Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/58099
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorMartínez Beltrán, María Jesúses-Es
dc.contributor.authorMonteagudo Honrubia, Migueles-ES
dc.contributor.authorMatanza Domingo, Javieres-ES
dc.contributor.authorHerraiz Martínez, Francisco Javieres-ES
dc.contributor.authorGiannetti, Romanoes-ES
dc.contributor.other, Escuela Universitaria de Enfermería y Fisioterapiaes_ES
dc.date.accessioned2021-07-15T15:11:21Z-
dc.date.available2021-07-15T15:11:21Z-
dc.date.issued2023-04-02es_ES
dc.identifier.issn1424-8220es_ES
dc.identifier.other0000009780es_ES
dc.identifier.urihttps:doi.org10.3390s23083940es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractGlycerin is a versatile organic molecule widely used in the pharmaceutical, food, and cosmetic industries, but it also has a central role in biodiesel refining. This research proposes a dielectric resonator (DR) sensor with a small cavity to classify glycerin solutions. A commercial VNA and a novel low-cost portable electronic reader were tested and compared to evaluate the sensor performance. Within a relative permittivity range of 1 to 78.3, measurements of air and nine distinct glycerin concentrations were taken. Both devices achieved excellent accuracy (98–100) using Principal Component Analysis (PCA) and Support Vector Machine (SVM). In addition, permittivity estimation using Support Vector Regressor (SVR) achieved low RMSE values, around 0.6 for the VNA dataset and between 1.2 for the electronic reader. These findings prove that low-cost electronics can match the results of commercial instrumentation using machine learning techniques.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Sensors, Periodo: 1, Volumen: online, Número: 8, Página inicial: 3940-1, Página final: 3940-15es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleLow-cost electronics for automatic classification and permittivity estimation of glycerin solutions using a dielectric resonator sensor and machine learning techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsdielectric resonator; microwave sensor; machine learning; dielectric characterization; glycerin purification; low-cost electronics; arduinoen-GB
asignatura.cursoacademico2022-2023es_ES
asignatura.periodoes_ES
asignatura.creditos6.0es_ES
asignatura.tipoObligatoria (Grado)es_ES
Aparece en las colecciones: KFS-Guías Docentes

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Guía Docente.pdf174,53 kBAdobe PDFVista previa
Visualizar/Abrir
IIT-23-055R6,64 MBUnknownVisualizar/Abrir
IIT-23-055R_preview2,88 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.