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Abstract— Low-voltage (LV) distribution networks are 

being reshaped by high penetrations of distributed energy 

resources, turning formerly passive feeders into active, 

bidirectional systems. Utilities already maintain rich network 

models in geographic information systems (GIS), yet raw 

geospatial representations do not conveniently convey 

connectivity and topology at a glance. For this purpose, single-

line diagrams (SLDs) remain the most intelligible tool, but 

manual drafting does not scale well to utility-sized datasets. This 

thesis addresses that gap by automating the generation of 

standard, orthogonal SLDs directly from heterogeneous GIS 

models. The thesis develops a reproducible, modular, end-to-

end pipeline that, given a GIS-based model of an LV distribution 

grid section, generates an SLD of the underlying network 

through four phases: (1) graph classification and simplification, 

producing a parameter-controlled simplified network graph 

that preserves key characteristics; (2) normalization to enforce 

a standard node pattern compatible with diagram rendering; (3) 

layered layout via a custom implementation of the Sugiyama 

framework for layer assignment and crossing minimization; and 

(4) plotting using standard single line diagram symbols and 

exporting in SVG format. The implementation is focused on 

ScottishPower Energy Networks (SPEN) data but can be 

generalized to other network datasets through minor 

adjustments to the first phase. Eight case studies with real LV 

network sections (increasing in size and meshedness) are used to 

demonstrate the method. The algorithm produced valid 

diagrams with no symbol overlap for six networks; and two 

invalid diagrams caused by non-level-planar substructures 

produced by fixed layer assignment. Runtime was ~0.1–1.6 s for 

smaller, radial sections and ~5–21 s for larger, more complex 

networks. One medium-voltage network outside the main LV 

scope was also laid out successfully, illustrating the versatility of 

the method. Limitations and trade-offs are also discussed, which 

include: (i) fixed layer assignment improves simplicity but can 

induce non-level-planarity; (ii) heuristic crossing minimization 

scales well but is non-deterministic; and (iii) input parameters 

(e.g., consumer grouping) offer adjustable detail but with 

imperfect control over the results. 

Keywords— SLDs, LV networks, Grid observability, DERs, 

Power system graphs, Graph layout. 

I. INTRODUCTION  

LV distribution networks are experiencing a significant 
shift due to the growing penetration of distributed energy 
resources (DERs), including rooftop PV, distribution-level 
storage and electric vehicles, which are turning traditionally 
passive LV feeders into active bidirectional systems. The 
resulting behaviors (voltage instability, protection 
coordination challenges, switching network topology) call for 
necessary increased observability and the development of 
tools that help network operators and planning engineers to 
quickly understand network connectivity, topology, and 
system status information at a glance [1]. 

Distribution system operators (DSOs) typically maintain 
comprehensive network databases based on geographical 
information systems (GIS) which contain information about 
network assets and their location. However, due to their scale 
and vast amount of data, representations of this raw data do 
not intuitively provide easily graspable connectivity and 
topology information. Single line diagrams are better suited 
for representing network connectivity and its underlying 
topology in an easier to process way for operators. However, 
the traditional approach of manually drafting the single line 
diagrams is slow and therefore impractical for visualizing 
distribution networks, which may contain millions of 
elements. This creates both a need and opportunity to develop 
automatic methods to generate single line diagrams leveraging 
the large GIS databases maintained by DSOs. 

There is currently no open, reproducible end-to-end 
workflow that converts heterogeneous GIS-based LV network 
models into standard, orthogonal, single-line diagrams at 
scale. Existing approaches are either partial or proprietary; 
academic work often targets either radial trees or generating 
general graph drawings not focusing on single line diagram 
conventions. Crossing minimization on layered, meshed 
graphs is challenging; under fixed layer rankings, non-level-
planar substructures make zero-crossing layouts impossible 
without re-ranking. 

Therefore, the goal of the thesis is to implement a pipeline 
that generates standardized orthogonal single line diagrams 
from GIS data, ensuring that the algorithm: 

• Preserves topology and elements connectivity 
information (switches, fuses, transformers, etc.). 

• Minimizes visual clutter, grouping consumers and 
displaying only essential topological information. 

• Runs fast enough for interactive or near interactive 
use on average personal computing hardware. 

II. BACKGROUND AND LITERATURE REVIEW 

A. Visualization of Power System Data 

Power grid visualization has undergone a significant 
transformation over the past decades, evolving from static, 
paper-based schematic drawings to dynamic, interactive 
digital platforms that integrate real-time data. 

Contemporary grid observability architectures for LV/MV 
distribution systems rely on two complementary spatial 
frameworks: geographical (map-based) and topological 
(connectivity-based). Each of these approaches is more 
suitable for different applications [2]. 

Geographical reference: based on geographical 
information systems (GIS), system elements and their 
associated data are displayed anchored to their physical 
location. This approach is useful when the location of the 



information shown is relevant, and it can help pinpoint the 
geographical coordinates of a source of information, which is 
especially useful for example when determining fault 
locations in transmission lines, or supporting street-level 
maintenance planning, easing the process of dispatching field 
crews. However, it might struggle to represent information in 
an organized and structured manner, failing to convey 
information effectively when a significant zoom is necessary 
in areas like dense urban networks, where information might 
be too cluttered otherwise, while the opposite occurs in rural 
areas, where information might be excessively sparse [2]. 

Topological reference: focuses on displaying electrical 
connectivity rather than physical geographical distance. This 
helps to identify the relationships between different elements 
of the network, like separating different voltage levels, and 
how system dynamics in an area of the grid might spread to 
neighboring grid elements, or how a local power outage could 
spread to adjacent areas and what switches could potentially 
be operated to isolate it. Single-line diagrams remain the 
industry standard for this purpose, thanks to their ability to 
express bus-branch relationships in a compact format, scaling 
from substations to interconnections [2]. 

B. Modelling LV Networks as Graphs 

Due to their inherent network structure, electric networks 
can be naturally modelled as graphs. In this mathematical 
abstraction, network elements (substations, buses, switches, 
capacitors, loads, etc.) are represented as nodes, while 
electrical connections (transmission or distribution lines, 
cables, transformers) are represented as edges. This 
representation provides a powerful and flexible framework for 
analyzing and simulating the behavior of large power systems, 
enabling the application of a wide range of graph algorithms. 

• Nodes: representing buses, substations, 
transformers, switches, loads and other electrical 
elements.  

• Edges: representing transmission lines, distribution 
feeders, cables and other electrical connections 
between components. 

Applications of graph theory in power systems include 
topology processing to identify connectivity, energized 
sections and traces; optimization and power-flow 
formulations that operate on the graph structure; and state 
estimation and fault localization. Graph modelling provides 
numerous benefits, like the possibility of applying well 
studied graph algorithms and mathematical frameworks; but 
several challenges must also be considered, including loss of 
electrical detail in pure topology views, dynamic behavior not 
captured by static graphs, and the scalability vs detail trade-
off, which motivates network simplification approaches 
where intelligent graph reduction preserves essential 
connectivity while improving visualization clarity [3]. 

C. Automatic Schematic Generation of Single Line 

Diagrams 

Power system visualization through diagrams has 
undergone fundamental transformations from manual paper-
based and hand drawn diagrams, to sophisticated digital 
solutions. Various approaches have been developed to address 
the complexity of modern electrical networks. Several 
topological and aesthetic constraints and objectives must be 
achieved in the generation of diagrams for LV/MV grids 

including minimizing edge crossings, avoiding component 
overlap and maintaining layout clarity. 

Some early approaches include pioneering work presented 
by Canales-Ruiz et al. in 1979 [4], proposed an automatic 
drawing algorithm for single-line diagrams. Their approach 
formulated the problem as a layered graph ordering algorithm, 
in which every node represents a bus in the diagram, and the 
layer for each bus is assigned based on a longest path 
algorithm. The algorithm then takes an iterative greedy switch 
approach to swap the edges in each layer of the diagram until 
it finds a solution with no crossings. This underlying graph is 
then represented graphically by assigning strictly vertical lines 
to buses and horizontal lines to connections between buses.  

 

  
Figure  1: underlying graph (a), and diagram representation 

proposed by Ruiz et al. (right) [4] 

Other approaches have built on this foundation, treating 
the diagram representation of power systems as a graph layout 
problem. Tree algorithms, like the Reingold Tilford algorithm, 
are used to represent graphs as rooted trees, useful if the 
underlying network is completely radial. A rooted tree layout 
was proposed by Rao et al. in 2003 [5], which generates a 
layered tree layout given a power system radial feeder, and 
then converts the layout into an orthogonal bus structure 
representation. Force directed and spring-based approaches 
model the graph as physical system in which nodes repel each 
other, and edges act as springs pulling nodes together. 
Although these approaches are intuitive and can handle 
diverse topologies, they do not generate the orthogonal and 
layered layouts often desired in one-line diagrams; nor do they 
yield geographically faithful representations. Mixed-Integer 
Linear Programming formulations have been proposed that 
guarantee optimal solutions for objectives such as crossing 
minimization or area minimization, but their computational 
complexity grows significantly with network size. 

Although innovative solutions and useful applications 
have been developed over the past 4 decades, the field of 
automatic diagram generation is still largely undeveloped. 
Most contributions target very specific problems that cannot 
be generalized broadly to provide useful standardized single 
line diagrams. Some of the current obstacles include the lack 
of an end-to-end open-source tool chain, algorithmic bias 
towards radial or weakly meshed topologies, underdeveloped 
treatment of network simplification, and the lack of scalable 
heuristic implementations for meshed networks. 

D. Graph Layouts and Planarity 

A graph is planar if it can be laid out in a 2D plane such 
that no edges intersect each other except at their endpoints. 
There are several algorithms that can test for planarity, 
achieving linear time complexity, including the Hopcroft–
Tarjan method or the Boyer–Myrvold method [5]. However, 
even though checking for planarity is simple, finding a layout 
for a planar graph with the minimal number of crossings is 
not, and there is not a definitive solution that works on every 
case. This is actually an NP-hard problem that is generally 
tried to be solved through heuristics. 



Graph layout algorithms have the objective of assigning 
2D positions to each node and routing edges so that the 
drawing conveys structure clearly. Common goals are to 
reduce visual clutter (minimizing edge crossings, edge bends 
and node overlap), emphasize structure (hierarchy, tree shape, 
flow direction, symmetry), satisfy aesthetic constraints (even 
spacing, alignment, balance), and represent data attributes. 
There is a vast amount of different layout algorithms, each 
serving their own specific purpose and best suited for a certain 
type of graph in particular, including hierarchical, tree, force-
directed, circular, matrix-based or geographic. Two 
approaches in particular are relevant for this project: 
Reingold–Tilford (trees) and the Sugiyama framework 
(general directed graphs). 

Reingold–Tilford produces tidy drawings of rooted trees, 
with even spacing, non-overlapping and aesthetically centered 
predecessors above their successors. It offers a 
computationally simple algorithm, which runs in linear time 
to the number of nodes and produces aesthetically pleasing 
results, but only works in acyclic rooted trees. The algorithm 
aims to satisfy: no node overlaps; children drawn on a level 
below their parent; parent centered over its children’s span; 
uniform subtree separation; and symmetry for equivalent 
subtrees [6]. 

The Sugiyama framework allows hierarchical layouts 
using a 4‑step framework: cycle removal, layer assignment, 
crossing minimization and coordinate assignment. Most layer 
generation algorithms generally do not incorporate the 
constraint that the resulting layout must be level-planar; 
generating a level-planar set of layers is an NP-hard problem, 
and detecting if a given graph is level-planar is not as trivial 
as detecting general planarity. Dummy node insertion helps by 
ensuring all edges span exactly one layer. For crossing 
minimization inside fixed layers, exact minimization is NP-
complete, so heuristic methods are used—commonly the 
barycenter or median methods, with multiple top-
down/bottom-up sweeps. A way to improve the results is to 
introduce naïve randomization of input orders, run the 
algorithm several times and keep the best solution; this 
increases the odds of escaping local minima at the cost of 
higher runtime. If the layered graph is non–level‑planar, the 
crossing reduction cannot reach zero crossings; effectiveness 
is capped by the initial layering [7], [8]. 

III. METHODOLOGY 

A. Formal Problem Definition And Objectives 

The automatic generation of single-line diagrams from 

GIS data is formally defined as a graph transformation and 

visualization problem. The input network is defined as a 

spatial network graph G = (V, E, P, A)  where:  

• V = {𝑣1, 𝑣2, . . . , 𝑣𝑛}  is the set of nodes representing 

network components. 

• E is a set of edges representing electrical 

connections between elements. 

• P: V → ℝ2 is a position function mapping each 

node to geographic coordinates. 

• 𝐴: 𝑉 is an attribute function mapping each node to 

a set of properties. Among these properties, is the 

component type, type𝑖 . The set of all entity types 

in a graph is defined as 𝑇. 

The output is a diagram representation S = (G′, L, R) , 

where: 

• G′ = (V′, E′)  is a simplified directed acyclic graph 

derived from G. 

• L: V′ → ℤ2 is a layout function mapping each node 

to a discrete grid position. 

• R: V′ → 𝑆 is a rendering function mapping nodes to 

diagram symbols 

The input graph is read from a GIS format data structure, 
which contains a set of nodes {vi}  representing network 
elements and components with properties including a unique 
identifier: idi, a component type: typei , and other electrical 
properties: propsi ; and a set of edges {ej}, with properties 

source node: uj and target node: vj. 

The algorithm also takes two additional inputs, which 
allow modifying the characteristics of the output diagram, and 
adjusting its resolution: max_consumers_per_bus, used to 
determine the maximum number of consumers inside each 
bus,which determines the vertical detail in the diagram by 
increasing or decreasing the number of buses, , based on the 
maximum number of consumers for each bus, lower values of 
max_consumers_per_bus, allow displaying more detail of the 
network’s topology by creating more buses, and vice versa. 
The other parameter is max_consumers_per_group, which 
determines the maximum group size inside each bus, allowing 
to adjust granularity horizontally. 

Internally, two additional inputs are also configured, 
key_nodes, which is used to identify important elements of the 
network that must be maintained in the final schematic, and 
root_label, which is used to identify the elements that must be 
placed on the first layer of the schematic, generally 
distribution transformers. 

The algorithm produces an SVG diagram which meets the 
following objectives and constraints: 

• Topology preservation, the connectivity for 
every element in the simplified graph reflects the 
connectivity in the original network. 

• Hierarchical structure, the output is a layered 
representation with the distribution 
transformer(s) (or other configurable root 
element) placed on the first layer, and the rest of 
the elements in subsequent layers downstream. 

• Key component preservation, all components 
identified as crucial are flagged and represented 
in the final schematic. 

• Orthogonality: all connections are horizontal or 
vertical. 

• Crossing-free: no elements overlap or cross with 
each other. 

• Simplified representation, the algorithm groups 
consumers accordingly with the input 
parameters, and represents a simplified 
topological view of the network. 



B. Solution Overview 

The solution takes a 4 step process to generate the final 
diagram representation from the raw GIS data, the detailed 
process can be observed in Figure 2.  

This approach allows to ensure that the objectives are met 
by targeting them sequentially, and enables the replacement 
and improvement of individual modules while maintaining an 
end-to-end functional pipeline. It also improves compatibility, 
by maintaining the core algorithmic process intact, but making 
slight modifications to the input and output modules, as 
desired. The individual stages of the process are explained in 
the subsequent sections. 

C. Graph Classification and Simplification 

Inputs: raw graph G and parameters 
max_consumers_per_bus, max_consumers_per_group; 
internal sets key_labels and root_label. Output: classified and 
simplified graph G’. 

The goal of the classification and simplification phase is 

to create a simplified subgraph G′ from the input graph G, 

reducing the number of nodes and grouping consumer nodes 
so that the resulting single line diagram representation 
contains only the key topological information of the 
underlying network. This process allows to reduce visual 
clutter, while also ensuring that the key connectivity 
information between all the elements in the network is 
preserved. 

Converting the graph to directed: the algorithm takes the 
root nodes (distribution transformers in LV grids) and 
traverses the whole graph through breadth first search (BFS), 
converting edges to directed in traversal order. This generates 
a directed G to which the classification rules can be applied. 

Node classification: the algorithm assigns each node a role 
that determines how it is simplified and laid out. Categories 

include consumer nodes; bus nodes (electrically equivalent 
points grouped later); connection nodes (boundaries for 
electrically equivalent zones and preservation of main joints); 
and key nodes (transformers, switches, fuses, LV links) that 
must be preserved. Whether adjacent nodes form the same bus 
is determined by consumer_count, the number of consumers a 
set of adjacent nodes are connected to, and the 
max_consumers_per_bus threshold. 

Creating the simplified graph: connection and key nodes 
are added directly; adjacent bus nodes are grouped into a 
single node and reconnected to their original boundary 
connection nodes; consumer nodes adjacent to grouped buses 
are grouped in sizes up to max_consumers_per_group (and 
consumers directly attached to connection nodes are grouped 
and attached accordingly). max_consumers_per_group and 
max_consumers_per_bus together tune the level of detail 

displayed in the final diagram. Edges in G′ are created as 

undirected for efficiency; direction is restored later after 
simplification. 

(a) 

 
(b) 

 
Figure  3: Sample graph section before (a) and after (b) the 

simplification algorithm is applied. Nodes: green-bus, red-

consumer, blue-connection, yellow-connection key node. 
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Figure  2: Methodology diagram. 



D. Graph normalization 

Input: simplified graph G’. Output: normalized graph G’ 
with bus-connection-bus structure.  

The objective of this phase is to ensure the simplified 
graph follows the normalized bus-connection-bus node 
structure that is required by the layout algorithm and to plot 
the final diagram. The post-processing transforms the 
undirected simplified graph into a DAG that meets:  

• Connection nodes have only one predecessor and 
one successor, both bus nodes.  

• There are no bus nodes adjacent to each other.  

• Demand and key nodes are successors to bus 
nodes; connection-key nodes have one 
predecessor bus and one successor bus.  

To maintain topology while achieving this structure, adjacent 
connection nodes are removed, and connection nodes with n 
successors are split into n copies with one successor and one 
predecessor each. Additional synthetic bus nodes are inserted 
in two scenarios: (i) adjacent key nodes; and (ii) connection 
nodes with a consumer or single-degree key successor. 
Single-degree bus nodes created as artifacts are removed, 
along with any non-key connection nodes linking them.  

(a) 

 
(b) 

 
Figure  4: Insertion of bus nodes in the normalization phase, 

adjacent key nodes (a), bus node inserted (b) 

E. Graph Layout Generation 

Inputs: normalized graph G’, max_iterations. Output: G’ 
with assigned layers and coordinates. 

Laying out the graph nodes is an essential step in 
producing a topological representation of the network. 
Generating a visually pleasing orthogonal single‑line diagram 
requires no crossings in the underlying graph; and discrete x 
and y positions to allow orthogonality, and uniform spacing 
between elements. Positions are therefore assigned on a grid 
with y‑layers based on longest distance from roots 
(incrementing only for bus nodes) and x‑positions chosen to 
avoid crossings. 

Creating a layout that minimizes crossings is NP‑hard; 
although all graphs here are planar, fixed layer assignment can 
yield non‑level‑planar cases where a 0‑crossing layout is 
impossible. The layout algorithm is a custom implementation 
of the Sugiyama framework with: layer assignment; crossing 
minimization; and coordinate assignment. The algorithm runs 
on a subgraph Z containing only bus nodes to improve 

performance, then propagates coordinates to all nodes. Edges 
are not rendered; connectivity is conveyed implicitly by bus 
length in x (to farthest successor) and by placing successors 
along the same y as their parent bus, using the node position 
as the top-most reference point to draw the symbol. Elements 
connecting two buses and connection nodes are represented 
vertically, with a length that is calculated based on the layers 
of the two buses they connect. 

Crossing minimization uses a barycenter heuristic with 
dummy nodes inserted in multi-layer edges, ensuring every 
edge connects a node from one layer to a node in the following 
layer. Because a single run is prone to get stuck in local 
minima, the algorithm is run iteratively with randomized input 
edge orders up to a maximum number of runs; it stops early 
on a zero‑crossings solution and otherwise returns the 
best‑found (least crossings) layout. 

(a) 

 
(b) 

 
(c) 

 

Figure  5: Example bus graph before (a) and after applying 

the crossing minimization algorithm (b); and after the 

assignment of discrete x positions (c) 

F. Schematic Plotting and Output 

Once node positions are determined, the size to plot buses 

and connection nodes is calculated. A plotting script assigns 

custom symbols to each node and generates a self‑contained 

SVG. The SVG format is chosen for versatility, scalability, 

and fidelity to the geometric structure of the data, enabling 

efficient storage and resolution-independent scaling. 

 

  
Figure  6: Symbol assignment for a bus with 4 elements, two 

open LV links (yellow nodes), a consumer (red node) and a 

closed LV link (not visible, below the green, bus node) 



IV. CASE STUDIES 

A. Experimental setup 

To validate the results of the automatic diagram 

generation algorithm, a case study approach is used, in which 

several individual samples of LV networks of a wide variety 

in size and structure are represented as diagrams using the 

explained methodology, measuring several metrics to gauge 

performance and determine validity. Eight case studies are 

performed, with eight different networks with characteristics 

shown in Table 1. Their characteristics are compared by their 

size (number of nodes) and meshedness (measured by M, 

number of nodes with two predecessors in the underlying 

graph). A diagram is considered valid if the laid-out graph 

contains no crossings. 

 

Table 1: Case studies input networks characteristics 

Case Study NNODES M 

#1  69 0 

#2  145 1 

#3  239 2 

#4 611 2 

#5  1126 5 

#6  1233 4 

#7  2282 11 

#8  1810 7 

 
The objective of the first three case studies, which are 

performed on simpler networks, is validating if the resulting 
schematics faithfully represent the actual topology of the 
network, and to test whether the input parameters can be used 
to effectively adjust the characteristics and detail of the 
diagram as desired. On the other hand, case studies 4 to 7 focus 
on testing the performance of the layout algorithm on more 

complex networks. Case study 8 is performed on an MV 
network, outside of the formal scope of the project, but that 
allows to test the versatility of the algorithm, to generate 
schematics for data with different characteristics compared to 
the main project’s scope.Figure 8 contains a representation of 
four of the networks used in the case studies. Orange points 
represent consumers, blue circles transformers and red/green 
circles closed/open LV links. 

Case Study 2 Network Case Study 6 Network 

 

 

Case Study 3 Network Case Study 8 Network 

 

 

Figure  8: Sample of case study input networks 

B. Outputs for the case studies 

Figure 7 contains the single line diagrams generated for 
the four networks shown in Figure 8. The generated diagrams 
scale in complexity along the size of the input networks, and 
for the MV network in case study 8, the complexity of the 
diagram remains similar to the pre-simplification network, as 

Case Study 2 Network Case Study 6 Network 

  

Case Study 3 Network Case Study 8 Network 

  
Figure  7: output diagrams for the networks shown in Figure 8 



no consumer clusters were generated due to the network 
having none. 

V. RESULTS 

A. Summary of Results and Key Findings 

Table 2 contains a summary of each case studies’ results, 

along with the characteristics of the input networks. 

 
Table 2: Summary of results 

Case 

Study 

Results 

k Niter NL 
Runtime 

(s) 

#1 0 1 13 0.1 

#2 0 1 15 0.13 

#3 0 1 36 0.58 

#4 0 1 67 1.57 

#5 0 4 64 5.07 

#6 2 20 90 6.43 

#7 8 77 127 21.18 

#8 0 27 643 17.87 

 
The algorithm generated valid diagrams for 6 of the 8 

networks studied, as it was able to find zero crossing layouts 
for their underlying graphs. For case studies 6 and 7 the 
algorithm was not able to find a zero crossings solution for 
their underlying graphs and therefore generated invalid 
diagrams. Runtime increased significantly for larger and more 
meshed graphs. 

The obtained results validate the following key findings: 

Valid diagrams for most cases, failures align with 
expectations. The first 4 case studies produced a successful 
layout with zero crossings on the first iteration, reflecting the 
algorithm’s effectiveness in small-sized, low-meshed 
networks.  For case study 5, a significantly more 
meshed network, the algorithm also produced a valid diagram, 
although it required several layout iterations. The algorithm 
was unable to generate a zero-crossings solution for case 
studies 6 and 7, and therefore, a valid final diagram. However, 
this aligns with the expected result, as both networks have an 
underlying non-level planar graph which is generated by the 
fixed layer assignment process. 

Runtime scales with size and meshedness. Runtime 
increased significantly in relation to the number of nodes in 
the graph, remaining almost linear for less complex networks 
(only ~0.1 seconds for the simplest cases), but becoming 
exponential as the network complexity, both in size and 
meshedness, increased, up to 21.18 s for the most complex 
network. This is caused by the longer graph traversals required 
for several algorithms, as well as the larger number of 
iterations of the layout algorithms. A smaller number of 
traversals (by for example integrating several algorithms 
together) could potentially lower the runtime for larger 
networks. 

Input parameter effects are predictable and controllable. 
Consumer grouping parameters tune horizontal and vertical 
detail as intended in the final diagram. Decreasing 

max_consumers_per_bus increases vertical resolution, 
showing more detail into the network’s topology by 
displaying more buses, while decreasing 
max_consumers_per_group allows to show more horizontal 
grouping granularity, showing higher numbers of consumer 
groups connected at the same network level. 

MV network case study validates generality. The 
algorithm was also successful in producing a valid diagram for 
a MV network, out of the formal project’s scope, 
demonstrating the proposed pipeline is generalizable to 
successfully generate valid diagrams for networks with 
significantly different topological characteristics than the LV 
networks on which it is mainly implemented. 

Randomized naïve iterations of the layout algorithm 
improve results. Re-running the crossing minimization section 
of the layout algorithm with randomized inputs allowed the 
algorithm to escape local minima and find optimal solutions 
for case studies 5 and 8, whose solution was not found on the 
first algorithm iteration. For case studies 6 and 7, even though 
it could not find a solution with no crossings due to the non-
level-planarity of the graphs, later iterations also successfully 
reduced the number of crossings. This performance is further 
analyzed in the following section. 

B. Layout Algorithm Benchmark 

To visualize and benchmark the performance of the layout  
algorithm, a simulation for each of the three most demanding 
case studies performed has been conducted, in which the 
layout algorithm exclusively was run 30 times with different 
values for the number of random naïve iterations,  to test how 
increasing the maximum number of iterations can lead the 
algorithm to find more optimal solutions, and how the 
execution time increases in relation to the number of 
iterations. 

Each test was conducted using incremental values of 
maximum iterations, for the networks in case studies 6, 7 and 
8. The results can be observed in Figure 9: 

 

 
Figure  9: Layout algorithm performance, case studies 6, 7 and 

8 

 As the figures illustrate, the tests for each network 
produced significantly different results. Starting with the 
network used in case study 6, the smallest out of the ones 
tested, the algorithm found the best solution (2 crossings) in 
only two iterations. However, due to the random nature of the 
algorithm, in the following tests it did not converge to that 
optimal solution until the 7th test, when 7 max iterations were 



used. As expected, for higher iteration tests, the algorithm 
always managed to find the best solution, which is the 
corresponding to two crossings, as explained in the case study. 
Execution time increased linearly, with the number of 
iterations, as expected, but was always shorter than 1 second, 
indicating that the layout optimization phase represents only a 
small fraction of total time to run the algorithm, which in case 
of case study 6 was 6.42 seconds for 100 max iterations. 

In contrast, the results for the tests done on the larger and 
more complex case study 7 network, showed that the 
algorithm required a significantly larger number of max 
iterations to find the best solution it found among all tests (8 
crossings), around 80. It also shows a greater variance in the 
results for higher max iteration values, which highlights that 
the randomness of the algorithm is correlated with the 
complexity of the network, suggesting that a higher number of 
maximum iterations should be used to maximize the odds of 
obtaining the optimal solution. Runtime also scaled linearly, 
with similar values to the case study 6 network, but a higher 
slope which is likely caused by the increased complexity and 
size of the network. 

Finally, the results for the MV network used in case study 
8 show significant differences, as in this case the algorithm did 
find a zero crossings solution. This crossing-free solution was 
first found in the 15 max iterations test, and the algorithm 
managed to consistently find it when the number of max 
iterations was higher than 30. This proves that when the 
underlying network contains no non-level-planar 
substructures, the algorithm can effectively find the optimal 
solution within a small number of iterations. The execution 
time figure shows a significant variability after 10 max 
iterations because the algorithm stops after finding the 0 
crossings solution, leading to random total execution times for 
runs that are able to find that solution, and therefore 
uncorrelated with the number of max iterations. For tests that 
did not converge to the optimal solution (max iterations ≤ 10 
and = 25), the algorithm did have a runtime proportional to 
max iterations, and its slope can be observed to be 
significantly higher than in the two previous simulations, 
further proving that the slope is correlated with the size of the 
network laid out. 

C. Method Limitations and Design Trade-offs 

The results of the case studies also highlight the following 

limitations and trade-offs  

Fixed layer assignment vs level planarity. The algorithm 

assigns node layers based solely on distance from the roots, 

before crossing minimization. This fixed layer assignment 

provides simplicity and creates intuitive layers, that allow to 

easily represent topological distance from the transformer. 

This however causes a significant limitation, that the creation 

of non-level-planar structures is not avoided. An algorithm 

that dynamically checks level planarity and adjusts the layers 

to ensure it would be necessary to solve this, but at the cost 

of increased complexity and without certain success, as it is 

another NP-hard problem. 

Naïve heuristic approach vs deterministic solution. The 

success of the crossing minimization algorithm relies on the 

naïve heuristic algorithm being able to escape local optima to 

find the optimal solution, which is increasingly unlikely as 

network size increases and requires more iterations. The 

approach is effective for simple networks, but more complex 

cases might benefit from a more deterministic approach, 

through MILP, for example, although this would likely 

increase runtime significantly. 

Limited parametric tuning. The input parameters allow to 

adjust the maximum number of consumers in each bus and 

group, up to a certain degree. The number of consumers on 

each bus in some cases can be larger than the specified 

threshold due to several consumers being connected at the 

same topological point, or due to the graph simplification and 

normalization process, limiting the capability of tuning the 

final diagram through changing the input parameters. 

Additionally, when several groups of consumers are created 

in the same bus node, the groups generally do not reflect 

clusters consumers close to each other, which could be 

implemented through a more complex algorithm that takes 

this into consideration when creating clusters. 

Exponential time complexity for complex networks. 

Although for the majority of cases studied, the algorithm was 

able to generate the single line diagrams in reasonably short 

times (less than 5 seconds), it has been shown that for more 

complex networks runtime increases exponentially. This 

might make the algorithm unsuitable for increasingly meshed 

and complex graphs. 

VI. CONCLUSIONS AND FUTURE WORK 

This thesis demonstrates and delivers a reproducible 
pipeline that can be used to translate LV network GIS data into 
standard, readable, single-line diagrams that faithfully 
represent the underlying topology of the network. The 
separation of graph simplification, layout and symbol plotting 
enables a modular approach that can be tuned via several 
inputs to fit the data characteristics and to adjust 
characteristics of the final diagram, which contains a 
simplified view of the underlying network topology and key 
characteristics. The method produced six valid diagrams for 
eight diverse real networks studied, with the two unsuccessful 
cases explained by level-planarity violations caused by the 
fixed layer assignment algorithm. The runtime for these cases 
increases linearly with the number of nodes for the least 
complex networks but rises exponentially for larger and more 
meshed networks, although remaining on a timescale suitable 
for interactive or near interactive use on personal computing 
hardware. 

Some suggested areas for further development and 
potential result improvement include: 

• Substitute the fixed layer assignment and heuristic 
crossing minimization for a MILP approach that 
aims to solve a two-objective problem, jointly 
optimizing the layer assignment and relative position 
of nodes inside each layer to reliably produce valid 
zero-crossings layouts, not constrained by fixed layer 
assignments which might be non-level-planar. 
However, this approach, if feasible, might have an 
excessive time complexity that could make it 
impractical. 

• Heuristic approaches to adjust the layer assignment. 
Detection of level planarity is complex, however, 
iteratively detecting smaller non-level planar 
structures inside a larger graph might be feasible, and 
changing the layer of some nodes in the structure 
while checking level planarity iteratively might be a 
valid heuristic approach for creating level planar 



graphs that can be laid out using the current crossing 
minimization and layout algorithms. 

• Pre-computing layouts for different values of 
max_consumers_per_bus. As changing the value of 
max consumers can change the resolution into 
network details, effectively changing the number of 
bus nodes in some network sections, this can 
potentially cause non-level planar structures to 
disappear as the layers change. Although this is not 
an optimal solution as it removes the capability of 
tuning the input parameters, it might allow to 
generate single line diagrams of some networks that 
could not be generated using a different 
max_consumers_per_bus parameter. Pre-computing 
the layouts with several parameter values could 
allow storing what values produce suitable diagrams. 

• Interactive final diagram. From the final layout, an 
interactive implementation of the diagram could be 
created, through a web-based application for 
example, that allows features like selecting elements 
to view more detailed information, selecting two 
points to create traces between elements in the 
network, or visualizing with more detail certain 
consumer clusters that the operator selects, for 
example. 

• Partitioning the layout. For larger networks for 
which it might not be feasible to generate a single 
line diagram without components overlapping (due 
to complexity and non-level-planarity, a possible 
solution could be to compute several smaller layouts 
independently and later generating the complete 
layout by unifying the smaller sections. 
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