Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/56234
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSira, Martines-ES
dc.contributor.authorCucala García, María Asunciónes-ES
dc.contributor.authorFernández Cardador, Antonioes-ES
dc.contributor.authorFernández Rodríguez, Adriánes-ES
dc.date.accessioned2021-06-07T12:10:49Z-
dc.date.available2021-06-07T12:10:49Z-
dc.identifier.urihttp://hdl.handle.net/11531/56234-
dc.description.abstractes-ES
dc.description.abstractThis paper describes a study of uncertainty propagation through the Train Simulator Algorithm (TSA). The algorithm is used to estimate train driving time, consumed and regenerated energy. These output quantities are important to optimize the driving profile of the train and minimize energy spending. The uncertainty propagation was calculated using the Monte Carlo method. The sensitivity of output uncertainties on the input uncertainties was evaluated for two different train tracks in Spain, Madrid Metro, and in Italy, Bolonia-Ozzano. Results will be used to improve eco-driving profiles.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleSensitivities and uncertainties of eco-driving algorithm estimating train power consumptiones_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsuncertainty, Monte Carlo methods, energy consumption, railway engineering.en-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-20-140A.pdf516,81 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.