Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/43528
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMarcos Peirotén, Rodrigo Alejandro dees-ES
dc.contributor.authorBunn, Derek W.es-ES
dc.contributor.authorBello Morales, Antonioes-ES
dc.contributor.authorReneses Guillén, Javieres-ES
dc.date.accessioned2019-11-26T04:12:58Z-
dc.date.available2019-11-26T04:12:58Z-
dc.identifier.urihttp://hdl.handle.net/11531/43528-
dc.description.abstractes-ES
dc.description.abstractThis paper develops a new approach to short-term electricity forecasting by focussing upon the dynamic specification of an appropriate calibration dataset prior to model specification. It challenges the conventional forecasting principles that establish that adaptive methods should place most emphasis upon recent data and that regime switching should likewise model transitions from the latest regime. The approach recognises that the most relevant dataset in the episodic, recurrent nature of electricity dynamics may not be the most recent. It applies cluster analysis to fundamental market regime indicators as well as structural time series breakpoint analyses. Forecasting is based upon applying a hybrid fundamental optimisation model with a neural network, to the appropriate calibration data. The results outperform other benchmark models in backtesting on the Iberian electricity market of 2017, which presents a considerable number of market structural breaks and evolving market price drivers.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleShort-term electricity price forecasting with recurrent regimes and structural breakses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsDay-Ahead Electricity Markets, Electricity Price Forecasting Fundamental-Econometric Models, Market Structural Breaksen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-19-117A.pdf1,27 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.