Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/24591
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorBarquín Gil, Julián-
dc.contributor.advisorOlea Arias, Javier-
dc.contributor.authorFan, Jici-
dc.contributor.otherUniversidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)es_ES
dc.date.accessioned2017-12-19T15:14:59Z-
dc.date.available2017-12-19T15:14:59Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11531/24591-
dc.descriptionMaster in the Electric Power Industryes_ES
dc.description.abstractGiven the natural advantage in abundant and reliable solar resources, Spain is ideal for developing renewable energy generation with photovoltaics.Thanks to the supportive legislations, advances in technologies and reduction of costs, residential electricity consumers are increasingly incentivized to actively participate in managing thei rconsumption and installing distributed generation units. Several studies have suggested that battery storage coupled with solar photovoltaics (PV) can benefit both households and the electricity grid. These facts call for a model to help house holds determine the composition of their grid; connected photovoltaic battery system based on the specific situations in Spain. This paper proposes an optimization;based mixed integer linear programing model for the sizing and scheduling of residential battery storage co-located with solar PV in the context of present self;consumption regulation and three tariff schemes(the 2.0A,the 2.0DHA,and a newly proposed three; period tariff).The objective function for the household is to minimize the annualized electricity expenditure while satisfying the current electricity demand and constraints.To illustrate the model, a 5-spaces household in Sevilla is selected as an example. The load of the appliances is model ledby aload generation model with statistical data of appliances and time-of-use information.The optimization model is built with mixed integer linear programming (MILP) method in GAMS. Besides the business as usual case,100 scenarios are created to discover the best combinations when PV/battery prices decrease to different levels. The future scenario analysis is helpful to discover future uncertainties,tipping points,and better regulatory incentives. The results of the paper contribute in the following three aspects: • Provide guides for the investment decision of the households to take advantage of PV/batteries to minimize the expenditure. • Test the performance of the tariff schemes and test the sound ness oft he future. • Provide suggestions for the regulators ond esigning incentives.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenes_ES
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject33 Ciencias tecnológicases_ES
dc.subject3322 Tecnología energéticaes_ES
dc.subject332205 Fuentes no convencionales de energíaes_ES
dc.subject53 Ciencias económicases_ES
dc.subject5312 Economía sectoriales_ES
dc.subject531205 Energíaes_ES
dc.titleBusiness case of optimization model for spanish grid connected photovoltaic battery household systemes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses_ES
Aparece en las colecciones: H51-Trabajos Fin de Máster

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TFM000835.pdfTrabajo Fin de Máster10,15 MBAdobe PDFVista previa
Visualizar/Abrir
TFM000835 Autorizacion.pdfAutorización221,27 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.