visual validation with programmatic verification, creating a 

more complete and reliable quality assurance framework. This 

hybrid model mirrors approaches adopted in other mission-

critical systems, where front-end validation is reinforced by 

backend state verification to improve fault detection rates. 

D. centralised Results Portal and Reporting Dashboard 

Currently, results are saved in structured CSV logs, which 

are ideal for traceability and later processing. However, 

transforming this output into a real-time, interactive dashboard 

would greatly enhance its operational value. 

This would include a centralised web portal for the RTS 

team, with visual dashboards highlighting key metrics, 

advanced search and filtering capabilities tools to allow 

engineers to explore results, and PDF or HTML reports that 

could be generated automatically. 

Such capabilities would turn the framework from a 

standalone test tool into a continuous quality monitoring 

system, supporting audits, historical analysis, and management-

level reporting. Beyond operational convenience, such 

dashboards could provide key performance indicators for 

management, aligning testing outcomes with organisational 

performance metrics. 

E. Integration with CI/CD Pipelines 

Although PowerOn is not natively integrated into CI/CD 

ecosystems, many of the test scripts and reporting mechanisms 

could be adapted to post-deployment validation scenarios. 

This type of integration would align the RTS testing strategy 

with modern DevOps principles, promoting rapid delivery 

without sacrificing system reliability. Although full CI/CD 

integration may not be immediately achievable in PowerOn’s 

production environment, establishing this capability in staging 

or training systems could pave the way for gradual adoption of 

DevOps-aligned practices. 

 

VII. CONCLUSIONS 

The development and execution of automated testing 

procedures for the PowerOn SCADA environment have 

demonstrated that a structured, image-recognition-based 

automation framework can reliably interact with complex 

operational interfaces and reproduce user workflows with 

minimal human intervention. 

The batch execution served as a practical proof of concept 

for the scalability of the framework. By systematically running 

the same test case against a dataset of real substation names, the 

framework proved capable of handling repetitive tasks, logging 

detailed execution data, and recovering from failures without 

requiring a restart of the entire campaign. This approach not 

only reduces the manual workload but also increases the 

repeatability and consistency of test executions, which is 

critical for ensuring reliability in operational environments. 

The decision to limit batch testing to a single, representative 

test case was driven by time constraints during the project 

timeline. Nevertheless, this single-case execution provided 

sufficient insight into how the framework could perform under 

batch conditions and offered a solid template for scaling the 

approach to other functional areas of the SCADA system. The 

success of this campaign indicates that the methodology can be 

applied to additional tests with only minor adaptations to the 

scripts and datasets. 

One of the most significant outcomes of this work was the 

identification of image recognition sensitivity as both a strength 

and a limitation. While high-precision matching ensures that 

deviations from expected UI states are promptly detected, it 

also increases the likelihood of false negatives when the visual 

rendering of an element changes slightly due to background 

processes, resolution differences, or other environmental 

factors. This insight opens the door to future enhancements, 

such as implementing adaptive similarity thresholds or 

integrating additional context-aware validation methods to 

reduce unnecessary failure reports. 

From a performance perspective, the test executions were 

stable, with consistent run times across the dataset and reliable 

mechanism for capturing and storing screenshots, error 

messages, and execution timestamps. This combination of 

functional reliability and detailed logging greatly improves 

post-execution analysis and root-cause investigation, making 
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the toolset not only an execution engine but also a diagnostic 

aid. 

In conclusion, the project has delivered: 

• A functional, adaptable automation framework for 

PowerOn SCADA environment. 

• A validated methodology for batch execution with 

robust error handling and detailed result tracking. 

• Insight into current limitations and clear paths for 

improvements. 

 

The results, obtained from 200 independent executions of 

the Network Diagram workflow, strongly suggest that 

extending this framework to cover additional test cases will 

further enhance efficiency, accuracy, and coverage of SCADA 

system validations. With the foundations now established, 

future development should focus on broadening the scope of 

automated tests, refining recognition algorithms, and 

integrating automated reporting dashboards to support ongoing 

operational testing and quality assurance.  

 

APPENDIX A: ALIGNMENT WITH UNITED NATIONS 

SUSTAINABLE DEVELOPMENT GOALS (SDGS) 

This project directly and indirectly contributes to several of 

the United Nations Sustainable Development Goals (SDGs), 

particularly in the context of sustainable energy systems, 

innovation in industry, and operational resilience in critical 

infrastructure. 

A. SDG 7: Affordable and Clean Energy 

By enabling more reliable, repeatable, and efficient testing 

of SCADA/ADMS systems used in electrical distribution, the 

framework supports the stability and efficiency of power 

networks. Improved testing reduces the likelihood of 

operational failures and accelerates the deployment of 

upgrades, contributing to the provision of affordable, reliable, 

and sustainable electricity to end users. 

B. SDG 9: Industry, Innovation and Infrastructure 

The automation approach fosters innovation in an area 

traditionally reliant on manual procedures. The modular, 

scalable architecture provides a foundation for digital 

transformation in utility operations, supporting the 

development of resilient infrastructure and promoting 

sustainable industrial processes.  

C. SDG 11: Sustainable Cities and Communities 

Reliable power distribution is essential for the functioning 

of modern cities. By enhancing the robustness and efficiency 

of control system testing, this project indirectly improves the 

resilience of urban energy supply, reducing service 

interruptions and their impact on communities.  

D. SDG 12: Responsible Consumption and Production  

Automation reduces the resource intensity of testing 

activities, decreasing the need for prolonged operator 

involvement and minimising wasted time and energy. This 

leads to more responsible operational practices and more 

efficient use of human and technical resources. 

E. SDG 13: Climate Action 

While the project does not directly reduce greenhouse gas 

emissions, the improved reliability and efficiency in power 

network operations can enable better integration of renewable 

energy sources and reduce energy losses in the grid. This 

contributes indirectly to climate change mitigation efforts. 

 

In summary, the project’s main contribution to the SDGs 

lies in strengthening the reliability and sustainability of critical 

energy infrastructure through innovative, low-cost automation. 

By reducing human error, accelerating testing cycles, and 

facilitating large-scale validation, it supports the transition to 

smarter, more resilient and more sustainable power systems. 
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