Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/14271
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMaté Jiménez, Carloses-ES
dc.date.accessioned2016-10-18T12:06:22Z-
dc.date.available2016-10-18T12:06:22Z-
dc.identifier.urihttp://hdl.handle.net/11531/14271-
dc.description.abstractes-ES
dc.description.abstractInterval analysis (IA) and symbolic data analysis (SDA) are considered in essence nonparametric. Both fields are called to play a quite relevant role in the future of Big Data (BD) or Internet of Things (IoT). In many contexts, some of them belonging to the domain of BD andor IoT, we have some prior knowledge about the behaviour of the variables in study which can be managed using the Bayesian paradigm. As a result we are interested in how to take advantage of the information incorporated in the interval-valued dataset and our previous knowledge, both of which can be considered simultaneously in the Bayesian nonparametrics (BNP) framework. After more than 40 years of research, there is a general consensus about Nonparametric Bayesian that it is a paradigm any researcher needs to consider in order to provide alternative solutions for complex real problems. In the last 10 years several examples of these alternative solutions have been provided in Biology, Economics, Energy, Finance, Medicine, Political Sciences and so on. The most well-known approach in BNP is that of the Dirichlet process (DP). In this plenary talk I will deliver a brief primer on the DP. After that I will suggest a new and original focus on our interval dataset generated from a BNP approach based on DPs. An example of this methodology will be developed and pros and cons of this approach will be considered. As a consequence, an agenda for future research in the field of IA and SDA under a BNP framework will be outlined.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleBayesian nonparametrics for interval data. An agenda for future researches_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-16-103A_abstract.pdf58,89 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.