Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/14060
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBerzosa Muñoz, Anaes-ES
dc.contributor.authorSánchez Ubeda, Eugenio Franciscoes-ES
dc.date.accessioned2016-10-18T12:04:01Z-
dc.date.available2016-10-18T12:04:01Z-
dc.identifier.urihttp://hdl.handle.net/11531/14060-
dc.description.abstractes-ES
dc.description.abstractIn this paper we consider the problem of nonparametric function estimation of high dimensional data. The proposed methodology follows the general idea behind Model Trees, integrating the partition strategy of regression trees with Generalized Additive Models. Specifically, we use the Ortho model, formed by the sum of univariate piecewise linear functions, fitted with the orthogonal projections of the input data. The model is fully interpretable and visualizable, and we provide a means for graphical representation of the obtained structure, allowing an easy understanding of the role of each input in modeling the output. The model performance is assessed on a set of synthetic test problems, and compared with other regression methods regarding accuracy and interpretability properties.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleThe ortho tree model. A very interpretable regression tree with flexible ortho leaveses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsNonparametric regression; model trees; Generalized Additive Modelsen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-09-029A.pdf1,29 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.