Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/108020
Título : Decentralized Energy Management for Rural Communities: A Blockchain-Based Virtual Power Plant with AI-Driven Forecasting
Autor : Martínez Calleja, Daniel
Santos Pérez, Carlos
Pérez Aracil, Jorge
Lozano Sánchez de la Morena, César Felipe
Troncia, Matteo
Yahyaoui, Imene
Cruz de la Torre, Carlos
Hernández Marcos, Raquel
Resumen : 
This paper presents the design and evaluation of RuralVPP, a decentralized Virtual Power Plant (VPP) architecture designed for rural energy communities. The system integrates ten semi-autonomous municipalities into a coordinated structure based on a dual-layer market framework, consisting of Local Energy Markets (LEMs) and a Supra-Municipal Market. Energy transactions within and between communities are managed through smart contracts implemented on a permissioned blockchain platform using Hyperledger Fabric, ensuring secure, transparent, and auditable settlements. The communication infrastructure is based on the IEC 61850 standard, enabling interoperability among distributed energy resources (DERs), smart meters, and flexible loads. To support efficient market operation and grid management, the system incorporates advanced forecasting techniques using deep learning models, including Long Short-Term Memory (LSTM) networks and Transformer architectures. These models are trained on real energy generation and demand data collected from the participating communities. Results show high forecasting accuracy, effective automation of energy trades, and enhanced local energy utilization. The proposed solution improves energy resilience, lowers operational costs, and provides a scalable reference model for decentralized rural energy systems based on blockchain and artificial intelligence.
URI : http://hdl.handle.net/11531/108020
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-25-390C.pdf1,08 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.