

Automatic Single-Line Diagram Generation for LV

Networks from GIS Data
Pablo Bermejo Villaescusa

University of Strathclyde – Universidad

Pontificia Comillas ICAI

Glasgow, Scotland

Abstract— Low-voltage (LV) distribution networks are

being reshaped by high penetrations of distributed energy

resources, turning formerly passive feeders into active,

bidirectional systems. Utilities already maintain rich network

models in geographic information systems (GIS), yet raw

geospatial representations do not conveniently convey

connectivity and topology at a glance. For this purpose, single-

line diagrams (SLDs) remain the most intelligible tool, but

manual drafting does not scale well to utility-sized datasets. This

thesis addresses that gap by automating the generation of

standard, orthogonal SLDs directly from heterogeneous GIS

models. The thesis develops a reproducible, modular, end-to-

end pipeline that, given a GIS-based model of an LV distribution

grid section, generates an SLD of the underlying network

through four phases: (1) graph classification and simplification,

producing a parameter-controlled simplified network graph

that preserves key characteristics; (2) normalization to enforce

a standard node pattern compatible with diagram rendering; (3)

layered layout via a custom implementation of the Sugiyama

framework for layer assignment and crossing minimization; and

(4) plotting using standard single line diagram symbols and

exporting in SVG format. The implementation is focused on

ScottishPower Energy Networks (SPEN) data but can be

generalized to other network datasets through minor

adjustments to the first phase. Eight case studies with real LV

network sections (increasing in size and meshedness) are used to

demonstrate the method. The algorithm produced valid

diagrams with no symbol overlap for six networks; and two

invalid diagrams caused by non-level-planar substructures

produced by fixed layer assignment. Runtime was ~0.1–1.6 s for

smaller, radial sections and ~5–21 s for larger, more complex

networks. One medium-voltage network outside the main LV

scope was also laid out successfully, illustrating the versatility of

the method. Limitations and trade-offs are also discussed, which

include: (i) fixed layer assignment improves simplicity but can

induce non-level-planarity; (ii) heuristic crossing minimization

scales well but is non-deterministic; and (iii) input parameters

(e.g., consumer grouping) offer adjustable detail but with

imperfect control over the results.

Keywords— SLDs, LV networks, Grid observability, DERs,

Power system graphs, Graph layout.

I. INTRODUCTION

LV distribution networks are experiencing a significant
shift due to the growing penetration of distributed energy
resources (DERs), including rooftop PV, distribution-level
storage and electric vehicles, which are turning traditionally
passive LV feeders into active bidirectional systems. The
resulting behaviors (voltage instability, protection
coordination challenges, switching network topology) call for
necessary increased observability and the development of
tools that help network operators and planning engineers to
quickly understand network connectivity, topology, and
system status information at a glance [1].

Distribution system operators (DSOs) typically maintain
comprehensive network databases based on geographical
information systems (GIS) which contain information about
network assets and their location. However, due to their scale
and vast amount of data, representations of this raw data do
not intuitively provide easily graspable connectivity and
topology information. Single line diagrams are better suited
for representing network connectivity and its underlying
topology in an easier to process way for operators. However,
the traditional approach of manually drafting the single line
diagrams is slow and therefore impractical for visualizing
distribution networks, which may contain millions of
elements. This creates both a need and opportunity to develop
automatic methods to generate single line diagrams leveraging
the large GIS databases maintained by DSOs.

There is currently no open, reproducible end-to-end
workflow that converts heterogeneous GIS-based LV network
models into standard, orthogonal, single-line diagrams at
scale. Existing approaches are either partial or proprietary;
academic work often targets either radial trees or generating
general graph drawings not focusing on single line diagram
conventions. Crossing minimization on layered, meshed
graphs is challenging; under fixed layer rankings, non-level-
planar substructures make zero-crossing layouts impossible
without re-ranking.

Therefore, the goal of the thesis is to implement a pipeline
that generates standardized orthogonal single line diagrams
from GIS data, ensuring that the algorithm:

• Preserves topology and elements connectivity
information (switches, fuses, transformers, etc.).

• Minimizes visual clutter, grouping consumers and
displaying only essential topological information.

• Runs fast enough for interactive or near interactive
use on average personal computing hardware.

II. BACKGROUND AND LITERATURE REVIEW

A. Visualization of Power System Data

Power grid visualization has undergone a significant
transformation over the past decades, evolving from static,
paper-based schematic drawings to dynamic, interactive
digital platforms that integrate real-time data.

Contemporary grid observability architectures for LV/MV
distribution systems rely on two complementary spatial
frameworks: geographical (map-based) and topological
(connectivity-based). Each of these approaches is more
suitable for different applications [2].

Geographical reference: based on geographical
information systems (GIS), system elements and their
associated data are displayed anchored to their physical
location. This approach is useful when the location of the

information shown is relevant, and it can help pinpoint the
geographical coordinates of a source of information, which is
especially useful for example when determining fault
locations in transmission lines, or supporting street-level
maintenance planning, easing the process of dispatching field
crews. However, it might struggle to represent information in
an organized and structured manner, failing to convey
information effectively when a significant zoom is necessary
in areas like dense urban networks, where information might
be too cluttered otherwise, while the opposite occurs in rural
areas, where information might be excessively sparse [2].

Topological reference: focuses on displaying electrical
connectivity rather than physical geographical distance. This
helps to identify the relationships between different elements
of the network, like separating different voltage levels, and
how system dynamics in an area of the grid might spread to
neighboring grid elements, or how a local power outage could
spread to adjacent areas and what switches could potentially
be operated to isolate it. Single-line diagrams remain the
industry standard for this purpose, thanks to their ability to
express bus-branch relationships in a compact format, scaling
from substations to interconnections [2].

B. Modelling LV Networks as Graphs

Due to their inherent network structure, electric networks
can be naturally modelled as graphs. In this mathematical
abstraction, network elements (substations, buses, switches,
capacitors, loads, etc.) are represented as nodes, while
electrical connections (transmission or distribution lines,
cables, transformers) are represented as edges. This
representation provides a powerful and flexible framework for
analyzing and simulating the behavior of large power systems,
enabling the application of a wide range of graph algorithms.

• Nodes: representing buses, substations,
transformers, switches, loads and other electrical
elements.

• Edges: representing transmission lines, distribution
feeders, cables and other electrical connections
between components.

Applications of graph theory in power systems include
topology processing to identify connectivity, energized
sections and traces; optimization and power-flow
formulations that operate on the graph structure; and state
estimation and fault localization. Graph modelling provides
numerous benefits, like the possibility of applying well
studied graph algorithms and mathematical frameworks; but
several challenges must also be considered, including loss of
electrical detail in pure topology views, dynamic behavior not
captured by static graphs, and the scalability vs detail trade-
off, which motivates network simplification approaches
where intelligent graph reduction preserves essential
connectivity while improving visualization clarity [3].

C. Automatic Schematic Generation of Single Line

Diagrams

Power system visualization through diagrams has
undergone fundamental transformations from manual paper-
based and hand drawn diagrams, to sophisticated digital
solutions. Various approaches have been developed to address
the complexity of modern electrical networks. Several
topological and aesthetic constraints and objectives must be
achieved in the generation of diagrams for LV/MV grids

including minimizing edge crossings, avoiding component
overlap and maintaining layout clarity.

Some early approaches include pioneering work presented
by Canales-Ruiz et al. in 1979 [4], proposed an automatic
drawing algorithm for single-line diagrams. Their approach
formulated the problem as a layered graph ordering algorithm,
in which every node represents a bus in the diagram, and the
layer for each bus is assigned based on a longest path
algorithm. The algorithm then takes an iterative greedy switch
approach to swap the edges in each layer of the diagram until
it finds a solution with no crossings. This underlying graph is
then represented graphically by assigning strictly vertical lines
to buses and horizontal lines to connections between buses.

Figure 1: underlying graph (a), and diagram representation

proposed by Ruiz et al. (right) [4]

Other approaches have built on this foundation, treating
the diagram representation of power systems as a graph layout
problem. Tree algorithms, like the Reingold Tilford algorithm,
are used to represent graphs as rooted trees, useful if the
underlying network is completely radial. A rooted tree layout
was proposed by Rao et al. in 2003 [5], which generates a
layered tree layout given a power system radial feeder, and
then converts the layout into an orthogonal bus structure
representation. Force directed and spring-based approaches
model the graph as physical system in which nodes repel each
other, and edges act as springs pulling nodes together.
Although these approaches are intuitive and can handle
diverse topologies, they do not generate the orthogonal and
layered layouts often desired in one-line diagrams; nor do they
yield geographically faithful representations. Mixed-Integer
Linear Programming formulations have been proposed that
guarantee optimal solutions for objectives such as crossing
minimization or area minimization, but their computational
complexity grows significantly with network size.

Although innovative solutions and useful applications
have been developed over the past 4 decades, the field of
automatic diagram generation is still largely undeveloped.
Most contributions target very specific problems that cannot
be generalized broadly to provide useful standardized single
line diagrams. Some of the current obstacles include the lack
of an end-to-end open-source tool chain, algorithmic bias
towards radial or weakly meshed topologies, underdeveloped
treatment of network simplification, and the lack of scalable
heuristic implementations for meshed networks.

D. Graph Layouts and Planarity

A graph is planar if it can be laid out in a 2D plane such
that no edges intersect each other except at their endpoints.
There are several algorithms that can test for planarity,
achieving linear time complexity, including the Hopcroft–
Tarjan method or the Boyer–Myrvold method [5]. However,
even though checking for planarity is simple, finding a layout
for a planar graph with the minimal number of crossings is
not, and there is not a definitive solution that works on every
case. This is actually an NP-hard problem that is generally
tried to be solved through heuristics.

Graph layout algorithms have the objective of assigning
2D positions to each node and routing edges so that the
drawing conveys structure clearly. Common goals are to
reduce visual clutter (minimizing edge crossings, edge bends
and node overlap), emphasize structure (hierarchy, tree shape,
flow direction, symmetry), satisfy aesthetic constraints (even
spacing, alignment, balance), and represent data attributes.
There is a vast amount of different layout algorithms, each
serving their own specific purpose and best suited for a certain
type of graph in particular, including hierarchical, tree, force-
directed, circular, matrix-based or geographic. Two
approaches in particular are relevant for this project:
Reingold–Tilford (trees) and the Sugiyama framework
(general directed graphs).

Reingold–Tilford produces tidy drawings of rooted trees,
with even spacing, non-overlapping and aesthetically centered
predecessors above their successors. It offers a
computationally simple algorithm, which runs in linear time
to the number of nodes and produces aesthetically pleasing
results, but only works in acyclic rooted trees. The algorithm
aims to satisfy: no node overlaps; children drawn on a level
below their parent; parent centered over its children’s span;
uniform subtree separation; and symmetry for equivalent
subtrees [6].

The Sugiyama framework allows hierarchical layouts
using a 4‑step framework: cycle removal, layer assignment,
crossing minimization and coordinate assignment. Most layer
generation algorithms generally do not incorporate the
constraint that the resulting layout must be level-planar;
generating a level-planar set of layers is an NP-hard problem,
and detecting if a given graph is level-planar is not as trivial
as detecting general planarity. Dummy node insertion helps by
ensuring all edges span exactly one layer. For crossing
minimization inside fixed layers, exact minimization is NP-
complete, so heuristic methods are used—commonly the
barycenter or median methods, with multiple top-
down/bottom-up sweeps. A way to improve the results is to
introduce naïve randomization of input orders, run the
algorithm several times and keep the best solution; this
increases the odds of escaping local minima at the cost of
higher runtime. If the layered graph is non–level‑planar, the
crossing reduction cannot reach zero crossings; effectiveness
is capped by the initial layering [7], [8].

III. METHODOLOGY

A. Formal Problem Definition And Objectives

The automatic generation of single-line diagrams from

GIS data is formally defined as a graph transformation and

visualization problem. The input network is defined as a

spatial network graph G = (V, E, P, A) where:

• V = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the set of nodes representing

network components.

• E is a set of edges representing electrical

connections between elements.

• P: V → ℝ2 is a position function mapping each

node to geographic coordinates.

• 𝐴: 𝑉 is an attribute function mapping each node to

a set of properties. Among these properties, is the

component type, type𝑖 . The set of all entity types

in a graph is defined as 𝑇.

The output is a diagram representation S = (G′, L, R) ,

where:

• G′ = (V′, E′) is a simplified directed acyclic graph

derived from G.

• L: V′ → ℤ2 is a layout function mapping each node

to a discrete grid position.

• R: V′ → 𝑆 is a rendering function mapping nodes to

diagram symbols

The input graph is read from a GIS format data structure,
which contains a set of nodes {vi} representing network
elements and components with properties including a unique
identifier: idi, a component type: typei , and other electrical
properties: propsi ; and a set of edges {ej}, with properties

source node: uj and target node: vj.

The algorithm also takes two additional inputs, which
allow modifying the characteristics of the output diagram, and
adjusting its resolution: max_consumers_per_bus, used to
determine the maximum number of consumers inside each
bus,which determines the vertical detail in the diagram by
increasing or decreasing the number of buses, , based on the
maximum number of consumers for each bus, lower values of
max_consumers_per_bus, allow displaying more detail of the
network’s topology by creating more buses, and vice versa.
The other parameter is max_consumers_per_group, which
determines the maximum group size inside each bus, allowing
to adjust granularity horizontally.

Internally, two additional inputs are also configured,
key_nodes, which is used to identify important elements of the
network that must be maintained in the final schematic, and
root_label, which is used to identify the elements that must be
placed on the first layer of the schematic, generally
distribution transformers.

The algorithm produces an SVG diagram which meets the
following objectives and constraints:

• Topology preservation, the connectivity for
every element in the simplified graph reflects the
connectivity in the original network.

• Hierarchical structure, the output is a layered
representation with the distribution
transformer(s) (or other configurable root
element) placed on the first layer, and the rest of
the elements in subsequent layers downstream.

• Key component preservation, all components
identified as crucial are flagged and represented
in the final schematic.

• Orthogonality: all connections are horizontal or
vertical.

• Crossing-free: no elements overlap or cross with
each other.

• Simplified representation, the algorithm groups
consumers accordingly with the input
parameters, and represents a simplified
topological view of the network.

B. Solution Overview

The solution takes a 4 step process to generate the final
diagram representation from the raw GIS data, the detailed
process can be observed in Figure 2.

This approach allows to ensure that the objectives are met
by targeting them sequentially, and enables the replacement
and improvement of individual modules while maintaining an
end-to-end functional pipeline. It also improves compatibility,
by maintaining the core algorithmic process intact, but making
slight modifications to the input and output modules, as
desired. The individual stages of the process are explained in
the subsequent sections.

C. Graph Classification and Simplification

Inputs: raw graph G and parameters
max_consumers_per_bus, max_consumers_per_group;
internal sets key_labels and root_label. Output: classified and
simplified graph G’.

The goal of the classification and simplification phase is

to create a simplified subgraph G′ from the input graph G,

reducing the number of nodes and grouping consumer nodes
so that the resulting single line diagram representation
contains only the key topological information of the
underlying network. This process allows to reduce visual
clutter, while also ensuring that the key connectivity
information between all the elements in the network is
preserved.

Converting the graph to directed: the algorithm takes the
root nodes (distribution transformers in LV grids) and
traverses the whole graph through breadth first search (BFS),
converting edges to directed in traversal order. This generates
a directed G to which the classification rules can be applied.

Node classification: the algorithm assigns each node a role
that determines how it is simplified and laid out. Categories

include consumer nodes; bus nodes (electrically equivalent
points grouped later); connection nodes (boundaries for
electrically equivalent zones and preservation of main joints);
and key nodes (transformers, switches, fuses, LV links) that
must be preserved. Whether adjacent nodes form the same bus
is determined by consumer_count, the number of consumers a
set of adjacent nodes are connected to, and the
max_consumers_per_bus threshold.

Creating the simplified graph: connection and key nodes
are added directly; adjacent bus nodes are grouped into a
single node and reconnected to their original boundary
connection nodes; consumer nodes adjacent to grouped buses
are grouped in sizes up to max_consumers_per_group (and
consumers directly attached to connection nodes are grouped
and attached accordingly). max_consumers_per_group and
max_consumers_per_bus together tune the level of detail

displayed in the final diagram. Edges in G′ are created as

undirected for efficiency; direction is restored later after
simplification.

(a)

(b)

Figure 3: Sample graph section before (a) and after (b) the

simplification algorithm is applied. Nodes: green-bus, red-

consumer, blue-connection, yellow-connection key node.

#1: Graph classification
and simplification

Create simplified
graph

Classification

Conversion to
directed

#2: Graph normalization

Conversion to
directed*

Process connection
nodes

Process LV links

#4: Plotting the
schematic

Generate output data
structure

Schematic plotting

#3: Graph Layout
Layer Assignment

Create simplified bus
graph

Iterative crossing
minimization

Grid layout
assignment

Max consumers
per bus

Max consumers
per group

Network graph G

Max iterations

Inputs

Directed G

Classified G

Si
m

pl
ifi

ed
 G

’

Directed G’

Processed conns. G’

Normalized G’

Layered G’

Layered G’

Bus graph Z

Relative order of buses
inside each layer

La
ye

re
d

G
’

N
od

e
La

yo
ut

CSV Data Structure

SVG Schematic

Figure 2: Methodology diagram.

D. Graph normalization

Input: simplified graph G’. Output: normalized graph G’
with bus-connection-bus structure.

The objective of this phase is to ensure the simplified
graph follows the normalized bus-connection-bus node
structure that is required by the layout algorithm and to plot
the final diagram. The post-processing transforms the
undirected simplified graph into a DAG that meets:

• Connection nodes have only one predecessor and
one successor, both bus nodes.

• There are no bus nodes adjacent to each other.

• Demand and key nodes are successors to bus
nodes; connection-key nodes have one
predecessor bus and one successor bus.

To maintain topology while achieving this structure, adjacent
connection nodes are removed, and connection nodes with n
successors are split into n copies with one successor and one
predecessor each. Additional synthetic bus nodes are inserted
in two scenarios: (i) adjacent key nodes; and (ii) connection
nodes with a consumer or single-degree key successor.
Single-degree bus nodes created as artifacts are removed,
along with any non-key connection nodes linking them.

(a)

(b)

Figure 4: Insertion of bus nodes in the normalization phase,

adjacent key nodes (a), bus node inserted (b)

E. Graph Layout Generation

Inputs: normalized graph G’, max_iterations. Output: G’
with assigned layers and coordinates.

Laying out the graph nodes is an essential step in
producing a topological representation of the network.
Generating a visually pleasing orthogonal single‑line diagram
requires no crossings in the underlying graph; and discrete x
and y positions to allow orthogonality, and uniform spacing
between elements. Positions are therefore assigned on a grid
with y‑layers based on longest distance from roots
(incrementing only for bus nodes) and x‑positions chosen to
avoid crossings.

Creating a layout that minimizes crossings is NP‑hard;
although all graphs here are planar, fixed layer assignment can
yield non‑level‑planar cases where a 0‑crossing layout is
impossible. The layout algorithm is a custom implementation
of the Sugiyama framework with: layer assignment; crossing
minimization; and coordinate assignment. The algorithm runs
on a subgraph Z containing only bus nodes to improve

performance, then propagates coordinates to all nodes. Edges
are not rendered; connectivity is conveyed implicitly by bus
length in x (to farthest successor) and by placing successors
along the same y as their parent bus, using the node position
as the top-most reference point to draw the symbol. Elements
connecting two buses and connection nodes are represented
vertically, with a length that is calculated based on the layers
of the two buses they connect.

Crossing minimization uses a barycenter heuristic with
dummy nodes inserted in multi-layer edges, ensuring every
edge connects a node from one layer to a node in the following
layer. Because a single run is prone to get stuck in local
minima, the algorithm is run iteratively with randomized input
edge orders up to a maximum number of runs; it stops early
on a zero‑crossings solution and otherwise returns the
best‑found (least crossings) layout.

(a)

(b)

(c)

Figure 5: Example bus graph before (a) and after applying

the crossing minimization algorithm (b); and after the

assignment of discrete x positions (c)

F. Schematic Plotting and Output

Once node positions are determined, the size to plot buses

and connection nodes is calculated. A plotting script assigns

custom symbols to each node and generates a self‑contained

SVG. The SVG format is chosen for versatility, scalability,

and fidelity to the geometric structure of the data, enabling

efficient storage and resolution-independent scaling.

Figure 6: Symbol assignment for a bus with 4 elements, two

open LV links (yellow nodes), a consumer (red node) and a

closed LV link (not visible, below the green, bus node)

IV. CASE STUDIES

A. Experimental setup

To validate the results of the automatic diagram

generation algorithm, a case study approach is used, in which

several individual samples of LV networks of a wide variety

in size and structure are represented as diagrams using the

explained methodology, measuring several metrics to gauge

performance and determine validity. Eight case studies are

performed, with eight different networks with characteristics

shown in Table 1. Their characteristics are compared by their

size (number of nodes) and meshedness (measured by M,

number of nodes with two predecessors in the underlying

graph). A diagram is considered valid if the laid-out graph

contains no crossings.

Table 1: Case studies input networks characteristics

Case Study NNODES M

#1 69 0

#2 145 1

#3 239 2

#4 611 2

#5 1126 5

#6 1233 4

#7 2282 11

#8 1810 7

The objective of the first three case studies, which are

performed on simpler networks, is validating if the resulting
schematics faithfully represent the actual topology of the
network, and to test whether the input parameters can be used
to effectively adjust the characteristics and detail of the
diagram as desired. On the other hand, case studies 4 to 7 focus
on testing the performance of the layout algorithm on more

complex networks. Case study 8 is performed on an MV
network, outside of the formal scope of the project, but that
allows to test the versatility of the algorithm, to generate
schematics for data with different characteristics compared to
the main project’s scope.Figure 8 contains a representation of
four of the networks used in the case studies. Orange points
represent consumers, blue circles transformers and red/green
circles closed/open LV links.

Case Study 2 Network Case Study 6 Network

Case Study 3 Network Case Study 8 Network

Figure 8: Sample of case study input networks

B. Outputs for the case studies

Figure 7 contains the single line diagrams generated for
the four networks shown in Figure 8. The generated diagrams
scale in complexity along the size of the input networks, and
for the MV network in case study 8, the complexity of the
diagram remains similar to the pre-simplification network, as

Case Study 2 Network Case Study 6 Network

Case Study 3 Network Case Study 8 Network

Figure 7: output diagrams for the networks shown in Figure 8

no consumer clusters were generated due to the network
having none.

V. RESULTS

A. Summary of Results and Key Findings

Table 2 contains a summary of each case studies’ results,

along with the characteristics of the input networks.

Table 2: Summary of results

Case

Study

Results

k Niter NL
Runtime

(s)

#1 0 1 13 0.1

#2 0 1 15 0.13

#3 0 1 36 0.58

#4 0 1 67 1.57

#5 0 4 64 5.07

#6 2 20 90 6.43

#7 8 77 127 21.18

#8 0 27 643 17.87

The algorithm generated valid diagrams for 6 of the 8

networks studied, as it was able to find zero crossing layouts
for their underlying graphs. For case studies 6 and 7 the
algorithm was not able to find a zero crossings solution for
their underlying graphs and therefore generated invalid
diagrams. Runtime increased significantly for larger and more
meshed graphs.

The obtained results validate the following key findings:

Valid diagrams for most cases, failures align with
expectations. The first 4 case studies produced a successful
layout with zero crossings on the first iteration, reflecting the
algorithm’s effectiveness in small-sized, low-meshed
networks. For case study 5, a significantly more
meshed network, the algorithm also produced a valid diagram,
although it required several layout iterations. The algorithm
was unable to generate a zero-crossings solution for case
studies 6 and 7, and therefore, a valid final diagram. However,
this aligns with the expected result, as both networks have an
underlying non-level planar graph which is generated by the
fixed layer assignment process.

Runtime scales with size and meshedness. Runtime
increased significantly in relation to the number of nodes in
the graph, remaining almost linear for less complex networks
(only ~0.1 seconds for the simplest cases), but becoming
exponential as the network complexity, both in size and
meshedness, increased, up to 21.18 s for the most complex
network. This is caused by the longer graph traversals required
for several algorithms, as well as the larger number of
iterations of the layout algorithms. A smaller number of
traversals (by for example integrating several algorithms
together) could potentially lower the runtime for larger
networks.

Input parameter effects are predictable and controllable.
Consumer grouping parameters tune horizontal and vertical
detail as intended in the final diagram. Decreasing

max_consumers_per_bus increases vertical resolution,
showing more detail into the network’s topology by
displaying more buses, while decreasing
max_consumers_per_group allows to show more horizontal
grouping granularity, showing higher numbers of consumer
groups connected at the same network level.

MV network case study validates generality. The
algorithm was also successful in producing a valid diagram for
a MV network, out of the formal project’s scope,
demonstrating the proposed pipeline is generalizable to
successfully generate valid diagrams for networks with
significantly different topological characteristics than the LV
networks on which it is mainly implemented.

Randomized naïve iterations of the layout algorithm
improve results. Re-running the crossing minimization section
of the layout algorithm with randomized inputs allowed the
algorithm to escape local minima and find optimal solutions
for case studies 5 and 8, whose solution was not found on the
first algorithm iteration. For case studies 6 and 7, even though
it could not find a solution with no crossings due to the non-
level-planarity of the graphs, later iterations also successfully
reduced the number of crossings. This performance is further
analyzed in the following section.

B. Layout Algorithm Benchmark

To visualize and benchmark the performance of the layout
algorithm, a simulation for each of the three most demanding
case studies performed has been conducted, in which the
layout algorithm exclusively was run 30 times with different
values for the number of random naïve iterations, to test how
increasing the maximum number of iterations can lead the
algorithm to find more optimal solutions, and how the
execution time increases in relation to the number of
iterations.

Each test was conducted using incremental values of
maximum iterations, for the networks in case studies 6, 7 and
8. The results can be observed in Figure 9:

Figure 9: Layout algorithm performance, case studies 6, 7 and

8

 As the figures illustrate, the tests for each network
produced significantly different results. Starting with the
network used in case study 6, the smallest out of the ones
tested, the algorithm found the best solution (2 crossings) in
only two iterations. However, due to the random nature of the
algorithm, in the following tests it did not converge to that
optimal solution until the 7th test, when 7 max iterations were

used. As expected, for higher iteration tests, the algorithm
always managed to find the best solution, which is the
corresponding to two crossings, as explained in the case study.
Execution time increased linearly, with the number of
iterations, as expected, but was always shorter than 1 second,
indicating that the layout optimization phase represents only a
small fraction of total time to run the algorithm, which in case
of case study 6 was 6.42 seconds for 100 max iterations.

In contrast, the results for the tests done on the larger and
more complex case study 7 network, showed that the
algorithm required a significantly larger number of max
iterations to find the best solution it found among all tests (8
crossings), around 80. It also shows a greater variance in the
results for higher max iteration values, which highlights that
the randomness of the algorithm is correlated with the
complexity of the network, suggesting that a higher number of
maximum iterations should be used to maximize the odds of
obtaining the optimal solution. Runtime also scaled linearly,
with similar values to the case study 6 network, but a higher
slope which is likely caused by the increased complexity and
size of the network.

Finally, the results for the MV network used in case study
8 show significant differences, as in this case the algorithm did
find a zero crossings solution. This crossing-free solution was
first found in the 15 max iterations test, and the algorithm
managed to consistently find it when the number of max
iterations was higher than 30. This proves that when the
underlying network contains no non-level-planar
substructures, the algorithm can effectively find the optimal
solution within a small number of iterations. The execution
time figure shows a significant variability after 10 max
iterations because the algorithm stops after finding the 0
crossings solution, leading to random total execution times for
runs that are able to find that solution, and therefore
uncorrelated with the number of max iterations. For tests that
did not converge to the optimal solution (max iterations ≤ 10
and = 25), the algorithm did have a runtime proportional to
max iterations, and its slope can be observed to be
significantly higher than in the two previous simulations,
further proving that the slope is correlated with the size of the
network laid out.

C. Method Limitations and Design Trade-offs

The results of the case studies also highlight the following

limitations and trade-offs

Fixed layer assignment vs level planarity. The algorithm

assigns node layers based solely on distance from the roots,

before crossing minimization. This fixed layer assignment

provides simplicity and creates intuitive layers, that allow to

easily represent topological distance from the transformer.

This however causes a significant limitation, that the creation

of non-level-planar structures is not avoided. An algorithm

that dynamically checks level planarity and adjusts the layers

to ensure it would be necessary to solve this, but at the cost

of increased complexity and without certain success, as it is

another NP-hard problem.

Naïve heuristic approach vs deterministic solution. The

success of the crossing minimization algorithm relies on the

naïve heuristic algorithm being able to escape local optima to

find the optimal solution, which is increasingly unlikely as

network size increases and requires more iterations. The

approach is effective for simple networks, but more complex

cases might benefit from a more deterministic approach,

through MILP, for example, although this would likely

increase runtime significantly.

Limited parametric tuning. The input parameters allow to

adjust the maximum number of consumers in each bus and

group, up to a certain degree. The number of consumers on

each bus in some cases can be larger than the specified

threshold due to several consumers being connected at the

same topological point, or due to the graph simplification and

normalization process, limiting the capability of tuning the

final diagram through changing the input parameters.

Additionally, when several groups of consumers are created

in the same bus node, the groups generally do not reflect

clusters consumers close to each other, which could be

implemented through a more complex algorithm that takes

this into consideration when creating clusters.

Exponential time complexity for complex networks.

Although for the majority of cases studied, the algorithm was

able to generate the single line diagrams in reasonably short

times (less than 5 seconds), it has been shown that for more

complex networks runtime increases exponentially. This

might make the algorithm unsuitable for increasingly meshed

and complex graphs.

VI. CONCLUSIONS AND FUTURE WORK

This thesis demonstrates and delivers a reproducible
pipeline that can be used to translate LV network GIS data into
standard, readable, single-line diagrams that faithfully
represent the underlying topology of the network. The
separation of graph simplification, layout and symbol plotting
enables a modular approach that can be tuned via several
inputs to fit the data characteristics and to adjust
characteristics of the final diagram, which contains a
simplified view of the underlying network topology and key
characteristics. The method produced six valid diagrams for
eight diverse real networks studied, with the two unsuccessful
cases explained by level-planarity violations caused by the
fixed layer assignment algorithm. The runtime for these cases
increases linearly with the number of nodes for the least
complex networks but rises exponentially for larger and more
meshed networks, although remaining on a timescale suitable
for interactive or near interactive use on personal computing
hardware.

Some suggested areas for further development and
potential result improvement include:

• Substitute the fixed layer assignment and heuristic
crossing minimization for a MILP approach that
aims to solve a two-objective problem, jointly
optimizing the layer assignment and relative position
of nodes inside each layer to reliably produce valid
zero-crossings layouts, not constrained by fixed layer
assignments which might be non-level-planar.
However, this approach, if feasible, might have an
excessive time complexity that could make it
impractical.

• Heuristic approaches to adjust the layer assignment.
Detection of level planarity is complex, however,
iteratively detecting smaller non-level planar
structures inside a larger graph might be feasible, and
changing the layer of some nodes in the structure
while checking level planarity iteratively might be a
valid heuristic approach for creating level planar

graphs that can be laid out using the current crossing
minimization and layout algorithms.

• Pre-computing layouts for different values of
max_consumers_per_bus. As changing the value of
max consumers can change the resolution into
network details, effectively changing the number of
bus nodes in some network sections, this can
potentially cause non-level planar structures to
disappear as the layers change. Although this is not
an optimal solution as it removes the capability of
tuning the input parameters, it might allow to
generate single line diagrams of some networks that
could not be generated using a different
max_consumers_per_bus parameter. Pre-computing
the layouts with several parameter values could
allow storing what values produce suitable diagrams.

• Interactive final diagram. From the final layout, an
interactive implementation of the diagram could be
created, through a web-based application for
example, that allows features like selecting elements
to view more detailed information, selecting two
points to create traces between elements in the
network, or visualizing with more detail certain
consumer clusters that the operator selects, for
example.

• Partitioning the layout. For larger networks for
which it might not be feasible to generate a single
line diagram without components overlapping (due
to complexity and non-level-planarity, a possible
solution could be to compute several smaller layouts
independently and later generating the complete
layout by unifying the smaller sections.

VII. REFERENCES

[1] S. Gordon, C. McGarry, and K. Bell, “The growth of

distributed generation and associated challenges: A

Great Britain case study,” IET Renewable Power

Generation, vol. 16, no. 9, pp. 1827–1840, Jul. 2022,

doi: 10.1049/rpg2.12416.
[2] T. J. Overbye and J. D. Weber, “Visualization of

Power System Data,” 2000.

[3] M. Zhou, J. Yan, and Q. Wu, “Graph Computing and

Its Application in Power Grid Analysis,” CSEE

Journal of Power and Energy Systems, vol. 8, no. 6,

pp. 1550–1557, Nov. 2022, doi:

10.17775/CSEEJPES.2021.00430.

[4] D. Toral and G. A. Alonso-Concheiro, “OPTIMAL

AUITI4TIC DRAWING OF ONE-LINE

DIAGRAMS Canales-Ruiz, fMrber ITEE.”

[5] Robin J. Wilson, Introduction to Graph Theory,

Fourth edition. Longman Group Ltd, 1972.

[6] E. M. Reingold and J. S. Tilford, “Tidier Drawings of

Trees,” 1981.

[7] KOZO SUGIYAMA, SHOJIRO TAGAWA, and

MITSUHIKO TODA, “Methods for Visual

Understanding of Hierarchical System Structures,”

1981.

[8] G. Brückner and I. Rutter, “Partial and constrained

level planarity,” Theor Comput Sci, vol. 1045, p.

115291, Aug. 2025, doi:

10.1016/J.TCS.2025.115291.

