Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/36935
Título : Functional time series identification and diagnosis by means of autocorrelation analysis
Autor : Mestre Marcos, Guillermo
Portela González, José
Rice, Gregory
Muñoz San Roque, Antonio
Alonso Pérez, Estrella
Resumen : 
Quantifying the serial correlation across lags is a crucial step in the identification and diagnosis of a model for scalar time series, where the autocorrelation and partial autocorrelation functions of the time series are the most common tools used for this purpose. This paper proposes a lagged autocorrelation function for functional time series, which is based on the L2 norm of the lagged covariance operators of the series. Diagnostic plots utilizing large sample results for the autocorrelation function of a strong white noise sequence are proposed as a tool for selecting the order and assessing the adequacy of functional SARIMAX models. The proposed methods are studied in numerical simulations with both white noise and dependent functional processes, which show that the structure of the processes can be diagnosed using the techniques described. The applicability of the method is illustrated via applications to two real-world datasets, Eurodollar future contracts and spanish electricity price profiles.
URI : http://hdl.handle.net/11531/36935
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-18-102A.pdf671,61 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.