Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/14209
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGascón González, Albertoes-ES
dc.contributor.authorSánchez Ubeda, Eugenio Franciscoes-ES
dc.date.accessioned2016-10-18T12:05:40Z-
dc.date.available2016-10-18T12:05:40Z-
dc.identifier.urihttp://hdl.handle.net/11531/14209-
dc.description.abstractes-ES
dc.description.abstractWhen facing an unknown forecasting problem, accuracy on the predictions as well as useful information about the underlying physics of the process are mostly appreciated. In this paper the Thor model, a fully interpretable model with automatic identification, is presented. Based on additivity assumptions and piecewise linear regression, it allows the analyst to gain insight about the problem by examining the automatically selected model. Monte-Carlo simulations have been run to ensure that the model selection procedure behaves correctly under weakly dependent data. Moreover, comparison over other well-known methodologies has been done to evaluate its accuracy performance, both in simulated data and in the context of short-term natural gas demand forecasting. Empirical results show that the accuracy of the proposed model is competitive against more complex methods such a neural networks.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleThe Thor model: an automatic nonlinear additive model for time serieses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsForecasting, Econometric models, Decision making, Model selection, Natural gas demanden-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-13-056A.pdf4,36 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.