Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/58166
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorPintor Pirzkall, Heike Claraes-Es
dc.contributor.authorSánchez Pérez, Pabloes-ES
dc.contributor.authorBellogín, Alejandroes-ES
dc.contributor.authorBoratto, Ludovicoes-ES
dc.contributor.other, Departamento de Traducción e Interpretación y Comunicación Multilingüees_ES
dc.date.accessioned2021-07-16T06:50:37Z-
dc.date.available2021-07-16T06:50:37Z-
dc.date.issued2023-09-01es_ES
dc.identifier.issn1384-5810es_ES
dc.identifier.otherE000001594es_ES
dc.identifier.urihttps:doi.org10.1007s10618-022-00913-5es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractLocation-Based Social Networks stimulated the rise of services such as Location-based Recommender Systems. These systems suggest to users points of interest (or venues) to visit when they arrive in a specific city or region. These recommendations impact various stakeholders in society, like the users who receive the recommendations and venue owners. Hence, if a recommender generates biased or polarized results, this affects in tangible ways both the experience of the users and the providers’ activities. In this paper, we focus on four forms of polarization, namely venue popularity, category popularity, venue exposure, and geographical distance. We characterize them on different families of recommendation algorithms when using a realistic (temporal-aware) offline evaluation methodology while assessing their existence. Besides, we propose two automatic approaches to mitigate those biases. Experimental results on real-world data show that these approaches are able to jointly improve the recommendation effectiveness, while alleviating these multiple polarizations.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Data Mining and Knowledge Discovery, Periodo: 1, Volumen: online, Número: , Página inicial: 1885, Página final: 1929es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleBias characterization, assessment, and mitigation in location-based recommender systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsPOI recommendation · Bias mitigation · Polarization · Temporal evaluationen-GB
asignatura.cursoacademico2022-2023es_ES
asignatura.periodoes_ES
asignatura.creditos3.0es_ES
asignatura.tipoObligatoriaes_ES
Aparece en las colecciones: H57-Guías Docentes

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Guía Docente.pdf121,58 kBAdobe PDFVista previa
Visualizar/Abrir
IIT-23-024R1,81 MBUnknownVisualizar/Abrir
IIT-23-024R_preview2,86 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.