Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/27412
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez López, Álvaro Jesúses-ES
dc.contributor.authorRodríguez Pecharromán, Ramónes-ES
dc.contributor.authorFernández Cardador, Antonioes-ES
dc.contributor.authorCucala García, María Asunciónes-ES
dc.date.accessioned2018-06-08T12:14:56Z-
dc.date.available2018-06-08T12:14:56Z-
dc.identifier.urihttp://hdl.handle.net/11531/27412-
dc.description.abstractes-ES
dc.description.abstractElectrical railway simulators play a critical role in mass rapid transit system (MRTS) studies. In most cases, MRTSs are DC-electrified systems which include elements that exhibit different electrical states, i.e. traction substations may be in ON or OFF modes and braking trains may be in power or voltage (rheostat) modes. This adds complexity to the electrical problem to be solved by the simulator. The simulator developed by the authors in previous works includes a module in charge of determining the electrical states of all the elements in the system. The block, based on heuristic rules, demands high computation times under certain circumstances. This paper presents an upgrade of the heuristic block where artificial intelligence (AI) is used to obtain the electrical states of substations and trains. A neural network (NN) classification model is applied and compared with the previous approach by means of set of simulations. The results show that the NN approach outperforms the previous one.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleImprovement of a DC electrical railway simulator using artificial intelligencees_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsElectrical multi-train simulation, Machine Learning, Mass Rapid Transit Systems.en-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-18-024A.pdf326,22 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.