Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/35322
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMazidi, Peymanes-ES
dc.contributor.authorBertling Tjemberg, Linaes-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.date.accessioned2019-02-15T04:11:23Z-
dc.date.available2019-02-15T04:11:23Z-
dc.identifier.urihttp://hdl.handle.net/11531/35322-
dc.description.abstractes-ES
dc.description.abstractThis paper proposes an approach for maintenance management of wind turbines based on their life. The proposed approach uses performance analysis and anomaly detection (PAAD) which can detect anomalies and point out the origin of the detected anomalies. This PAAD algorithm utilizes neural network (NN) technique in order to detect anomalies in the performance of the wind turbine (system layer), and then applies principal component analysis (PCA) technique to uncover the root of the detected anomalies (component layer). To validate the accuracy of the proposed algorithm, SCADA data obtained from online condition monitoring of a wind turbine are utilized. The results demonstrate that the proposed PAAD algorithm has the capability of exposing the cause of the anomalies. Reducing time and cost of maintenance and increasing availability and in return profits in form of savings are some of the benefits of the proposed PAAD algorithm.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.titlePerformance analysis and anomaly detection in wind turbines based on neural networks and principal component analysises_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsCondition Monitoring, Fault Detection, Maintenance, Neural Networks, Performance Analysis, Principal Component Analysis, Wind Power Generationen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-17-102A.pdf8,4 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.