Please use this identifier to cite or link to this item: http://hdl.handle.net/11531/2689
Title: Efficient simulation methods of large power systems with high penetration of renewable energy resources : theory and applications
Authors: Söder, Lennart
Shayesteh, Ebrahim
Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)
Issue Date: 2015
Abstract: Electrical energy is one of the most common forms of energy these days. Consequently, electric power system is an indispensable part of any society. However, due to the deregulation of electricity markets and the growth in the share of power generation by uncontrollable renewable energies such as wind and solar, power system simulations are more challenging than earlier. Thus, new techniques for simplifying these simulations are needed. One important example of such simplification techniques is the power system reduction. Power system reduction can be used at least for four different purposes: a) Simplifying the power system simulations, b) Reducing the computational complexity, c) Compensating the data unavailability, and d) Reducing the existing uncertainty. Due to such reasons, power system reduction is an important and necessary subject, but a challenging task to do. Power system reduction is even more essential when system operators are facing very large-scale power systems and when the renewable energy resources like hydro, wind, and solar have a high share in power generation. This thesis focuses on the topic of large-scale power system reduction with high penetration of renewable energy resources and tries to pursue the following goals: • The thesis first reviews the different methods which can be used for simplifying the power system studies, including the power system reduction. A comparison among three important simplification techniques is also performed to reveal which simplification results in less error and more simulation time decrement. • Secondly, different steps and methods for power system reduction, including network aggregation and generation aggregation, are introduced, described and discussed. • Some improvements regarding the subject of power system reduction, i.e. on both network aggregation and generation aggregation, are developed. • Finally, power system reduction is applied to some power system problems and the results of these applications are evaluated. A general conclusion is that using power system simplification techniques and specially the system reduction can provides many important advantages in studying large-scale power systems with high share of renewable energy generations. In most of applications, not only the power system reduction highly reduces the complexity of the power system study under consideration, but it also results in small errors. Therefore, it can be used as an efficient method for dealing with current bulk power systems with huge amounts of renewable and distributed generations.
Description: Programa de Doctorado Erasmus Mundus en Tecnologías y Estrategias Energéticas Sostenibles / Erasmus Mundus Joint Doctorate in Sustainable Energy Technologies and Strategies
URI: http://hdl.handle.net/11531/2689
Appears in Collections:Tesis Doctorales

Files in This Item:
File Description SizeFormat 
TD00135.pdfTesis doctoral9,01 MBAdobe PDFView/Open    Request a copy
TD00135 Autorizacion.pdfAutorización1,3 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.