Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/104179
Título : Modeling Membrane Degradation in PEM Electrolyzers with Physics-Informed Neural Networks
Autor : Polo Molina, Alejandro
Portela González, José
Herrero Rozas, Luis Alberto
Resumen : 
This study introduces the first application of Physics-Informed Neural Networks (PINNs) to model membrane degradation in proton exchange membrane (PEM) electrolyzers, which are essential for sustainable hydrogen production. Traditional physics-based models offer physical interpretability but rely on numerous parameters that are difficult to measure, while data-driven models like machine learning provide flexibility but often lack generalizability and consistency with physical laws. The proposed PINN framework bridges this gap by integrating two ordinary differential equations: one describing membrane thinning through a first-order degradation law, and another modeling the time evolution of cell voltage due to degradation. The results show that the PINN effectively captures long-term degradation dynamics using limited and noisy data, while preserving physical meaning. This hybrid modeling approach provides a robust and accurate tool for understanding and predicting membrane degradation in PEM electrolyzers. It offers a promising foundation for improved diagnostics and performance optimization in electrochemical systems subjected to aging and reliability challenges.
URI : http://hdl.handle.net/11531/104179
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-25-220WP.pdf751,14 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.