Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/53241
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorGonzález Prieto, Ángeles-ES
dc.contributor.authorBausili Llamas, Elviraes-ES
dc.contributor.otherUniversidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)es_ES
dc.date.accessioned2020-11-30T08:40:57Z
dc.date.available2020-11-30T08:40:57Z
dc.date.issued2021es_ES
dc.identifier.urihttp://hdl.handle.net/11531/53241
dc.descriptionGrado en Ingeniería en Tecnologías Industriales y Grado en Administración y Dirección de Empresases_ES
dc.description.abstractEste trabajo analiza el uso de inteligencia artificial como alternativa para la detección de COVID-19 en radiografías. Para ello, se realizará un estudio comparativo aplicando modelos de Machine Learning a tres bases de datos de radiografías diferentes. Tomando en consideración los resultados iniciales obtenidos, se procederá a la obtención del modelo con desempeño óptimo para la detección de dicha enfermedad según las métricas de rendimiento establecidas, haciendo uso de una base de datos que englobe la totalidad de radiografías disponibles. Finalmente, se llegará la conclusión de que el método más adecuado para la detección de COVID-19 es K-Nearest Neighbors (KNN) aplicado a imágenes en crudo, sin ningún preprocesado previo.es-ES
dc.description.abstractThis paper analyses the use of artificial intelligence as an alternative for the detection of COVID-19 in radiographs. For this purpose, a comparative study will be carried out by applying Machine Learning models to three different radiography databases. Considering the initial results obtained, we will proceed to obtain the model with optimal performance for the detection of this disease. To this end, we will develop a global model according to the established performance metrics, using a database that includes all the available radiographs. Finally, it will be concluded that the most suitable method for COVID-19 detection is K-Nearest Neighbors (KNN) applied to raw images, without any prior preprocessing.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoeses_ES
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/es_ES
dc.subject12 Matemáticases_ES
dc.subject1203 Ciencias de los ordenadoreses_ES
dc.subject120304 Inteligencia artificiales_ES
dc.subject.otherKTI-electronica (GITI-N)es_ES
dc.titleMachine Learning para el diagnóstico de COVID-19es_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses_ES
dc.keywordsCOVID-19, Radiografías, Machine Learning, Procesamiento de imágenes, Gradient Boosting, KNNes-ES
dc.keywordsCOVID-19, Radiography, Machine Learning, Image processing, Gradient Boosting, KNNen-GB
Aparece en las colecciones: KTI-Trabajos Fin de Grado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TFG- Bausili Llamas, Elvira.pdfTrabajo Fin de Grado1,72 MBAdobe PDFVista previa
Visualizar/Abrir
AnexoI.pdfAutorización88,43 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.