Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/40643
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorWogrin, Sonjaes-ES
dc.contributor.authorTejada Arango, Diego Alejandroes-ES
dc.contributor.authorPineda Morente, Salvadores-ES
dc.contributor.authorMorales González, Juan Migueles-ES
dc.date.accessioned2019-09-11T03:11:22Z-
dc.date.available2019-09-11T03:11:22Z-
dc.identifier.urihttp://hdl.handle.net/11531/40643-
dc.description.abstractes-ES
dc.description.abstractThe transition of the power system from its current state to the power system of the future is heavily influenced by the growing penetration of renewables combined with the increasing importance of storage technologies. We present and compare two different time-period aggregation methods (enhanced representative periods; and, chronological time-period clustering) that allow for the adequate representation of both renewables and storage technologies in power system models. And we assess the quality of both aggregation methods in terms of accurately predicting investment and operating decisions.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleAnalyzing time period aggregation methods for power system investment and operation models with renewables and storagees_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-19-081A_abstract.pdf310,48 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.