Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/6205
Título : Analysis of energy prices seasonality
Autor : Gil Gómez, Juan Ignacio
Vega Andrés, Mikel
Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)
Palabras clave : 53 Ciencias económicas;5302 Econometría;530202 Modelos econométricos;33 Ciencias tecnológicas;3306 Ingeniería y tecnología eléctrica
Fecha de publicación : 2014
Resumen : El principal problema que presentan las series temporales, es que a simple vista lo único que se puede analizar es la evolución del precio en función del tiempo. El objetivo de esta Tesis de Máster es desarrollar diferentes modelos econométricos en Python para ser capaces de analizar la estacionalidad de las series temporales. Los modelos econométricos que han sido desarrollados son trigonométrico, medias móviles multiplicativo y medias móviles aditivas. Una vez que han sido desarrollados, se ha verificado la máxima verosimilitud para ajustar los modelos y, después, ha servido para saber qué modelo se ajusta mejor a cada activo subyacente que ha sido analizado. La principal diferencia entre los modelos de medias móviles y el trigonométrico reside en que, mientras que los primeros son modelos discretos, el segundo aporta un resultado continuo. También se han desarrollado diferentes pruebas para comprobar la bondad de los modelos desarrollados. Los resultados obtenidos muestran que el modelo que mejor se ajusta a la mayoría de activos subyacentes es el trigonométrico. Es el modelo que obtiene la menor verosimilitud para los activos subyacentes que han sido analizados. Cuando se obtienen los coeficientes estacionales, son empleados para complementar las simulaciones de Monte Carlo para valorar opciones. Además, también se pueden emplear para analizar curvas de futuros y de este modo saber si el precio está variando o simplemente es una consecuencia de la época del año en la que se está.
The main problem the time series present, is that the only thing that can be analyzed at a glance is the evolution of the price as function of time. The purpose of this Master Thesis is to develop different econometric models in Python in order to be able to analyze the seasonality of seasonal time series. The econometric models that have been coded are multiplicative moving averages, additive moving averages and trigonometric model. Once they were coded, we use an optimization algorithm to find the set of parameters that maximize the likelihood and, afterwards, the likelihoods are used in order to know which model fits better for each one of the underlying assets that were analyzed. The main difference between the moving averages and the trigonometric is that, while the former is a discrete model, the latter gives a continuous result. Different tests were also developed in order to check the goodness of the developed models. The obtained results show the model that best fits to most of the underlying assets is the trigonometric one. It is the model that obtains the lowest likelihood for those underlying assets. When the seasonal coefficients are extracted, they are employed to complement Monte Carlo simulations for options valuation. They can be used also to analyze futures curves and analyze whether the prices are really varying or is only a matter of the season of the year.
Descripción : Master in the Electric Power Industry
URI : http://hdl.handle.net/11531/6205
Aparece en las colecciones: H51-Trabajos Fin de Máster

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TFM000094.pdfTrabajo Fin de Máster5,28 MBAdobe PDFVista previa
Visualizar/Abrir
TFM000094 Autorizacion.pdfAutorización2,54 MBAdobe PDFVista previa
Visualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.