Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/105682
Título : Context Trails: A Dataset to Study Contextual and Route Recommendation
Autor : Sánchez Pérez, Pablo
Bellogín, Alejandro
Resumen : 
Recommender systems in the tourism domain are gaining increasing attention, yet the development of diverse recommendation tasks remains limited, largely due to the scarcity of public datasets. This paper introduces Context Trails, a novel dataset addressing this gap. Context Trails distinguishes itself by including not only user interactions with touristic venues, but also the itineraries (trails or routes) followed by users. Furthermore, it enriches existing item features (e.g., category, coordinates) with contextual attributes related to the interaction moment (e.g., weather) and the venue itself (e.g., opening hours). Beyond a detailed description of the dataset’s characteristics, we evaluate the performance of several baseline algorithms across three distinct recommendation tasks: classical recommendation, route recommendation, and contextual recommendation. We believe this dataset will foster further research and development of advanced recommender systems within the tourism domain. Dataset is available at https:zenodo.orgrecords15855966; further code available at https:github.compablosanchezpContextTrailsExperiments.
URI : http://hdl.handle.net/11531/105682
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-25-306C_poster.pdf1,83 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.