Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/38218
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorWogrin, Sonjaes-ES
dc.contributor.authorTejada Arango, Diego Alejandroes-ES
dc.contributor.authorPineda Morente, Salvadores-ES
dc.contributor.authorMorales González, Juan Migueles-ES
dc.date.accessioned2019-07-11T03:10:31Z-
dc.date.available2019-07-11T03:10:31Z-
dc.identifier.urihttp://hdl.handle.net/11531/38218-
dc.description.abstractes-ES
dc.description.abstractIn this paper we compare two cutting-edge timeperiod aggregation methodologies for power system models that consider both renewables and storage technologies: the chronological time-period clustering; and, the enhanced representative period approach. Such methodologies are used in order to reduce the computational burden of highly complex optimization models while not compromising the quality of the results. With this paper, we identify which method works best, and under which conditions, in order to reproduce the outcomes of the hourly benchmark model.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleWhat time-period aggregation method works best for power system operation models with renewablesand storage?es_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordspower system models, clustering, time-period aggregationen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-19-072A.pdf326,58 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.