Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/58049
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorGahete Díaz, José Luises-Es
dc.contributor.advisorMartínez Muñoz, Moiséses-Es
dc.contributor.advisorMorrás Ruiz-Falcó, Carloses-Es
dc.contributor.authorRajabdorri, Mohammades-ES
dc.contributor.authorKazemtabrizi, Behzades-ES
dc.contributor.authorTroffaes, Matthiases-ES
dc.contributor.authorSigrist, Lukases-ES
dc.contributor.authorLobato Miguélez, Enriquees-ES
dc.contributor.other, Departamento de Telemática y Computaciónes_ES
dc.date.accessioned2021-07-15T09:21:26Z-
dc.date.available2021-07-15T09:21:26Z-
dc.date.issued2023-12-01es_ES
dc.identifier.issn2352-4677es_ES
dc.identifier.otherE900007994es_ES
dc.identifier.urihttps:doi.org10.1016j.segan.2023.101161es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractAs the intention is to reduce the amount of thermal generation and to increase the share of clean energy, power systems are increasingly becoming susceptible to frequency instability after outages due to reduced levels of inertia. To address this issue frequency constraints are being included in the scheduling process, which ensure a tolerable frequency deviation in case of any contingencies. In this paper, a method is proposed to integrate the non-linear frequency nadir constraint into the unit commitment problem, using machine learning. First, a synthetic training dataset is generated. Then two of the available classic machine learning methods, namely logistic regression and support vector machine, are proposed to predict the frequency nadir. To be able to compare the machine learning methods to traditional frequency constrained unit commitment approaches, simulations on the power system of La Palma island are carried out for both proposed methods as well as an analytical linearized formulation of the frequency nadir. Our results show that the unit commitment problem with a machine learning based frequency nadir constraint is solved considerably faster than with the analytical formulation, while still achieving an acceptable frequency response quality after outages.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Sustainable Energy, Grids and Networks, Periodo: 1, Volumen: online, Número: , Página inicial: 101161-1, Página final: 101161-10es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleInclusion of frequency nadir constraint in the unit commitment problem of small power systems using machine learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsData-driven method; Mixed integer linear programming; Frequency constrained unit commitment; Machine learningen-GB
asignatura.cursoacademico2022-2023es_ES
asignatura.periodoes_ES
asignatura.creditos6.0es_ES
asignatura.tipoPrueba Final Másteres_ES
Aparece en las colecciones: MBD-Guías Docentes

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Guía Docente.pdf108,59 kBAdobe PDFVista previa
Visualizar/Abrir
IIT-23-364R1,42 MBUnknownVisualizar/Abrir
IIT-23-364R_preview2,5 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.