Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/24423
Título : | Valuation of an american option for the spanish secondary reserve market using a machine learning model |
Autor : | Frías Marín, Pablo Malpica Morales, Antonio Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI) |
Palabras clave : | 53 Ciencias económicas;5312 Economía sectorial;531205 Energía;12 Matemáticas;1207 Investigación operativa;120701 Análisis de actividades |
Fecha de publicación : | 2017 |
Resumen : | This paper presents an original methodology to compute a financial product that could enhance the demand side participation in ancillary services, specially for industrial consumers. The financial product consists in an american option on the Spanish secondary reserve market for the following day, where the buyer has the right but not the obligation to offer part of its capacity to the system operator. Considering this approach, an industrial consumer would receive an economic incentive to offer its flexibility to the system without changing its production planning, paying an upfront premium. The computation of the american option is leveraged on a Monte Carlo simulation approach where the random paths are obtained from a machine learning model. The machine learning model attempts to forecast the 24-hour secondary band prices of the following day using a combination of different algorithms; the output of the model is used as a baseline to perform the Monte Carlo simulation that computes the option value. |
Descripción : | Master in Research in Engineering Systems Modeling |
URI : | http://hdl.handle.net/11531/24423 |
Aparece en las colecciones: | H49-Trabajos Fin de Máster |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TFM000806.pdf | Trabajo Fin de Máster | 432,24 kB | Adobe PDF | Visualizar/Abrir |
TFM000806 Autorizacion.pdf | Autorización | 190,86 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.